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DENSITY AND UPPER SEMICONTINUITY OF STRONG SOLUTIONS
FOR PARAMETRIC GENERALIZED SYSTEM

Zai-Yun Peng and Jian-Wen Peng*

Abstract. In this paper, we obtain some stability results for a class of parametric
generalized system. Under weaker conditions, a density theorem of positive proper
efficient solutions in the set of strong solutions is obtained. Then, by using the
density result, we establish the upper semicontinuity of strong solution mappings
to parametric generalized system without monotonicity. Our results are different
from the corresponding ones in the literature. Some examples are given to illustrate
the results.

1. INTRODUCTION

Many results on the existence of solutions to various kinds of vector variational
inequalities and vector equilibrium problems have been widely established, see [5, 6,
7, 8] and the references therein.

The stability analysis of solution maps to parametric vector variational inequalities
(PVVI, in short) and parametric vector equilibrium problems (PVEP, in short) is an-
other important topic in optimization theory and applications. There are some papers
to discuss the upper and/or lower semicontinuity of solution maps. Cheng and Zhu
[9] obtained a result on the lower semicontinuity of the solution set map to a paramet-
ric vector variational inequality in finite-dimensional spaces based on a scalarization
method. Recently, by virtue of a density result and scalarization technique, Gong and
Yao [11] have first discussed the lower semicontinuity of the efficient solution to PVEP,
which are called generalized systems in their paper. By using the ideas of Cheng and
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Zhu [9], Gong [12] has discussed the continuity of the solution set mapping for a class
of parametric weak vector equilibrium problems in topological vector spaces. Huang
et al.[10] used local existence results of the models considered and additional assump-
tions to establish the lower semicontinuity of solution mappings for parametric implicit
vector equilibrium problems. Kimura and Yao [13] discussed the semicontinuity of
solution maps for parametric vector quasi-equilibrium problems. In 2009, Xu and Li
[14] proved the lower semicontinuity for PVEP by using a new proof method which is
different from the one used in Gong and Yao [11]. Chen et al. [15] studied the continu-
ity of solution sets for parametric generalized systems without the uniform compactness
assumption, which improves the corresponding results in [11, 12].

We observed that the semicontinuity of solution maps to PVEP has been discussed
under assumption of C-strict/strong monotonicity for the mappings, which implies that
the f -solution set of the PVEP is a singleton (see [9, 11, 12, 14, 15, 19]). However,
it is well known that the f -solution set of (weak) PVEPs should be general, but not a
singleton. Moreover, to the best of our knowledge, there are few upper semicontinuous
results have been concerned for strong solution mappings to PVEPs in the literature. So,
in this paper, by using a density result, we aim at discussing the upper semicontinuity
of the strong solution map for a classes of parametric generalized system by removing
the assumption of C-strict monotonicity, where the f -solution set may be general. Our
results are new and different from the corresponding ones in the literature ([11, 12, 14,
15, 19]). Some examples are given for illustration of the results.

The rest of the paper is organized as follows. In Sect. 2, we introduce a class of
parametric generalized system (PGS), and recall some concepts and their properties. In
Sect. 3, we obtain the density theorem of strong solution sets to (PGS), which does
not need whether the f -solution set is singleton. In Sect. 4, we discuss the upper
semicontinuity of the strong solution mappings to (PGS), and compare our main results
with the corresponding ones in the recent literature.

2. PRELIMINARIES

Throughout this paper, unless specified otherwise, let X, Y and Z be real linear
metric spaces. Let Y ∗ be the topological dual space of Y , and C be a closed convex
pointed cone in Y with nonempty topological interior intC. Let d(·, ·) denotes the
distance in metric space. The notation B(μ, δ) denotes the open ball with center μ ∈ Λ
and the radius δ > 0 and the clC denotes the closure of C.

Let
C∗ := {f ∈ Y ∗ : f(y) ≥ 0, ∀y ∈ C}

be the dual cone of C. Denote the quasi-interior of C∗ by C�, i.e.,

C� := {f ∈ Y ∗ : f(y) > 0, ∀y ∈ C \ {0}}.
A nonempty convex set B ⊂ C is said to be a base of C if
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(i) 0 �∈ clB; (ii) C = coneB.
It is easy to see that C� �= ∅ if and only if C has a base.

Let A be a nonempty subset of X and F : A×A → Y be a vector-valued mapping.
We consider the following generalized system (GS)

Find x ∈ A such that F (x, y) �∈ −K, ∀y ∈ A,

where K ∪ {0} is a convex cone in Y .
When the subset A and the mapping F are perturbed by a parameter μ ∈ Λ, which

Λ is a nonempty subset of Z, we consider the following parametric generalized system
(PGS)

Find x ∈ A(μ) such that F (x, y, μ) �∈ −K, ∀y ∈ A(μ),

where A : Λ → 2X \ {∅} is a set-valued mapping, F : B×B×Λ ⊂ X×X ×Z → Y

is a vector-valued mapping with A(Λ) =
⋃
μ∈ΛA(μ) ⊂ B.

Definition 2.1. (i) A vector x ∈ A is called a weak solution to the (GS), iff

F (x, y) �∈ −intC, ∀y ∈ A.

The set of the weak solutions to the (GS) is denoted by Vw.
(ii) A vector x ∈ A(μ) is called a weak solution to the (PGS), iff

F (x, y, μ) �∈ −intC, ∀y ∈ A(μ).

The set of the weak solutions to the (PGS) is denoted by Vw(μ).

Definition 2.2. (i) A vector x ∈ A is called a strong solution to the (GS), iff

F (x, y) �∈ −C \ {0}, ∀y ∈ A.

The set of the strong solutions to the (GS) is denoted by Vs.
(ii) A vector x ∈ A(μ) is called a strong solution to the (PGS), iff

F (x, y, μ) �∈ −C \ {0}, ∀y ∈ A(μ).

The set of the strong solutions to the (PGS) is denoted by Vs(μ).

Definition 2.3. (i) Let f ∈ C∗ \ {0}. A vector x ∈ A is called an f -solution to the
(GS), iff

f(F (x, y)) ≥ 0, ∀y ∈ A.

The set of the f -solution to the (GS) is denoted by Vf .
(ii) Let f ∈ C∗ \ {0}. A vector x ∈ A(μ) is called an f -solution to the (PGS), iff

f(F (x, y, μ)) ≥ 0, ∀y ∈ A(μ).

The set of the f -solution to the (PGS) is denoted by Vf (μ).
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(iii) A vector x ∈ A(μ) is called a positive proper efficient solution to the (PGS)
if there exists f ∈ C� such that

f(F (x, y, μ)) ≥ 0, ∀ y ∈ A(μ).

Let μ ∈ Λ, x ∈ A(μ). Define

F (x, A(μ), μ) = {F (x, y, μ) : y ∈ A(μ)}.
Let μ ∈ Λ and A(μ) ⊂ X be a nonempty set, and let ϕ : A(μ) ×A(μ) × Λ → Y ,

ψ : A(μ) × Λ → Y be two vector-valued mappings. Throughout the rest of this note,
for each μ ∈ Λ, we always assume

F (x, y) = ψ(y) + ϕ(x, y)− ψ(x), x, y ∈ A.

and
F (x, y, μ) = ψ(y, μ) + ϕ(x, y, μ)− ψ(x, μ), x, y ∈ A(μ).

Next, we recall other basic concepts and properties.

Definition 2.4. Let F : X ×X × Λ → Y be a vector-valued mapping.

(i) F (·, ·, ·) is called C-monotone on A(μ) × A(μ) × Λ, iff for any given μ ∈ Λ,
for each x, y ∈ A(μ), F (x, y, μ) + F (y, x, μ) ∈ −C.

(ii) F (·, ·, ·) is called C-strictly monotone (i.e., C-strongly monotone in [19]) on
A(μ)×A(μ)×Λ, iff F is a C-monotone on A(μ)×A(μ)×Λ, and for any given
μ ∈ Λ, for each x, y ∈ A(μ) with x �= y, F (x, y, μ) + F (y, x, μ) ∈ −intC.

(iii) F (x, ·, μ) is calledC-convex if, for each y1, y2 ∈ A(μ) and t ∈ [0, 1], tF (x, y1, μ)+
(1 − t)F (x, y2, μ) ∈ F (x, ty1 + (1− t)y2, μ) + C.

(iv) F (x, ·, μ) is called C-convexlike on A(μ), iff for any y1, y2 ∈ A(μ) and any
t ∈ [0, 1], there exists y3 ∈ A(μ) such that tF (x, y1, μ) + (1 − t)F (x, y2, μ) ∈
F (x, y3, μ) + C.

(v) A set D ⊂ Y is called a C-convex set, iff D +C is a convex set in Y.

Definition 2.5. [3]. Let F : Λ → 2X be a set-valued mapping, and given μ̄ ∈ Λ.

(i) F is called lower semicontinuous(l.s.c, in short) at μ̄, iff for any open set V
satisfying V

⋂
F (μ̄) �= ∅, there exists δ > 0, such that for every μ ∈ B(μ̄, δ),

V
⋂
F (μ) �= ∅.

(ii) F is called upper semicontinuous(u.s.c, in short) at μ̄, iff for any open set V
satisfying F (μ̄) ⊂ V, there exists δ > 0, such that for every μ ∈ B(μ̄, δ), F (μ) ⊂
V.

We say F is l.s.c(resp. u.s.c) on Λ, iff it is l.s.c(resp. u.s.c) at each μ ∈ Λ. F is
said to be continuous on Λ, iff it is both l.s.c and u.s.c on Λ.
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Proposition 2.1. [3]. Let F : Λ → 2X be a set-valued mapping, and given μ̄ ∈ Λ.

(i) F is l.s.c at μ̄ if and only if for any sequence {μn} ⊂ Λ with μn → μ̄ and any
x̄ ∈ F (μ̄), there exists xn ∈ F (μn), such that xn → x̄.

(ii) If F has compact values(i.e., F (μ) is a compact set for each μ ∈ Λ), then F is
u.s.c at μ̄ if and only if for any sequences {μn} ⊂ Λ with μn → μ̄ and {xn}
with xn ∈ F (μn), there exist x̄ ∈ F (μ̄) and a subsequence {xnk

} of {xn}, such
that xnk

→ x̄.

The following Lemma gives the relationships between Vw(μ) and Vf(μ).

Lemma 2.1. [16]. Let F (x, A(μ), μ) be a C-convex set for each μ ∈ Λ and
x ∈ A(μ). If intC �= ∅, then Vw(μ) =

⋃
f∈C∗\{0} Vf (μ).

Lemma 2.2. [2, Property 3, p. 238] For any neighborhood U of 0X , there exists
an balanced open neighborhood U1 such that U1 + U1 ⊂ U.

Throughout this paper, we always assume Vf(μ) �= ∅ and Vs(μ) �= ∅ for all μ ∈ Λ.
This paper aims at investigating the density of positive proper efficient solutions and
upper semicontinuity of the strong solution mappings to (PGS).

3. DENSITY IN STRONG SOLUTION SETS TO (PGS)

Define the set-valued mapping H : C∗ \{0} → 2A by H(f) = Vf , ∀f ∈ C∗ \{0},
we can get the following lemma.

Lemma 3.1. For each f ∈ C∗\{0}. Suppose the following conditions are satisfied:

(i) A is a compact set;
(ii) ϕ(·, ·) is continuous on A×A, ψ(·) is continuous on A;

(iii) M = {ϕ(x, y) : x, y ∈ A} and ψ(A) are bounded subsets of Y ;

(iv) For each x ∈ A \ Vf , there exists y ∈ Vf such that

ϕ(x, y) + ϕ(y, x) +B(0, dr(x, y)) ⊂ −C,
where r is a positive constant.

Then, we have H(·) is l.s.c on C∗ \ {0}.
Proof. Suppose to the contrary that there exists f0 ∈ C∗ \ {0} such that H(·) is

not l.s.c at f0. Then, there exist a sequence {fn} with fn → f0 with respect to the
strong topology β(Y ∗, Y ) and x0 ∈ H(f0) = Vf0 such that for any xn ∈ H(fn) =
Vfn, xn � x0.

Since A is compact, then there exists x̄n ∈ A such that x̄n → x0. Obviously,
x̄n ∈ A \ Vfn. By (iv), there exists yn ∈ Vfn such that
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ϕ(x̄n, yn) + ϕ(yn, x̄n) + B(0, dr(x̄n, yn)) ⊂ −C.
Since yn ∈ Vfn implies yn ∈ A and the compactness of A, then there exists y0 ∈ A

such that yn → y0(taking a subset of yn if necessary). By (ii) and the closeness of C,
taking the limit as n→ ∞, we have

(3.1) ϕ(x0, y0) + ϕ(y0, x0) +B(0, dr(x0, y0)) ⊂ −C.

Noting that x0 ∈ Vf0 and y0 ∈ A, we have

(3.2) f0(ψ(y0) + ϕ(x0, y0) − ψ(x0)) ≥ 0.

From yn ∈ Vfn and x̄n ∈ A, we can get

(3.3) fn(ψ(x̄n) + ϕ(yn, x̄n) − ψ(yn)) ≥ 0.

From assumption (ii) and the continuity of fn, we have

(3.4) lim
n→∞ fn(ψ(x̄n) + ϕ(yn, x̄n) − ψ(yn)) = f0(ψ(x0) + ϕ(y0, x0)− ψ(y0)).

So, we get
f0(ψ(x0) + ϕ(y0, x0)− ψ(y0)) ≥ 0.

By assumption (iii), M = {ϕ(x, y) : x, y ∈ A} and ψ(A) are bounded subsets of Y.
Let S = {ψ(x) : x ∈ A}, define

PM+S−ψ(A)(y
∗) = sup

y∈M+S−ψ(A)
|y∗(y)|, y∗ ∈ Y ∗.

We know that PM+S−ψ(A) is a seminorm of Y ∗. For arbitrary ε > 0, let

U = {y∗ ∈ Y ∗ : PM+S−ψ(A)(y
∗) < ε}

is a neighborhood of 0 with respect to β(Y ∗, Y ). Since fn − f0 → 0, then there exists
N such that fn − f0 ∈ U, for all n > N. Thus,

PM+S−ψ(A)(fn − f0) = sup
y∈M+S−ψ(A)

|(fn − f0)(y)| < ε,whenever n > N.

We also have

|(fn − f0)(ψ(x̄n) + ϕ(yn, x̄n) − ψ(yn))|
= |fn(ψ(x̄n) + ϕ(yn, x̄n) − ψ(yn)) − f0(ψ(x̄n) + ϕ(yn, x̄n) − ψ(yn))| < ε.

Hence,

(3.5)
lim
n→∞(fn − f0)(ψ(x̄n) + ϕ(yn, x̄n) − ψ(yn))

= lim
n→∞(fn(ψ(x̄n)+ϕ(yn, x̄n)−ψ(yn))−f0(ψ(x̄n)+ϕ(yn, x̄n)−ψ(yn)))=0.
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From (3.3), we have

fn(ψ(x̄n) + ϕ(yn, x̄n) − ψ(yn)) − f0(ψ(x̄n) + ϕ(yn, x̄n) − ψ(yn))

≥ −f0(ψ(x̄n) + ϕ(yn, x̄n)− ψ(yn)).

So
lim
n→∞[fn(ψ(x̄n) + ϕ(yn, x̄n) − ψ(yn)) − f0(ψ(x̄n) + ϕ(yn, x̄n) − ψ(yn))]

≥ lim
n→∞(−f0(ψ(x̄n) + ϕ(yn, x̄n)− ψ(yn))).

Thus, combining with (3.4), (3.5), we can obtain

(3.6) f0(ψ(x0) + ϕ(y0, x0)− ψ(y0)) ≥ 0.

According to (3.2) and (3.6), one has

(3.7) f0(ϕ(x0, y0) + ϕ(y0, x0)) ≥ 0.

From (3.1), if x0 �= y0, we get ϕ(x0, y0) + ϕ(y0, x0) ∈ −intC. Thus, it follows
from f ∈ C∗ \ {0} that

f0(ϕ(x0, y0) + ϕ(y0, x0)) < 0,

which contradicts (3.7). Therefore, x0 = y0. Since yn ∈ Vfn , yn → y0 = x0, this
contradicts that for any xn ∈ Vfn , xn � x0. Hence, the proof is complete.

Theorem 3.1. For any given f ∈ C∗ \ {0}. Suppose that C has a base and the
following conditions are satisfied:

(i) A is a compact set;
(ii) For each x ∈ A, ψ(·) + ϕ(x, ·) is C-convexlike on A;
(iii) ϕ(·, ·) is continuous on A×A, ψ(·) is continuous on A;
(iv) For each x ∈ A \ Vf , there exists y ∈ Vf such that

ϕ(x, y) + ϕ(y, x) +B(0, dr(x, y)) ⊂ −C,
where r is a positive constant;

(v) M = {ϕ(x, y) : x, y ∈ A} and ψ(A) are bounded subsets of Y.

Then, ⋃
f∈C�

Vf ⊂ Vs ⊂ cl(
⋃
f∈C�

Vf).

Proof. By virtue of Gong’s method in Theroem 2.1 of [19], we only need to prove

(3.10)
⋃

f∈C∗\{0}
Vf ⊂ cl(

⋃
f∈C�

Vf).
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One can define set-valued mapping H : C∗ \ {0} → 2A by

H(f) = Vf , f ∈ C∗ \ {0}.
By Lemma 3.1, H(·) is lower semicontinuous on C∗ \ {0}.

Let x0 ∈ ⋃
f∈C∗\{0} Vf . Then, there exists f0 ∈ C∗ \ {0} such that

x0 ∈ Vf0 = H(f0).

Since C has a base, then C� �= ∅. Let g ∈ C� and set

fn = f0 + (1/n)g.

One has, fn ∈ C�. Then, using the same way in Theroem 2.1 of [19], we can get {fn}
converges to f0 with respect to the topology β(Y ∗, Y ).

SinceH(f) is l.s.c at f0, by Proposition 2.1 (i), for sequence {fn} ⊂ C∗\{0}, fn →
f0 and for any x0 ∈ H(f0), there exists xn ∈ H(fn) = Vfn ⊂ ⋃

f∈C� Vf such that
xn → x0. This means that

x0 ∈ cl(
⋃
f∈C�

Vf).

By the arbitrariness of x0 ∈ ⋃
f∈C∗\{0} Vf , we have

⋃
f∈C∗\{0}

Vf ⊂ cl(
⋃
f∈C�

Vf).

This completes the proof.

By virtue of Theorem 3.1, we can get the following result easily.

Theorem 3.2. For any given f ∈ C∗ \ {0}. Suppose that C has a base and the
following conditions are satisfied:

(i) A(·) is continuous with compact values on Λ;

(ii) For each μ ∈ Λ and x ∈ A(μ), ψ(·, μ) + ϕ(x, ·, μ) is C-convexlike on A(μ);

(iii) For each μ ∈ Λ, ϕ(·, ·, μ) is continuous on B×B, ψ(·, μ) is continuous on B;

(iv) For each μ ∈ Λ, x ∈ A(μ) \ Vf(μ), there exists y ∈ Vf(μ) such that

ϕ(x, y, μ) + ϕ(y, x, μ) + B(0, dr(x, y)) ⊂ −C,

where r is a positive constant;

(v) M = {ϕ(x, y, μ) : x, y ∈ A(μ)} and ψ(A(μ), μ) are bounded subsets of Y for
each μ ∈ Λ.
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Then, ⋃
f∈C�

Vf(μ) ⊂ Vs(μ) ⊂ cl(
⋃
f∈C�

Vf (μ)).

Remark 3.1. Our result improves and extends Theorem 2.1 of [19](or Lemma 1.2
of [11]). In [19], under the condition of C-strong monotonicity, the f -solution set to
(PGS) is confined to be a singleton (see [[19], Lemma 2.2] or [[17], Theorem 3.2]).
In Theorem 3.1, we use condition (iv) to weaken this condition, which can get that
f -solution set may be a general set, but not a singleton. Moreover, the condition (iv)
of Theorem 3.2 is weaker than C-strong monotonicity. The following example is given
to illustrate the case.

Example 3.1. Let X = R, Y = R2, C = R2
+ := [0,+∞) × [0,+∞),Λ =

[1, 2], A(μ) = [−1, 1]. For each μ ∈ Λ, x ∈ A(μ), y ∈ A(μ), let ϕ(x, y, μ) = (−μ2 +
2μ− 2, μx), ψ(x, μ) = ( 1

3 ,
3
2μ). For any given μ ∈ Λ, let f((x, y)) = 1

μy. It follows
from a direct computation that Vf (μ) = [0, 1]. Obviously, the f -solution set to the
(PGS) is not a singleton, but a general set. It is clear that conditions (i) (ii) (iii) and
(v) of Theorem 3.2 are satisfied. The condition (iv) in Theorem 3.2 can be checked as
follows: For any x ∈ A(μ) \ Vf(μ) = [−1, 0), there exists y = 0 ∈ Vf(μ), such that

ϕ(x, y, μ) + ϕ(y, x, μ) +B(0, dr(x, y))

= (−2μ2 + 4μ− 4, μx) +B(0, dr(x, 0)) ⊂ −C.
However, the condition of C-strong monotonicity in [19] does not hold. Indeed, for
any x ∈ A(μ) \ Vf (μ) = [−1, 0), there exists y = −x ∈ Vf(μ) = [0, 1] such that

ϕ(x, y, μ) + ϕ(y, x, μ) = (−2μ2 + 4μ− 4, 0) ∈ −∂C \ {0}
where ∂C is the boundary of C. Obviously, ϕ(x, y, μ) + ϕ(y, x, μ) �∈ −intC, which
implies that ϕ(·, ·, μ) is not C-strongly monotone on A(μ) ×A(μ). Then, Lemma 1.2
of [11], Theorem 2.1 of [19] are not applicable.

4. UPPER SEMICONTINUITY OF STRONG SOLUTION SETS TO (PGS)

Theorem 4.1. For each f ∈ C∗ \ {0}. Suppose the following conditions are
satisfied:

(i) A(·) is continuous with compact values on Λ;
(ii) For each μ ∈ Λ, ϕ(·, ·, μ) is continuous on B ×B, ψ(·, μ) is continuous on B.

Then, Vf(·) is u.s.c on Λ.

Proof. Suppose to the contrary that there exists μ0 ∈ Λ such that Vf(·) is not
u.s.c at μ0. Then, there exist an open set V satisfying Vf(μ0) ⊂ V and a sequence
μn → μ0, xn ∈ Vf(μn), such that for any n, xn �∈ V.
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Since xn ∈ Vf(μn) implies xn ∈ A(μn), from the upper semicontinuity and com-
pactness of A(·) at μ0, there exist x0 ∈ A(μ0) and a subsequence {xnk

} of {xn}, such
that xnk

→ x0.

Now we first prove x0 ∈ Vf(μ0). Assume that x0 �∈ Vf(μ0), then there exists
y0 ∈ A(μ0) such that

(4.1) f(ψ(y0, μ0) + ϕ(x0, y0, μ0) − ψ(x0, μ0)) < 0.

Since A(·) is lower semicontinuous at μ0 and y0 ∈ A(μ0), there exists yn ∈ A(μn)
such that yn → y0.

For xn ∈ Vf(μn) and yn ∈ A(μn), we have f(ψ(yn, μn) + ϕ(xn, yn, μn) −
ψ(xn, μn)) ≥ 0. From assumption (ii) and the continuity of f, taking the limit as
n→ ∞, we obtain that

f(ψ(y0, μ0) + ϕ(x0, y0, μ0) − ψ(x0, μ0)) ≥ 0.

which contradicts (4.1). Therefore, we have x0 ∈ Vf (μ0).
Since Vf (μ0) ⊂ V, thus x0 ∈ V. It follows xn → x0 that there exists enough large

positive number N, such that

xn ∈ V, ∀n ≥ N,

which is a contradiction. Thus, our result holds and the proof is complete.

Proposition 4.2. For any f ∈ C∗ \ {0}. Suppose the following conditions are
satisfied:

(i) A(·) is compact values on Λ;
(ii) For each μ ∈ Λ, y ∈ A(μ), ϕ(·, y, μ) and ψ(·, μ) are continuous on B.

Then, Vf(μ) is a closed set. Moreover, Vf(μ) is a compact set.

Proof. For any sequence xα ∈ Vf(μ) with xα → x0, we have xα ∈ A(μ) and

f(ψ(y, μ) + ϕ(xα, y, μ)− ψ(xα, μ)) ≥ 0.

By the compactness of A(μ), it follows that x0 ∈ A(μ).
Since for any y ∈ A(μ), ϕ(·, y, μ) and ψ(·, μ) are continuous on A(μ), we can get

ψ(y, μ) + ϕ(xα, y, μ)− ψ(xα, μ) → ψ(y, μ) + ϕ(x0, y, μ)− ψ(x0, μ).
It follows from the continuity of f that f(ψ(y, μ)+ϕ(x0, y, μ)−ψ(x0, μ)) ≥ 0, ∀y ∈
A(μ), i.e., x0 ∈ Vf(μ). Therefore, Vf(μ) is a closed set.

Moreover, by virtue of Vf (μ) ⊂ A(μ) and the compactness of A(μ), we can obtain
Vf(μ) is a compact set. This completes the proof.

Theorem 4.2. Let f ∈ C∗ \ {0}. Suppose that C has a base and the following
conditions are satisfied:
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(i) A(·) is continuous with compact values on Λ;

(ii) For each μ ∈ Λ and x ∈ A(μ), ψ(·, μ) + ϕ(x, ·, μ) is C-convexlike on A(μ);

(iii) For each μ ∈ Λ, ϕ(·, ·, μ) is continuous on B×B, ψ(·, μ) is continuous on B;

(iv) For each μ ∈ Λ, x ∈ A(μ) \ Vf(μ), there exist y ∈ Vf(μ) such that

ϕ(x, y, μ) + ϕ(y, x, μ) + B(0, dr(x, y)) ⊂ −C,
where r is a positive constant;

(v) M = {ϕ(x, y, μ) : x, y ∈ A(μ)} and ψ(A(μ), μ) are bounded subsets of Y for
each μ ∈ Λ.

Then, Vs(·) is u.s.c on Λ.

Proof. Suppose to the contrary that there exists μ0 ∈ Λ such that Vs(·) is not u.s.c
at μ0. Then, there exist an open set V satisfying Vs(μ0) ⊂ V and a sequence {μn}
with μn → μ0, xn ∈ Vs(μn) such that for any n, xn �∈ V.

By Theorem 3.2, for each μ ∈ Λ, we have⋃
f∈C�

Vf(μ) ⊂ Vs(μ) ⊂ cl(
⋃
f∈C�

Vf (μ)).

For any neighborhood of xn+U(0) of xn, where U(0) is a neighborhood of 0 in X,
from Lemma 2.2, we can take a neighborhood U1(0) of 0 such that U1(0) + U1(0) ⊂
U(0). Since

xn ∈ Vs(μn) ⊂ cl(
⋃
f∈C�

Vf(μn)).

Thus, we have
(xn + U(0)) ∩

⋃
f∈C�

Vf(μn) �= ∅.

Hence, there exists zn ∈ ⋃
f∈C� Vf (μn) such that

zn − xn ∈ U1(0).

Thus, there exists f ′ ∈ C� such that zn ∈ Vf ′(μn). By Theorem 4.1 and Proposition
4.1, Vf(.) is upper semicontinuous with compact values at μ0. Hence, there exist
x0 ∈ Vf ′(μ0) and a subsequence {znk

} of {zn} such that znk
→ x0. Therefore, there

exists N0 such that
znk

− x0 ∈ U1(0), ∀nk > N0.

Thus, for subsequence {xnk
} of {xn}, we have

xnk
− x0 = xnk

− znk
+ znk

− x0 ∈ −U1(0) + U1(0) ⊂ U1(0) + U1(0) ⊂ U(0).

By the arbitrariness of U(0), this means xnk
→ x0.
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On the other hand, x0 ∈ ⋃
f∈C� Vf(μ0) ⊂ Vs(μ0) ⊂ V. Thus, for given number N

sufficiently large, it follows that xN ∈ V, which contradicts the assumption. Therefore,
Vs(·) is u.s.c on Λ. This completes the proof.

Now, we give an example to illustrate that the result of Theorem 4.2 is applicable.

Example 4.1. Let X = Z = R, Y = R
2, C = R

2
+, Λ = [−1, 1] be a subset of Z.

Let ϕ : X ×X × Λ → Y and ψ : X × Λ → Y be two mappings defined by

ϕ(x, y, μ) = (−3
2
− μ2, (μ2 + 1)x),

and
ψ(x, μ) = (−9μ− 7, 2).

Define A : Λ → 2Y by A(μ) = [−1, 1].
Obviously, A(·) is a continuous set-valued mapping from Λ to R with nonempty

compact values, and conditions (ii) (iii) and (v) of Theorem 4.2 are satisfied.
Let f = (0, 2) ∈ C∗ \ {0}, it follows from a direct computation that Vf(μ) = [0, 1]

for any μ ∈ Λ. Hence, for any x ∈ A(μ) \ Vf(μ), there exists y = 0 ∈ Vf(μ) such
that,

ϕ(x, y, μ) + ϕ(y, x, μ) + B(0, dr(x, y))

= (−3
2
− μ2, (μ2 + 1)x) + (−3

2
− μ2, (μ2 + 1)y) +B(0, dr(x, y))

= (−3 − 2μ2, (μ2 + 1)x) +B(0, |x− 0|r)
⊂ −C.

Thus, the condition (iv) of Theorem 4.2 is also satisfied. By Theorem 4.2, Vs(·) is
u.s.c on Λ.

However, the condition that ϕ is a C-strictly monotone mapping is violated. Indeed,
for any μ ∈ Λ and x ∈ A(μ)\Vf(μ), there exist y = −x ∈ Vf(μ) such that

ϕ(x, y, μ) + ϕ(y, x, μ) = (−3 − 2μ2, 0) /∈ −intC,

which implies that ϕ(·, ·, ·) is not R
2
+-strictly monotone on A(Λ)×A(Λ)×Λ. Moreover,

ϕ(x, x, μ) �∈ C, (∀x ∈ A(μ)). Then, Theorem 4.2 of [12], Theorem 3.3 of [15] are not
applicable.

When r = 1, we can easily obtain the following corollary.

Corollary 4.1. Let f ∈ C∗ \ {0}. Suppose that C has a base and the following
conditions are satisfied:

(i) A(·) is continuous with compact values on Λ;
(ii) For each μ ∈ Λ and x ∈ A(μ), ψ(·, μ) + ϕ(x, ·, μ) is C-convexlike on A(μ);
(iii) For each μ ∈ Λ, ϕ(·, ·, μ) is continuous on B×B, ψ(·, μ) is continuous on B;
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(iv) For each μ ∈ Λ, x ∈ A(μ) \ Vf(μ), there exist y ∈ Vf(μ) such that

ϕ(x, y, μ) + ϕ(y, x, μ) + B(0, d(x, y)) ⊂ −C;

(v) M = {ϕ(x, y, μ) : x, y ∈ A(μ)} and ψ(A(μ), μ) are bounded subsets of Y for
each μ ∈ Λ.

Then, Vs(·) is u.s.c on Λ.
We can find the assumption (iv) in Corollary 4.1 is essential. Now, we give the

following example to illustrate it.

Example 4.2. Let X = Z = R, Y = R
2, C = R

2
+, Λ = [−1, 0] be a subset of Z.

Let ϕ : X ×X × Λ → Y and ψ : X × Λ → Y be two mappings defined by

ϕ(x, y, μ) = (
1
2
(y − x), (1 + μ2)μx(y − x)),

and
ψ(x, μ) = (μ, 2 + μ).

And define A : Λ → 2Y by A(μ) = [0, 2].
Obviously, A(·) is a continuous set-valued mapping from Λ to R with nonempty

compact values, and conditions (ii) (iii) and (v) of Corollary 4.1 are satisfied.
It follows from a direct computation that

Vs(μ) =

{ {0}, if μ = 0,

{0, 2}, if μ ∈ [−1, 0).

Hence, Vs(·) is even not u.s.c at μ = 0. The reason is that the assumption (iv) is
violate. In fact, for any x, y ∈ A(μ) = [0, 2], x �= y, we have

ϕ(x, y, μ) + ϕ(y, x, μ) + B(0, d(x, y))

= (
1
2
(y − x), (1 + μ2)μx(y − x)) + (

1
2
(x− y), (1 + μ2)μy(x− y)) + B(0, d(x, y))

= (0,−(1 + μ2)μ(y − x)2) + B(0, d(x, y))

�⊂ −C.
Now, we show that Vs(·) is not u.s.c at μ = 0. Indeed, there exists open set

V = (−1, 1) such that
Vs(0) ⊂ V,

however, for any δ > 0, there exists μ̃ ∈ B(0, δ) ∩ [−1, 0) such that

Vs(μ̃) = {0, 2} �⊂ V = (−1, 1).

By Definition 2.5, Vs(·) is not u.s.c at μ = 0. Hence, the assumption (iv) in Corollary
4.1 is essential.
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