TAIWANESE JOURNAL OF MATHEMATICS

Vol. 18, No. 5, pp. 1663-1678, October 2014

DOI: 10.11650/tjm.18.2014.3759

This paper is available online at http://journal.taiwanmathsoc.org.tw

WEIGHTED HARDY SPACES ASSOCIATED TO SELF-ADJOINT OPERATORS AND $BMO_{L,w}$

Suying Liu, Kai Zhao* and Shujuan Zhou

Abstract. Let L be a non-negative self-adjoint operator satisfying a pointwise Guassian estimate for its heat kernel. Let w be some A_s weight on \mathbb{R}^n . In this paper, we obtain a weighted (p,q)-atomic decomposition with $q \geq s$ for the weighted Hardy spaces $H^p_{L,w}(\mathbb{R}^n)$, $0 . We also introduce the suitable weighted BMO spaces <math>BMO^p_{L,w}$. Then the duality between $H^1_{L,w}(\mathbb{R}^n)$ and $BMO_{L,w}$ is established.

1. Introduction

One of the central part of modern harmonic analysis is the theory of Hardy spaces which was initiated by Stein, Fefferman and Weiss [26, 14]. It is known that the classical weighted spaces H_w^p , which are associated to Laplacian, have been extensively studied by Garcia-Cuerva [15] and Strömberg and Torchinsky [27], where w is a Muckenhoupt's weight A_p .

Since there are some important situations in which the theory of classical Hardy spaces is not applicable, many authors begin to study Hardy spaces that are adapted to a linear operator L. For example, Auscher, Duong and McIntosh [1], and then Duong and Yan [12, 13], introduced the unweighted Hardy and BMO spaces adapted to an operator L which satisfies the Gaussian heat kernel upper bounds. For more results, we refer to [3, 2, 20, 19, 18] and the references therein.

Recently, Song and Yan [24] discussed the weighted theory of Hardy space $H^1_{L,w}$ associated to Schrödinger operators, for $w \in A_1 \cap \mathrm{RH}_2$. Bui and Duong [4] improved the results of [24] to $H^p_{L,w}, \ 0 , and obtained the atomic and molecular characterizations of the elements of <math>H^p_{L,w}$. In [5], they studied the weighted BMO spaces

Received September 6, 2013, accepted May 27, 2014.

Communicated by Chin-Cheng Lin.

2010 Mathematics Subject Classification: Primary 42B20, 42B30; Secondary 47F05.

Key words and phrases: Weighted Hardy space, Self-adjoint operator, Weighted atom, $BMO_{L,w}$.

This work is supported by NNSF-China Grant No. 11041004, Tianyuan Fund for Mathematics No. 11326093 and NSF of Shandong Province China No. ZR2010AM032.

*Corresponding author.

associated to operators, and obtained that the dual space of $H^1_L(X,w)$ in [24] was $BMO_{L^*}(X,w)$ associated to the adjoint operator L^* . As we know, the decompositions of function spaces are very critical in harmonic analysis. The first author and Song in [21] improved the results of [24]. They gave a new atomic decomposition (different from that of [24]) for weighted function space $H^1_{L,w}(\mathbb{R}^n)$. Comparing with [24], the condition $w \in A_1 \cap \mathrm{RH}_2$ was weakened to $w \in A_1$.

One of our purpose in this paper is to extend the results of [21] to $H^p_{L,w}(\mathbb{R}^n)$, $0 , by the theory of Littlewood-Paley functions and semigroup properties. And then define an adapted weighted BMO space, and establish its duality with <math>H^1_{L,w}(\mathbb{R}^n)$.

The layout of the paper is as follows. In section 2, we prepare some notations and preliminary lemmas. In section 3, we introduce weighted Hardy spaces $H^p_{L,w}(\mathbb{R}^n)$ associated to a non-negative self-adjoint operator with Gaussian upper bounds on its heat kernel, and obtain an atomic decomposition. In section 4, we study $BMO^p_{L,w}$ spaces associated to operators and establish the duality between $H^1_{L,w}(\mathbb{R}^n)$ and $BMO_{L,w}$.

Throughout this paper, the letter "C" or "c" will denote (possibly different) constants that are independent of the essential variables.

2. NOTATIONS AND PRELIMINARIES

2.1. Preliminaries

Suppose that L is a non-negative self-adjoint operator on $L^2(\mathbb{R}^n)$ and that each of the heat semigroup e^{-tL} generated by -L, has the kernel $p_t(x,y)$ which satisfies the following Gaussian upper bounds, i.e., there exist constants C,c>0 such that

$$(GE) |p_t(x,y)| \le \frac{C}{t^{n/2}} \exp\left(-\frac{|x-y|^2}{ct}\right).$$

We note that such estimates are typical for elliptic or sub-elliptic differential operators of second order (see for instance, [9] and [11]).

Now we introduce the following useful lemma, refer to [9] and [23].

Lemma 2.1. Let L be a non-negative self-adjoint operator satisfying (GE). For every $k = 0, 1, \ldots$, there exist two positive constants C_k, c_k such that the kernel $p_{t,k}(x,y)$ of the operator $(t^2L)^k e^{-t^2L}$ satisfies

(2.1)
$$|p_{t,k}(x,y)| \le \frac{C_k}{(4\pi t)^n} \exp\left(-\frac{|x-y|^2}{c_k t^2}\right),$$

for all t > 0 and almost every $x, y \in \mathbb{R}^n$.

Suppose that F is a closed set in \mathbb{R}^n , $\gamma \in (0,1)$ is fixed. We set

$$F^*:=\Big\{x\in\mathbb{R}^n: \text{ for every ball } B(x) \text{ in } \mathbb{R}^n \text{ centered at } x, \frac{|F\cap B(x)|}{|B(x)|}\geq\gamma\Big\},$$

and every x as above is called a point having global γ -density with respect to F. One can see that F^* is closed and $F^* \subset F$. Also,

$${}^{c}F^{*} = \{x \in \mathbb{R}^{n} : \mathcal{M}(\chi_{cF})(x) > 1 - \gamma\},\$$

where \mathcal{M} is Hardy-Littlewood maximal function, which implies $|{}^cF^*| \leq C|F|$ with C depending on γ and the dimension only. We define a saw-tooth region $\mathcal{R}(F) = \bigcup_{x \in F} \Gamma(x)$, where $\Gamma(x) = \{(y,t) \in \mathbb{R}^{n+1}_+ : |x-y| < t\}$.

From now on, the paper we denote by ${}^{c}F$ the complement of F.

The following lemma is very important for our main result (see [7]).

Lemma 2.2. Suppose that Φ is a non-negative function on \mathbb{R}^{n+1}_+ . There exists $\gamma \in (0,1)$, sufficiently close to 1, such that for every closed set F whose complement has finite measure the following inequality holds:

(2.2)
$$\iint_{\mathcal{R}(F^*)} \Phi(y,t)t^n \, dydt \le C_\gamma \iint_F \iint_{\Gamma(x)} \Phi(y,t) \, dydt dx.$$

2.2. Muckenhoupt weights

We review some background on Muckenhoupt weights. We use the notation

$$\oint_E h(x) dx = \frac{1}{|E|} \oint_E h(x) dx.$$

A weight w is a non-negative locally integrable function on \mathbb{R}^n . It is said that $w \in A_p$, 1 , if there exists a constant <math>C such that for every ball $B \subseteq \mathbb{R}^n$,

$$\left(\int_{B} w \, dx\right) \left(\int_{B} w^{-1/(p-1)} \, dx\right)^{p-1} \le C.$$

For p=1, $w\in A_1$ means that there is a constant C such that for every ball $B\subseteq \mathbb{R}^n$,

$$\oint_{B} w(y) \, dy \le Cw(x) \quad \text{ for a.e. } x \in B.$$

Let $w \in A_p$, for $1 \le p < \infty$. The weighted Lebesgue spaces L^p_w can be defined by $\{f: \int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx < \infty\}$ with norm $\|f\|_{L^p_w} := \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx\right)^{1/p}$.

We summarize some of the properties of classes in the following results, for more details, see [10], [16], [25] references therein.

Lemma 2.3. Denote $w(E) := \int_E w(x) dx$ for any set $E \subseteq \mathbb{R}^n$. For $1 \le p \le \infty$, denote p' the adjoint number of p, i.e. 1/p + 1/p' = 1. We have the following properties:

(i)
$$A_1 \subseteq A_p \subseteq A_q$$
, for $1 \le p \le q < \infty$.

- (ii) If $w \in A_p$, 1 , then there exists <math>1 < q < p such that $w \in A_q$.
- (iii) $A_{\infty} = \bigcup_{1 .$
- (iv) If $1 , <math>w \in A_p$ if and only if $w^{1-p'} \in A_{p'}$.
- (v) Let $w \in A_p$, $p \ge 1$. Then for any ball B and $\lambda > 1$, we have that

$$w(\lambda B) \le C\lambda^{np}w(B),$$

for some constant C independent of B and λ .

2.3. Finite speed propagation for the wave equation

Let L be an operator satisfying (GE), $E_L(\lambda)$ denote its spectral decomposition. Then for every bounded Borel function $F:[0,\infty)\to\mathbb{C}$, one defines the operator $F(L):L^2(\mathbb{R}^n)\to L^2(\mathbb{R}^n)$ by the formula

(2.3)
$$F(L) := \int_0^\infty F(\lambda) dE_L(\lambda).$$

In particular, the operator $\cos(t\sqrt{L})$ is well-defined on $L^2(\mathbb{R}^n)$. Moreover, it follows from Theorem 3 of [8] that there exists a constant c_0 such that the Schwartz kernel $K_{\cos(t\sqrt{L})}(x,y)$ of $\cos(t\sqrt{L})$ satisfies

$$(2.4) \qquad \operatorname{supp} K_{\cos(t\sqrt{L})}(x,y) \subseteq \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n : |x-y| \le c_0 t\}.$$

See also [6]. By the Fourier inversion formula, whenever F is an even bounded Borel function with $\hat{F} \in L^1(\mathbb{R})$, we can write $F(\sqrt{L})$ in terms of $\cos(t\sqrt{L})$. More precisely, by recalling (2.3), we have

$$F(\sqrt{L}) = (2\pi)^{-1} \int_{-\infty}^{\infty} \hat{F}(t) \cos(t\sqrt{L}) dt,$$

which, combined with (2.4), gives

$$(2.5) K_{F(\sqrt{L})}(x,y) = (2\pi)^{-1} \int_{|t| > c_0^{-1}|x-y|} \hat{F}(t) K_{\cos(t\sqrt{L})}(x,y) dt.$$

Lemma 2.4. Let $\varphi \in C_0^{\infty}(\mathbb{R})$ be even and $\operatorname{supp} \varphi \subseteq [-c_0^{-1}, c_0^{-1}]$. Let Φ denote the Fourier transform of φ . Then for each $k=0,1,\ldots$, and every t>0, the kernel $K_{(t^2L)^k\Phi(t\sqrt{L})}(x,y)$ of $(t^2L)^k\Phi(t\sqrt{L})$ satisfies

(2.6)
$$\operatorname{supp} K_{(t^2L)^k\Phi(t\sqrt{L})} \subseteq \left\{ (x,y) \in \mathbb{R}^n \times \mathbb{R}^n : |x-y| \le t \right\}$$

and

$$|K_{(t^2L)^k\Phi(t\sqrt{L})}(x,y)| \le Ct^{-n},$$

for all t > 0 and $x, y \in \mathbb{R}^n$.

Proof. For the proof, we refer the reader to Lemma 3.5 in [18].

For s > 0, we define

$$\mathbb{F}(s) := \left\{ \psi : \mathbb{C} \to \mathbb{C} \text{ measurable} : |\psi(z)| \le C \frac{|z|^s}{(1+|z|^{2s})} \right\}.$$

Then for any non-zero function $\psi \in \mathbb{F}(s)$, we have that $\{\int_0^\infty |\psi(t)|^2 \frac{dt}{t}\}^{1/2} < \infty$. Denote $\psi_t(z) = \psi(tz)$. It follows from the spectral theory in [28] that for any $f \in L^2(\mathbb{R}^n)$,

(2.8)
$$\begin{cases}
\int_{0}^{\infty} \|\psi(t\sqrt{L})f\|_{L^{2}(\mathbb{R}^{n})}^{2} \frac{dt}{t} \}^{1/2} &= \left\{ \int_{0}^{\infty} \langle \overline{\psi}(t\sqrt{L}) \psi(t\sqrt{L})f, f \rangle \frac{dt}{t} \right\}^{1/2} \\
&= \left\{ \langle \int_{0}^{\infty} |\psi|^{2} (t\sqrt{L}) \frac{dt}{t} f, f \rangle \right\}^{1/2} \\
&= \kappa \|f\|_{L^{2}(\mathbb{R}^{n})},
\end{cases}$$

where $\kappa = \left\{ \int_0^\infty |\psi(t)|^2 dt/t \right\}^{1/2}$. The estimate will be used repeatedly in this paper.

3. Atomic Characterization of Weighted Hardy Spaces

3.1. Weighted Hardy spaces and weighted atoms

Suppose $w\in A_{\infty}$ and $0< p\leq 1$. We define Hardy spaces $H^p_{L,w}(\mathbb{R}^n)$ as the completion of $\{f\in L^2(\mathbb{R}^n): \|S_L(f)\|_{L^p_w(\mathbb{R}^n)}<\infty\}$ with respect to L^p_w -norm of the square function; e.g.,

$$||f||_{H^p_{L,w}(\mathbb{R}^n)} := ||S_L(f)||_{L^p_w(\mathbb{R}^n)},$$

where

$$S_L(f)(x) := \left(\iint_{|y-x| < t} |t^2 L e^{-t^2 L} f(y)|^2 \frac{dy dt}{t^{n+1}} \right)^{1/2}, \quad x \in \mathbb{R}^n.$$

The (p, q, M, w)-atom associated to the operator L is defined as follows.

Definition 3.1. Suppose that M is a positive integer, $w \in A_s, 1 \leq s < \infty$ and $0 . A function <math>a(x) \in L^2(\mathbb{R}^n)$ is called a (p,q,M,w)-atom associated to an operator L, $1 < q < \infty$, if there exist a function $b \in \mathcal{D}(L^M)$, the domain of an operator L, and a ball B of \mathbb{R}^n such that

- (i) $a = L^M b$;
- (ii) supp $L^k b \subseteq B$, $k = 0, 1, \dots, M$;

(iii)
$$\|(r_B^2 L)^k b\|_{L_w^q(\mathbb{R}^n)} \le r_B^{2M} w(B)^{1/q-1/p}, \ k = 0, 1, \dots, M.$$

Remark 3.2. It follows directly from Hölder's inequality that (p, q_1, M, w) -atom is also (p, q_2, M, w) -atom whenever $q_1 > q_2$.

Definition 3.3. Let M, w and p be the same as above. The weighted atomic Hardy spaces $H^{p,q,M}_{L,w}(\mathbb{R}^n)$ are defined as follows. We will say that $f=\sum \lambda_j a_j$ is an atomic (p,q,M,w)-representation (of f) if $\{\lambda_j\}_{j=0}^\infty \in \ell^1$, each a_j is a (p,q,M,w)-atom, and the sum converges in $L^2(\mathbb{R}^n)$. Set

$$\mathbb{H}^{p,q,M}_{L,w}(\mathbb{R}^n):=\Big\{f:f \text{ has an atomic } (p,q,M,w)\text{-representation}\Big\},$$

with the norm $||f||_{\mathbb{H}^{p,q,M}_{T}(\mathbb{R}^n)}$ given by

$$\inf\Big\{ \Big(\sum_{j=0}^{\infty} |\lambda_j|^p \Big)^{1/p} : f = \sum_{j=0}^{\infty} \lambda_j a_j \quad \text{is an atomic } (p,q,M,w) \text{-representation} \Big\}.$$

The spaces $H^{p,q,M}_{L,w}(\mathbb{R}^n)$ are then defined as the completion of $\mathbb{H}^{p,q,M}_{L,w}(\mathbb{R}^n)$ with respect to this norm.

3.2. Atomic characterization of weighted Hardy spaces

The definition of $g_{\mu,\Psi}^*$ function is given as

$$(3.1) \quad g_{\mu,\Psi}^*(f)(x) = \left(\iint_{\mathbb{R}^{n+1}_{\perp}} \left(\frac{t}{t + |x-y|} \right)^{n\mu} \left| \Psi(t\sqrt{L})f(y) \right|^2 \frac{dy \, dt}{t^{n+1}} \right)^{1/2}, \, \mu > 1,$$

where φ and Φ are the same as in Lemma 2.4, and $\Psi(x) := x^{2s}\Phi^3(x)$, $s \ge n+1$, $x \in \mathbb{R}^n$. The following lemma was proved in Lemma 5.1 of [17].

Lemma 3.4. Let L be a non-negative self-adjoint operator such that the corresponding heat kernel satisfies condition (GE). There exists a constant C>0 such that for all $w \in A_p$, $1 , <math>\mu > 3$, the following estimate holds:

$$\|g_{\mu,\Psi}^*(f)\|_{L_w^p(\mathbb{R}^n)} + \|S_L(f)\|_{L_w^p(\mathbb{R}^n)} \le C\|f\|_{L_w^p(\mathbb{R}^n)}.$$

Then we have the following main result.

Theorem 3.5. Suppose that $w \in A_s, 1 \le s < \infty$, and 0 .

(i) Let $M \in \mathbb{N}$ and $1 < q < \infty$. If $f \in H^p_{L,w}(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$, then there exist a family of (p,q,M,w)-atoms $\{a_i\}_{i=0}^\infty$ and a sequence of numbers $\{\lambda_i\}_{i=0}^\infty$ such that f can be represented in the form $f = \sum_{i=0}^\infty \lambda_i a_i$, and the sum converges in the sense of $L^2(\mathbb{R}^n)$ -norm. Moreover,

$$\left(\sum_{i=0}^{\infty} |\lambda_i|^p\right)^{1/p} \le C \|f\|_{H^p_{L,w}(\mathbb{R}^n)}.$$

(ii) Suppose that $M \in \mathbb{N}$, $M > \frac{(s-p)n}{2p}$ and q > s. Let $f = \sum_{i=0}^{\infty} \lambda_i a_i$, where $\{\lambda_i\} \in \ell^p$, $a_i, i = 0, 1, 2, \ldots$, be (p, q, M, w)-atoms, and the sum converges in $L^2(\mathbb{R}^n)$. Then $f \in H^p_{L,w}(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ and

$$\left\| \sum_{i=0}^{\infty} \lambda_i a_i \right\|_{H^p_{L,w}(\mathbb{R}^n)} \le C \left(\sum_{i=0}^{\infty} |\lambda_i|^p \right)^{1/p}.$$

Remark 3.6. If s > 1, then $w \in A_s$ implies $w \in A_{s-\epsilon}$ for some $\epsilon > 0$. Thus Theorem 3.5 (ii) holds for $q \ge s > 1$.

Proof.

Step 1. Let $f \in H^p_{L,w}(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$. Here we will apply the similar idea with [21] to obtain the weighted atomic decomposition.

Let φ and Φ be the same as in Lemma 2.4. Set $\Psi(x) := x^{2\alpha}\Phi^3(x)$ and $\alpha = M + n + 1$. By L^2 -functional calculus ([22]), for every $f \in L^2(\mathbb{R}^n)$, one can write

(3.2)
$$f(x) = c_{\Psi} \int_{0}^{\infty} \Psi(t\sqrt{L}) t^{2} L e^{-t^{2}L} f(x) \frac{dt}{t}$$
$$= \lim_{N \to \infty} c_{\Psi} \int_{1/N}^{N} \Psi(t\sqrt{L}) t^{2} L e^{-t^{2}L} f(x) \frac{dt}{t}$$

with the integral converging in $L^2(\mathbb{R}^n)$.

Now for each $k \in \mathbb{Z}$, we define $O_k = \{x \in \mathbb{R}^n : S_L(f)(x) > 2^k\}$ and $O_k^* = \{x \in \mathbb{R}^n : \mathcal{M}(\chi_{O_k})(x) > 2^{-(n+1)}\}$. Then we know that $O_k \subseteq O_k^*$ and $|O_k^*| \leq C|O_k|$ for every $k \in \mathbb{Z}$. Let $\{Q_j^k\}_j$ be a Whitney decomposition of O_k^* , and $\widehat{O_k^*}$ be a tent region, that is

$$\widehat{O_k^*} := \left\{ (x, t) \in \mathbb{R}^n \times (0, \infty) : \operatorname{dist}(x, {^cO_k^*}) \ge t \right\}.$$

Choose a large constant c. Let B_j^k denote the ball with the same center as Q_j^k , but c times its diameter. Then for every $i, j \in \mathbb{Z}$, we define

$$(3.3) T_j^k = \widehat{B_j^k} \cap \left(Q_j^k \times (0, +\infty)\right) \cap \left(\widehat{O_k^*} \setminus \widehat{O_{k+1}^*}\right),$$

and $\lambda_j^k = 2^k w(B_j^k)^{1/p}$. Note that $\mathbb{R}_+^{n+1} = \bigcup_{j,k} T_j^k$ and T_j^k are disjoint for different j or k. Then one can write

(3.4)
$$f(x) = \sum_{j,k\in\mathbb{Z}} c_{\Psi} \int_{0}^{\infty} \Psi(t\sqrt{L}) \left(\chi_{T_{j}^{k}} t^{2} L e^{-t^{2} L}\right) f(x) \frac{dt}{t}$$
$$=: \sum_{j,k\in\mathbb{Z}} \lambda_{j}^{k} a_{j}^{k},$$

where $a_j^k = L^M b_j^k$ and

$$b_j^k = (\lambda_j^k)^{-1} c_{\Psi} \int_0^{\infty} t^{2\alpha} L^{n+1} \Phi^3(t\sqrt{L}) \Big(\chi_{T_j^k} t^2 L e^{-t^2 L} \Big) f(x) \frac{dt}{t}.$$

We claim that, up to a normalization by a multiplicative constant, a_j^k are (p, q, M, w)-atoms. Once the claim is established, we shall have

$$\sum_{j,k} |\lambda_j^k|^p = \sum_{j,k} 2^{kp} w(B_j^k) \le C \sum_{j,k} 2^{kp} w(Q_j^k) \le C \sum_k 2^{kp} w(O_k^*)$$

$$\le C \sum_k 2^{kp} w(O_k) \le C ||f||_{H^p_{L,w}(\mathbb{R}^n)}^p$$

as desired.

Let us now prove the claim. By Remark 3.2, it suffices to show that for every $k\in\mathbb{Z}$ and q>s, the function $C^{-1}a_k$ is a (p,q,M,w)-atom associated with the ball B^k_j , for some constant C. From Lemma 2.4, the integral kernel $K_{(t^2L)^i\Phi^3(t\sqrt{L})}(x,y)$ of the operator $(t^2L)^i\Phi^3(t\sqrt{L})$ satisfies

$$\operatorname{supp} K_{(t^2L)^i\Phi^3(t\sqrt{L})}(x,y) \subseteq \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n : |x-y| \le 3t\}.$$

This, together with the fact $(x,t) \in T_j^k \subseteq \widehat{B_j^k}$, implies that for every $i=0,1,\cdots,M$, $\operatorname{supp} \left(L^i b_j^k\right) \subseteq 3B_j^k$.

To continue, for any $s < q < \infty$ and every ball B^k_j we consider some $g \in L^{q'}_{w^{-q'/q}}(3B^k_j)$ such that $\|g\|_{L^{q'}_{w^{-q'/q}}} \le 1$. Then for every $i=0,1,\cdots,M$, we have

$$\begin{split} \left| \int \left(r_{B_{j}^{k}}^{2} L \right)^{i} b_{j}^{k}(x) g(x) \, dx \right| \\ (3.5) \qquad &= \frac{c_{\Psi}}{\lambda_{j}^{k}} \left| \iint_{T_{j}^{k}} r_{B_{j}^{k}}^{2i} t^{2\alpha} L^{n+1+i} \Phi^{3}(t\sqrt{L}) g(y) t^{2} L e^{-t^{2} L} f(y) \, \frac{dy dt}{t} \right| \\ &\leq r_{B_{j}^{k}}^{2M} \frac{c_{\Psi}}{\lambda_{j}^{k}} \iint_{\widehat{B_{j}^{k}} \setminus \widehat{O_{k+1}^{*}}} \left| (t^{2} L)^{n+1+i} \Phi^{3}(t\sqrt{L}) g(y) \right| \left| t^{2} L e^{-t^{2} L} f(y) \right| \frac{dy dt}{t}, \end{split}$$

where in the inequality above we have used the fact $0 < t \le r_{B_j^k}$. By Lemma 2.2 and estimate (3.5), we obtain

$$\begin{split} & \left| \int \left(r_{B_{j}^{k}}^{2} L \right)^{i} b_{j}^{k}(x) g(x) dx \right| \\ & \leq \frac{C}{\lambda_{j}^{k}} r_{B_{j}^{k}}^{2M} \int_{cO_{k+1}} \left(\iint_{\Gamma(x)} \chi_{\widehat{B_{j}^{k}}}(y,t) \big| (t^{2}L)^{n+1+i} \Phi^{3}(t\sqrt{L}) g(y) \big| \big| t^{2}L e^{-t^{2}L} f(y) \big| \frac{dy dt}{t^{n+1}} \right) dx \\ & = \frac{C}{\lambda_{j}^{k}} r_{B_{j}^{k}}^{2M} \int_{B_{j}^{k} \cap {}^{c}O_{k+1}} \left(\iint_{\Gamma(x)} \big| (t^{2}L)^{n+1+i} \Phi^{3}(t\sqrt{L}) g(y) \big| \big| t^{2}L e^{-t^{2}L} f(y) \big| \frac{dy dt}{t^{n+1}} \right) dx. \end{split}$$

We observe that if |x-y| < t, then $\left(\frac{t}{|x-y|+t}\right)^{n\mu} \ge C$. By Hölder's inequality, we have

$$\left| \int \left(r_{B_{j}^{k}}^{2} L \right)^{i} b_{j}^{k}(x) g(x) dx \right|$$

$$\leq \frac{C}{\lambda_{j}^{k}} r_{B_{j}^{k}}^{2M} \int_{B_{j}^{k} \cap^{c} O_{k+1}} \left(\iint_{\Gamma(x)} |(t^{2}L)^{n+1+i} \Phi^{3}(t\sqrt{L}) g(y)|^{2} \frac{dy dt}{t^{n+1}} \right)^{1/2}$$

$$S_{L}(f)(x) dx$$

$$\leq \frac{C}{\lambda_{j}^{k}} r_{B_{j}^{k}}^{2M} \int_{B_{j}^{k} \cap^{c} O_{k+1}} g_{\mu,\Psi}^{*}(g)(x) S_{L}(f)(x) dx$$

$$\leq \frac{C}{\lambda_{j}^{k}} r_{B_{j}^{k}}^{2M} \left(\int \left(g_{\mu,\Psi}^{*}(g)(x) \right)^{q'} w^{-q'/q}(x) dx \right)^{1/q'}$$

$$\left(\int_{B_{j}^{k} \cap^{c} O_{k+1}} \left(S_{L}(f)(x) \right)^{q} w(x) dx \right)^{1/q}.$$

Note that

(3.7)
$$\int_{B_i^k \cap {}^c O_{k+1}} \left(S_L(f)(x) \right)^q w(x) \, dx \le C 2^{kq} w(B_j^k).$$

Since s < q, then $w \in A_s$ implies $w \in A_q$. By (iv) of Lemma 2.3, we have $w^{-q'/q} \in A_{q'}$. Together with Lemma 3.4, we obtain

(3.8)
$$\left(\int \left(g_{\mu,\Psi}^*(g)(x) \right)^{q'} w^{-q'/q}(x) \, dx \right)^{1/q'} \le C \|g\|_{L_{w^{-q'/q}}^{q'}} \le C.$$

Combing estimates (3.6)-(3.8) and the definition of λ_i^k , we have

$$\Big|\int \left(r_{B_j^k}^2L\right)^ib_j^k(x)g(x)dx\Big| \leq Cr_{B_j^k}^{2M}w(B_j^k)^{1/q-1/p},$$

which implies that a_j^k are (p, q, M, w)-atoms for $s < q < \infty$, and thus for $1 < q < \infty$. To prove Theorem 3.5 (ii), we need the following lemma (see [4]).

Lemma 3.7. Fix $M \in \mathbb{N}$, $0 and <math>w \in A_{\infty}$. Assume that T is a non-negative sublinear operator, satisfying the weak-type (2,2)

$$\mu\{x \in \mathbb{R}^n : |Tf(x)| > \eta\} \le C_T \eta^{-2} ||f||_{L^2(\mathbb{R}^n)}^2, \quad \text{for all } \eta > 0,$$

and that for every (p, q, M, w)-atom a, we have

$$||Ta||_{L_w^p(\mathbb{R}^n)} \le C$$

with constant C independent of a. Then T is bounded from $H^p_{L,w}(\mathbb{R}^n)$ to $L^p_w(\mathbb{R}^n)$, and

$$||Tf||_{L_w^p(\mathbb{R}^n)} \le C||f||_{H_{L,w}^p(\mathbb{R}^n)}.$$

Step 2. By Lemma 3.7, it is enough to establish a uniform L_w^p , 0 , bound on any <math>(p, q, M, w)-atom. That is to say, there exists a constant C > 0 such that

where a is a (p, q, M, w)-atom associated to a ball $B = B(x_B, r_B)$. We can write

$$\int (S_L(a)(x))^p w(x) dx = \int_{2B} (S_L(a)(x))^p w(x) dx + \int_{c(2B)} (S_L(a)(x))^p w(x) dx$$

=: I₁ + I₂.

To estimate term I_1 , note that if $w \in A_s$ and $1 \le s < q$, then $w \in A_q$. Thus, we use Hölder's inequality and Lemma 3.4 to obtain that

$$I_{1} \leq \left(\int_{2B} \left(S_{L}(a)(x)\right)^{q} w(x) dx\right)^{p/q} \left(\int_{2B} w(x) dx\right)^{1-p/q}$$

$$\leq C \|S_{L}(a)\|_{L_{w}^{q}(\mathbb{R}^{n})}^{p} w(2B)^{1-p/q}$$

$$\leq C \|a\|_{L_{w}^{q}(\mathbb{R}^{n})}^{p} w(2B)^{1-p/q}$$

$$\leq C w(B)^{p(1/q-1/p)} w(B)^{1-p/q}$$

$$\leq C,$$

where in the fourth inequality above we have used the definition of (p, q, M, w) -atom a.

It remains to estimate term I_2 . For any $x \in (2B)$, we write

$$S_L^2(a)(x) = \left(\int_0^{r_B} + \int_{r_B}^{+\infty} \right) \int_{|x-y| < t} \left| t^2 L e^{-t^2 L} a(y) \right|^2 \frac{dy dt}{t^{n+1}}$$

=: I₂₁ + I₂₂.

Observe that $x \in^c (2B)$, $z \in B$ and |x-y| < t imply $r_B \le |x-z| < t + |y-z|$. Thus, $|x-x_B| \le |x-y| + |y-z| + |z-x_B| < 3(t+|y-z|)$, which, combined with Lemma 2.1, implies that for all N > 0,

(3.10)
$$I_{21} \leq C \int_{0}^{r_{B}} \int_{|x-y| < t} \left(\int \frac{t^{N}}{(t+|y-z|)^{n+N}} |a(z)| dz \right)^{2} \frac{dydt}{t^{n+1}}$$

$$\leq C \frac{1}{|x-x_{B}|^{2n+2N}} \int_{0}^{r_{B}} t^{2N-1} dt \|a\|_{L^{1}(\mathbb{R}^{n})}^{2}$$

$$\leq C \frac{r_{B}^{2N}}{|x-x_{B}|^{2n+2N}} \|a\|_{L^{1}(\mathbb{R}^{n})}^{2}.$$

Consider the term I_{22} . Noting that $a = L^M b$, applying Lemma 2.1, we obtain

$$I_{22} = \int_{r_B}^{\infty} \int_{|x-y| < t} |t^2 L e^{-t^2 L} (L^M b)(y)|^2 \frac{dy dt}{t^{n+1}}$$

$$= \int_{r_B}^{\infty} \int_{|x-y| < t} |(t^2 L)^{M+1} e^{-t^2 L} b(y)|^2 \frac{dy dt}{t^{4M+n+1}}$$

$$\leq C \int_{r_B}^{\infty} \int_{|x-y| < t} \left(\int_B \frac{t^N}{(t+|y-z|)^{n+N}} |b(z)| dz \right)^2 \frac{dy dt}{t^{4M+n+1}}$$

$$\leq C \frac{1}{|x-x_B|^{2n+2N}} \int_{r_B}^{\infty} \frac{dt}{t^{4M-2N+1}} ||b||_{L^1(\mathbb{R}^n)}^2$$

$$\leq C \frac{r_B^{2N-4M}}{|x-x_B|^{2n+2N}} ||b||_{L^1(\mathbb{R}^n)}^2,$$

whenever M > N/2.

Therefore, combing (3.10) and (3.11), we have

$$I_2 \leq C \int_{c(2B)} \frac{r_B^{pN}}{|x - x_B|^{(n+N)p}} w(x) dx \left(\|a\|_{L^1(\mathbb{R}^n)}^p + r_B^{-2M} \|b\|_{L^1(\mathbb{R}^n)}^p \right).$$

Using Hölder's inequality and the definition of (p,q,M,w)-atom and $w\in A_q$, we obtain

(3.12)
$$||a||_{L^{1}(\mathbb{R}^{n})} \leq (||a||_{L^{q}_{w}(\mathbb{R}^{n})}) (\int_{B} w(x)^{-1/(q-1)} dx)^{1-1/q}$$

$$\leq Cw(B)^{1/q-1/p} w(B)^{-1/q} |B|$$

$$\leq Cw(B)^{-1/p} |B|.$$

Similarly, one also can have

(3.13)
$$r_B^{-2M} ||b||_{L^1(\mathbb{R}^n)} \le Cw(B)^{-1/p} |B|.$$

Thus,

(3.14)
$$\int_{c(2B)} \frac{r_B^{pN}}{|x - x_B|^{(n+N)p}} w(x) dx \le \sum_{k=1}^{\infty} \int_{2^{k+1}B \setminus 2^k B} \frac{r_B^{pN}}{|x - x_B|^{(n+N)p}} w(x) dx$$

$$\le C \sum_{k=1}^{\infty} \frac{r_B^{pN}}{(2^k r_B)^{p(n+N)}} w(2^{k+1}B)$$

$$\le C \sum_{k=1}^{\infty} \frac{r_B^{pN}}{(2^k r_B)^{p(n+N)}} 2^{(k+1)sn} w(B)$$

$$\le C w(B)|B|^{-p},$$

where in the third inequality above we have used (v) of Lemma 2.3. The condition that $M>\frac{(s-p)n}{2p}$ ensures us to find N such that $2M>N>\frac{n(s-p)}{p}$. It follows from estimates (3.12)–(3.14) that $I_2\leq C$, which completes the proof of

(3.9) and the proof of Theorem 3.5.

4.
$$BMO_{L,w}$$
: Duality with $H^1_{L,w}(\mathbb{R}^n)$ Spaces

In this section, we introduce and study the duality of the weighted Hardy space $H^1_{L,w}(\mathbb{R}^n)$. Following [13], we introduce the definition of the class of functions that the operator L act on. For any $\beta > 0$, a function $f \in L^2_{loc}(\mathbb{R}^n)$ is said to be a function of β -type if f satisfies

(4.1)
$$\left(\int_{\mathbb{R}^n} \frac{|f(x)|^2}{1 + |x|^{n+\beta}} \, dx \right)^{1/2} \le c < \infty.$$

Denote by \mathcal{M}_{β} the collection of all functions of β -type. If $f \in \mathcal{M}_{\beta}$, the norm of f in \mathcal{M}_{β} is defined by

$$||f||_{\mathcal{M}_{\beta}} = \inf\{c \ge 0 : (4.1) \text{ holds}\}.$$

Then, we give the definition of $BMO_{L,w}^p$, where $1 \le p < \infty$.

Definition 4.1. Let L be a non-negative self-adjoint operator such that the corresponding heat kernel satisfies condition (GE). For $w \in A_s, 1 \le s < \infty$ and $1 \leq p < \infty$, an element $f \in \mathcal{M}_{\beta}$ is said to belong to $BMO_{L,w}^p$ if

$$||f||_{BMO_{L,w}^p} =: \sup_{B \subset \mathbb{R}^n} \left(\frac{1}{w(B)} \int_B |(\mathbb{I} - (1 + r_B^2 L)^{-1})^M f|^p w^{1-p} dx \right)^{1/p} < \infty,$$

where the sup is taken over all balls B in \mathbb{R}^n , \mathbb{I} denotes the identity operator on \mathbb{R}^n . In particularly, for p = 1 denote $BMO_{L,w}^1 =: BMO_{L,w}$.

We have the following theorem.

Theorem 4.2.
$$H_{L,w}^{1,q,M}(\mathbb{R}^n)^* = BMO_{L,w}^{q'}(\mathbb{R}^n), q \ge 1.$$

Proof. We begin by showing that each $f \in BMO_{L,w}^{q'}$ induces a bounded linear functional on $H^{1,q,M}_{L,w}(\mathbb{R}^n)$. Suppose that a is a (1,q,M,w)-atom in $H^{1,q,M}_{L,w}(\mathbb{R}^n)$, and let $f \in BMO_{L,w}^{q'}(\mathbb{R}^n)$. Then

$$\int_{B} a(x)f(x) dx = \int_{B} (\mathbb{I} - (1 + r_{B}^{2}L)^{-1})^{M} a(x)f(x) dx$$
$$+ \int_{B} (\mathbb{I} - (\mathbb{I} - (1 + r_{B}^{2}L)^{-1})^{M}) a(x)f(x) dx$$
$$=: J_{1} + J_{2}.$$

For the term J₁, by Hölder's inequality and the properties of atom,

$$J_{1} \leq \|a\|_{L_{w}^{q}} \left(\int_{B} |(\mathbb{I} - (1 + r_{B}^{2}L)^{-1})^{M} f(x)|^{q'} w^{1-q'} dx \right)^{1/q'}$$

$$\leq C \|f\|_{BMO_{L,w}^{q'}} w(B)^{1/q-1} w(B)^{1/q'}$$

$$\leq C \|f\|_{BMO_{L,w}^{q'}}.$$

To analyze J_2 , by condition $a = L^M b$ and the fact that L is self-adjoint, we write

$$\begin{split} & \Big(\mathbb{I} - (\mathbb{I} - (1 + r_B^2 L)^{-1})^M \Big) a(x) \\ &= L^M \Big(\mathbb{I} - (\mathbb{I} - (1 + r_B^2 L)^{-1})^M \Big) b(x) \\ &= \sum_{k=1}^M \frac{M!}{(M-k)k!} (r_B^{-2k} L^{M-k}) (\mathbb{I} - (1 + r_B^2 L)^{-1})^M b(x). \end{split}$$

Thus,

$$\begin{split} &\mathbf{J}_{2} \leq \sum_{k=1}^{M} \frac{M!}{(M-k)k!} \Big| r_{B}^{-2M} \int_{B} (r_{B}^{2}L)^{M-k} b(x) (\mathbb{I} - (1+r_{B}^{2}L)^{-1})^{M} f(x) \, dx \Big| \\ &\leq \sum_{k=1}^{M} \frac{M!}{(M-k)k!} r_{B}^{-2M} \| (r_{B}^{2}L)^{M-k} b \|_{L_{w}^{q}} \Big(\int_{B} |(\mathbb{I} - (1+r_{B}^{2}L)^{-1})^{M} f(x)|^{q'} w^{1-q'} dx \Big)^{1/q'} \\ &\leq C r_{B}^{-2M} r_{B}^{2M} w(B)^{1/q-1} w(B)^{1-1/q} \| f \|_{BMO_{L,w}^{q'}} \\ &\leq C \| f \|_{BMO_{L,w}^{q'}}. \end{split}$$

Therefore, for every $h = \sum_j \lambda_j a_j \in H^{1,q,M}_{L,w}(\mathbb{R}^n)$, where a_j are weighted atoms, we have

$$\begin{split} \left| \int_{\mathbb{R}^{n}} f(x)h(x) \, dx \right| &\leq \sum_{j} |\lambda_{j}| \left| \int_{\mathbb{R}^{n}} f(x)a_{j}(x) \, dx \right| \\ &\leq C \sum_{j} |\lambda_{j}| \|f\|_{BMO_{L,w}^{q'}} \\ &\leq C \|h\|_{H^{1}_{L,w,at,M}(\mathbb{R}^{n})} \|f\|_{BMO_{L,w}^{q'}}, \end{split}$$

and the assertion follows.

Conversely, suppose that $l \in H^1_{L,w}(\mathbb{R}^n)^*$. For any $g \in H^1_{L,w}(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$, which is dense in $H^1_{L,w}(\mathbb{R}^n)$, l can be represented by f in the form

$$l(g) = \int_{\mathbb{R}^n} g(x)f(x) \, dx.$$

For fixed ball B, let $\phi \in L^q_w(B)$ and $\|\phi\|_{L^q_w(B)} \le 1$. Set

$$a(x) = \frac{1}{w(B)^{1-1/q}} (\mathbb{I} - (1 + r_B^2 L)^{-1})^M \phi.$$

Then it is not difficult to check that a is a (1, q, M, w)-atom (see the Theorem 6.4 in [18]).

Consequently,

$$||l|| \ge ||l(a)||$$

$$= \frac{1}{w(B)^{1-1/q}} \int_{B} (\mathbb{I} - (1 + r_B^2 L)^{-1})^M \phi f(x) dx$$

$$= \frac{1}{w(B)^{1-1/q}} \int_{B} \phi (\mathbb{I} - (1 + r_B^2 L)^{-1})^M f(x) dx.$$

Thus, by duality it readily follows that

$$\left(\frac{1}{w(B)}\int_{B} |(\mathbb{I} - (1 + r_B^2 L)^{-1})^M f(x)|^{q'} w^{1 - q'} dx\right)^{1/q'} \le ||l||,$$

which is what we wanted to show.

Remark 4.3. By Theorem 3.5 and Theorem 4.2, we can obtain $BMO_{L,w}^p \sim BMO_{L,w}$ for $1 \le p < \infty$.

ACKNOWLEDGMENTS

The authors would like to thank the referees for their meticulous work and helpful suggestions, which improve the presentation of this paper.

REFERENCES

- 1. P. Auscher, X. T. Duong and A. McIntosh, *Boundedness of Banach Space Valued Singular Integral Operators and Hardy Spaces*, Unpublished preprint, 2005.
- 2. P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms on Riemannian manifolds, *J. Geom. Anal.*, **18** (2008), 192-248.
- 3. P. Auscher and E. Russ, Hardy spaces and divergence operators on strongly Lipschitz domain of \mathbb{R}^n , *J. Funct. Anal.*, **201** (2003), 148-184.
- 4. A. Bui and X. T. Duong, Weighted Hardy Spaces Associated to Operators and Boundedness of Singular Integrals, arXiv:1202.2063.
- 5. A. Bui and X. T. Duong, Weighted BMO Spaces Associated to Operators, arXiv: 1201.5828.
- 6. J. Cheeger, M. Cromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplacian and the geometry of complete Riemannian manifolds, *J. Differential Geom.*, **17** (1982), 15-53.
- 7. R. R. Coifman, Y. Meyer and E. M. Stein, Some new functions and their applications to harmonic analysis, *J. Funct. Anal.*, **62** (1985), 304-335.
- 8. T. Coulhon and A. Sikora, Gaussian heat kernel upper bounds via Phragmén-Lindelöf theorem, *Proc. Lond. Math.*, **96** (2008), 507-544.
- 9. E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989.
- 10. J. Duoandikoetxea, *Fourier Analysis*, *Grad. Stud. Math.*, **29**, American Math. Soc., Providence, 2000.
- 11. X. T. Duong, E. M. Ouhabaz and A. Sikora, Plancherel-type estimates and sharp spectral multipliers, *J. Funct. Anal.*, **196** (2002), 443-485.
- 12. X. T. Duong and L. X. Yan, New function spaces of BMO type, John-Nirenberg inequality, interpolation and applications, *Comm. Pure Appl. Math.*, **58** (2005), 1375-1420.
- 13. X. T. Duong and L. X. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, *J. Amer. Math. Soc.*, **18** (2005), 943-973.
- 14. C. Fefferman and E. M. Stein, H^p spaces of several variables, *Acta Math.*, **129** (1972), 137-195.
- 15. J. Garcia-Cuerva, Weighted H^p spaces, Dissertationes Math., 162 (1979), 1-63.
- 16. J. Garcia-Cuerva and J. Rubio de Francia, *Weighted Norm Inequalities and Related Topics*, North-Holland, Amsterdam, 1985.
- 17. R. M. Gong and L. X. Yan, Weighted L^p Estimates for the Area Integral Associated to Self-adjoint Operators, arxiv:1109.1662v1.
- 18. S. Hofmann, G. Lu, D. Mitrea, M. Mitrea and L. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffeney estimates, *Memoirs Amer. Math. Soc.*, **214** (2011), no. 1007, 78 pp.

- 19. S. Hofmann and S. Mayboroda, Hardy and BMO spaces assocated to divergence form elliptic operators, *J. Funct. Anal.*, **258** (2010), 1167-1224.
- 20. R. Jiang and D. C. Yang, New Orlicz-Hardy spaces associated to divergence form elliptic operators, *Math. Ann.*, **344** (2009), 37-116.
- 21. S. Y. Liu and L. Song, An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators, *J. Funct. Anal.*, **265** (2013), 2709-2723.
- 22. A. McIntosh, Operators which have an H_{∞} -calculus, *Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986)*, 210-231, Proceedings of the Centre for Mathematical Analysis, ANU, Canberra, **14** (1986).
- 23. E. M. Ouhabaz, *Analysis of Heat Equations on Domains*, London Math. Soc. Monographs, Vol. **31**, Princeton Univ. Press, 2005.
- 24. L. Song and L. X. Yan, Riesz transforms associated to Schorödinger operators on weighted Hardy spaces, *J. Funct. Anal.*, **259** (2010), 1466-1490.
- 25. E. M. Stein, *Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals*, Princeton Univ. Press, Princeton, NJ, 1993.
- 26. E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H^p -spaces, $Acta\ Math.$, 103 (1960) 25-62.
- 27. J.-O. Strömberg and A. Torchinsky, *Weighted Hardy Spaces, Lecture Notes in Mathematics*, **1381** Springer-Verlag, Berlin/New York, 1989.
- 28. K. Yosida, Functional Analysis (Fifth edition), Spring-Verlag, Berlin, 1978.

Suying Liu, Kai Zhao and Shujuan Zhou College of Mathematics Qingdao University Shandong, 266071 P. R. China

E-mail: liusuying0319@126.com zhkzhc@aliyun.com xuanweishamo@163.com