TAIWANESE JOURNAL OF MATHEMATICS

Vol. 18, No. 2, pp. 661-675, April 2014

DOI: 10.11650/tjm.18.2014.3676

This paper is available online at http://journal.taiwanmathsoc.org.tw

COMPACTNESS OF THE COMMUTATOR OF BILINEAR FOURIER
MULTIPLIER OPERATOR

Guoen Hu

Abstract. Let by, b, € CMO(R™) and T,, be the bilinear Fourier multiplier opera-
tor with associated multiplier o satisfies the Sobolev regularity that
SUP,ez |k |lwers 2 (r2n) < 0o for some s1, so € (n/2, n]. In this paper, it is
proved that the commutator defined by

T, 5(f1, f2)(@) = b1(2)T5 (f1, f2) (@)
15 (b1 f1, f2) (@) + b2(2)T5 (f1, f2)(x) — T (f1,b2f2) ()

is a compact operator from LP* (R™) x L?2(R™) to LP(R™) when py € (n/sg, 00)
(k=1,2),pe (1, co) with1/p=1/p1 + 1/po.

1. INTRODUCTION

As it is well known, the study of bilinear Fourier multiplier operator was origined
by Coifman and Meyer. Let o € L°°(R?"). Define the bilinear Fourier multiplier
operator T, by

W) T(h i) = [ | exp(zrin(e +@)o(6&)F AG)F e
for f1, fo € 8(R™), where and in the following, for f € S(R™), F f denotes the Fourier
transform of f. Coifman and Meyer [5] proved that if o € C*(R?™\{0}) satisfies

(12) 081982061, €2)] < Clay g (16| + o]~ 1D

for all ||+ || < s with s > 4n+1, then T}, is bounded from LP*(R™) x LP2(R™) to
LP(R™) forall 1 < py, p2, p < oo with 1/p = 1/p;+1/ps. For the case of s > 2n+1,
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Kenig-Stein [14] and Grafakos-Torres [10] improved Coifman and Meyer’s multiplier
theorem to the indices 1/2 < p < 1 by the multilinear Calderon-Zygmund operator
theory. In the last several years, considerable attention has been paid to the behavior on
function spaces for 7;, when the multiplier satisfies certain Sobolev regularity condition.
An significant progress in this area was obtained by Tomita. Let ® € §(R?") satisfy

suppe < { (61, &) s 1/2 < [al + e <2
Yo d(@27r,270) =1 forall (&, &) € R*\{0}.

KEZL

(1.3)

For k € Z, set

(1.4) 0x (&1, &2) = ©(&1, &2)a (2761, 27Ea).
Tomita [16] proved that if

@5 s [ 6P )1 Fod, @) Pdad < o
KE n

for some s > n, then T, is bounded from LP1(R™) x LP2(R"™) to LP(R"™) provided that

p1, P2, p € (1, 00) and 1/p = 1/p1 + 1/po. Grafakos and Si [9] considered the map-

ping properties from LP1(R™) x LP2(R") to LP(R"™) for T, when o satisfies (1.5) and

p < 1. Miyachi and Tomita [15] considered the problem to find minimal smoothness

condition for bilinear Fourier multiplier. Let o satisfies the Sobolev regularity that

1/2
105 l[ws1 s @) = (/R2n<§1>281 (&2)*?| Fou(&1, fz)\Zd&dfz) ;

where (&) := (1 +|&]?)'/2. Miyachi and Tomita [15] proved that if

(1.6) Sup || o[ prs1. 52 (m2ny < 00
KEZL

for some s1, s2 € (n/2, n], then T, is is bounded from LP*(R™) x LP?(R"™) to LP(R")
for any p1, p1 € (1, o) and p > 2/3 with 1/p = 1/py + 1/p2. Moreover, they also
gives minimal smoothness condition for which 7, is bounded from H?* (R"™) x HP2(R"™)
to LP(R™). For other works about the behavior of T, on various function spaces, we
refer the papers [8, 7, 12] and the related references therein.

We now consider the commutator of the multiplier operator 7. Let T, be the
multiplier operator definied by (1.1), by, b2 € BMO(R") and b= (b1, b2). Define the
commutator of b and T, by

2
(1.7) (1, f2)(@) =D [bk, Tolk(f1, f2) (),
k=1
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with
[b1, To]1(f1, f2)(2) = bi(2)T5(f1, fo)(z) — To(b1f1, fo)()
and

(b2, Tol2(f1, fo)(x) = ba(2)T5(f1, f2)(x) — To(f1, baf2) ().

Bui and Duong [3] established the weighted estimates with multiple weights for To,g
when o satisfies (1.2) for s € (n, 2n]. Hu and Yi [13] considered the behavior on
LPY(R™) x LP>(R™) for T, 5 when o satisfies (1.6) for s1, s, € (n/2, n], and showed
that T, enjoys the same LP1(R™) x LP2(R™) — LP(R™) mapping properties as that
of the operator T,. In this paper, we will consider the compactness of Tm ;- Let
CMO(R™) be the closure of Cg°(R™) in the BMO(R™) topology, which coincide with
the space of functions of vanishing mean oscillation, see [2, 6]. Our main result in this

paper can be stated as follows.

Theorem 1.1. Let o be a multiplier satisfying (1.6) for some s1, so € (n/2, nj
and T, be the operator defined by (1.1). Let tx = n/sg, pr € (tg, o) (k =1, 2)
and p € [1, 00) with 1/p = 1/p1 + 1/p2. Then for any by, b, € CMO(R™), the

commutator 7' is a compact operators from LP*(R") x LP2(R") to LP(R").

We remark that in this paper, we are very much motivated by the paper [17], and
the recent work of Bényi and Torres [1]. Bényi and Torres [1] proved that if by, by €
CMO(RR™), and T is a bilinear Calderon-Zygmund operator, then for py, ps, € (1, ),
p € [1, co) with 1/p = 1/p1 +1/p2, the commutator 73 which is defined as (1.7), is a
compact operator from LP*(R™) x LP2(R™) to LP(R™). When the multiplier o satisfies
(1.6) for s1, s2 € (n/2, n], the operator T, is neither a bilinear Calderon-Zygmund
operator, nor a bilinear singular integral operator whose kernel enjoys the bilinear L"-
Hormander condition as in [3]. However, we can prove that T, can be approximated
by a sequence of operator {7}, n}necn, and the kernels of 7, 5 enjoy some variant
of L"-Hormander condition, and certain L” size condition. This will be useful in the
proof of Theorem 1.1.

Throughout the article, C always denotes a positive constant that may vary from
line to line but remains independent of the main variables. We use the symbol A < B
to denote that there exists a positive constant C' such that A < C'B. For any set
E c R", xg denotes its characteristic function. We use B(x, R) to denote a ball
centered at = with radius R. For a ball B € R™ and A > 0, we use AB to denote the
ball concentric with B whose radius is A times of B’s.

2. PrRooOF oF THEOREM 1.1.
Let o € L>®°(R?") and ® € §(IR?") satisfy (1.3). For « € Z, define

5&(517 §2> = (I)<2_H§17 2_H§2>0<§17 §2>
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Then
0k (&1, &2) = 04(277E1, 277Es)
and
-7:_15&(&7 §2> = 2%”-7:_10%(2%&17 2’%2)7

where F~1f denotes the inverse Fourier transform of f.

Lemma 2.1. Let ¢1, g2 € [2,00), and s1, so > 0. Then

_ s /a1 s 1/q2
([ ([ 17 o emiaraa) ™™ &)=de) ™ S loulyemmgen

For the proof of Lemma 2.1, see Appendix A in [7].

Lemma 2.2. Let o be a bilinear multiplier satisfying (1.6) for some sq, s €
(n/2, n], r1,r2 € (1, 2], 1 € (n/r1, s1] and v2 € (0, min{n/re, so}). Then for
every z € R” and R > 0,

/ / [F (@ = y1, @ = y2)l [ f1(y1) fo (o) | dyrdye
lz—y1|>R J|z—y2|<2R

.1) =
S ok(n/ri+n/ro—m1—y2) Rn/ritn/ra—y1—72 H Mrk fk ((IZ)

k=1

Proof. Let C(x, r) = B(x, 2r)\B(x, r). By the Holder inequality and Lemma
2.1, we have

/ / | F G0z —y1, 2 — y2)| | f1(y1) fo(y2) | dyr dys
C(z,r) JC(z,R)

SO ([ 1o - w -l - g )
Clx,r) C(z,R)

1

X (2% )iy ) ) (2 R)

(L meran) ([ i)

2
< 25(71/7“14—”/7“2—71 _'72)71”/7“1 -n Rn/Tz—’Y2 H MTk fk‘ (fL’),
k=1

ES

o~

if v € [0, sg] with & =1, 2. This in turn implies that
/ [ e = e e — ) i) o) e
r<|z—y1 |<2r J|z—y2|<2R

2
< 2“(”/T1+n/r2—71 —72)rn/T1—71 Rn/rz—w H MTk fk (x>’
k=1
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if 72 < m/re, and so

/ / | F 15 (@ = y1, @ — ya) || f1(y1) f2(y2) | dyrdyo
|z—y1|>r J]z—y2|<2R

2
< 2;-;(n/7“1+n/7“2—71 —72)71"/7"1_71 Rn/?"z—w H Mrk fk(x>7
k=1

if 71 € (n/r1, s1]. Taking » = R in the last inequality then gives (2.1).

Lemma 2.3. Let o be a bilinear multiplier satisfying (1.6) for some sq, s €
(n/2,n], ri, re € (1, 2] with 7985 > n. Then for every x € R", R > 0 and
v € [0, min{sy, 1 +n/ri}),

Lol e = e i) )
n Jlz—y|<

< 27O/ RUIMY TR My, fi(a).

2.2)

Proof. Note that for z € R" and « € Z,
‘f2(y2>‘7“2 % < —kn/r
</ (27 (z — y))*2r dy2> S 27 My, fa(),

since sqry > n. A trivial computation involving the Holder inequality and Lemma 2.1
leads to that for v € [0, s1] and integer [

/ / | F 15 (z — y1,z — ya)|| f1(yn) fa(y2) | dyr dye
n Jo(z,20R)

ko~

=

S Mﬁfl(a:)(/" (/C( o) ‘f_lgﬁ([]} — Y1, T — y2)‘7"i <2’f([13 — y1>>7“37dy1> r

<@t ([ el ) @Ry Ry

o—r(y—n/r1) 2

N W}H Mrkfk(33>

) 1
( / ( / |F oz, )2 T ) T (z) 52 )

2

@rp o LMo

< 9—k(y—n/r1)

If we choose ~ such that 1 + n/r; > ~, we then obtain that

Lol e e ) R
nJ|z—y|<



666 Guoen Hu

-1
< S nf [ el B s,
l=—00 T

2
< 9—r(y=n/r1) pl+n/ri—y H M, fi().
k=1

Lemma 2.4. Let o be a bilinear multiplier satisfying (1.6) for some sq, s €
(n/2, n], r1, 72 € (1, 2] such that ras9 > n. Let p; € (r1, c0). Then for every
v € (0, s1], R > 0 and = € R" with |z| > 2R,

/ / | F G0z — g1, @ — y2)| | f1(y1) fo(y2) | dyr dys
(2.3) "yl <R
< 27RO/ || YR | o oy Mo, fo ().

Proof. As in the proof of Lemma 2.3, a trivial computation involving the Holder
inequality and Lemma 2.1 leads to that

/ /| T ) R
oy <

S (/ (/ | F 5 (z — 1, — o) " 1dy1> (2°(x — y2)>r282dy2>
" ly1|<R
| fo(y2)|™ 7
X(/ (28 (x — yo)) 22 dyz) " Fix{ion <y 17 ey

S(/n(/y |<R’f s (2" (2 = 1), 2% — 1) |

Tldy1>
X2 My, fo (@) | ful Lo gy BT/

™ 1
< z—m—n/m\xr”(/ (/ F oz, 22) ") Tz ) T (20) B0z )
X My, fo ()| fol s ey R/ 717791
S 27T ) | g [TV RPN £ (2) | ol e (.-

H\w\
N \l’—‘

.
EXER

L
iy,

Lemma 2.5. Let o be a bilinear multiplier satisfying (1.6) for some sq, s €
(n/2, n], 1, € (n/sk, 2] (k =1, 2) and s; + s2 < n/r; +n/ro+ 1. Then there exists
a constant o > 0 such that for every R > 0, x,t € R™ with |¢{| < R/4, bounded
functions f; and fo with supp fi C R"\4B(z, R) for some k =1, 2

(2.4) Z/ (Wo(@,y1, y2; @+ 8)|| fr(y1) fo(y2) |dyr dys
R2

KEZL

< (|t B! H( 2) + My, fio(w+1)),
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where and in the following

Wo,r(@, y1, yos o+ 1) = F '0p(w —yr, 2 —y2) = F Gulz+1t —y1, 2+t —1p2).
Proof. Let So(B(z, R)) = B(z, R) and S;(B(z, R)) = 2/B(z, R)\2' "' B(z, R).

Repeating the proof of Lemma 3.3 in [12], we can obtain that for nonnegative integers

j1 and j,

it

(/ (/ ‘W‘)v“(‘”’yl’y2§x+t>\rédy2>ré dy1>
Sjy (B(z, R)) ~J8j,(B(z, R))
2
< tonCortsa—n/ri=n/ra=) T (29 R)~*
k=1

.
ExS

provided that 2R < 1. On the other hand, as in the proof of Lemma 3.4 in [12], we
can verify that for positive integer j;, bounded function fi, fo with suppf; C R™\4B,

/ / Wo.w(, 1, 322 + £)|1f1 (1) Fole) [dyadyn
Sj, (B(z,R)) JR"
2

N Q_H(Sl_n/m)@jl R>n/m_81 H (MTk fi(w) + My, fr(x + t>>

k=1

A straightforward computation then shows that when supp f; € R"\4B(z, R),

2/2 Wo, (@, y1, y2; @ + )| fu(y1) fo(y2) | dyrdye
R7l

KEZ
- Z/ / [Woew, g, i@+ 8)|1 () folv2) [dyndye
K:2FR>A j1=2
m 1
+ Z ZZ/ / \Wo,n(w,yl,yz;ert)\?dyQ) 2dy>’"1
2'<”R<A1143]2d) 2 (B(z,R))
H 2” Jl/T1+12T2)Rn/r1+n/r2

N ( Z (2"‘R>n/r1—81 + ‘t‘R_l Z (QHR)”/T1+W/T2+1—S1—52>
K:2FR>A R R<A

X ﬁ (Mrkfk(a:) + M, fr(z+ t))
k=1

< (R0l 1= TT (M, fule) + M il +1)).

k=1
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if we choose A = (|t|R~1)~1/(n/r2+1=52) A similar argument shows that (2.4) holds
true when supp fo C R"\4B(z, R).

Let K be a locally integrable function in R3" away from the diagonal {(z, y1, y2) :
x =1y = y2}. We say that T is a bilinear singular integral operator with kernel K if
T is bilinear, and for bounded functions f1, fo with compact supports,

(2.5) T(f1, f2)(z) = o K(z; y1, y2) f1(y1) fo(ye)dyrdys

for everywhere x € R™\ N7_, supp fi. Associated with 7', we define the maximal
operator T* by
T*(f1, f2)(x) = sgg\ﬂ(fl, f2)(@)],

where and in the following,
T 2)@) = | K (5 1. )dyndys.
maxi <<z [T—yi|>e
For the relationship of 7" and 7™, we have the following conclusion.

Lemma 2.6. Let r1, 75 € (1, 00), T be a bilinear singular integral operator with
associated kernel K in the sense of (2.5). Suppose that
(i) T is bounded from L™ (R™) x L"(R™) to L™*°(R™) with 1/r = 1/r; + 1/r9;
(if)
sup |K (25 91, y2) [ f1(y1) f2(y2) [ dyr dya S My, f1(2) My, fo(2);

>0 min | <p<o |le—yp|>e/2,
max| << lz—yp|<2e

(iii) for any ball B, x, y € B and bounded functions f;, fo with supp fi C R"\4B
for some k =1, 2,

[ 1€ s, ve) = Ko sl ) ) [l

2
< T (M ) + Mo fi(w)):
k=1
then for § € (0, min {1, r}) and everywhere = € R",
2
T*(f1, f2)(2) £ Ms(T(f1, f2)) (@) + ] Mo S (2).
k=1

Proof. We will employ some ideas used in the proof of Theorem 1 in [11]. For
each fixed € > 0, z, y € R”, let

Te(f1, fo)(y, ) = / K(y; y1, y2) f1(y1) f2(y2)dy1dya.

{R2": min 1<p<2 [z—yx|>e€}
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For bounded functions f;, fo with compact supports, let
F k) = Fe(u) X B o k), f7 (k) = fr(yk)Xem\ B, o (), k=1,2.
It is easy to verify that for y € B(x, €/2)
ITe(f1, fo) ()]
< Te(fr, f2) (@, 2) = Te(fr fo) (g 0) |+ [ Telfr, f2) ()
| K (591, y2) — K (3 91, 92) || f1(v1) f2(y2) | dyrdye

min j<p<o [T—yp|>e€

+T(fr f2) () = T B+ DT, )W),

AN

where

T )0 = [

ly—y1[>€/2

/ K (55 91, 92 1 ) o (92) | dyn e,
ly—y2|<2e

T2(f1, f2)y / / K (5 w1, 92|11 o (92) | dyn .
ly—y1]<2e J |y—y2|>€/2

Thus, by assumptions (ii) and (iii), we know that for y € B(z, €/2),
2
IT(f1, f2)(@)| S |Telf1, fo) (@, @) + [ M (frs fo)()
k=1

ST YW+ T )W)+ T Mo (1, fo) (@)
k=1

The fact that 7" is bounded from L™ (R™) x L"2(R"™) to L™>°(R™), along with the ar-
gument in the proof of the Kolmogorov inequality, tells us that for § € (0, min {1, r}),

(‘B“/Q‘/W (F w)lay)”
NH( a:e\ Bz, e)
HM fi(x

On the other hand, we know from [4] that for 6 € (0, r),

1 srafr o\ (k)
(\B(x, 6)‘/3(“) (Mr, fr(v)) dy) < M, fi(z).

1/rk
o) "y )
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Combining the estimates above yields
| Te(f1, f2) ()]
1/6
5
(\Ba:e/Q\/“/Q (f1, f2)(y)] dy)

(‘Bx L [ TUL ay) "
+H (7‘3@’6 o /B o (Mrkfk(y»&rk/rdy)r/m&—i—kl_[l M, fi(x
M;(T(f1, f2)) H

which gives us the desired conclusion directly.

Proof of Theorem 1.1. we will employ some ideas of Bényi and Torres [1]. For
N e N, let

oM (&, &) = Y Falr, &)

|r|<N
and denote by 7,, x the multiplier operator associated with oV It is obvious that T, v
is a bilinear singular integral operator with kernel
KNz y1, y2) = F Lo (2 —yr, @ — o)
in the sense of (2.5). For by, b € BMO(R"), set

2

T, noitf1 £2)(@) =D [bk, To xle(frs f2) ().

k=1

Let pr. € (tr, o) (k = 1,2), p € [1, 00) With 1/p = 1/p1 + 1/pa, and by, by €
C3°(R™). Note that for any fi, fo € S(R ) and almost every x € R,

T, it £ =T, (. 5,

Recall that 7' is bounded from LP'(R™) x LP2(R™) to LP(R™). If we can prove that

(a) for each fixed ¢ > 0, there exists an constant A = A(e) which is independent of
N, f1 and fs, such that

(26) ([ Tonith paz) ™ s H vl ey
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(b) for each fixed e > 0, there exists a constant p = p. which is independent of NV,
f1 and fo, such that for all ¢ with 0 < |t] < p,

2
(27> HTO—7N;[;<f17 f2><> - T0-7N;[;<f17 f2>< + t)HLp(Rn) S € H ka‘Hka(R")?
k=1

it then follows from the Fatou Lemma that the inequalities (2.6) and (2.7) still hold true
if T S ;(f1, f2) is replaced by T'_ ;. This, via Proposition 3 in [1] and the Fréchet-
Kolmogorov theorem characterlzmg the pre-compactness of a set in LP (see [18, p.
275]), implies the compactness of 7'_; from LP*(R™) x LP2(R") to LP(R").

In the following, we choose 7 67 (tk, pr) (K =1, 2) such that s; + so < n/r; +
n/ro+1. We first prove the conclusion (a). For the sake of simplicity, we only consider
[b1, T5]1(f1, f2). Let R > 0 be large enough such that supp by C B(0, R). Then for
every z with |z| > 2R, we have by Lemma 2.4 that

/ / (z; y1, y2)|f1(y1) fa(y2)|dyrdys
" y1|<R

S My, fo(@)|| fill Loy R PH | 700 Y 2/
KEZ: 2P R>1

+ My, fo ()| fill Loy R TP 270 T 2
KEZ: 2FR<1

N (Rsl_n/pl\a:\_sl + RO~/ \x\_9> My, fo (@) || il Lor ),

if we choose v = s; and v = 6 € (n/p1, n/r1) in (2.3) respectively. Therefore, for
A > 2R,

1/p
([l Toshhr, 2)@)Pas)
|z|>A
S HbluLoo(R")HleLPI(Rn)HMT2f2HLP2(R7L){Rsl—n/pl(/

|z|>A
+R9—n/p1 ( / ‘a:‘_epl dg;) 1/2?1}
|z|>A

RN\0—n/p1
S HbluLw(R") HleLm (Rm) HfQHLp2(RN) (Z) ’

||~ da:) v

since s; > 0. This in turn leads to conclusion (a) directly.
We turn our attention to conclusion (b). Again we only consider [b1, T,]1. As in
[1], we write

(b1, Toli(frs fo) (@) = [b1, Tola (frs fo) (w + 1) = Y Dj(a.t),
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with
Di(z,t) = (bi(z +1) — bi()) / KN (5 y1,92) f1 (1) f2(y2)dyr dya
maxi<k<2 |T—Yr|>0¢

Do(x,t) = / EN(z, t;y1,52) (b1(y1) — bi(x + 1)) f1 (1) f2 (y2)dyr dye,
maxi<p<z |[T—yr|>0¢

D3(x,t) = / KN (@391, 92) (b1 (y1) = b1(2)) f1(y1) f (y2)dyr dye
maxj<p<2 |[T—Ykr|<dt

Dy(,t) = / KN(z +tsy1, y2) (b1(z + t) — bi(y1)) f1(y1) f2(y2)dyr dye,
maxj<p<2 |[T—yr|<dt

with ¢, > 4|¢| a convenient choice to be determined later, and
EN(z, t;y1,90) = KN (2391, v2) — KN (2 + ty1,90).

It is obvious that

ID1(z, )| S Vb1 Loo (mry [ sup ’/ KN (51, y2) f1 (1) f2(y2) dyr dys| -
€> m.

axj<p<2 [T—yr|>€

On the other hand, it follows from Lemma 2.2 that for any R > 0,
[ Y i) fle)lddn
lz—y1|=R J |v—y2|<2R

2
N Z or(n/ritn/ro—y—y2) pn/ritn/ra—y1-"2 H M,, fx (x)

K:2FR>1 h=t
2
+ Z or(n/ri+n/ra—F1—72) gn/ri+n/ra—71—-72 H Mrk i ((IZ)
K:2FR<] =1
2
k=1

if we choose ~1, 2, 71, 72 such that
n/ri <1, N1 < s1, 0 <72, 72 <n/ro

and
Y1+ 72 > n/ri+n/re, Y1+ 2 < n/ri+n/ro.
Similarly, we have that

2
/ / |KN (2, 1, woll fuwn) folyo) ldyndys S T My, f(2)
lz—y2|>R J|z—y1|<2R

k=1
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Recall that 7, is bounded from L™ (R™) x L™2(R™) to L"(R™) with 1/r = 1/r1+1/ry
(see [7, 15]). We have by Lemma 2.5 and Lemma 2.6 that

2
D1 (2, )] S 111Vl oo ey ( TT M f() + Ms(T (1, £2))(@)).
k=1
As for the term Do, an application of Lemma 2.5 shows that for some constant o > 0,

|Da(z,t)| < HblHLoo(Rn)/ |EN (2, 5 1, 92) f1 (1) f2(y2) | dyr dys

maxi<k<2 [T—yx|>0:

2
< (el Melball ey [ | (Mrkfk(eT) + M, fr(z + t)).
k=1

The estimates for D3 and D4 are fairly easy. In fact, by Lemma 2.3, we deduce
that

Dl 0] 19l | /| =l s ) o) e
nJ|r—y1| <0t

2
< HVbIHLw(R") Z 2—;-;(81—n/7"1)5t1+n/7"1—s1 H M,, fu()

KEZ: 256 >1 k=1
2
+(|Vby HLoo(Rn) Z orn/m (5tl+n/rl H M., fr (x)
REZ: 2564>1 k=1
2
S 5tHVI)1HL°°(R") H Mkak(x>7
k=1

if we choose v = s; and v = 0 in the inequality (2.2) respectively (recall that s; <
n/r1 + 1). Note that

Da(z, 1))
S / / | KN (2 + ty1, ) (01 (@ + 1) = bi(y1)) f1r (1) f2(y2) | dyn dya,
n JSzt—yr |[<8e+|t|

an argument which is similar to what was used in the estimate for D3 shows that

2
IDa(z, )] S 6l Vil poorny [ M, fr(x +1).
k=1

For each fixed ¢ > 0, set

Ae € 1/e
’ T 2+ Vbl ) - Gaemnee) )
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and
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6 = |t|A~! for each ¢t € R™. Our estimates for terms D; (j = 1, ..., 4) then

leads to that when 0 < |¢| < p,

b1, Tola (1, £2) () = [b1, Tl (frs f2) (- + 1)
2
S (8 + 0NV bl ooy + (1116, *Noall o)) TT Il oy
k=1

S €ll fill zer rry-

This establishes conclusion (b) and then completes the proof of Theorem 1.1.
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