TAIWANESE JOURNAL OF MATHEMATICS Vol. 18, No. 2, pp. 357-369, April 2014 DOI: 10.11650/tjm.18.2014.3667 This paper is available online at http://journal.taiwanmathsoc.org.tw

WEIGHTED NORM INEQUALITIES FOR FLAG SINGULAR INTEGRALS ON HOMOGENEOUS GROUPS

Xinfeng Wu

Abstract. Let G be a homogeneous nilpotent Lie group. In this paper, we introduce a new class of multiparameter weights $A_p^{\mathcal{F}}$ associated with a flag \mathcal{F} on G and show that such class of weights can be characterized via two type of flag maximal operators. We then prove that singular integrals with flag kernels are bounded on $L_w^p(G)$, $1 , when <math>w \in A_p^{\mathcal{F}}(G)$, which extends a recent result of Nagel-Ricci-Stein-Wainger in [13]. As an application, we get weighted norm inequalities for the multiparameter Marcinkiewicz multipliers on Heisenberg groups introduced in [11].

1. INTRODUCTION

Flag singular integral operators were comprehensively studied in recent years and many applications were found in analysis on Heisenberg groups, theory of function spaces, several complex variables and *etc*. Such class of operators were introduced by Müller, Ricci and Stein [11] when they studied the Marcinkiewicz multiplier on the Heisenberg groups \mathbb{H}^n . They obtained the surprising result that certain Marcinkiewicz multipliers, invariant under a two-parameter group of dilations on $\mathbb{C}^n \times \mathbb{R}$, are bounded on $L^p(\mathbb{H}^n)$, despite the absence of a two-parameter automorphic group of dilations on \mathbb{H}^n . To study the \Box_b -complex on certain CR submanifolds of \mathbb{C}^n , Nagel, Ricci and Stein [12] studied further a class of product singular integrals with flag kernels. Applying the theory of flag kernels, Nagel and Stein [14] obtained remarkable results on the optimal estimates for solutions of the Kohn-Laplacian for certain classes of model domains in several complex variables. More recently, using Littlewood-Paley theory, Nagel, Ricci, Stein and Wainger [13] extended the above results to a more general setting, namely,

Received August 17, 2013, accepted September 2, 2013.

Communicated by Chin-Cheng Lin.

²⁰¹⁰ Mathematics Subject Classification: Primary 42B20; Secondary 42B25.

Key words and phrases: Weighted norm inequalities, Flag singular integrals, Homogeneous groups, Heisenberg groups, Marcinkiewicz multipliers.

The research is supported by NNSF-China (Grant No. 11101423) and supported in part by NNSF-China (Grant No. 11171345).

homogeneous group. We would like to point out that Głowacki [5, 6] independently obtained similar results by using Melin calculus on homogeneous groups developed in [7]. The multiparameter Hardy spaces associated with flag kernels were developed by Han and Lu [8] in the Euclidean setting and by Han, Lu and Sawyer [9] in the setting of Heisenberg groups and atomic decomposition characterizations for the Hardy spaces were established in [16]. For other results about flag kernels, we refer the reader to [3, 17, 18]. While the theory of flag kernels are satisfactorily established, it is still open how to develop a theory of multiparameter weightes associated with flag kernels, even in the setting of Heisenberg groups.

The purpose of this paper is to address this question. More precisely, we shall introduce a new class of flag weights $A_p^{\mathcal{F}}$ (associated to a flag \mathcal{F}) on a homogeneous group G and provide characterizations of $A_p^{\mathcal{F}}$ via two kinds of maximal operators. We then prove that singular integrals with flag kernels are bounded on $L_w^p(G)$, 1 , $when <math>w \in A_p^{\mathcal{F}}(G)$, which extends a recent result of Nagel-Ricci-Stein-Wainger in [13]. As an application, we also get weighted norm inequalities for the multiparameter Marcinkiewicz multipliers introduced in [11] on Heisenberg groups.

To state our main results more precisely, we begin with recalling some basic definitions and notations on homogeneous groups. Let G be a homogeneous nilpotent Lie group with Lie algebra \mathfrak{g} . A Lie group G is homogeneous means that there is a one-parameter group of automorphisms $\delta_r : G \to G$ for r > 0, with $\delta_1 = Id$. As a manifold, G is an N-dimension real vector space, and we assume that with an appropriate choice of coordinates, $G = \mathbb{R}^N$ and the automorphisms are given by

$$\delta_r[x] = r \cdot x = (r^{d_1} x_1, \dots, r^{d_N} x_N)$$

with $1 \leq d_1 \leq d_2 \leq \cdots \leq d_N$. We identify G with \mathbb{R}^N as above. The bi-invariant Haar measure on G is Lebesgue measure $dy = dy_1 \cdots dy_N$. The convolution of functions $f, g \in L^1(G)$ is given by

$$f * g(x) = \int_G f(xy^{-1})g(y)dy = \int_G f(y)g(y^{-1}x)dy,$$

and the integral converges absolutely for almost all $x \in G$. For more details about homogeneous groups, we refer the reader to [4, 10]

A standard flag \mathcal{F} associated to the partition $N = a_1 + \cdots + a_n$ $(a_i > 0)$ is a collection of increasing subspaces

(1.1) (0) $\subset \mathbb{R}^{a_n} \subset \mathbb{R}^{a_{n-1}} \oplus \mathbb{R}^{a_n} \subset \cdots \subset \mathbb{R}^{a_2} \oplus \cdots \oplus \mathbb{R}^{a_n} \subset \mathbb{R}^{a_1} \oplus \cdots \oplus \mathbb{R}^{a_n} = \mathbb{R}^N.$

Throughout this paper, we fix the partition and the flag on $G = \mathbb{R}^N$. In what follows, for $x \in \mathbb{R}^N$, we always write $x = (x_1, \ldots, x_n)$ with $x_l = (x_{p_l}, \ldots, x_{q_l}) \in \mathbb{R}^{a_l}$ so that $q_l = p_l + a_l - 1$. Denote by $J_l = \{p_l, \ldots, q_l\}$ the set of subscripts corresponding to

the factor \mathbb{R}^{a_l} so that $\{1, \ldots, N\}$ is the disjoint union $J_1 \cup \ldots \cup J_n$. With the family of dilations defined above, the action on the subspace \mathbb{R}^{a_l} is given by

$$r \cdot x_l = (r^{d_{p_l}} x_{p_l}, \dots, r^{d_{q_l}} x_{q_l}).$$

The homogeneous dimension of \mathbb{R}^{a_l} is $Q_l = d_{p_l} + \cdots + d_{q_l} = \sum_{j \in J_l} d_j$. The function $N_l(x_l) = \sup_{p_l \leq s \leq q_l} |x_s|^{1/d_s}$ is a homogeneous norm on \mathbb{R}^{a_l} so that $N_l(r \cdot x_l) = rN_l(x_l)$. If $\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{N}^N$, let $\bar{\alpha}_l = (\alpha_{p_l}, \ldots, \alpha_{q_l})$, and set

$$[\bar{\alpha}_l] = \alpha_{p_l} d_{p_l} + \dots + \alpha_{q_l} d_{q_l} = \sum_{j \in J_l} \alpha_j d_j.$$

Let

$$G_k = \{x = (x_1, \dots, x_n) \in \mathbb{R}^N : x_1 = \dots = x_{k-1} = 0\}$$

= $\{(0, \dots, 0, x_k, \dots, x_n) \in \mathbb{R}^N : x_j \in \mathbb{R}^{a_j}, k \le j \le n\},\$

and let G_k^{\perp} denote the annihilator of G_k . We can identify G_k with $\mathbb{R}^{a_k} \oplus \cdots \oplus \mathbb{R}^{a_n}$ so that $G_k^{\perp} = \mathbb{R}^{a_1} \oplus \cdots \oplus \mathbb{R}^{a_{k-1}}$. For $x \in G$, we also write

$$x = (x_{\perp}^k, x^k) \in G_k^{\perp} \times G_k.$$

It follows from the formula for group multiplication that G_k is a subgroup of G. We let m(E) denote the Lebesgue measure of a set $E \subset G = G_1$, and $m_k(F)$ denote the Lebesgue measure on G_k of subset $F \subset G_k$. For $s = (s_k, \ldots, s_n)$, let

$$R_s^{(k)} = R_s^{(k)}(0) = \{(x_k, \dots, x_n) \in G_k : |x_k| \le s_k^{Q_k}, \dots, |x_n| \le s_n^{Q_n}\}.$$

We say that the size of the rectangle R_s is acceptable if $s_k \leq s_{k+1} \leq \cdots \leq s_n$.

Definition 1.1. The maximal function $M_{\mathcal{F}}$ on G is defined by

$$M_{\mathcal{F}}(f)(x) = \sup_{R_s} \frac{1}{|R_s|} \int_{R_s} |f(xy^{-1})| dy,$$

where the supremum is taken over all acceptable rectangles $R_s = R_s^{(1)} \subset G = G_1$.

We now introduce the Muckenhoupt weight $A_p^{\mathcal{F}}$ associated to the flag \mathcal{F} on G. Define the *translated acceptable rectangles* $R_s(x) := x \cdot R_s(0) = \{x \cdot y : y \in B_s(0)\}$. Denote by $\mathcal{R}_{\mathcal{F}}$ the set of of translated acceptable rectangles.

Definition 1.2. Let w be a nonnegative measurable function on G. We say that w is a flag weight in $A_p^{\mathcal{F}}(G)$ if

$$\sup_{R \in \mathcal{R}_{\mathcal{F}}} \left(\frac{1}{|R|} \int_{R} w(x) dx\right) \left(\frac{1}{|R|} \int_{R} w(x)^{-1/(p-1)} dx\right)^{p-1} < \infty \quad \text{for } 1 < p < \infty$$
$$M_{\mathcal{F}}(w)(x) \le Cw(x), \ a.e. \quad \text{for } p = 1.$$

We would like to point out that in the Euclidean setting when $G = \mathbb{R}^N$, the flag weights defined above are different from the product weights used in [2]. The standard maximal function M_k on the subgroup G_k is defined by

$$M_k(f)(x^k) = \sup_{\rho > 0} \frac{1}{m(B(\rho))} \int_{B(\rho)} |f(x^k \cdot (y^k)^{-1})| dy^k,$$

where $B(\rho) = B^{(k)}(\rho)$ is the automorphic one-parameter ball given by

$$B^{(k)}(\rho) = \{x^k = (x_k, \dots, x_n) \in G_k : |x_k| \le \rho^{Q_k}, |x_{k+1}| \le \rho^{Q_{k+1}}, \dots, |x_n| \le \rho^{Q_n}\},\$$

and \cdot denote the group multiplication on subgroup G_k . Let

$$B_{x^k}^{(k)}(\rho) := \{ x^k \cdot y^k : y^k \in B^{(k)}(\rho) \}.$$

Define the maximal operator \widetilde{M}_k on G by

$$\widetilde{M}_k(f)(x) \equiv (\delta_{G_k^{\perp}} \otimes M_k)(f)(x) = M_k(f(x_{\perp}^k, \cdot))(x^k)$$

where $\delta_{G_k^{\perp}}$ is the Dirac mass at $(0) \in G_k^{\perp}$. We then define another type of flag maximal operator by

$$\widetilde{M}_{\mathcal{F}} = \widetilde{M}_n \circ \widetilde{M}_{n-1} \circ \ldots \circ \widetilde{M}_1.$$

For k = 1, ..., n, the one-parameter weight classes $A_p^{(k)}$, relative to \widetilde{M}_k on G, are defined as follows.

Definition 1.3. Let w be a nonnegative measurable function on G. We say that w is in $A_p^{(k)}(G), 1 , if$

$$\left(\frac{1}{|B^{(k)}|} \int_{B^{(k)}} w(x_{\perp}^k, x^k) dx^k\right) \left(\frac{1}{|B^{(k)}|} \int_{B^{(k)}} w(x_{\perp}^k, x^k)^{-1/(p-1)} dx^k\right)^{p-1} < C$$

for all $B^{(k)} \subset G_k$ and almost all $x_{\perp}^k \in G_k^{\perp}$. If $\widetilde{M}_k(w)(x) \leq Cw(x), a.e.$, then we say $w \in A_1^{(k)}(G)$.

By definition, $A_p^{(k)}(G)$ consists of those weight functions that satisfy uniform A_p property in flag subvariables of $G_k, k = 1, ..., n$.

Our first main result is as follows.

Theorem 1.4. Let 1 and w be a nonnegative measurable function on G. Then the following four conditions are equivalent:

- (1) $w \in A_p^{\mathcal{F}}(G);$
- (2) $w \in A_p^{(1)}(G) \cap A_p^{(2)}(G) \cap \dots \cap A_p^{(n)}(G);$

- (3) $\widetilde{M}_{\mathcal{F}}$ is bounded on $L^p_w(G)$;
- (4) $M_{\mathcal{F}}$ is bounded on $L^p_w(G)$.

Using Theorem 1.4, we get the following weighted Fefferman-Stein vector-valued inequality.

Theorem 1.5. Let 1 and w be a nonnegative locally integrable function on G. Then the following weighted Fefferman-Stein vector-valued inequality holds

(1.2)
$$\left\| \left(\int_{\mathbb{R}^n_+} |M_{\mathcal{F}}(f_t)|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L^p_w(G)} \le C \left\| \left(\int_{\mathbb{R}^n_+} |f_t|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L^p_w(G)} \right\|_{L^p_w(G)} \le C \left\| \left(\int_{\mathbb{R}^n_+} |f_t|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L^p_w(G)} \le C \left\| \left(\int_{\mathbb{R}^n_+} |f_t|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L^p_w(G)} \le C \left\| \left(\int_{\mathbb{R}^n_+} |f_t|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L^p_w(G)} \le C \left\| \left(\int_{\mathbb{R}^n_+} |f_t|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L^p_w(G)} \le C \left\| \left(\int_{\mathbb{R}^n_+} |f_t|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L^p_w(G)} \le C \left\| \left(\int_{\mathbb{R}^n_+} |f_t|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L^p_w(G)} \le C \left\| \int_{\mathbb{R}^n_+} |f_t|^2 \frac{dt}{[t]} \right\|_{L^p_w(G)} \le C \left\| \int_{\mathbb{R$$

if and only if $w \in A_p^{\mathcal{F}}(G)$.

The following definition of flag kernels on G was introduced in [13].

Definition 1.6. A flag kernel adapted to the flag \mathcal{F} is a distribution $\mathcal{K} \in \mathcal{S}'(\mathbb{R}^N)$ which satisfies the following differential inequalities (part (a)) and cancellation conditions (part (b))

(a) For test functions supported away from the subspace x₁ = 0, the distribution K is given by integration against a C[∞]-function K. Moreover for every α = (α₁,..., α_N) ∈ Z^N there is a constant C_α so that if α_k = (α_{pk},..., α_{qk}), then for x₁ ≠ 0,

$$|\partial^{\alpha} K(x)| \le C_{\alpha} \prod_{k=1}^{n} [N_1(x_1) + \dots + N_k(x_k)]^{-Q_k - [\bar{\alpha}_k]}$$

(b) Let $\{1, \ldots, n\} = L \cup M$ with $L = \{l_1, \ldots, l_\alpha\}$, $M = \{m_1, \ldots, m_\beta\}$ and $L \cap M = \emptyset$ be any pair of complementary subsets. For any $\psi \in C_0^{\infty}(\mathbb{R}^{N_b})$ and any positive real numbers R_1, \ldots, R_β , put $\psi_R(x_{m_1}, \ldots, x_{m_\beta}) = \psi(R_1 \cdot x_{m_1}, \ldots, R_\beta \cdot x_{m_\beta})$. Define a distribution $\mathcal{K}_{\psi,R}^{\#} \in \mathcal{S}'(\mathbb{R}^{a_{l_1} + \cdots + a_{l_r}})$ by setting

$$\langle \mathcal{K}_{\psi,R}^{\#}, \varphi \rangle = \langle \mathcal{K}, \psi_R \otimes \varphi \rangle$$

for any test function $\varphi \in \mathcal{S}(\mathbb{R}^{a_{l_1}+\dots+a_{l_r}})$. Then the distribution $\mathcal{K}_{\psi,R}^{\#}$ satisfies the differential inequalities of part (a) for the decomposition $\mathbb{R}^{a_{l_1}} \oplus \dots \oplus \mathbb{R}^{a_{l_r}}$. Moreover, the corresponding constants that appear in these differential inequalities are independent of the parameters $\{R_1, \dots, R_s\}$, and depend only on the constants $\{C_\alpha\}$ from part (a) and the semi-norms of ψ .

The constants $\{C_{\alpha}\}$ in part and the implicit constant in part are called the flag kernel constants for the flag kernel \mathcal{K} .

The second main result of this paper is the following

Theorem 1.7. Let $1 and <math>w \in A_p^{\mathcal{F}}(G)$. If \mathcal{K} a flag kernel on G, then the convolution operator $T(f) = f * \mathcal{K}$ is bounded on $L_w^p(G)$.

Finally, we give an application of Theorem 1.7 to Marcinkiewicz multipliers on Heisenberg group \mathbb{H}^n . Recall that the Heisenberg group \mathbb{H}^n is a two-step homogeneous nilpotent group on $\mathbb{C}^n \times \mathbb{R}$ with the multiplication law

$$(z,t) \cdot (z',t') = (z+z',t+t'+2\Im(z \cdot z')).$$

Let \mathcal{Z} be the center of \mathbb{H}^n define by

$$\mathcal{Z} = \{ (0,t) : 0 \in \mathbb{C}^n, t \in \mathbb{R} \}.$$

 $(0) \subset \mathcal{Z} \subset \mathbb{H}^n.$

The flag $\widetilde{\mathcal{F}}$ on \mathbb{H}^n is given by

In [11], Müller-Ricci-Stein studied a class of multiparameter Marcinkiewicz multipliers on \mathbb{H}^n . They showed that such class of Marcinkiewicz multipliers can be characterized by the flag singular integrals on \mathbb{H}^n . Applying Theorem 1.7, we then get the following weighted norm inequalities for the multiparameter Marcinkiewicz multipliers studied in [11] on \mathbb{H}^n .

Theorem 1.8. Let $1 and <math>w \in A_p^{\widetilde{\mathcal{F}}}(\mathbb{H}^n)$. Suppose that $m(\xi, \eta)$ is a function on $\mathbb{R}^+ \times \mathbb{R}$ satisfying

$$|(\xi \partial_{\xi})^{\alpha} (\eta \partial_{\eta})^{\beta} m(\xi, \eta)| \leq C_{\alpha, \beta}$$

for all $\alpha, \beta \leq N$, with N large enough. Then $m(\mathcal{L}, i\mathcal{T})$ is a bounded operator on $L^p_w(\mathbb{H}^n)$. Here \mathcal{L} is the sub-Laplacian and \mathcal{T} is the central element of the Heisenberg Lie algebra.

2. Proof of Theorem 1.4

We prove Theorem 1.4 by showing $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$.

We show first $(1) \Rightarrow (2)$. Note that all one-parameter balls $B^{(1)}(\rho)$ are acceptable, we thus have $A_p^{\mathcal{F}}(G) \subset A_p^{(1)}(G), 1 . To see that <math>A_p^{\mathcal{F}}(G) \subset A_p^{(k)}(G), 1 < k \le n$, we assume that $w \in A_p^{\mathcal{F}}(G)$. Given any translated one-parameter ball $B^{(k)}(x^k, \rho)$ and $r \le \rho$, set

$$B_{\perp}^{(k)}(r) = B_{\perp}^{(k)}(x_{\perp}^{k}, r)$$

= { $x_{\perp}^{k} \cdot y : (y_{1}, \dots, y_{k-1}) \in G_{k}^{\perp} : |y_{1}| \le r^{Q_{1}}, \dots, |y_{k-1}| \le r^{Q_{k-1}}$ }.

Then $B_{\perp}^{(k)}(r)$ shrinks to $x_{\perp}^k \in G_k^{\perp}$ as r tends to zero. Moreover, $B_{\perp}^{(k)}(x_{\perp}^k, r) \times B^{(k)}(x^k, \rho) \in \mathcal{R}_F$. Thus, $w \in A_p^{\mathcal{F}}(G)$ gives

$$\left(\frac{1}{|B^{(k)}(\rho)|} \int_{B^{(k)}(\rho)} \left(\frac{1}{|B_{\perp}^{(k)}(r)|} \int_{B_{\perp}^{(k)}(r)} w(\bar{y}, y') d\bar{y}\right) dy' \right) \\ \times \left(\frac{1}{|B^{(k)}(\rho)|} \int_{B^{(k)}(\rho)} \left(\frac{1}{|B_{\perp}^{(k)}(r)|} \int_{B_{\perp}^{(k)}(r)} w(\bar{y}, y')^{-1/(p-1)} d\bar{y}\right) dy' \right)^{p-1} < C.$$

Letting $r \rightarrow 0$ and applying Lebesgue's differential theorem, we get

$$\Big(\frac{1}{|B^{(k)}(\rho)|}\int_{B^{(k)}(\rho)}w(x_{\perp}^{k},y')dy'\Big)\Big(\frac{1}{|B^{(k)}(\rho)|}\int_{B^{(k)}(\rho)}w(x_{\perp}^{k},y')^{-1/(p-1)}dy'\Big)^{p-1} < C$$

for all $B^{(k)}(\rho) \subset G_k$ and almost all $x_{\perp}^k \in G_k^{\perp}$. This verifies $w \in A_p^{(k)}(G)$ and thus the implication $(1) \Rightarrow (2)$ is proved.

The second implication can be proved as in the Euclidean case (see [15]) while the third follows immediately from the following Lemma (see [13, Lemma 9.3]).

Lemma 2.1. There is a constant C so that for all $x \in G$,

$$M_{\mathcal{F}}(f)(x) \le CM_{\mathcal{F}}(f)(x).$$

To show the last implication $(4) \Rightarrow (1)$, we assume that $M_{\mathcal{F}}$ is bounded on $L^p_w(G)$ for a non-negative locally integrable function w. Apply this to the function $f\chi_R$ supported in an acceptable rectangle R and use that $1/|R| \int_R |f| \leq M_{\mathcal{F}}(f\chi_R)(x)$ for all $x \in R$ to obtain

$$w(R) \cdot \left(\frac{1}{|R|} \int_{R} |f(x)| dx\right)^{p} \leq C \int_{R} [M_{\mathcal{F}}(f\chi_{B})(x)]^{p} w(x) dx$$
$$\leq C_{p} \int_{R} |f(x)|^{p} w(x) dx,$$

where $w(R) = \int_{R} w(x) dx$. It follows that

$$\left(\frac{1}{|R|}\int_{R}|f(x)|dx\right)^{p} \leq \frac{C_{p}}{w(R)}\int_{R}|f(x)|^{p}w(x)dx,$$

for all $R \in \mathcal{R}_{\mathcal{F}}$ and all functions f. Now we take $f = w^{-p'/p}$, which gives $f^p w = w^{-p'/p}$. We thus get that w should satisfy the inequality (1) under additional assumption that $\inf_R w > 0$ for all acceptable rectangles R. If $\inf_R w = 0$ for some acceptable rectangles R, we take $f = (w + \varepsilon)^{-p'/p}$. Repeating the similar argument, we can derive

$$\Big(\frac{1}{|R|}\int_R w(x)dx\Big)\Big(\frac{1}{|R|}\int_R (w(x)+\varepsilon)^{-\frac{p'}{p}}dx\Big)^{p-1} \le C_p,$$

from which we can still get the conclusion (1) via the Lebesgue monotone convergence theorem by letting $\varepsilon \to 0$. This ends the proof of the implication $(4) \Rightarrow (1)$ and hence Theorem 1.4 follows.

3. Proof of Theorem 1.5

To prove the sufficient part of Theorem 1.5, we need the following one-parameter weighted Fefferman-Stein's inequality.

Lemma 3.1. Let $1 \le k \le n$, $1 < p, q < \infty$ and let u be a $A_p(G_k)$ weight (i.e. the classical Muckenhoupt weight on G_k).

(3.1)
$$\left\| \left(\sum_{j \in \mathbb{Z}} |M_k(f_j)|^2 \right)^{1/2} \right\|_{L^p_u(G_k)} \le C \left\| \left(\sum_{j \in \mathbb{Z}} |f_j|^2 \right)^{1/2} \right\|_{L^p_u(G_k)}$$

The key tool in the proof of the above inequality in Euclidean setting is the the Calderón-Zygmund decomposition. Such decomposition in the current setting was provided in [15]. Based on the Calderón-Zygmund decomposition, the proof of Lemma 3.1 is just a recreation of the Euclidean one in [1]. We omit the details here.

We now assume that $w \in A_p^{\mathcal{F}}(G)$. By Theorem 1.4, $w \in A_p^{(k)}, k = 1, ..., n$. Thus for each $x_{\perp}^k \in G_k^{\perp}, w(x_{\perp}^k, \cdot)$ is in $A_p(G_k)$ uniformly for x_{\perp}^k . Thus the the weighted Fefferman-Stein's inequality in Lemma 3.1 hold for $u = w(x_{\perp}^k, \cdot)$. Lifting to G yields

$$\left\| \left(\sum_{j \in \mathbb{Z}} |\widetilde{M}_k(f_j)|^2 \right)^{1/2} \right\|_{L^p_w(G)} \le C \left\| \left(\sum_{j \in \mathbb{Z}} |f_j|^2 \right)^{1/2} \right\|_{L^p_w(G)}, \qquad 1 \le k \le n$$

By iteration,

$$\left\|\left(\sum_{j\in\mathbb{Z}}|\widetilde{M}_{\mathcal{F}}(f_j)|^2\right)^{1/2}\right\|_{L^p_w(G)} \le C \left\|\left(\sum_{j\in\mathbb{Z}}|f_j|^2\right)^{1/2}\right\|_{L^p_w(G)}$$

This together with Lemma 2.1 yields

(3.2)
$$\left\| \left(\sum_{j \in \mathbb{Z}} |M_{\mathcal{F}}(f_j)|^2 \right)^{1/2} \right\|_{L^p_w(G)} \le C \left\| \left(\sum_{j \in \mathbb{Z}} |f_j|^2 \right)^{1/2} \right\|_{L^p_w(G)}$$

To pass to the continuous one in Theorem 1.5, we assume first that $f_t(x)$ is jointly continuous and has compact support. For each $\epsilon > 0$, apply the conclusion (3.2) to the case where $\{f_j(x)\}$ are enumeration of the $\epsilon^{n/2}F_{\epsilon j_1,\epsilon j_2,...,\epsilon j_n}(x)$, for $(j_1, j_2, ..., j_n)$ ranging over $(\mathbb{Z}^+)^n$, and then let $\epsilon \to 0$, obtaining the desired result in this case. For the general f_t , assuming that is finite, find a sequence $f_t^{(k)}(x)$ of continuous functions of compact support, with $f_t^{(k)}(x) \to f_t(x)$ almost everywhere, so that

$$\left\| \left(\int_{\mathbb{R}^n_+} |f_t^{(k)}|^2 dt \right)^{1/2} \right\|_{L^p_w(G)} \to \left\| \left(\int_{\mathbb{R}^n_+} |f_t|^2 dt \right)^{1/2} \right\|_{L^p_w(G)}$$

Applying the previous case and Fatou's lemma, we obtain the desired estimate.

Concerning the necessity of $w \in A_p^{\mathcal{F}}(G)$, take $f_t = f$ for $t \in [1, 2]^n$ and $f_t = 0$ otherwise. Then we see that $w \in A_p^{\mathcal{F}}(G)$ is necessary by the scaler-valued result in Theorem 1.4. This concludes the proof of Theorem 1.5.

4. Proof of Theorem 1.7

The proof is similar to the unweighted case in [13] and we provide it for the sake of completeness. We first recall the square functions introduced in [13]. Since each subgroup G_k is a homogeneous group with family of dilations δ_r , there exists a finitedimensional inner-product space V_k and a pair $\varphi^{(k)}$, $\psi^{(k)}$ of V_k -valued functions, with $\varphi^{(k)} \in C_0^{\infty}(G_k)$ supported in the unit ball, and $\psi^{(k)} \in \mathcal{S}(G_k)$ a Schwartz function, so that

$$\int_{G_k} \varphi^{(k)}(x) dx = \int_{G_k} \psi^{(k)}(x) dx = 0$$

and

(4.1)
$$\int_0^\infty \psi_a^{(k)}(xy^{-1}) \cdot \varphi_a^{(k)}(y) \frac{da}{a} = \delta_0.$$

Here

$$\varphi_a^{(k)} = a^{-Q_k - Q_{k+1} \dots - Q_n} \varphi^{(k)}(\delta_{a^{-1}}(x))$$

with a similar definition for $\psi_a^{(k)}(x)$ and \cdot denotes the inner product in V_k . See [4, Theorem 1.61].

The operators $P_a^{(k)}$ and $Q_a^{(k)}$, acting on functions on G_k , are defined by $P_a^{(k)}(f) = f * \varphi_a^{(k)}$ and $Q_a^{(k)}(f) = f * \psi_a^{(k)}$. Note that (4.1) implies that

(4.2)
$$\int_0^\infty P_a^{(k)} \cdot Q_a^{(k)} \frac{da}{a} = Id$$

Next, define the square functions S_k and $S_k^{\#}$ by setting

$$S_k(f)(x) = \left(\int_0^\infty |P_a^{(k)}(f)(x)|^2 \frac{da}{a}\right)^{1/2}, \quad S_k^{\#}(f)(x) = \left(\int_0^\infty |Q_a^{(k)}(f)(x)|^2 \frac{da}{a}\right)^{1/2}.$$

Since $w \in A_p^{\mathcal{F}}(G)$, by Theorem 1.4, $w(x_{\perp}^k, \cdot)$ is in $A_p(G_k)$, uniformly in $x_{\perp}^k \in G_k^{\perp}$. Then the classical weighted Littlewood-Paley theory gives

(4.3)
$$\|f\|_{L^{p}_{w(x^{k}_{\perp},\cdot)}(G_{k})} \sim \|S_{k}(f)\|_{L^{p}_{w(x^{k}_{\perp},\cdot)}(G_{k})} \sim \|S^{\#}_{k}(f)\|_{L^{p}_{w(x^{k}_{\perp},\cdot)}(G_{k})}$$

for 1 . Now, we transfer these inequalities to the whole group G. Let

$$\widetilde{P}_{a}^{(k)}(f) = f * (\delta_{x_{1}\cdots x_{k-1}} \otimes \varphi_{a}^{(k)}),$$

$$\widetilde{Q}_{a}^{(k)}(f) = f * (\delta_{x_{1}\cdots x_{k-1}} \otimes \psi_{a}^{(k)}),$$

$$\widetilde{S}_{k}(f) = \left(\int_{0}^{\infty} |\widetilde{P}_{a}^{(k)}(f)|^{2} \frac{da}{a}\right)^{1/2},$$

$$\widetilde{S}_{k}^{\#}(f) = \left(\int_{0}^{\infty} |\widetilde{Q}_{a}^{(k)}(f)|^{2} \frac{da}{a}\right)^{1/2}.$$

Then by (4.3) we have

$$||f||_{L^p_w(G)} \sim ||\widetilde{S}_k(f)||_{L^p_w(G)} \sim ||\widetilde{S}^\#_k(f)||_{L^p_w(G)}.$$

Moreover, these inequalities also hold for Hilbert-valued functions.

For each $t = (t_1, \ldots, t_n) \in (\mathbb{R}^+)^n$, set

$$P_t = \widetilde{P}_{t_n}^{(n)} \cdot \widetilde{P}_{t_{n-1}}^{(n-1)} \cdot \ldots \cdot \widetilde{P}_{t_1}^{(1)}.$$

That is, $P_t(f) = f * \Phi_t$, where $\Phi_t = \widetilde{\varphi}_{t_1}^{(1)} * \widetilde{\varphi}_{t_2}^{(2)} * \cdots * \widetilde{\varphi}_{t_n}^{(n)}$, and $\widetilde{\varphi}_{t_k}^{(k)} = \delta_{x_1 \cdots x_{k-1}} \otimes \varphi_{t_k}^{(k)}$. Similarly, define

$$P_{t}^{*} = \widetilde{P}_{t_{1}}^{(1)} \cdot \widetilde{P}_{t_{2}}^{(2)} \cdots \widetilde{P}_{t_{n}}^{(n)},$$

$$Q_{t} = \widetilde{Q}_{t_{n}}^{(n)} \cdot \widetilde{Q}_{t_{n-1}}^{(n-1)} \cdots \widetilde{Q}_{t_{1}}^{(1)},$$

$$Q_{t}^{*} = \widetilde{Q}_{t_{1}}^{(1)} \cdot \widetilde{Q}_{t_{2}}^{(2)} \cdots \widetilde{Q}_{t_{n}}^{(n)}.$$

Note that $Q_t(f) = f * \overline{\psi}_t$, with $\overline{\psi}_t = \widetilde{\psi}_{t_1}^{(1)} * \cdots * \widetilde{\psi}_{t_n}^{(n)}$ and $\overline{\psi}_t$ is also V-valued. Finally, set

$$S(f)(x) = \left(\int_{(\mathbb{R}^+)^n} |P_t(f)(x)|^2 \frac{t}{[t]}\right)^{1/2},$$

$$S^{\#}(f)(x) = \left(\int_{(\mathbb{R}^+)^n} |Q_t(f)(x)|^2 \frac{t}{[t]}\right)^{1/2},$$

and

$$\mathfrak{S}(f)(x) = \left(\int_{(\mathbb{R}^+)^n} |(M_{\mathcal{F}} \circ M_{\mathcal{F}} \circ Q_t)(f)(x)|^2 \frac{t}{[t]}\right)^{1/2},$$

where $[t] = t_1 \cdot t_2 \cdots t_n$. Then by (4.2), we get the following reproducing formula

$$\int_{(\mathbb{R}^+)^n} P_t^* Q_t \frac{dt}{[t]} = Id.$$

To prove Theorem 1.7, we need the following

Lemma 4.1. Let $1 and <math>w \in A_p^{\mathcal{F}}(G)$. We have

(a) $\|S(f)\|_{L^p_w(G)} \sim \|S^{\#}(f)\|_{L^p_w(G)} \sim \|f\|_{L^p_w(G)};$ (b) $\|\mathfrak{S}(f)\|_{L^p_w(G)} \leq C \|f\|_{L^p_w(G)}.$

Proof. We first use induction on n to prove the \leq part of (a). The case n = 1 follows from (4.3). Assume that the assertion holds for n = k - 1. The Hilbert-valued version of inequality (4.3) together with the inductive hypothesis yields

(4.4)
$$\|S(f)\|_{L^{p}_{w}(G)} \\ \lesssim \left\| \left(\int_{[0,\infty)^{k-1}} |\widetilde{P}^{(k-1)}_{t_{k-1}} \cdot \ldots \cdot \widetilde{P}^{(1)}_{t_{1}}(f)|^{2} \frac{dt_{1} \cdots dt_{k-1}}{t_{1} \cdots t_{k-1}} \right)^{1/2} \right\|_{L^{p}_{w}(G)} \lesssim \|f\|_{L^{p}_{w}(G)}.$$

This gives the desired conclusion for n = k.

The converse inequality follows by duality argument. Indeed, by Cauchy-Schwarz's inequality,

$$\begin{split} \|f\|_{L_w^p} &= \sup_{g \in L_{w^{1-p'}}^{p'}} \left| \int_G f(x)\overline{g(x)} \, dx \right| = \sup_{g \in L_{w^{1-p'}}^{p'}} \left| \int_G \left(\int_{\mathbb{R}_+^n} P_t^* Q_t(f)(x) \frac{dt}{[t]} \right) \overline{g(x)} \, dx \right| \\ &= \sup_{g \in L_{w^{1-p'}}^{p'}} \left| \int_G \int_{\mathbb{R}_+^n} P_t(\bar{g})(x) Q_t(f)(x) \frac{dt}{[t]} \, dx \right| \\ &\leq \sup_{g \in L_{w^{1-p'}}^{p'}} \int_G \left(\int_{\mathbb{R}_+^n} |P_t(\bar{g})(x)|^2 \frac{dt}{[t]} \right)^{1/2} \left(\int_{\mathbb{R}_+^n} |Q_t(f)(x)|^2 \frac{dt}{[t]} \right)^{1/2} \, dx \\ &\leq \sup_{g \in L_{w^{1-p'}}^{p'}} \left\| \left(\int_{\mathbb{R}_+^n} |P_t(\bar{g})(x)|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L_{w^{1-p'}}^{p'}} \left\| \left(\int_{\mathbb{R}_+^n} |Q_t(f)(x)|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L_w^p} \\ &\lesssim \left\| \left(\int_{\mathbb{R}_+^n} |Q_t(f)(x)|^2 \frac{dt}{[t]} \right)^{1/2} \right\|_{L_w^p}. \end{split}$$

Similarly, we can show that the assertion (a) continues to hold if the operator S is replaced by $S^\#.$

To prove the assertion (b), we use the weighted Fefferman-Stein's inequality in Corollary 1.5 and a similar inequality to (4.4) with S replaced by $S^{\#}$ to get

$$\begin{aligned} \|\mathfrak{S}(f)\|_{L^{p}_{w}(G)} &= \left\| \left(\int_{(\mathbb{R}^{+})^{n}} |(M_{\mathcal{F}} \circ M_{\mathcal{F}} \circ Q_{t})(f)|^{2} \frac{t}{[t]} \right)^{1/2} \right\|_{L^{p}_{w}(G)} \\ &\lesssim \|S^{\#}(f)\|_{L^{p}_{w}(G)} \lesssim \|f\|_{L^{p}_{w}(G)}. \end{aligned}$$

This proves assertion (b) and hence Lemma 4.1 follows.

We also need the following lemma, whose proof can be found in [13].

Lemma 4.2. Suppose \mathcal{K} is a flag kernel and $T(f) = f * \mathcal{K}$. Then

$$S[T(f)](x) \lesssim \mathfrak{S}(f)(x).$$

Now, we are ready to give

Proof of Theorem 1.7. Applying Lemmas 4.1 and 4.2 yields

$$||T(f)||_{L^p_w(G)} \lesssim ||S[T(f)]||_{L^p_w(G)} \lesssim ||\mathfrak{S}(f)||_{L^p_w(G)} \lesssim ||f||_{L^p_w(G)}.$$

Hence Theorem 1.7 is proved.

ACKNOWLEDGMENTS

The author would like to express his deep gratitude to the referee for his/her valuable comments.

References

- 1. K. F. Andersen and R. T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, *Studia Math.*, **69** (1980), 19-31.
- Y. Ding, Y. Han, G. Lu and X. Wu, Boundedness of singular integrals on multiparameter weighted Hardy spaces H^p_w(ℝⁿ × ℝ^m), Potential Anal., 37 (2012), 31-56.
- 3. Y. Ding, G. Lu and B. Ma, Multi-parameter Triebel-Lizorkin and Besov spaces associated with flag singular integrals, *Acta Math. Sinaca, (Engl. Ser.)*, **26** (2010), 603-620.
- 4. G. B. Folland and E. M. Stein, *Hardy spaces on homogeneous groups*, Princeton University Press and University of Tokyo Press, Princeton, 1982.
- 5. P. Głowacki, Composition and L²-boundedness of flag kernels, *Colloq. Math.*, **118** (2010), 581-585.
- P. Głowacki, Correction to "Composition and L²-boundedness of flag kernels", Colloq. Math., 120 (2010), 331.
- 7. P. Głowacki, The Melin calculus for general homogeneous groups, *Ark. Mat.*, **45** (2007), 31-48.
- 8. Y. Han and G. Lu, *Discrete Littlewood-Paley-Stein Theory and Multi-Parameter Hardy* Spaces Associated with Flag Singular Integrals, Arxiv:0801.1701.
- 9. Y. Han, G. Lu and E. Sawyer, *Flag Hardy Spaces and Marcinkiewicz Multipliers on the Heisenberg Group: An Expanded Version*, Arxiv:1208.2484.
- 10. C.-C. Lin, Convolution operators on Hardy spaces, Studia Math., 120 (1996), 53-59.
- 11. D. Muller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) groups, I, *Invent. Math.*, **119** (1995), 119-233.
- 12. A. Nagel, F. Ricci and E. M. Stein, Singular integrals with flag kernels and analysis on quadratic CR manifolds, *J. Func. Anal.*, **181** (2001), 29-118.
- 13. A. Nagel, F. Ricci, E. M. Stein and S. Wainger, Singular integrals with flag kernels on homogeneous groups: I, *Rev. Mat. Iberoamericana*, **28** (2012), 631-722.
- 14. A. Nagel and E. M. Stein, The $\bar{\partial}_b$ -complex on decoupled boundaries in \mathbb{C}^n , Ann. of Math., 164 (2006), 649-713.
- 15. E. M. Stein, *Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993.*
- 16. X. Wu, An atomic decomposition characterization of flag Hardy spaces $H_F^p(\mathbb{R}^n \times \mathbb{R}^m)$ with applications, *J. Geom. Anal.*, DOI: 10.1007/s12220-012-9347-8, to appear.

- 17. X. Wu and Z. Liu, Characterizations of multiparameter Besov and Triebel-Lizorkin spaces associated with flag singular integrals, *J. Func. Spac. Appl.*, (2012), Article ID 275791, 18 pages, DOI: 10.1155/2012/275791.
- 18. D. Yang, Besov and Triebel-Lizorkin spaces related to singular integrals with flag kernels, *Rev. Mat. Complut.*, **22** (2009), 253-302.

Xinfeng Wu Department of Mathematics China University of Mining & Technology (Beijing) Beijing, 100083 P. R. China E-mail: wuxf@cumtb.edu.cn