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WEIGHTED NORM INEQUALITIES FOR FLAG SINGULAR INTEGRALS
ON HOMOGENEOUS GROUPS

Xinfeng Wu

Abstract. Let G be a homogeneous nilpotent Lie group. In this paper, we
introduce a new class of multiparameter weights AF

p associated with a flag F
on G and show that such class of weights can be characterized via two type of
flag maximal operators. We then prove that singular integrals with flag kernels
are bounded on Lp

w(G), 1 < p < ∞, when w ∈ AF
p (G), which extends a recent

result of Nagel-Ricci-Stein-Wainger in [13]. As an application, we get weighted
norm inequalities for the multiparameter Marcinkiewicz multipliers on Heisenberg
groups introduced in [11].

1. INTRODUCTION

Flag singular integral operators were comprehensively studied in recent years and
many applications were found in analysis on Heisenberg groups, theory of function
spaces, several complex variables and etc. Such class of operators were introduced by
Müller, Ricci and Stein [11] when they studied the Marcinkiewicz multiplier on the
Heisenberg groups Hn. They obtained the surprising result that certain Marcinkiewicz
multipliers, invariant under a two-parameter group of dilations on C

n×R, are bounded
on Lp(Hn), despite the absence of a two-parameter automorphic group of dilations on
H
n. To study the �b-complex on certain CR submanifolds of C

n, Nagel, Ricci and Stein
[12] studied further a class of product singular integrals with flag kernels. Applying the
theory of flag kernels, Nagel and Stein [14] obtained remarkable results on the optimal
estimates for solutions of the Kohn-Laplacian for certain classes of model domains in
several complex variables. More recently, using Littlewood-Paley theory, Nagel, Ricci,
Stein and Wainger [13] extended the above results to a more general setting, namely,
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homogeneous group. We would like to point out that Głowacki [5, 6] independently
obtained similar results by using Melin calculus on homogeneous groups developed in
[7]. The multiparameter Hardy spaces associated with flag kernels were developed by
Han and Lu [8] in the Euclidean setting and by Han, Lu and Sawyer [9] in the setting
of Heisenberg groups and atomic decomposition characterizations for the Hardy spaces
were established in [16]. For other results about flag kernels, we refer the reader to
[3, 17, 18]. While the theory of flag kernels are satisfactorily established, it is still
open how to develop a theory of multiparameter weightes associated with flag kernels,
even in the setting of Heisenberg groups.

The purpose of this paper is to address this question. More precisely, we shall
introduce a new class of flag weights AF

p (associated to a flag F ) on a homogeneous
group G and provide characterizations of AF

p via two kinds of maximal operators. We
then prove that singular integrals with flag kernels are bounded on Lpw(G), 1 < p <∞,
when w ∈ AF

p (G), which extends a recent result of Nagel-Ricci-Stein-Wainger in
[13]. As an application, we also get weighted norm inequalities for the multiparameter
Marcinkiewicz multipliers introduced in [11] on Heisenberg groups.

To state our main results more precisely, we begin with recalling some basic def-
initions and notations on homogeneous groups. Let G be a homogeneous nilpotent
Lie group with Lie algebra g. A Lie group G is homogeneous means that there is
a one-parameter group of automorphisms δr : G → G for r > 0, with δ1 = Id.
As a manifold, G is an N -dimension real vector space, and we assume that with an
appropriate choice of coordinates, G = R

N and the automorphisms are given by

δr[x] = r · x = (rd1x1, . . . , r
dNxN)

with 1 ≤ d1 ≤ d2 ≤ · · · ≤ dN . We identifyG with R
N as above. The bi-invariant Haar

measure on G is Lebesgue measure dy = dy1 · · ·dyN . The convolution of functions
f, g ∈ L1(G) is given by

f ∗ g(x) =
∫
G
f(xy−1)g(y)dy =

∫
G
f(y)g(y−1x)dy,

and the integral converges absolutely for almost all x ∈ G. For more details about
homogeneous groups, we refer the reader to [4, 10]

A standard flag F associated to the partition N = a1 + · · · + an (ai > 0) is a
collection of increasing subspaces

(1.1) (0) ⊂ R
an ⊂ R

an−1 ⊕R
an ⊂ · · · ⊂ R

a2 ⊕· · ·⊕R
an ⊂ R

a1 ⊕· · ·⊕R
an = R

N .

Throughout this paper, we fix the partition and the flag on G = RN . In what follows,
for x ∈ RN , we always write x = (x1, . . . , xn) with xl = (xpl

, . . . , xql) ∈ Ral so that
ql = pl + al − 1. Denote by Jl = {pl, . . . , ql} the set of subscripts corresponding to
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the factor Ral so that {1, . . . , N} is the disjoint union J1 ∪ . . . ∪ Jn. With the family
of dilations defined above, the action on the subspace R

al is given by

r · xl = (rdplxpl
, . . . , rdqlxql).

The homogeneous dimension of Ral is Ql = dpl
+ · · ·+ dql =

∑
j∈Jl

dj. The function
Nl(xl) = suppl≤s≤ql |xs|

1/ds is a homogeneous norm on R
al so that Nl(r · xl) =

rNl(xl). If α = (α1, . . . , αN) ∈ NN , let ᾱl = (αpl
, . . . , αql), and set

[ᾱl] = αpl
dpl

+ · · ·+ αqldql =
∑
j∈Jl

αjdj.

Let

Gk = {x = (x1, . . . , xn) ∈ R
N : x1 = · · · = xk−1 = 0}

= {(0, · · · , 0, xk, . . . , xn) ∈ R
N : xj ∈ R

aj , k ≤ j ≤ n},

and let G⊥
k denote the annihilator of Gk. We can identify Gk with Rak ⊕ · · ·⊕Ran so

that G⊥
k = R

a1 ⊕ · · · ⊕ R
ak−1 . For x ∈ G, we also write

x = (xk⊥, x
k) ∈ G⊥

k ×Gk.

It follows from the formula for group multiplication that Gk is a subgroup of G. We
let m(E) denote the Lebesgue measure of a set E ⊂ G = G1, and mk(F ) denote the
Lebesgue measure on Gk of subset F ⊂ Gk. For s = (sk, . . . , sn), let

R(k)
s = R(k)

s (0) = {(xk, . . . , xn) ∈ Gk : |xk| ≤ sQk
k , . . . , |xn| ≤ sQn

n }.

We say that the size of the rectangle Rs is acceptable if sk ≤ sk+1 ≤ · · · ≤ sn.

Definition 1.1. The maximal function MF on G is defined by

MF (f)(x) = sup
Rs

1
|Rs|

∫
Rs

|f(xy−1)|dy,

where the supremum is taken over all acceptable rectangles Rs = R
(1)
s ⊂ G = G1.

We now introduce the Muckenhoupt weight AF
p associated to the flag F on G.

Define the translated acceptable rectangles Rs(x) := x ·Rs(0) = {x · y : y ∈ Bs(0)}.
Denote by RF the set of of translated acceptable rectangles.

Definition 1.2. Let w be a nonnegative measurable function on G. We say that w
is a flag weight in AF

p (G) if

sup
R∈RF

( 1
|R|

∫
R
w(x)dx

)( 1
|R|

∫
R
w(x)−1/(p−1)dx

)p−1
<∞ for 1 < p <∞,

MF (w)(x) ≤ Cw(x), a.e. for p = 1.
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We would like to point out that in the Euclidean setting when G = RN , the flag
weights defined above are different from the product weights used in [2]. The standard
maximal function Mk on the subgroup Gk is defined by

Mk(f)(xk) = sup
ρ>0

1
m(B(ρ))

∫
B(ρ)

|f(xk · (yk)−1)|dyk,

where B(ρ) = B(k)(ρ) is the automorphic one-parameter ball given by

B(k)(ρ) = {xk = (xk, . . . , xn) ∈ Gk : |xk| ≤ ρQk, |xk+1| ≤ ρQk+1, . . . , |xn| ≤ ρQn},

and · denote the group multiplication on subgroup Gk. Let

B
(k)

xk (ρ) := {xk · yk : yk ∈ B(k)(ρ)}.

Define the maximal operator M̃k on G by

M̃k(f)(x) ≡ (δG⊥
k
⊗Mk)(f)(x) = Mk(f(xk⊥, ·))(xk),

where δG⊥
k

is the Dirac mass at (0) ∈ G⊥
k . We then define another type of flag maximal

operator by
M̃F = M̃n ◦ M̃n−1 ◦ . . . ◦ M̃1.

For k = 1, . . . , n, the one-parameter weight classes A(k)
p , relative to M̃k on G, are

defined as follows.

Definition 1.3. Let w be a nonnegative measurable function on G. We say that w
is in A(k)

p (G), 1 < p <∞, if(
1

|B(k)|

∫
B(k)

w(xk⊥, x
k)dxk

)(
1

|B(k)|

∫
B(k)

w(xk⊥, x
k)−1/(p−1)dxk

)p−1

< C

for all B(k) ⊂ Gk and almost all xk⊥ ∈ G⊥
k . If M̃k(w)(x) ≤ Cw(x), a.e., then we say

w ∈ A
(k)
1 (G).

By definition, A(k)
p (G) consists of those weight functions that satisfy uniform Ap

property in flag subvariables of Gk, k = 1, . . . , n.
Our first main result is as follows.

Theorem 1.4. Let 1 < p < ∞ and w be a nonnegative measurable function on
G. Then the following four conditions are equivalent:

(1) w ∈ AF
p (G);

(2) w ∈ A
(1)
p (G) ∩A(2)

p (G) ∩ · · · ∩ A(n)
p (G);
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(3) M̃F is bounded on Lpw(G);
(4) MF is bounded on Lpw(G).

Using Theorem 1.4, we get the following weighted Fefferman-Stein vector-valued
inequality.

Theorem 1.5. Let 1 < p <∞ and w be a nonnegative locally integrable function
on G. Then the following weighted Fefferman-Stein vector-valued inequality holds∥∥∥( ∫

R
n
+

|MF (ft)|2
dt

[t]

)1/2∥∥∥
Lp

w(G)
≤ C

∥∥∥( ∫
R

n
+

|ft|2
dt

[t]

)1/2∥∥∥
Lp

w(G)
,(1.2)

if and only if w ∈ AF
p (G).

The following definition of flag kernels on G was introduced in [13].

Definition 1.6. A flag kernel adapted to the flag F is a distribution K ∈ S ′(RN)
which satisfies the following differential inequalities (part (a)) and cancellation condi-
tions (part (b))

(a) For test functions supported away from the subspace x1 = 0, the distribution
K is given by integration against a C∞-function K. Moreover for every α =
(α1, . . . , αN) ∈ ZN there is a constant Cα so that if αk = (αpk

, . . . , αqk), then
for x1 �= 0,

|∂αK(x)| ≤ Cα

n∏
k=1

[N1(x1) + · · ·+Nk(xk)]−Qk−[ᾱk].

(b) Let {1, . . . , n} = L ∪ M with L = {l1, . . . , lα}, M = {m1, . . . , mβ} and
L ∩ M = ∅ be any pair of complementary subsets. For any ψ ∈ C∞

0 (RNb)
and any positive real numbers R1, . . . , Rβ, put ψR(xm1, . . . , xmβ

) = ψ(R1 ·
xm1 , . . . , Rβ · xmβ

). Define a distribution K#
ψ,R ∈ S ′(Ral1

+···+alr ) by setting

〈K#
ψ,R, ϕ〉 = 〈K, ψR⊗ ϕ〉

for any test function ϕ ∈ S(Ral1
+···+alr ). Then the distribution K#

ψ,R satisfies
the differential inequalities of part (a) for the decomposition R

al1 ⊕ · · · ⊕ Ralr .
Moreover, the corresponding constants that appear in these differential inequal-
ities are independent of the parameters {R1, . . . , Rs}, and depend only on the
constants {Cα} from part (a) and the semi-norms of ψ.

The constants {Cα} in part and the implicit constant in part are called the flag
kernel constants for the flag kernel K.

The second main result of this paper is the following
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Theorem 1.7. Let 1 < p <∞ and w ∈ AF
p (G). If K a flag kernel on G, then the

convolution operator T (f) = f ∗ K is bounded on Lpw(G).
Finally, we give an application of Theorem 1.7 to Marcinkiewicz multipliers on

Heisenberg group Hn. Recall that the Heisenberg group Hn is a two-step homogeneous
nilpotent group on C

n × R with the multiplication law
(z, t) · (z′, t′) = (z + z′, t+ t′ + 2�(z · z̄′)).

Let Z be the center of H
n define by

Z = {(0, t) : 0 ∈ C
n, t ∈ R}.

The flag F̃ on H
n is given by

(0) ⊂ Z ⊂ H
n.

In [11], Müller-Ricci-Stein studied a class of multiparameter Marcinkiewicz multipliers
on H

n. They showed that such class of Marcinkiewicz multipliers can be characterized
by the flag singular integrals on Hn. Applying Theorem 1.7, we then get the following
weighted norm inequalities for the multiparameter Marcinkiewicz multipliers studied
in [11] on Hn.

Theorem 1.8. Let 1 < p < ∞ and w ∈ AF̃
p (Hn). Suppose that m(ξ, η) is a

function on R
+ × R satisfying

|(ξ∂ξ)α(η∂η)βm(ξ, η)| ≤ Cα,β

for all α, β ≤ N , with N large enough. Then m(L, iT ) is a bounded operator on
L
p
w(Hn). Here L is the sub-Laplacian and T is the central element of the Heisenberg

Lie algebra.

2. PROOF OF THEOREM 1.4

We prove Theorem 1.4 by showing (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).
We show first (1) ⇒ (2). Note that all one-parameter balls B(1)(ρ) are acceptable,

we thus have AF
p (G) ⊂ A

(1)
p (G), 1 < p <∞. To see that AF

p (G) ⊂ A
(k)
p (G), 1 < k ≤

n, we assume that w ∈ AF
p (G). Given any translated one-parameter ball B(k)(xk, ρ)

and r ≤ ρ, set
B

(k)
⊥ (r) = B

(k)
⊥ (xk⊥, r)

= {xk⊥ · y : (y1, . . . , yk−1) ∈ G⊥
k : |y1| ≤ rQ1, · · · , |yk−1| ≤ rQk−1}.

Then B
(k)
⊥ (r) shrinks to xk⊥ ∈ G⊥

k as r tends to zero. Moreover, B(k)
⊥ (xk⊥, r) ×

B(k)(xk, ρ) ∈ RF . Thus, w ∈ AF
p (G) gives( 1

|B(k)(ρ)|

∫
B(k)(ρ)

( 1

|B(k)
⊥ (r)|

∫
B

(k)
⊥ (r)

w(ȳ, y′)dȳ
)
dy′

)

×
( 1
|B(k)(ρ)|

∫
B(k)(ρ)

( 1

|B(k)
⊥ (r)|

∫
B

(k)
⊥ (r)

w(ȳ, y′)−1/(p−1)dȳ
)
dy′

)p−1
< C.
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Letting r → 0 and applying Lebesgue’s differential theorem, we get( 1
|B(k)(ρ)|

∫
B(k)(ρ)

w(xk⊥, y
′)dy′

)( 1
|B(k)(ρ)|

∫
B(k)(ρ)

w(xk⊥, y
′)−1/(p−1)dy′

)p−1
< C

for all B(k)(ρ) ⊂ Gk and almost all xk⊥ ∈ G⊥
k . This verifies w ∈ A

(k)
p (G) and thus

the implication (1) ⇒ (2) is proved.
The second implication can be proved as in the Euclidean case (see [15]) while the

third follows immediately from the following Lemma (see [13, Lemma 9.3]).

Lemma 2.1. There is a constant C so that for all x ∈ G,

MF (f)(x) ≤ CM̃F (f)(x).

To show the last implication (4) ⇒ (1), we assume that MF is bounded on Lpw(G)
for a non-negative locally integrable function w. Apply this to the function fχR
supported in an acceptable rectangle R and use that 1/|R|

∫
R |f | � MF (fχR)(x) for

all x ∈ R to obtain

w(R) ·
( 1
|R|

∫
R

|f(x)|dx
)p

≤ C

∫
R

[MF(fχB)(x)]pw(x)dx

≤ Cp

∫
R

|f(x)|pw(x)dx,

where w(R) =
∫
Rw(x)dx. It follows that( 1

|R|

∫
R
|f(x)|dx

)p
≤ Cp
w(R)

∫
R
|f(x)|pw(x)dx,

for all R ∈ RF and all functions f . Now we take f = w−p′/p, which gives fpw =
w−p′/p. We thus get that w should satisfy the inequality (1) under additional assumption
that infRw > 0 for all acceptable rectangles R. If infRw = 0 for some acceptable
rectanglesR, we take f = (w+ε)−p′/p. Repeating the similar argument, we can derive( 1

|R|

∫
R

w(x)dx
)( 1

|R|

∫
R

(w(x) + ε)−
p′
p dx

)p−1
≤ Cp,

from which we can still get the conclusion (1) via the Lebesgue monotone convergence
theorem by letting ε→ 0. This ends the proof of the implication (4) ⇒ (1) and hence
Theorem 1.4 follows.

3. PROOF OF THEOREM 1.5

To prove the sufficient part of Theorem 1.5, we need the following one-parameter
weighted Fefferman-Stein’s inequality.
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Lemma 3.1. Let 1 ≤ k ≤ n, 1 < p, q < ∞ and let u be a Ap(Gk) weight (i.e.
the classical Muckenhoupt weight on Gk).∥∥∥(∑

j∈Z

|Mk(fj)|2
)1/2∥∥∥

Lp
u(Gk)

≤ C
∥∥∥( ∑

j∈Z

|fj|2
)1/2∥∥∥

Lp
u(Gk)

.(3.1)

The key tool in the proof of the above inequality in Euclidean setting is the the
Calderón-Zygmund decomposition. Such decomposition in the current setting was
provided in [15]. Based on the Calderón-Zygmund decomposition, the proof of Lemma
3.1 is just a recreation of the Euclidean one in [1]. We omit the details here.

We now assume that w ∈ AF
p (G). By Theorem 1.4, w ∈ A

(k)
p , k = 1, . . . , n. Thus

for each xk⊥ ∈ G⊥
k , w(xk⊥, ·) is in Ap(Gk) uniformly for xk⊥. Thus the the weighted

Fefferman-Stein’sinequality in Lemma 3.1 hold for u = w(xk⊥, ·). Lifting to G yields

∥∥∥( ∑
j∈Z

|M̃k(fj)|2
)1/2∥∥∥

Lp
w(G)

≤ C
∥∥∥(∑

j∈Z

|fj|2
)1/2∥∥∥

Lp
w(G)

, 1 ≤ k ≤ n.

By iteration,
∥∥∥(∑

j∈Z

|M̃F (fj)|2
)1/2∥∥∥

L
p
w(G)

≤ C
∥∥∥( ∑

j∈Z

|fj|2
)1/2∥∥∥

L
p
w(G)

.

This together with Lemma 2.1 yields
∥∥∥(∑

j∈Z

|MF (fj)|2
)1/2∥∥∥

Lp
w(G)

≤ C
∥∥∥( ∑

j∈Z

|fj|2
)1/2∥∥∥

Lp
w(G)

.(3.2)

To pass to the continuous one in Theorem 1.5, we assume first that ft(x) is jointly
continuous and has compact support. For each ε > 0, apply the conclusion (3.2) to
the case where {fj(x)} are enumeration of the εn/2Fεj1,εj2,...,εjn(x), for (j1, j2, . . . , jn)
ranging over (Z+)n, and then let ε → 0, obtaining the desired result in this case. For
the general ft, assuming that is finite, find a sequence f (k)

t (x) of continuous functions
of compact support, with f (k)

t (x) → ft(x) almost everywhere, so that
∥∥∥( ∫

R
n
+

|f (k)
t |2dt

)1/2∥∥∥
Lp

w(G)
→

∥∥∥(∫
R

n
+

|ft|2dt
)1/2∥∥∥

Lp
w(G)

.

Applying the previous case and Fatou’s lemma, we obtain the desired estimate.
Concerning the necessity of w ∈ AF

p (G), take ft = f for t ∈ [1, 2]n and ft = 0
otherwise. Then we see that w ∈ AF

p (G) is necessary by the scaler-valued result in
Theorem 1.4. This concludes the proof of Theorem 1.5.
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4. PROOF OF THEOREM 1.7

The proof is similar to the unweighted case in [13] and we provide it for the sake
of completeness. We first recall the square functions introduced in [13]. Since each
subgroup Gk is a homogeneous group with family of dilations δr, there exists a finite-
dimensional inner-product space Vk and a pair ϕ(k), ψ(k) of Vk-valued functions, with
ϕ(k) ∈ C∞

0 (Gk) supported in the unit ball, and ψ(k) ∈ S(Gk) a Schwartz function, so
that ∫

Gk

ϕ(k)(x)dx =
∫
Gk

ψ(k)(x)dx = 0

and

(4.1)
∫ ∞

0
ψ(k)
a (xy−1) · ϕ(k)

a (y)
da

a
= δ0.

Here
ϕ(k)
a = a−Qk−Qk+1...−Qnϕ(k)(δa−1(x))

with a similar definition for ψ(k)
a (x) and · denotes the inner product in Vk. See [4,

Theorem 1.61].
The operators P (k)

a and Q(k)
a , acting on functions on Gk, are defined by P (k)

a (f) =
f ∗ ϕ(k)

a and Q(k)
a (f) = f ∗ ψ(k)

a . Note that (4.1) implies that

(4.2)
∫ ∞

0
P (k)
a ·Q(k)

a

da

a
= Id.

Next, define the square functions Sk and S#
k by setting

Sk(f)(x) =
( ∫ ∞

0
|P (k)
a (f)(x)|2da

a

)1/2
, S#

k (f)(x) =
( ∫ ∞

0
|Q(k)

a (f)(x)|2da
a

)1/2
.

Since w ∈ AF
p (G), by Theorem 1.4, w(xk⊥, ·) is in Ap(Gk), uniformly in xk⊥ ∈ G⊥

k .
Then the classical weighted Littlewood-Paley theory gives

(4.3) ‖f‖Lp

w(xk
⊥,·)(Gk) ∼ ‖Sk(f)‖Lp

w(xk
⊥,·)(Gk) ∼ ‖S#

k (f)‖Lp

w(xk
⊥,·)(Gk)

for 1 < p <∞. Now, we transfer these inequalities to the whole group G. Let

P̃
(k)
a (f) = f ∗ (δx1···xk−1

⊗ ϕ(k)
a ),

Q̃
(k)
a (f) = f ∗ (δx1···xk−1

⊗ ψ(k)
a ),

S̃k(f) =
(∫ ∞

0
|P̃ (k)
a (f)|2da

a

)1/2
,

S̃
#
k (f) =

(∫ ∞

0
|Q̃(k)

a (f)|2da
a

)1/2
.
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Then by (4.3) we have

‖f‖Lp
w(G) ∼ ‖S̃k(f)‖Lp

w(G) ∼ ‖S̃#
k (f)‖Lp

w(G).

Moreover, these inequalities also hold for Hilbert-valued functions.
For each t = (t1, . . . , tn) ∈ (R+)n, set

Pt = P̃
(n)
tn · P̃ (n−1)

tn−1
· . . . · P̃ (1)

t1
.

That is, Pt(f) = f ∗Φt, where Φt = ϕ̃
(1)
t1

∗ϕ̃(2)
t2

∗· · ·∗ϕ̃(n)
tn , and ϕ̃(k)

tk
= δx1···xk−1

⊗ϕ(k)
tk

.
Similarly, define

P ∗
t = P̃

(1)
t1

· P̃ (2)
t2

· · · · · P̃ (n)
tn ,

Qt = Q̃
(n)
tn · Q̃(n−1)

tn−1
· · · · · Q̃(1)

t1
,

Q∗
t = Q̃

(1)
t1

· Q̃(2)
t2

· · · · · Q̃(n)
tn .

Note that Qt(f) = f ∗ ψ̄t, with ψ̄t = ψ̃
(1)
t1

∗ · · ·∗ ψ̃(n)
tn and ψ̄t is also V -valued. Finally,

set
S(f)(x) =

( ∫
(R+)n

|Pt(f)(x)|2 t
[t]

)1/2
,

S#(f)(x) =
( ∫

(R+)n

|Qt(f)(x)|2 t
[t]

)1/2
,

and
S(f)(x) =

( ∫
(R+)n

|(MF ◦MF ◦Qt)(f)(x)|2 t
[t]

)1/2
,

where [t] = t1 · t2 · · · · tn. Then by (4.2), we get the following reproducing formula∫
(R+)n

P ∗
t Qt

dt

[t]
= Id.

To prove Theorem 1.7, we need the following

Lemma 4.1. Let 1 < p <∞ and w ∈ AF
p (G). We have

(a) ‖S(f)‖Lp
w(G) ∼ ‖S#(f)‖Lp

w(G) ∼ ‖f‖Lp
w(G);

(b) ‖S(f)‖Lp
w(G) ≤ C‖f‖Lp

w(G).

Proof. We first use induction on n to prove the � part of (a). The case n = 1
follows from (4.3). Assume that the assertion holds for n = k−1. The Hilbert-valued
version of inequality (4.3) together with the inductive hypothesis yields

(4.4)
‖S(f)‖Lp

w(G)

�
∥∥∥(∫

[0,∞)k−1

|P̃ (k−1)
tk−1

· . . . · P̃ (1)
t1

(f)|2dt1 · · ·dtk−1

t1 · · · tk−1

)1/2∥∥∥
Lp

w(G)
�‖f‖Lp

w(G).
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This gives the desired conclusion for n = k.
The converse inequality follows by duality argument. Indeed, by Cauchy-Schwarz’s

inequality,

‖f‖Lp
w

= sup
g∈Lp′

w1−p′

∣∣∣ ∫
G
f(x)g(x)dx

∣∣∣ = sup
g∈Lp′

w1−p′

∣∣∣ ∫
G

(∫
Rn

+

P ∗
t Qt(f)(x)

dt

[t]

)
g(x)dx

∣∣∣
= sup

g∈Lp′
w1−p′

∣∣∣ ∫
G

∫
Rn

+

Pt(ḡ)(x)Qt(f)(x)
dt

[t]
dx

∣∣∣
≤ sup

g∈Lp′
w1−p′

∫
G

( ∫
Rn

+

|Pt(ḡ)(x)|2
dt

[t]

)1/2( ∫
Rn

+

|Qt(f)(x)|2dt
[t]

)1/2
dx

≤ sup
g∈Lp′

w1−p′

∥∥∥( ∫
Rn

+

|Pt(ḡ)(x)|2
dt

[t]

)1/2∥∥∥
Lp′

w1−p′

∥∥∥(∫
Rn

+

|Qt(f)(x)|2dt
[t]

)1/2∥∥∥
Lp

w

�
∥∥∥( ∫

Rn
+

|Qt(f)(x)|2dt
[t]

)1/2∥∥∥
Lp

w

.

Similarly, we can show that the assertion (a) continues to hold if the operator S is
replaced by S#.

To prove the assertion (b), we use the weighted Fefferman-Stein’s inequality in
Corollary 1.5 and a similar inequality to (4.4) with S replaced by S# to get

‖S(f)‖Lp
w(G) =

∥∥∥(∫
(R+)n

|(MF ◦MF ◦Qt)(f)|2 t
[t]

)1/2∥∥∥
Lp

w(G)

�‖S#(f)‖Lp
w(G) � ‖f‖Lp

w(G).

This proves assertion (b) and hence Lemma 4.1 follows.

We also need the following lemma, whose proof can be found in [13].

Lemma 4.2. Suppose K is a flag kernel and T (f) = f ∗ K. Then

S[T (f)](x) � S(f)(x).

Now, we are ready to give

Proof of Theorem 1.7. Applying Lemmas 4.1 and 4.2 yields

‖T (f)‖Lp
w(G) � ‖S[T (f)]‖Lp

w(G) � ‖S(f)‖Lp
w(G) � ‖f‖Lp

w(G).

Hence Theorem 1.7 is proved.
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