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INFINITELY MANY SOLUTIONS FOR FOURTH-ORDER ELLIPTIC
EQUATIONS WITH SIGN-CHANGING POTENTIAL

Wen Zhang, Xianhua Tang* and Jian Zhang

Abstract. In this paper, we study the following fourth-order elliptic equation{
Δ2u − Δu + V (x)u = f(x, u), x ∈ R

N ,

u ∈ H2(RN ),

where the potential V ∈ C(RN , R) is allowed to be sign-changing. Under the
weakest superquadratic conditions, we establish the existence of infinitely many
solutions via variational methods for the above equation. Recent results from the
literature are extended.

1. INTRODUCTION

This paper is concerned with the following fourth-order elliptic equation

(1.1)

{
Δ2u − Δu + V (x)u = f(x, u) in RN ,

u ∈ H2(RN),

where Δ2 := Δ(Δ) is the biharmonic operator, V ∈ C(RN , R) and f ∈ C(RN×R, R).
When Ω is a bounded domain of R

N , the problem

(1.2)

{
Δ2u + cΔu = f(x, u) in Ω,

u = Δu = 0 on ∂Ω,

which arises in the study of traveling waves in suspension bridges (see [1, 2, 3]) and
the study of the static deflection of an elastic plate in a fluid, has been extensively
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investigated in recent years. For the results of multiple nontrivial and sign changing
solutions of problem (1.2) we refer the readers to [4-19] and the references therein. In
[5], An and Liu used the mountain pass theorem to get the existence results for prob-
lem (1.2), and by applying linking approach obtained at least three nontrivial solutions
in Wang et al. [12]. In [17], Yang and Zhang considered the existence of positive,
negative and sign-changing solutions. When f(x, t) is odd in u and satisfies some
additional conditions, Zhou and Wu [18] established the existence and multiplicity of
sign-changing solutions by using the sign-changing critical theorems. In [14], Zhang
and Wei obtained the existence of infinitely many solutions via variant fountain theo-
rem established in Zou [40] when the nonlinearity f(x, u) involves a combination of
superlinear and asymptotically linear terms. In [19], Pu et al. proved the existence and
multiplicity of solutions for the fourth-order Navier boundary value problem with indef-
inite nonlinearity, applying the least action principle, the Ekeland variational principle
and the mountain pass theorem.

Recently, the problems in the whole space R
N were considered in some works. For

example, see [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. In [23], Chabrowski and Marcos
do Ó studied the following fourth-order elliptic problem involving critical growth

(1.3)

{
Δ2u − λg(x)u = f(x)|u|p−2u in RN ,

u ∈ D2,2(RN)\{0},

where λ > 0, p = 2N
N−4 (N > 4) is the critical Sobolev exponent, the coefficient f(x) is

a continuous bounded function varying in sign and g ∈ L
N
4 (RN) ∩L∞(RN)\{0} is a

nonnegative locally Hölder continuous function. Existence and multiplicity of solutions
for problem (1.3) were obtained by variational method. In [29], the authors dealt with
the fourth-order problem{

ε4Δ2u + V (x)u = f(u) in RN ,

u ∈ H2(RN),

where ε > 0, N ≥ 5, and V : RN → R is such that there exists a bounded domain
Ω ⊂ R

N and x0 ∈ Ω with 0 < V (x0) = infRN V < inf∂Ω V . A family of solutions
was proved to exist and to concentrate at a point in the limit. For other related results
on sublinear case, we refer the readers to [26, 27, 28] and the references therein.

More recently, there are a lot of papers devoted to the study of existence and
multiplicity of solutions for problem (1.1) when f(x, u) is superquadratic at infinity in
u, see for instance [24, 25, 26, 27]. We would like to point out that, on the one hand,
the papers in [24, 25] assumed the following classic Ambrosetti-Rabinowitz condition,
i.e.,

(S1) there exists μ > 2 such that
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(1.4) μF (x, u) ≤ uf(x, u), ∀(x, u) ∈ R
N × R,

where F (x, u) =
∫ u
0 f(x, s)ds.

It is well known that the role of (1.4) is to ensure the boundedness of the (PS)
sequences of the energy functional. Later, the papers in [26, 27] considered more
general assumption than (S1) condition, i.e.,

(S2) F (x,u)
|u|2 → ∞ as |u| → ∞ uniformly in x, and the (PS) condition is replaced by

the Cerami (C)c condition. Hence, the results in [26, 27] unified and generalized
the results in [24, 25], respectively. On the other hand, the above papers always
assumed the potential V is positive. However, to the best of our knowledge,
for the sign-changing potential case, there are no previous results for problem
(1.1). For the potential sign-changing case in semilinear Schrödinger equations,
we refer the readers to [32, 33, 34, 35, 36, 37] and the references therein.

Motivated by the above fact, we continue to consider the superquadratic case with
sign-changing potential, and establish the existence of infinitely many solutions by
symmetric Mountain Pass Theorem in [39]. More precisely, we make the following
assumptions:

(V1) V ∈ C(RN , R) and infRN V (x) > −∞;
(V2) there exists a constant d0 > 0 such that

lim
|y|→∞

meas
({x ∈ R

N : |x − y| ≤ d0, V (x) ≤ M}) = 0, ∀M > 0,

where meas(·) denotes the Lebesgue measure in R
N ;

(F1) f ∈ C(RN × R, R), and there exist constants c1, c2 > 0 and p ∈ (2, 2∗) such
that

|f(x, u)| ≤ c1|u|+ c2|u|p−1, ∀(x, u) ∈ R
N × R,

where 2∗ = +∞ if N ≤ 4 and 2∗ = 2N
N−4 if N > 4;

(F2) lim|u|→∞
F (x,u)
|u|2 = ∞, a.e. x ∈ RN , and there exists r0 ≥ 0 such that

F (x, u) ≥ 0, ∀(x, u) ∈ R
N × R, |u| ≥ r0;

(F3) F (x, u) = 1
2f(x, u)u−F (x, u) ≥ 0, and there exist c3 > 0 and κ > max{1, N/4}

such that

|F (x, u)|κ ≤ c3|u|2κF (x, u), ∀(x, u) ∈ R
N × R, |u| ≥ r0;

(F4) there exist μ > 2 and � > 0 such that

μF (x, u) ≤ uf(x, u) + �u2 ∀(x, u) ∈ R
N × R;
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(F5) f(x,−u) = −f(x, u), ∀(x, u) ∈ R
N × R.

The main result of this paper are the following theorems.
Theorem 1.1. Suppose that (V1)-(V2), (F1)-(F3) and (F5) are satisfied. Then

problem (1.1) has infinitely many solutions {uk} such that

1
2

∫
RN

(|Δuk|2 + |∇uk|2 + V (x)u2
k)dx−

∫
RN

F (x, uk)dx → ∞, as k → ∞.

Theorem 1.2. Suppose that (V1)-(V2), (F1)-(F2) and (F4)-(F5) are satisfied.
Then problem (1.1) has infinitely many solutions {uk} such that

1
2

∫
RN

(|Δuk|2 + |∇uk|2 + V (x)u2
k)dx−

∫
RN

F (x, uk)dx → ∞, as k → ∞.

Remark 1.3. Conditions like (V1) and (V2) have been given in [30] and [31],
but there infRN V (x) > 0 is required. In the present paper, the potential V (x) can be
allowed to be sign-changing, which is weaker than the condition in [24, 26].

Remark 1.4. We note that the usual condition f(x,u)
u → 0 as u → 0 is not needed

in our Theorems. Besides, the condition (F2) is weaker than the conditions (S1) and
(S2). From this, we can see that the condition (F2) is the weakest superquadratic
condition. Moreover, it is not difficult to find out that the following two functions
f(x, u) satisfy assumptions (F1)-(F5), for example:

f(x, u) = a(x)u ln(
1
2

+ u),

and
f(x, u) = a(x)[4|u|3u + 2u2 sinu − 4u cosu],

where a ∈ C(RN , R) and 0 < infRN a(x) ≤ supRN a(x) < ∞.
From Remarks 1.3 and 1.4, we know that Theorems 1.1 and 1.2 improve and

generalize the results in [24, 26] by weakening the corresponding conditions.

2. VARIATIONAL SETTING AND PROOF OF THE MAIN RESULT

Before establishing the variational setting for our problem (1.1), we have the fol-
lowing

Remark 2.1. From (V1), we know that there exists a constant V0 > 0 such that
V̄ (x) := V (x) + V0 for all x ∈ RN . Let f̄(x, u) := f(x, u) + V0u and consider the
following new equation

(2.1)
{

Δ2u − Δu + V̄ (x)u = f̄(x, u), x ∈ R
N ,

u ∈ H2(RN).
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Then problem (2.1) is equivalent to the problem (1.1). It is easy to check that the
hypotheses (V1), (V2) and (F1 − F5) still hold for V̄ and f̄ provided that those hold
for V and f .

In view of Remark 2.1, now we will study the equivalent problem (2.1). Throughout
the following sections, we make the following assumption instead of (V1):

(V ′
1) V ∈ C(RN , R) and infRN V (x) > 0.

We work in the Hilbert space

E = {u ∈ H2(RN) :
∫

RN

(|Δu|2 + |∇u|2 + V (x)u2)dx < +∞},

equipped with the inner product

(u, v) =
∫

RN

(ΔuΔv + ∇u · ∇v + V (x)uv)dx, u, v ∈ E,

and the norm

‖u‖ =
(∫

RN

(|Δu|2 + |∇u|2 + V (x)|u|2)dx

)1
2

, u ∈ E.

Evidently, E is continuously embedded into H2(RN) and hence continuously embedded
into Ls(RN) for 2 ≤ s < 2∗, i.e. there exists γs > 0 such that

(2.2) ‖u‖s ≤ γs‖u‖, ∀ u ∈ E,

where ‖u‖s denotes the usual norm in Ls(RN) for all 2 ≤ s < 2∗. Motivated by
Lemma 3.4 in [41], we can prove the following Lemma 2.2 in the same way. Here we
omit it.

Lemma 2.2. Under assumptions (V ′
1) and (V2), the embedding E ↪→ Ls(RN) is

compact for any s ∈ [2, 2∗).

For each u ∈ E , we define

(2.3) Φ(u) =
1
2

∫
RN

(|Δu|2 + |∇u|2 + V (x)u2)dx−
∫

RN

F (x, u)dx.

Then we have the following lemma

Lemma 2.3. If assumptions (V ′
1), (V2) and (F1) hold, then Φ ∈ C1(E, R) and

(2.4) 〈Φ′(u), v〉 =
∫

RN
[ΔuΔv + ∇u · ∇v + V (x)uv]dx−

∫
RN

f(x, u)vdx,
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for all u, v ∈ E . Moreover, Ψ′ : E → E∗ is compact, where Ψ(u) =
∫

RN F (x, u)dx.

Proof. To prove Φ ∈ C1(E, R) and (2.4), it is sufficient to show that Ψ ∈
C1(E, R) and

〈Ψ′(u), v〉 =
∫

RN

f(x, u)vdx, ∀ u, v ∈ E

First, we prove the existence of the Gateaux derivative of Ψ. By (F1), we know

(2.5) |F (x, u)| ≤ c1

2
|u|2 +

c2

p
|u|p, ∀ (x, u) ∈ R

N × R.

For any u, v ∈ E and 0 < |t| < 1, by mean value theorem and (F1), there exists
0 < θ < 1 such that

|F (x, u + tv) − F (x, u)|
|t| = |f(x, u + θtv)v|

≤ c1|u + θtv||v| + c2|u + θtv|p−1|v|
≤ c1|u||v|+ c1|v|2 + c2|u + θtv|p−1|v|
≤ c1|u||v|+ c1|v|2 + 2p−1c2(|u|p−1|v|+ |v|p).

The Hölder inequality implies that

g(x) := c1|u(x)||v(x)|+ c1|v(x)|2 + 2p−1c2(|u(x)|p−1|v(x)|+ |v(x)|p) ∈ L1(RN).

Consequently, by the Lebesgue’s Dominated Theorem, we have

〈Ψ′(u), v〉 =
∫

RN

f(x, u)vdx, ∀ u, v ∈ E.

Next, we show that Ψ′ : E → E∗ is weak continuous. Assume that un ⇀ u in E ,
by Lemma 2.2, we get

un → u in Ls(RN),

for any s ∈ [2, 2∗). Note that

‖Ψ′(un) − Ψ′(u)‖E∗ = sup
‖v‖≤1

|〈Ψ′(un) − Ψ′(u), v〉|

≤ sup
‖v‖≤1

∫
RN

|f(x, un) − f(x, u)||v|dx.

By the Hölder inequality and Theorem A.4 in [42], we have

sup
‖v‖≤1

∫
RN

|f(x, un) − f(x, u)||v|dx → 0 as n → ∞.
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Hence,
‖Ψ′(un) − Ψ′(u)‖E∗ → 0 as n → ∞,

and then Ψ′ is weakly continuous. Consequently, Ψ′ is continuous and Ψ ∈ C1(E, R).
Due to the form of Φ in (2.3), Φ′ is also continuous and hence Φ ∈ C1(E, R).

We say that I ∈ C1(X, R) satisfies (C)c-condition if any sequence {un} such that

(2.6) I(un) → c, ‖I ′(un)‖(1 + ‖un‖) → 0

has a convergent subsequence.

Lemma 2.4. ([38, 39]). Let X be an infinite dimensional Banach space, X =
Y ⊕ Z, where Y is finite dimensional. If I ∈ C1(X, R) satisfies (C)c-condition for
all c > 0, and
(I1) I(0) = 0, I(−u) = I(u) for all u ∈ X;
(I2) there exist constants ρ, α > 0 such that Φ|∂Bρ∩Z ≥ α;

(I3) for any finite dimensional subspace X̃ ⊂ X , there exists R = R(X̃) > 0 such
that I(u) ≤ 0 on X̃ \ BR .

then I possesses an unbounded sequence of critical values.

Lemma 2.5. Under assumptions (V ′
1), (V2) and (F1)− (F3), any sequence {un}

⊂ E satisfying

(2.7) Φ(un) → c > 0, 〈Φ′(un), un〉 → 0

is bounded in E .

Proof. To prove the boundedness of {un}, arguing by contradiction, assume that
‖un‖ → ∞. Let vn = un

‖un‖ , then ‖vn‖ = 1 and ‖vn‖s ≤ γs‖vn‖ = γs for 2 ≤ s < 2∗.
Observe that for n large

(2.8) c + 1 ≥ Φ(un)− 1
2
〈Φ′(un), un〉 =

∫
RN

F (x, un)dx.

From (2.3) and the form of ‖u‖, we have

(2.9) Φ(u) =
1
2
‖u‖2 −

∫
RN

F (x, u)dx, ∀ u ∈ E,

and

(2.10) 〈Φ′(u), v〉 = (u, v)−
∫

RN
f(x, u)vdx, ∀ u, v ∈ E.
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Combining (2.7) with (2.9), we get

(2.11)
1
2
≤ lim sup

n→∞

∫
RN

|F (x, un)|
‖un‖2

dx.

For 0 ≤ a < b, let

(2.12) Ωn(a, b) = {x ∈ R
N : a ≤ |un(x)| < b}.

Passing to a subsequence, we may assume that vn ⇀ v1 in E , then by Lemma 2.2,
vn → v1 in Ls(RN) for all s ∈ [2, 2∗), and vn(x) → v1(x) a.e. on R

N .
If v1 = 0, then vn → 0 in Ls(RN) for all s ∈ [2, 2∗), and vn → 0 a.e. on R

N .
Hence, it follows from (2.5) that

(2.13)

∫
Ωn(0,r0)

|F (x, un)|
|un|2 |vn|2dx ≤ (

c1

2
+

c2r
p−2
0

p
)
∫

Ωn(0,r0)
|vn|2dx

≤ (
c1

2
+

c2r
p−2
0

p
)
∫

RN

|vn|2dx

→ 0.

Set κ′ = κ
κ−1 . Since κ > max{1, N/4}, we get 2κ′ ∈ (2, 2∗). Hence, from (F3) and

(2.8), we have

(2.14)

∫
Ωn(r0,∞)

|F (x, un)|
|un|2 |vn|2dx

≤
(∫

Ωn(r0,∞)
(
|F (x, un)|

|un|2 )κdx

) 1
κ
(∫

Ωn(r0,∞)
|vn|2κ′

dx

) 1
κ′

≤ c
1
κ
4

(∫
Ωn(r0,∞)

F (x, un)dx

) 1
κ
(∫

Ωn(r0,∞)

|vn|2κ′
dx

) 1
κ′

≤ [c4(c + 1)]
1
κ

(∫
Ωn(r0,∞)

|vn|2κ′
dx

) 1
κ′

→ 0.

Combining (2.13) with (2.14), we get∫
RN

|F (x, un)|
‖un‖2

dx =
∫

Ωn(0,r0)

|F (x, un)|
|un|2 |vn|2dx +

∫
Ωn(r0,∞)

|F (x, un)|
|un|2 |vn|2dx

→ 0,

which contradicts (2.11).
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If v1 �= 0, set

A := {x ∈ R
N : v1(x) �= 0},

then meas(A) > 0. For a.e.x ∈ A, we have

lim
n→∞ |un(x)| = ∞.

Hence,

A ⊂ Ωn(r0,∞) for large n ∈ N,

it follows from (2.5), (2.9), (F2) and Fatou’s Lemma that

(2.15)

0 = lim
n→∞

c + o(1)
‖un‖2

= lim
n→∞

Φ(un)
‖un‖2

= lim
n→∞[

1
2
−
∫

RN

F (x, un)
u2

n

v2
ndx]

= lim
n→∞[

1
2
−
∫

Ωn(0,r0)

F (x, un)
u2

n

v2
ndx −

∫
Ωn(r0,∞)

F (x, un)
u2

n

v2
ndx]

≤ lim sup
n→∞

[
1
2

+ (
c1

2
+

c2

p
rp−2
0 )

∫
RN

|vn|2dx −
∫

Ωn(r0,∞)

F (x, un)
u2

n

v2
ndx]

≤ 1
2

+ (
c1

2
+

c2

p
rp−2
0 )γ2

2 − lim inf
n→∞

∫
Ωn(r0,∞)

F (x, un)
u2

n

v2
ndx

=
1
2

+ (
c1

2
+

c2

p
r
p−2
0 )γ2

2 − lim inf
n→∞

∫
Ωn(r0,∞)

F (x, un)
u2

n

[χΩn(r0,∞)(x)]v2
ndx

≤ 1
2

+ (
c1

2
+

c2

p
r
p−2
0 )γ2

2 −
∫

RN
lim inf
n→∞

F (x, un)
u2

n

[χΩn(r0,∞)(x)]v2
ndx

= −∞,

which is a contradiction. Thus {un} is bounded in E .

Lemma 2.6. Under assumptions (V ′
1), (V2) and (F1) − (F3), any sequence

{un} ⊂ E satisfying (2.7) has a convergent subsequence in E .

Proof. From Lemma 2.5, we know that {un} is bounded in E . Going if necessary
to a subsequence, we can assume that un ⇀ u in E . By Lemma 2.2, un → u in Ls(RN)
for all 2 ≤ s < 2∗, thus
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(2.16)

∫
RN

|f(x, un) − f(x, u)||un − u|dx

≤
∫

RN

(|f(x, un)| + |f(x, u)|)|un − u|dx

≤
∫

RN

[
(c1|un| + c2|un|p−1) + (c1|u|+ c2|u|p−1)

] |un − u|dx

≤ c1

(∫
RN

(|un| + |u|)2dx

)1
2
(∫

RN
|un − u|2dx

)1
2

+c2

(∫
RN

|un|pdx

)p−1
p
(∫

RN

|un − u|pdx

)1
p

+c2

(∫
RN

|u|pdx

)p−1
p
(∫

RN
|un − u|pdx

) 1
p

→ 0, as n → ∞.

Observe that

(2.17) ‖un −u‖2 = 〈Φ′(un)−Φ′(u), un−u〉+
∫

RN
[f(x, un)−f(x, u)](un −u)dx.

It is clear that

(2.18) 〈Φ′(un)− Φ′(u), un − u〉 → 0 as n → ∞.

From (2.16), (2.17) and (2.18), we get

‖un − u‖ → 0 as n → ∞.

Lemma 2.7. Under assumptions (V ′
1), (V2), (F1), (F2) and (F4), any sequence

{un} ⊂ E satisfying (2.7) has a convergent subsequence in E .

Proof. First, we prove that {un} is bounded in E . To prove the boundedness
of {un}, arguing by contradiction, suppose that ‖un‖ → ∞. Let vn = un

‖un‖ . Then
‖vn‖ = 1 and ‖vn‖s ≤ γs‖vn‖ = γs for all 2 ≤ s < 2∗. By (2.7), (2.9), (2.10) and
(F4), we have

(2.19)

c + 1 ≥ Φ(un) − 1
μ
〈Φ′(un), un〉

=
μ − 2
2μ

‖un‖2 +
∫

RN
[
1
μ

f(x, un)un − F (x, un)]dx

≥ μ − 2
2μ

‖un‖2 − �

μ
‖un‖2

2 for large n ∈ N,

which implies
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(2.20) 1 ≤ 2�

μ − 2
lim sup

n→∞
‖vn‖2

2.

Passing to a subsequence, we may assume that vn ⇀ v1 in E , then by Lemma 2.2,
vn → v1 in Ls(RN) for all 2 ≤ s < 2∗, and vn(x) → v1(x) a.e. on R

N . Hence,
it follows from (2.20) that v1 �= 0. By a similar fashion as (2.15), we can conclude
a contradiction. Thus, {un} is bounded in E . The rest proof is the same as that in
Lemma 2.6.

Lemma 2.8. Under assumptions (V ′
1), (V2), (F1) and (F2), for any finite

dimensional subspace Ẽ ⊂ E , there holds

(2.21) Φ(u) → −∞, ‖u‖ → ∞, u ∈ Ẽ.

Proof. Arguing indirectly, assume that for some sequence {un} ⊂ Ẽ with ‖un‖ →
∞, there exists M > 0 such that Φ(un) ≥ −M for all n ∈ N. Let vn = un

‖un‖ . Then
‖vn‖ = 1. Passing to a subsequence, we may assume that vn ⇀ v1 in E . Since Ẽ

is finite dimensional, then vn → v1 ∈ Ẽ in E , vn(x) → v1(x) a.e. on R
N , and so

‖v1‖ = 1. Hence, we can conclude a contradiction by a similar fashion as (2.15).

Corollary 2.9. Under assumptions (V ′
1), (V2), (F1) and (F2), for any finite di-

mensional subspace Ẽ ⊂ E , there exists R = R(Ẽ) > 0, such that

(2.22) Φ(u) ≤ 0, ∀u ∈ Ẽ, ‖u‖ ≥ R.

Let {ej} is a total orthonormal basis of E and define

(2.23) Xj = Rej, Yk =
k⊕

j=1

Xj, Zk =
∞⊕

j=k+1

Xj k ∈ Z.

Lemma 2.10. Under assumptions (V ′
1) and (V2), for 2 ≤ s < 2∗,

(2.24) βk(s) := sup
u∈Zk,‖u‖=1

‖u‖s → 0, k → ∞.

Proof. It is clear that 0 < βk+1 ≤ βk, so that βk → β ≥ 0(k → ∞). For every
k ∈ N, there exists uk ∈ Zk with ‖uk‖ = 1 such that |uk|2 > βk

2 . For any v ∈ E ,
writing v =

∑∞
j=1 cjej , we have, by the Cauchy-Schwartz inequality,

|(uk, v)| = |(uk,

∞∑
j=1

cjej)| = |(uk,

∞∑
j=k

cjej)| ≤ ‖uk‖ · ‖
∞∑

j=k

cjej‖ = (
∞∑

j=k

c2
j)

1
2 → 0
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as k → ∞, which implies that uk ⇀ 0 in E . By Lemma 2.2, the compact embedding
of E ↪→ Ls(RN) (2 ≤ s < 2∗) implies that uk → 0 in Ls(RN). Hence, letting
k → ∞, we get β = 0, which completes the proof.

By Lemma 2.10, we can choose an integer m ≥ 1 such that

(2.25) ‖u‖2
2 ≤ 1

2c1
‖u‖2, ‖u‖p

p ≤ p

4c2
‖u‖p, ∀u ∈ Zm.

Lemma 2.11. Under assumptions (V ′
1), (V2) and (F1), there exist constants

ρ, α > 0 such that Φ|∂Bρ∩Zm ≥ α.

Proof. Combining (2.5), (2.9) with (2.25), for u ∈ Zm, choosing ρ := ‖u‖ = 1
2

we have
Φ(u) =

1
2
‖un‖2 −

∫
RN

F (x, u)dx

≥ 1
2
‖un‖2 − c1

2
‖un‖2

2 −
c2

p
‖un‖p

p

≥ 1
4
(‖un‖2 − ‖un‖p)

=
2p−2 − 1

2p+2
:= α > 0.

Thus, the proof is complete.

Proof of Theorem 1.1. Let X = E, Y = Ym and Z = Zm. Obviously, f̄ satisfies
(F1) − (F3), and (F5). By Lemmas 2.5, 2.6, 2.11 and Corollary 2.9, all conditions
of Lemma 2.4 are satisfied. Thus, problem (2.1) possesses infinitely many nontrivial
solutions. By Remark 2.1, problem (1.1) also possesses infinitely many nontrivial
solutions.

Proof of Theorem 1.2. Let X = E, Y = Ym and Z = Zm. Obviously, f̄ satisfies
(F1), (F2), (F4) and (F5). The rest proof is the same as that of Theorem 1.1 by using
Lemma 2.7 instead of Lemmas 2.5 and 2.6.
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