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THE HIERARCHICAL MINIMAX THEOREMS

Yen-Cherng Lin

Abstract. We study the minimax theorems for set-valued mappings with several
hierarchical process, and propose three versions for minimax theorems in topo-
logical vector spaces setting. These problems arise from some minimax theorems
in the vector settings. As applications, we discuss the existences of two kinds
of saddle points. Our results are new or include as special cases recent existing
results.

1. INTRODUCTION PRELIMINARIES

Let X, Y be two nonempty sets in two Hausdorff topological vector spaces, re-
spectively, Z be a Hausdorff topological vector space, C ⊂ Z a closed convex and
pointed cone with apex at the origin and intC �= ∅, that is, C is proper closed with
intC �= ∅ and satisfies λC ⊆ C, ∀λ > 0; C + C ⊆ C; and C ∩ (−C) = {0}.
The scalar hierarchical minimax theorems stated as follows: for given three mappings
F, G, H : X ×Y ⇒ R, under some suitable conditions so that the following inequality
holds:

(s − H) min
⋃

x∈X

max
⋃
y∈Y

F (x, y) ≤ max
⋃
y∈Y

min
⋃

x∈X

H(x, y).

For given three mappings F, G, H : X × Y ⇒ Z, the first version of hierarchical
minimax theorems stated that under some suitable conditions so that the following
inequality holds:

(H1) Max
⋃
y∈Y

Minw

⋃
x∈X

F (x, y) ⊂ Min(co
⋃

x∈X

Maxw

⋃
y∈Y

F (x, y)) + C.

The second version of hierarchical minimax theorems stated that under some suit-
able conditions so that the following inequality holds:

(H2) Max
⋃
y∈Y

Minw

⋃
x∈X

F (x, y) ⊂ Min
⋃

x∈X

Maxw

⋃
y∈Y

F (x, y) + C.

Received July 7, 2013, accepted September 9, 2013.
Communicated by Jen-Chih Yao.
2010 Mathematics Subject Classification: 49J35, 58C06.
Key words and phrases: Minimax theorems, Cone-saddle points, Cone-convexities.

451



452 Yen-Cherng Lin

The third version of hierarchical minimax theorems stated that under some suitable
conditions so that the following inequality holds:

(H3) Min
⋃

x∈X

Maxw

⋃
y∈Y

F (x, y) ⊂ Max
⋃
y∈Y

Minw

⋃
x∈X

H(x, y)+ Z \ (C \ {0}).

These versions (H1−H3) arise naturally from some minimax theorems in the vector
settings. We refer to [1, 2, 3].

We present some fundamental concepts which will be used in the sequel.

Definition 1.1. [1, 2]. Let A be a nonempty subset of Z. A point z∈A is called a
(a) minimal point of A if A ∩ (z−C)={z}; MinA denotes the set of all minimal

points of A;
(b) maximal point of A if A∩ (z +C) = {z}; MaxA denotes the set of all maximal

points of A;
(c) weakly minimal point of A if A ∩ (z − intC) = ∅; MinwA denotes the set of

all weakly minimal points of A;
(d) weakly maximal point of A if A ∩ (z + intC) = ∅; MaxwA denotes the set of

all weakly maximal points of A.

We note that , for a nonempty compact set A, the both sets MaxA and MinA

are nonempty. Furthermore, MinA ⊂ MinwA, MaxA ⊂ MaxwA, A ⊂ MinA + C,
and A ⊂ MaxA−C. Following [2], we denote both Max and Maxw by max (both
Min and Minw by min) in R since both Max and Maxw (both Min and Minw)
are same in R.

Definition 1.2. Let U , V be Hausdorff topological spaces. A set-valued map
F : U ⇒ V with nonempty values is said to be

(a) upper semi-continuous at x0 ∈ U if for every x0 ∈ U and for every open set N

containing F (x0), there exists a neighborhood M of x0 such that F (M) ⊂ N ;
(b) lower semi-continuous at x0 ∈ U if for any sequence {xn} ⊂ U such that

xn → x0 and any y0 ∈ F (x0), there exists a sequence yn ∈ F (xn) such that
yn → y0;

(c) continuous at x0 ∈ U if F is upper semi-continuous as well as lower semi-
continuous at x0.

We note that T is upper semicontinuous at x0 and T (x0) is compact, then for
any net {xν} ⊂ U , xν → x0, and for any net yν ∈ T (xν) for each ν, there exists
y0 ∈ T (x0) and a subnet {yνα} such that yνα → y0. We can refer to [4] for more
details. We also note that T is lower semicontinuous at x0 if for any net {xν} ⊂ U ,
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xν → x0, y0 ∈ T (x0) implies that there exists net yν ∈ T (xν) such that yν → y0. For
more details, we refer the reader to [4] or [5].

Definition 1.3. [2, 6]. Let k ∈ intC and v ∈ Z. The Gerstewitz function ξkv :
Z → R is defined by

ξkv(u) = min{t ∈ R : u ∈ v + tk − C}.

We present some fundamental properties of the scalarization function.

Proposition 1.1. [2, 6]. Let k ∈ intC and v ∈ Z. The Gerstewitz function ξkv :
Z → R has the following properties :

(a) ξkv(u) > r ⇔ u �∈ v + rk − C;
(b) ξkv(u) ≥ r ⇔ u �∈ v + rk − intC;
(c) ξkv(·) is a convex function;
(d) ξkv(·) is an increasing function, that is, u2−u1 ∈ intS ⇒ ξkv(u1)<ξkv(u2);
(e) ξkv(·) is a continuous function.

We also need the following different kinds of cone-convexities for set-valued map-
pings.

Definition 1.4. [1]. Let X be a nonempty convex subset of a topological vector
space. A set-valued mapping F : X ⇒ Z is said to be

(a) above-C-convex (respectively, above-C-concave) on X if for all x1, x2 ∈ X and
all λ ∈ [0, 1],

F (λx1 + (1− λ)x2) ⊂ λF (x1) + (1− λ)F (x2)− C

(respectively, λF (x1) + (1 − λ)F (x2) ⊂ F (λx1 + (1 − λ)x2) − C) ;

(b) above-naturally C-quasi-convex on X if for all x1, x2 ∈ X and all λ ∈ [0, 1],

F (λx1 + (1 − λ)x2) ⊂ co{F (x1) ∪ F (x2)} − C,

where coA denotes the convex hull of a set A;

The following whole intersection theorem is given by Ha [7].

Lemma 1.1. [7]. Let X be a nonempty compact convex subset of real Hausdorff
topological vector space, Y be a nonempty convex subset of real Hausdorff topological
vector space. Let the three mappings A, B, D : X ⇒ Y with A(x) ⊂ B(x) ⊂ D(x)
for all x ∈ X and satisfy

(a) A(x), D(x) are convex in Y for each x ∈ X , A−1(y), D−1(y) are open in X
for each y ∈ Y ; and
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(b) B(x) is open for each x ∈ X , and X \B−1(y) is convex in X for each y ∈ Y .

Then either there is an x0 ∈ X such that A(x0) is a empty set, or the whole intersection⋂
x∈X D(x) is nonempty.

2. SCALAR HIERARCHICAL MINIMAX THEOREMS

We first establish the following scalar hierarchical minimax theorem.

Theorem 2.1. Let X be a nonempty compact convex subset of real Hausdorff
topological vector space, Y be a nonempty convex subset of real Hausdorff topological
vector space. Suppose that the set-valued mappings F, G, H : X × Y ⇒ R with
F (x, y) ⊂ G(x, y) ⊂ H(x, y) for all (x, y) ∈ X × Y and satisfy the following
conditions:

(i) x �→ F (x, y) is lower semi-continuous on X for each y ∈ Y and y �→ F (x, y)
is above-R+-concave on Y for each x ∈ X;

(ii) x �→ G(x, y) is above-naturally R+-quasi-convex for each y ∈ Y , and y �→
G(x, y) is lower semi-continuous on Y for each x ∈ X; and

(iii) x �→ H(x, y) is lower semi-continuous on X for each y ∈ Y , and y �→ H(x, y)
is above-R+-concave on Y for each x ∈ X .

Then, for each t ∈ R, either there is x0 ∈ X such that

F (x0, y) ∈ t − R+

for all y ∈ Y or there is y0 ∈ Y such that

H(x, y0)
⋂

(t + R+) �= ∅

for all x ∈ X . Furthermore, in additional, if Y is compact,
⋃

y∈Y F (x, y) is com-
pact for each x ∈ X , y �→ H(x, y) is lower semi-continuous for each x ∈ X and⋃

x∈X H(x, y) is compact for each y ∈ Y , then we have the relation (s − H) hold.

Proof. For any given t ∈ R. Let three sets A, B, D ⊂ X × Y be defined by

A = {(x, y) ∈ X × Y : ∃f ∈ F (x, y), f > t},
B = {(x, y) ∈ X × Y : ∃g ∈ G(x, y), g > t},

and
D = {(x, y) ∈ X × Y : ∃h ∈ H(x, y), h > t}.

Since F (x, y) ⊂ G(x, y) ⊂ H(x, y) for all (x, y) ∈ X × Y ,

A ⊂ B ⊂ D.
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(a) Choose any y1, y2 ∈ A(x) = {y ∈ Y : ∃f ∈ F (x, y), f > t}. There exist
f1 ∈ F (x, y1) with f1 > t and f2 ∈ F (x, y2) with f2 > t. Then, for any λ ∈ [0, 1],
t ∈ λF (x, y1) + (1 − λ)F (x, y2) − R+. By the above-R+-concavity of F , we have
there is fλ ∈ F (x, λy1 + (1− λ)y2) such that fλ > t. Thus, λy1 + (1− λ)y2 ∈ A(x),
and hence A(x) is convex for each x ∈ X . Similarly, by the above-R+-concavity of
H , the set D(x) is convex for each x ∈ X .

Next, we claim that the set X \ A−1(y) = {x ∈ X : for all f ∈ F (x, y), f ≤ t}
is closed for each y ∈ Y . From this, the set A−1(y) will be open for each y ∈ Y .
Let the net {xn} ⊂ {x ∈ X : for all f ∈ F (x, y), f ≤ t} that converges to some
point x0 ∈ X . By the lower semi-continuity of F , for any f0 ∈ F (x0, y) there
exists fn ∈ F (xn, y) such that fn → f0. Since fn ≤ t, we have f0 ≤ t and hence
x0 ∈ {x ∈ X : for all f ∈ F (x, y), f ≤ t}. This proves that the set {x ∈ X :
for all f ∈ F (x, y), f ≤ t} is closed. Similarly, by the lower semi-continuity of G
and H , the sets D−1(y) and B(x) are open for each x ∈ X and y ∈ Y .

We now claim that the set X \B−1(y) is convex in X for each y ∈ Y . Fixed any
y ∈ Y , choosing any x1, x2 ∈ X \ B−1(y) and any τ ∈ [0, 1]. For any g1 ∈ G(x1, y)
with g1 ≤ t and any g2 ∈ G(x2, y) with g2 ≤ t, we have τg1 +(1− τ)g2 ≤ t. That is,

co{G(x1) ∪ G(x2)} ⊂ t − R+.

By the above-naturally quasi-R+-convexity of G, we have

G(τx1 + (1− τ)x2) ⊂ t − R+.

Thus, τx1 +(1− τ)x2 ∈ X \B−1(y) and the set X \B−1(y) is convex in X for each
y ∈ Y .

Since all conditions of Lemma 1.1 hold, by Lemma 1.1, either there is an x0 ∈ X
such that A(x0) is a empty set, or the whole intersection

⋂
x∈X D(x) is nonempty.

That is, for each t ∈ R, either there is x0 ∈ X such that F (x0, y) ∈ t − R+ for all
y ∈ Y or there is y0 ∈ Y such that H(x, y0)

⋂
(t + R+) �= ∅ for all x ∈ X .

Furthermore, if we combine the additional conditions, we have the relation (s−H)
is valid.

We note that Theorem 1 includes some special cases such as F (x, y) = G(x, y) ⊂
H(x, y), F (x, y) ⊂ G(x, y) = H(x, y) and F (x, y) = G(x, y) = H(x, y). We state
the last one as follows.

Corollary 2.1. Let X be a nonempty compact convex subset of real Hausdorff
topological vector space, Y be a nonempty convex subset of real Hausdorff topological
vector space. Let the set-valued mapping F :X×Y ⇒R satisfy the following conditions:

(i) x �→ F (x, y) is lower semi-continuous on X for each y ∈ Y and y �→ F (x, y)
is above-R+-concave on Y for each x ∈ X; and



456 Yen-Cherng Lin

(ii) x �→ F (x, y) is above-naturally R+-quasi-convex for each y ∈ Y , and y �→
F (x, y) is lower semi-continuous on Y for each x ∈ X;

Then, for each t ∈ R, either there is x0 ∈ X such that

F (x0, y) ∈ t − R+

for all y ∈ Y or there is y0 ∈ Y such that

F (x, y0)
⋂

(t + R+) �= ∅

for all x ∈ X . Furthermore, in additional, if Y is compact,
⋃

y∈Y F (x, y) and⋃
x∈X F (x, y) are compact for each x ∈ X and for each y ∈ Y , then we have

min
⋃

x∈X

max
⋃
y∈Y

F (x, y) = max
⋃
y∈Y

min
⋃

x∈X

F (x, y).

Remark 2.1. We can not compare Corollary 2.1 with Fan’s famous minimax
theorem[8] even when the mapping F is single-valued function since we have no
upper semi-continuity for the mapping F .

3. HIERARCHICAL MINIMAX THEOREMS

In this section, we will present three versions of hierarchical minimax theorems.
The first one so that the relation (H1) is true as follows.

Theorem 3.1. Let X , Y be nonempty compact convex subsets of real Hausdorff
topological vector spaces, respectively. Let the set-valued mappings F, G, H : X ×
Y ⇒ Z such that F (x, y) ⊂ G(x, y) ⊂ H(x, y) for all (x, y) ∈ X × Y , and satisfy
the following conditions:

(i) (x, y) �→ F (x, y) is continuous with nonempty compact values, and y �→ F (x, y)
is above-C-concave on Y for each x ∈ X;

(ii) x �→ G(x, y) is above-naturally C-quasi-convex for each y ∈ Y , and y �→
G(x, y) is lower semi-continuous on Y for each x ∈ X;

(iii) (x, y) �→ H(x, y) is continuous with nonempty compact values, y �→ H(x, y) is
above-C-concave on Y for each x ∈ X; and

(iv) for each y ∈ Y ,

Max
⋃
y∈Y

Minw

⋃
x∈X

F (x, y) ⊂ Minw

⋃
x∈X

H(x, y) + C.



The Hierarchical Minimax Theorems 457

Then the relation (H1) is valid.

Proof. Let Γ(x) := Maxw
⋃

y∈Y F (x, y) for all x ∈ X . From Lemma 2.4 and
Proposition 3.5 in [1], the mapping x �→ Γ(x) is upper semi-continuous with nonempty
compact values on X . Hence

⋃
x∈X Γ(x) is compact, and so is co(

⋃
x∈X Γ(x)).

Then co(
⋃

x∈X Γ(x)) + C is closed convex set with nonempty interior. Suppose that
v �∈ co(

⋃
x∈X Γ(x)) + C. By separation theorem, there is a k ∈ R, ε > 0, and a

nonzero continuous linear functional ξ : Z �→ R such that

(1) ξ(v) ≤ k − ε < k ≤ ξ(u + c)

for all u ∈ co(
⋃

x∈X Γ(x)) and c ∈ C. From this we can see that ξ ∈ C�, where

C� = {g ∈ Z� : g(c) ≥ 0 for all c ∈ C},

Z� is the set of all nonzero continuous linear functional on Z, and ξ(v) < ξ(u) for all
u ∈ co(

⋃
x∈X Γ(x)). By Proposition 3.14 of [1], for any x ∈ X , there is a y�

x ∈ Y
and f(x, y�

x) ∈ F (x, y�
x) with f(x, y�

x) ∈ Γ(x) such that

ξf(x, y�
x) = max

⋃
y∈Y

ξF (x, y).

Let us choose c = 0 and u = f(x, y�
x) in equation (1), we have

ξ(v) < ξ(f(x, y�
x)) = max

⋃
y∈Y

ξF (x, y)

for all x ∈ X . Therefore,

ξ(v) < min
⋃

x∈X

max
⋃
y∈Y

ξF (x, y).

From conditions (i)-(iii), applying Proposition 3.9 and Proposition 3.13 in [1], all
conditions of Theorem 2.1 hold. Hence, we have

ξ(v) < max
⋃
y∈Y

min
⋃

x∈X

ξH(x, y).

Since Y is compact, there is a y′ ∈ Y such that

ξ(v) < min
⋃

x∈X

ξH(x, y′).

Thus,
v �∈

⋃
x∈X

H(x, y′) + C,
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and hence,

(2) v �∈ Minw

⋃
x∈X

H(x, y′) + C.

If v ∈ Max
⋃

y∈Y Minw
⋃

x∈X F (x, y), then, by (iv), we have v ∈ Minw
⋃

x∈X

H(x, y) + C which contradicts (2). Hence, for every v ∈ Max
⋃

y∈Y Minw
⋃

x∈X

F (x, y), v ∈ co(
⋃

x∈X Γ(x)) + C. That is, the relation (H1) is valid.

Remark 3.1. We note that Theorem 3.1 includes the following three versions as
special cases, such as F = G ⊂ H , F ⊂ G = H , F = G = H .

In the following result, we apply the Gerstewitz function ξkv : Z �→ R to introduce
the second version of hierarchical minimax theorems, where k ∈ intC and v ∈ Z.

Theorem 3.2. Under the framework of Theorem 3.1 except the convexities of F
and H , if, in additional, the mappings y �→ ξkvF (x, y) and y �→ ξkvH(x, y) are
above-R+-concave on Y for each x ∈ X . Then the relation (H2) is valid.

Proof. Let Γ(x) be defined the same as in Theorem 3.1 for all x ∈ X . Using
the same process in the proof of Theorem 3.1, we know that the set

⋃
x∈X Γ(x) is

nonempty compact. Suppose that v �∈ ⋃x∈X Γ(x) + C. For any k ∈ intC, there is a
Gerstewitz function ξkv : Z �→ R such that

(3) ξkv(u) > 0

for all u ∈ ⋃x∈X Γ(x). Then, for each x ∈ X , there is y�
x ∈ Y and f(x, y�

x) ∈ F (x, y�
x)

with f(x, y�
x) ∈ Maxw

⋃
y∈Y F (x, y) such that

ξkv(f(x, y�
x)) = max

⋃
y∈Y

ξkvF (x, y).

Choosing u = f(x, y�
x) in equation (3), we have

max
⋃
y∈Y

ξkvF (x, y) > 0

for all x ∈ X . Therefore,

min
⋃

x∈X

max
⋃
y∈Y

ξkvF (x, y) > 0.

By conditions (i)-(iii), we know that all conditions of Theorem 2.1 hold, and hence,
by relation (s − H), we have

max
⋃
y∈Y

min
⋃

x∈X

ξkvH(x, y) > 0.
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Since Y is compact, there is a y′ ∈ Y such that

min
⋃

x∈X

ξkvH(x, y′) > 0.

Thus,
v �∈

⋃
x∈X

H(x, y′) + C,

and hence,

(4) v �∈ Minw

⋃
x∈X

H(x, y′) + C.

If v ∈ Max
⋃

y∈Y Minw
⋃

x∈X F (x, y), then, by (iv), we have

v ∈ Minw

⋃
x∈X

H(x, y) + C

which contradicts (4). From this, we can deduce the relation (H2) is valid.

The third version of hierarchical minimax theorems is as follows. We remove the
condition (iv) in Theorem 3.2 to deduce the relation (H3) is valid.

Theorem 3.3. Under the framework of Theorem 3.1 except the convexities of F
and H , and condition (iv). If, in additional, the mappings y �→ ξkvF (x, y) and
y �→ ξkvH(x, y) are above-R+-concave on Y for each x ∈ X . Then the relation (H3)
is valid.

Proof. Let Γ(x), for all x ∈ X , be defined the same as in Theorem 3.1. Fixed
any v ∈ Min

⋃
x∈X Γ(x). Then

(
⋃

x∈X

Γ(x) \ {v})
⋂

(v − C) = ∅.

For any k ∈ intC, there is a Gerstewitz function ξkv : Z �→ R such that

ξkv(u) > 0

and
ξkv(v) = 0.

Since ξkv is continuous, by the compactness of
⋃

y∈Y F (x, y), for each x ∈ X , there
exist y1 ∈ Y and f1 ∈ F (x, y1) such that

ξkv(f1) = max
⋃
y∈Y

ξkvF (x, y).

By Proposition 3.14 [1], f1 ∈ Maxw
⋃

y∈Y F (x, y). Thus, we have, for each x ∈ X ,
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max
⋃
y∈Y

ξkvF (x, y) ≥ 0,

or
min

⋃
x∈X

max
⋃
y∈Y

ξkvF (x, y) ≥ 0.

From the condition (i)-(iii) and according to a similar argument in Theorem 3.2, we
know that all conditions of Theorem 2.1 hold for the mappings ξkvF , ξkvG and ξkvH .
Hence, by Theorem 2.1, we have

max
⋃
y∈Y

min
⋃

x∈X

ξkvH(x, y) ≥ 0.

Since X and Y are compact, there are x0 ∈ X , y0 ∈ Y and h0 ∈ H(x0, y0) such that

ξkv(h0) = min
⋃

x∈X

ξkvH(x, y0) ≥ 0.

Applying Proposition 3.14 in [1], we have h0 ∈ Minw
⋃

x∈X H(x, y0). If h0 = v, we
have v �∈ h0 + (C \ {0}). If h0 �= v, we have ξkv(h0) > 0, and hence h0 �∈ v − C.
Therefore, v �∈ h0 + (C \ {0}). Thus, in any case, we have v ∈ h0 + Z \ (C \ {0}).
This implies that the relation (H3) is valid.

4. SADDLE POINTS

In this section, we discuss the existence of saddle points for set-valued mappings
including the weakly C-saddle points and R+-saddle points of F on X ×Y . For more
detail we refer to [1, 9].

Definition 4.1. Let F : X × Y ⇒ Z be a set-valued mapping. A point (x̄, ȳ) ∈
X × Y is said to be a

(a) weakly C-saddle point [1] of F on X × Y if

F (x̄, ȳ)
⋂⎛
⎝Maxw

⋃
y∈Y

F (x̄, y)

⎞
⎠⋂(

Minw

⋃
x∈X

F (x, ȳ)

)
�= ∅;

(b) R+-saddle point [1] of F on X × Y if Z = R and

max
⋃
y∈Y

F (x̄, y) = min
⋃

x∈X

F (x, ȳ) = F (x̄, ȳ).

Theorem 4.1. Under the framework of Corollary 2.1, F has R+-saddle point.

Proof. Since Y is compact, there is a ȳ ∈ Y such that

max
⋃
y∈Y

min
⋃

x∈X

F (x, y) = min
⋃

x∈X

F (x, ȳ).
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Similarly, by the compactness of X , there is an x̄ such that

min
⋃

x∈X

max
⋃
y∈Y

F (x, y) = max
⋃
y∈Y

F (x̄, y).

By Corollary 2.1, we have

min
⋃

x∈X

F (x, ȳ) = max
⋃
y∈Y

F (x̄, y) = F (x̄, ȳ).

The last equality holds for the following reasons:

F (x̄, ȳ) ⊂
⋃

x∈X

F (x, ȳ) ⊂ min
⋃

x∈X

F (x, ȳ) + R+,

and
F (x̄, ȳ) ⊂

⋃
y∈Y

F (x̄, y) ⊂ max
⋃
y∈Y

F (x̄, y)− R+.

Hence (x̄, ȳ) is a R+-saddle point of F on X × Y .

Theorem 4.2. Let X , Y be nonempty compact convex subsets of real Hausdorff
topological vector spaces, respectively. Let the set-valued mapping F : X × Y ⇒ Z

such that
⋃

x∈X F (x, y) and
⋃

y∈Y F (x, y) are compact for all x ∈ X and y ∈ Y ,
and satisfy the following conditions:

(i) x �→ F (x, y) is lower semi-continuous and above-naturally C-quasi-convex for
each y ∈ Y ; and

(ii) y �→ F (x, y) is lower semi-continuous and above-C-concave for each x ∈ X;

Then F has a weakly C-saddle point.

Proof. For any ξ ∈ C�. Then, by Proposition 3.9 and Proposition 3.13 in [1], we
have all conditions of Corollary 2.1 hold for the mapping ξF . By Corollary 2.1, we
have

min
⋃

x∈X

max
⋃
y∈Y

ξF (x, y) = max
⋃
y∈Y

min
⋃

x∈X

ξF (x, y).

Then there is (x̄, ȳ) ∈ X × Y such that

min
⋃

x∈X

ξF (x, ȳ) = max
⋃
y∈Y

ξF (x̄, y) = ξF (x̄, ȳ).

For any f ∈ F (x̄, ȳ), ξf = max
⋃

y∈Y ξF (x̄, y). By Proposition 3.14 [1], we have

f ∈ Maxw

⋃
y∈Y

F (x̄, y).
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Similarly, since ξf = min
⋃

x∈X ξF (x, ȳ), we have

f ∈ Minw

⋃
x∈X

F (x, ȳ).

Thus,
F (x̄, ȳ) ⊂ (Maxw

⋃
y∈Y

F (x̄, y))
⋂

(Minw

⋃
x∈X

F (x, ȳ)).

Hence, F has a weakly C-saddle point.
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