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E-PROPER SADDLE POINTS AND E-PROPER DUALITY IN VECTOR
OPTIMIZATION WITH SET-VALUED MAPS

Ke-Quan Zhao* and Xin-Min Yang

Abstract. In this paper, based on a kind of unified proper efficiency named
as E-Benson proper efficiency, we present E-proper saddle points theorems and
E-proper duality results including as weak duality and strong duality theorems of
vector optimization problems with set-valued maps. Our main results unify and
extend the cases of proper saddle points and proper duality as well as ε-proper
saddle points and ε-proper duality.

1. INTRODUCTION

It is well known that the concepts of approximate solution have been playing an
important role when there are no exact solutions in optimization problems. Kutateladze
initially introduced the concept of approximate solution named as ε-efficient solution in
[1]. In recent years, some scholars presented several kinds of concepts of approximate
efficiency as well as approximate proper efficiency and studied some characterizations
and applications in vector optimization problems, see e.g. [2-7] and the references
therein.

Recently, Chicco et al. proposed a new concept of approximate efficiency named
as E-efficiency based on improvement sets in [8]. E-efficiency unifies the concepts
of optimal points, approximate optimal points in scalar optimization, Pareto equilibria
and approximate equilibra. Furthermore, Zhao and Yang presented a unified stability
result with perturbations in vector optimization in [9]. Gutiérrez et al. generalized
the concepts of improvement set and E-efficiency to a real locally convex Hausdorff
topological vector space in [10]. Zhao and Yang introduced a kind of unified proper
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efficiency named as E-Benson proper efficiency and established some scalarization and
Lagrange multiplier theorems under the E-subconvexlikeness in [11].

Moreover, some saddle points and duality results have been established based on
some exact and approximate solutions of vector optimization problems with set-valued
maps, see e.g. [12-16] and the references therein. Especially, Li established proper
saddle points criteria and proper duality theorems of Benson proper efficiency for
vector optimization problems with set-valued maps in [12]. Rong and Ma proposed the
concept of ε-proper efficiency by the idea of Benson proper efficiency and established
some ε-saddle-point theorems and some ε-proper duality theorems in [16].

Motivated by the works of [11, 12, 16], in this paper, we present some E-proper
saddle points theorems and E-proper duality results including as weak duality and
strong duality theorems of vector optimization problems with set-valued maps. The
main results unify and extend some exact and approximate cases.

2. PRELIMINARIES

In this paper, let X be a linear space, Y and Z be real locally convex Hausdorff
topological vector spaces. For a set A ⊆ Y , intA and clA denote interior and closure
of A, respectively. A cone K ⊆ Y is called pointed if K ∩ (−K) = {0}. Let K

and P be positive closed convex pointed cones in Y and Z with nonempty interiors,
respectively. For any x, y ∈ Y ,

x �K y ⇔ y − x ∈ K

and 〈x, y〉 indicates the inner product of x and y. The generated cone of A ⊆ Y is

cone(A) = {λa| λ ≥ 0, a ∈ A}.
Y ∗ denotes the topological dual space of Y . The positive dual cone of A is defined as

A+ = {μ ∈ Y ∗|〈y, μ〉 ≥ 0, ∀y ∈ A},
the quasi-interior of A+ is defined as

A+i = {μ ∈ Y ∗|〈y, μ〉 > 0, ∀y ∈ A\{0}}.

Definition 2.1. ([10]). A set E ⊆ Y is said to be an improvement set if 0 /∈ E

and E + K = E . We denote the family of the improvement sets in Y by TY .

Definition 2.2. ([11]). Let E ∈ TY and A ⊆ Y . a ∈ A is an E-efficient point of
A if (a − E − K\{0})∩ A = ∅ and we denote this by a ∈ OE+K\{0}(A).

Definition 2.3. ([11]). Let E ∈ TY and A ⊆ Y . a ∈ A is an E-Benson proper
efficient point of A if clcone(A+E−a)∩(−K) = {0}. We denote this by a ∈ OE

BS(A),
i.e.,
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OE
BS(A) = {a ∈ A|clcone(A + E − a) ∩ (−K) = {0}}.

Let
OE

BS(A) = {a ∈ A|clcone(A − E − a) ∩ K = {0}}.
Consider the following vector optimization problem with set-valued maps:

(VP) min F (x)

s.t. x ∈ D = {x ∈ S|G(x)∩ (−P ) �= ∅},
where S ⊆ X , F : S ⇒ Y and G : S ⇒ Z are set-valued maps with nonempty value.
Assume that the feasible set D of (VP) be nonempty. Let L(Z, Y ) be the space of
continuous linear operator from Z to Y and

L+ = L+(Z, Y ) = {T ∈ L(Z, Y )|T (P ) ⊆ K}.

Denote by (F, G) the set-valued map from S to Y × Z defined by

(F, G)(x) = F (x) × G(x).

If μ ∈ Y ∗, T ∈ L(Z, Y ), we also define μF : S ⇒ R and F + TG : S ⇒ Y by

(μF )(x) = 〈F (x), μ〉 and (F + TG)(x) = F (x) + T (G(x)),

respectively. Moreover, (VP) satisfies the generalized Slater constraint qualification if
there exists x̂ ∈ S such that G(x̂) ∩ (−intP ) �= ∅.

Definition 2.4. ([11]). (i) x0 ∈ D is called an E-efficient solution of (VP) if
there exists y0 ∈ F (x0) such that (y0 − E − K\{0}) ∩ F (D) = ∅; (ii) x0 ∈ D is
called an E-Benson proper efficient solution of (VP) if F (x0) ∩ OE

BS(F (D)) �= ∅;
(iii) (x0, y0) is called an E-Benson proper efficient point of (VP) if x0 ∈ D and y0 ∈
F (x0) ∩ OE

BS(F (D)).

Definition 2.5. ([11]). Let F : S ⇒ Y and E ∈ TY . F is said to be E-
subconvexlike on S if F (S) + intE is a convex set.

Consider the following scalar optimization problem of (VP):

(VP)µ min
x∈D

〈F (x), μ〉, μ ∈ Y ∗\{0Y ∗}.

Definition 2.6. ([15]). x0 ∈ D is called an E-optimal solution of (VP)µ if there
exists y0 ∈ F (x0) such that 〈y − y0, μ〉 ≥ σ−E(μ), ∀x ∈ D, ∀y ∈ F (x), where

σ−E(μ) = sup
y∈(−E)

{μ(y)}, ∀μ ∈ Y ∗.
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3. E-PROPER SADDLE POINTS

In this section, we first give the concept of E-proper saddle points for a set-valued
Lagrangian map and then we establish E-proper saddle points theorems.

Definition 3.1. The Lagrangian map for (VP) is the set-valued map L : S ×
L+(Z, Y ) → 2Y defined by L(x, T ) = F (x) + T (G(x)), (x, T ) ∈ S × L+(Z, Y ).

Definition 3.2. An ordered pair (x̄, T̄ ) ∈ S × L+(Z, Y ) is called an E-proper
saddle point of the set-valued Lagrangian map L(x, T ) if

L(x̄, T̄ ) ∩ OE
BS(L(S, T̄)) ∩ OE

BS(L(x̄, L+)) �= ∅.

Theorem 3.1. Let E ∈ TY be a convex set, E ⊆ K. An ordered pair (x̄, T̄ ) ∈
S ×L+(Z, Y ) is an E-proper saddle point of the set-valued Lagrangian map L(x, T )
if and only if there exist ȳ ∈ F (x̄) and z̄ ∈ G(x̄) such that the following (i)-(iv):

(i) ȳ + T̄ (z̄) ∈ OE
BS(L(S, T̄));

(ii) G(x̄) ⊆ −P ;
(iii) −T̄ (z̄) ∈ K\intE;
(iv) clcone(F (x̄) − ȳ − T̄ (z̄) − E) ∩ K = {0}.

Proof. Suppose that (x̄, T̄ ) is an E-proper saddle point of L(x, T ). From definition
3.2, there exist ȳ ∈ F (x̄) and z̄ ∈ G(x̄) such that

ȳ + T̄ (z̄) ∈ OE
BS(L(S, T̄)) and ȳ + T̄ (z̄) ∈ OE

BS(L(x̄, L+)).

Hence, (i) holds and

(1) clcone
(
L(x̄, L+)− E − (ȳ + T̄ (z̄))

) ∩ K = {0}.

From (1), we get
(
F (x̄) + T (G(x̄))− E − (ȳ + T̄ (z̄))

) ∩ K ⊆ {0}, ∀T ∈ L+(Z, Y ).

This implies

(2) y + T (z)− (ȳ + T̄ (z̄)) /∈ K\{0}+ E, ∀y ∈ F (x̄), ∀z ∈ G(x̄), ∀T ∈ L+(Z, Y ).

Since, for any T ∈ L+(Z, Y ),

T (z̄)− T̄ (z̄) = (ȳ + T (z̄))− (
ȳ + T̄ (z̄)

) ∈ F (x̄) + T (G(x̄)) − (
ȳ + T̄ (z̄)

)

= L(x̄, T )− (
ȳ + T̄ (z̄)

)
,
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then we can deduce that
⎛
⎝ ⋃

T∈L+

T (z̄)

⎞
⎠− T̄ (z̄) − E ⊆ L(x̄, L+)− E − (

ȳ + T̄ (z̄)
)
.

Hence from (1) and 0 ∈ K, we can obtain that

clcone

⎛
⎝

⎛
⎝ ⋃

T∈L+

T (z̄)

⎞
⎠ − T̄ (z̄) − E

⎞
⎠ ∩ K = {0}.

Let f : L+(Z, Y ) → Y be defined by f(T ) = −T (z̄), T ∈ L+(Z, Y ). Then, the
above expression can be written as

clcone
(
f(L+) + E − f(T̄ )

) ∩ (−K) = {0}.
This implies that T̄ ∈ L+(Z, Y ) is an E-Benson proper efficient point of the following
vector optimization problem

min f(T )

s.t. T ∈ L+(Z, Y ).

Since f is a linear map and E is a convex set, then f − ȳ is E-subconvexlike on
L+(Z, Y ). Hence, by Theorem 7.2 in [11], there exists μ ∈ K+i such that T̄ is an
E-optimal solution of problem (VP)µ, i.e.,

〈f(T )− f(T̄ + e), μ〉 ≥ 0, ∀T ∈ L+(Z, Y ), ∀e ∈ E.

Then

(3) 〈−T̄ (z̄), μ〉 ≤ 〈−T (z̄), μ〉+ 〈e, μ〉, ∀T ∈ L+(Z, Y ), ∀e ∈ E.

We assert that z̄ ∈ −P . Otherwise, since P is a closed convex set, then there exists
σ ∈ Z∗\{0Z∗} such that

〈−z̄, σ〉 < inf
y∈P

〈y, σ〉 ≤ 〈δp, σ〉, ∀δ > 0, ∀p ∈ P.

Taking p = 0 ∈ P , we obtain 〈z̄, σ〉 > 0. Moreover,

〈−z̄, σ〉
δ

< 〈p, σ〉, ∀δ > 0, ∀p ∈ P.

Letting δ → +∞, we obtain 〈p, σ〉 ≥ 0, ∀p ∈ P , and so σ ∈ P+\{0Z∗}. Let ê ∈ E ,
k̂ ∈ intK be fixed, then ê + k̂ ∈ E + intK = intE . Define T̂ : Z → Y as

(4) T̂ (z) =
〈z, σ〉
〈z̄, σ〉(ê + k̂) + T̄ (z).
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It is evident that T̂ ∈ L(Z, Y ) and

T̂ (p) =
〈p, σ〉
〈z̄, σ〉(ê + k̂) + T̄ (p) ∈ K + intK + K ⊆ K, ∀p ∈ P.

Hence, T̂ ∈ L+(Z, Y ). Taking z = z̄ in (4), we have T̂ (z̄) − T̄ (z̄) = ê + k̂. This
implies

(5) 〈T̂ (z̄), μ〉 − 〈T̄ (z̄), μ〉 = 〈ê, μ〉+ 〈k̂, μ〉.

From μ ∈ K+i and k̂ ∈ int K, it follows that 〈k̂, μ〉 > 0. Moreover, from (5),

〈T̂ (z̄), μ〉 − 〈T̄ (z̄), μ〉 > 〈ê, μ〉.

This contradiets to (3) and so −z̄ ∈ P . Now, we show that G(x̄) ⊆ −P . On the
contrary, then there exists z0 ∈ G(x̄) such that −z0 /∈ P . We can verify that there
exists λ0 ∈ P+ such that 〈z0, λ0〉 > 0. Taking a fixed e0 ∈ intE , we define a map
T0 : Z → Y as

T0(z) =
〈z, λ0〉
〈z0, λ〉0e0, z ∈ Z.

Obviously, T0 ∈ L+(Z, Y ). Noticing that −T̄ (z̄) ∈ K, we can obtain that

(6) T0(z0)− T̄ (z̄) = e0 − T̄ (z̄) ∈ intE + K = intE.

On the other hand, taking T = T0, y = ȳ and z = z0 in (2), we obtain that

T0(z0) − T̄ (z̄) /∈ K\{0}+ E ⊆ K + E = E.

This contradicts to (6) and (ii) holds.
Since −z̄ ∈ P and T̄ ∈ L+(Z, Y ) implies that −T̄ (z̄) ∈ K , taking y = ȳ ∈ F (x̄)

and T = 0 ∈ L+(Z, Y ) in (2), we can obtain that

(7) −T̄ (z̄) /∈ K\{0}+ E.

Noticing intE = intK + E ⊆ K\{0} + E. Hence, it follows from (7) that −T̄ (z̄) /∈
intE. Thus, −T̄ (z̄) ∈ K\intE and so (iii) holds.
Furthermore, by (1), we have

clcone
(
F (x̄) + T (G(x̄))− E − (ȳ + T̄ (z̄))

) ∩ K = {0}, ∀T ∈ L+(Z, Y ).

Taking T = 0 ∈ L+(Z, Y ), then

clcone
(
F (x̄) − ȳ − T̄ (z̄)− E

) ∩ K = {0}.
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Thus, (iv) holds.
Conversely, from ȳ ∈ F (x̄) and z̄ ∈ G(x̄), it follows that

(8) ȳ + T̄ (z̄) ∈ F (x̄) + T̄ (G(x̄)) = L(x̄, T̄ ).

By (ii), we have −T (G(x̄)) ⊆ T (P ) ⊆ K, ∀T ∈ L+(Z, Y ). Noticing that E ∈ TY ,
then

(9) E − T (G(x̄)) ⊆ E + K = E, ∀T ∈ L+(Z, Y ).

From (9) and (iv), it follows that

clcone(F (x̄) − ȳ − T̄ (z̄)− (E − T (G(x̄)))) ∩ K = {0}, ∀T ∈ L+,

i.e.,
clcone(L(x̄, L+) − ȳ − T̄ (z̄) − E) ∩ K = {0}.

Then

(10) ȳ + T̄ (z̄) ∈ OE
BS(L(x̄, L+)).

From (i), (8) and (10), we can obtain that

ȳ + T̄ (z̄) ∈ L(x̄, T̄ ) ∩ OE
BS(L(S, T̄)) ∩ OE

BS(L(x̄, L+)).

Therefore, (x̄, T̄ ) is an E-proper saddle point of L(x, T ).

Example 3.1. Let X = Y = Z = R
2, K = P = R

2
+, E = {(y1, y2) ∈ R

2|y1 ≥
0, y2 ≥ 0, y1 + y2 ≥ 3}, S = [−1, 1] × {0}. The set-valued maps F : S ⇒ Y and
G : S ⇒ Z are defined as

F (x1, x2) = {(y1, y2) ∈ R
2|(y1, y2) ∈ [−1 + x1, 1 + x1]× {1}}, ∀(x1, x2) ∈ S,

G(x1, x2) = {(z1, z2) ∈ R
2|(z1, z2) = λ(1 + x1, 1 + x1), ∀λ ∈ [0, 1]},∀(x1, x2) ∈ S.

Let x̄ = (−1, 0) and T̄ (z1, z2) = (0.5z1, 0.5z2) ∈ L+(Z, Y ), we can verify that (x̄, T̄ )
is the E-proper saddle points of L(x, T ). In fact, we only need to verify that

(11) a = (0, 1) ∈ L(x̄, T̄ ) ∩ OE
BS(L(S, T̄)) ∩ OE

BS(L(x̄, L+)) �= ∅.
Since

F (x̄) =
{
(y1, y2) ∈ R

2|(y1, y2) ∈ [−2, 0]× {1}} , G(x̄) = {(0, 0)},
L(x̄, T̄ ) = F (x̄) + T̄ (G(x̄)) =

{
(y1, y2) ∈ R

2|(y1, y2) ∈ [−2, 0]× {1}} ,

L(S, T̄) = F (S)+ T̄ (G(S))={(y1, y2)|y1−y2 +3 ≥ 0, y1−y2−1 ≤ 0, 1 ≤ y2 ≤ 2},
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L(x̄, L+) = F (x̄) + L+(G(x̄)) = F (x̄),

then

clcone(L(S, T̄)+E−a)∩(−K)={(y1, y2)∈R
2|3y1+2y2≥0, y2≥0}∩(−R

2
+) = {0},

clcone(L(x̄, L+) − E − a) ∩ K = {(y1, y2) ∈ R
2|y1 ≤ 0, y2 ≤ 0} ∩ R

2
+ = {0},

Hence, (11) holds which implies (x̄, T̄ ) is the E-proper saddle points of L(x, T ).
Moreover, let ȳ = (−1, 1) ∈ F (x̄), z̄ = (0, 0) ∈ G(x̄). Clearly, ȳ+T̄ (z̄) = (−1, 1),

(ii) and (iii) hold. Thus, we only need to verify that (i) and (iv) hold. This can be seen
from

clcone(L(S, T̄ ) + E − (ȳ + T̄ (z̄))) ∩ (−K)

= clcone(L(S, T̄ ) + E − (−1, 1))∩ (−R
2
+)

= {(y1, y2) ∈ R
2|3y1 + y2 ≥ 0, y2 ≥ 0} ∩ (−R

2
+) = {0}

and
clcone(F (x̄) − (ȳ + T̄ (z̄)) − E) ∩ K

= clcone(F (x̄) − (−1, 1)− E) ∩ R
2
+

= {(y1, y2) ∈ R
2|3y1 + y2 ≤ 0, y2 ≤ 0} ∩ R

2
+ = {0}.

Theorem 3.2. Let E ∈ TY . If an ordered pair (x̄, T̄ ) ∈ S × L+(Z, Y ) is an
E-proper saddle point of the set-valued Lagrangian map L(x, T ) and 0 ∈ G(x̄), then
there exists z̄ ∈ G(x̄) such that x̄ is a E ′-Benson proper efficient point of (VP), where
E ′ = E − T̄ (z̄) ⊆ K.

Proof. Since (x̄, T̄ ) ∈ S × L+(Z, Y ) is an E-proper saddle point of L(x, T ) and
by Definition 3.2, then there exist ȳ ∈ F (x̄) and z̄ ∈ G(x̄) such that ȳ + T̄ (z̄) ∈
OE

BS(L(S, T̄)), i.e.,

clcone
(
F (S) + T̄ (G(S)) + E − (ȳ + T̄ (z̄))

) ∩ (−K) = {0}.
Taking E ′ = E − T̄ (z̄). Obviously, E ′ ∈ TY and

E ′ = E − T̄ (z̄) ⊆ K + K = K.

Noticing that 0 ∈ G(x̄) ⊆ G(S), we have

E ′ = E − T̄ (z̄) ⊆ E + T̄ (G(S))− T̄ (z̄).

Hence, from D ⊆ S, we can obtain that

clcone
(
F (D) + E ′ − ȳ)

) ⊆ clcone
(
F (S) + E ′ − ȳ)

)

⊆ clcone
(
F (S) + T̄ (G(S)) + E − (ȳ + T̄ (z̄))

)
.
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Consequently, we have

clcone
(
F (D) + E ′ − ȳ)

) ∩ (−K) = {0}.

That is, x̄ is a E ′-Benson proper efficient point of (VP).

Remark 3.1. Theorem 3.1 unifies and extends Proposition 6.1 in [12] and Propo-
sition 5.1 in [16]. Theorem 3.2 unifies and extends Theorem 6.1 in [12] and Theorem
5.1 in [16].

4. E-PROPER DUALITY

A set-valued map Φ : L+(Z, Y ) → 2Y is defined as

Φ(T ) = OE
BS(L(S, T ), T ∈ L+(Z, Y ),

which is said to be an E-proper dual map of (VP). The vector maximization problem
with set-valued map Φ,

(VD) max
⋃

T∈L+

Φ(T )

is said to be a dual problem of (VP).

Definition 4.1. Let E ∈ TY . A point y ∈ Y is called a feasible point of (VD) if
y ∈ ⋃

T∈L+

Φ(T ). A feasible point ȳ is called an E-efficient point of (VD) if

(ȳ + E + K\{0})∩
⎛
⎝ ⋃

T∈L+

Φ(T )

⎞
⎠ = ∅.

Theorem 4.1. (Weak Duality). Let E ∈ TY , If x̄ be any feasible solution of (VP),
and ȳ be any feasible point of (VD). Then (ȳ − F (x̄)) ∩ (E + K\{0}) = ∅.

Proof. Since ȳ is a feasible point of (VD), then ȳ ∈ ⋃
T∈L+

Φ(T ). This implies that

there exists T̄ ∈ L+(Z, Y ) such that

ȳ ∈ Φ(T̄ ) = OE
BS(L(S, T̄ )) ⊆ OE+K\{0}(L(S, T̄)),

i.e.,
(ȳ − E − K\{0})∩ (F (S) + T̄ (G(S))) = ∅.

Then,

(12) ȳ − y − T̄ (z) /∈ E + K\{0}, ∀y ∈ F (x̄), ∀z ∈ G(x̄).
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Moreover, from G(x̄) ∩ (−P ) �= ∅, it follows that there exists z̄ ∈ G(x̄) such that
−z̄ ∈ P . Then

−T̄ (z̄) ∈ T̄ (P ) ⊆ K.

Taking z = z̄ in (12), then

ȳ − y − T̄ (z̄) /∈ E + K\{0}, ∀y ∈ F (x̄).

From −T̄ (z̄) ∈ K and E ∈ TY , it follows that

ȳ − y /∈ E + K\{0}, ∀y ∈ F (x̄),

which indicates the conclusion.

Theorem 4.2. Let E ∈ TY . If x̄ be any feasible solution of (VP) and

ȳ ∈
⎛
⎝ ⋃

T∈L+

Φ(T )

⎞
⎠ ∩ F (x̄).

Then, x̄ is an E-efficient point of (VP) and ȳ is an E-efficient point of (VD).

Proof. Since ȳ ∈ ⋃
T∈L+

Φ(T ), then there exists T̄ ∈ L+(Z, Y ) such that

ȳ ∈ Φ(T̄ ) = OE
BS(L(S, T̄) ⊆ OE+K\{0}(L(S, T̄),

i.e.,
(ȳ − E − K\{0})∩ (F (S) + T̄ (G(S))) = ∅.

Then,

(13) ȳ − y − T̄ (z) /∈ E + K\{0}, ∀x ∈ S, ∀y ∈ F (x), ∀z ∈ G(x).

When x ∈ D ⊆ S, there exists z̃ ∈ G(x) such that z̃ ∈ −P . Hence, −T̄ (z̃) ∈ K.
Taking z = z̃ in (13), we have

ȳ − y /∈ E + K\{0}, ∀x ∈ D, ∀y ∈ F (x),

i.e.,
(ȳ − E − K\{0}) ∩ F (D) = ∅.

Since ȳ ∈ F (x̄), then x̄ is an E-efficient point of (VP).
Moreover, let x̄ be a feasible point of (VP). By ȳ ∈ F (x̄) and Theorem 4.1, we

obtain that
(y − ȳ) ∩ (E + K\{0})) = ∅, ∀y ∈

⋃
T∈L+

Φ(T ).
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That is,

(ȳ + E + K\{0}))∩
⎛
⎝ ⋃

T∈L+

Φ(T )

⎞
⎠ = ∅.

Thus, ȳ is anE-efficient point of (VD) by using Definition 4.1.

Theorem 4.3. (Strong Duality). Let E ∈ TY , E ⊆ K, F be E-subconvexlike
on D, (F, G) be (E ×P )-subconvexlike on S and (VP) satisfy the generalized Slater
constraint qualification. If (x̄, ȳ) is an E-Benson proper efficient point of (VP) and
0 ∈ G(x̄), then ȳ is an E-efficient point of (VD).

Proof. According to Theorem 8.1 in [11], then there exists T ∈ L+ such that
(x̄, ȳ) is an E-Benson proper efficient point of the following problem (UVP):

(UVP) min L(x, T )

s.t. (x, T ) ∈ S × L+(Z, Y ).

Hence,
ȳ ∈ F (x̄) ⊆ F (x̄) + T (G(x̄)) ∈ L(S, T ), ∀T ∈ L+(Z, Y )

and
clcone(L(S, T ) + E − ȳ) ∩ (−K) = {0}, ∀T ∈ L+.

Then,
ȳ ∈ OE

BS(L(S, T )) = Φ(T ), ∀T ∈ L+(Z, Y ).

Thus,

ȳ ∈ F (x̄) ∩
⎛
⎝ ⋃

T∈L+

Φ(T )

⎞
⎠ .

Then, ȳ is an E-efficient point of (VD) by means of Theorem 4.2.

Remark 4.1. Theorem 4.1 unifies Theorem 7.1 in [12] and Theorem 6.1 in [16].
Theorem 4.3 unifies and extends Theorem 7.3 in [12] and Theorem 6.2 in [16].

5. CONCLUSIONS REMARKS

In this paper, we first present the concept of E-proper saddle points via improvement
sets. Furthermore, based on the E-Benson proper efficiency proposed by Zhao and Yang
in [11], we establish E-proper saddle points theorems. In the end, we also establish E-
proper duality results including as weak duality and strong duality theorems of vector
optimization problems with set-valued maps. These results unify and extend some
known results about exact and approximate cases.
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