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ON THE BOUNDARY BLOW-UP SOLUTIONS OF p(x)-LAPLACIAN
EQUATIONS WITH GRADIENT TERMS

Yuan Liang*, Qihu Zhang* and Chunshan Zhao

Abstract. In this paper we investigate boundary blow-up solutions of the problem⎧⎨⎩ −�p(x)u+ f(x, u) = ρ(x, u) +K(|x|) |∇u|δ(|x|) in Ω,

u(x) → +∞ as d(x, ∂Ω) → 0,

where −�p(x)u = −div(|∇u|p(x)−2 ∇u) is called p(x)-Laplacian. The existence
of boundary blow-up solutions is proved and the singularity of boundary blow-up
solution is also given for several cases including the case of ρ(x, u) being a large
perturbation (namely, ρ(x,u(x))

f(x,u(x)) → 1 as x → ∂Ω). In particular, we do not have
the comparison principle.

1. INTRODUCTION

Let Ω = B(0, R) ⊂ R
N (N ≥ 2) be a bounded radial domain with B(0, R) =

{x ∈ R
N , |x| < R}. We consider boundary blow-up solutions of the variable exponent

elliptic problem as follows:

(P)

⎧⎨⎩ −�p(x)u+ f(x, u) = ρ(x, u) +K(|x|) |∇u|δ(|x|) in Ω,

u(x) → +∞ as d(x, ∂Ω) → 0,

where −�p(x)u = −div(|∇u|p(x)−2 ∇u) with ∇u = (∂x1u, ∂x2u, · · · , ∂xN
u) is so-

called p(x)−Laplacian.
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The p(x)−Laplacian arises from the study of nonlinear elasticity, electrorheological
fluids and image restoration etc. We refer readers to [2, 6, 42] and [51] for detailed
application backgrounds. Clearly, if p(x) ≡ p (a constant), (P) is a well known p-
Laplacian elliptic problem; but for non-constant p(x), p(x)-Laplacian problems are
more complicated due to the non-homogeneity of p(x)-Laplacian. For example, if Ω
is a smooth bounded domain, the Rayleigh quotient

λp(x) = inf
u∈W 1,p(x)

0 (Ω)\{0}

∫
Ω

1
p(x)

|∇u|p(x) dx∫
Ω

1
p(x)

|u|p(x) dx

is zero in general, and only under some special conditions λp(x) > 0 (see [13]), and it
is also possible the first eigenvalue and eigenfunction of p(x)-Laplacian do not exist,
even though the existence of the first eigenvalue and eigenfunction is very important
in the study of elliptic problems related to p-Laplacian problems [5, 40].

There are many reference papers related to the the study of differential equations
and variational problems with variable exponent, far from being complete, we refer
readers to [2, 3, 10-15, 20-23, 25, 30-35, 43, 46-48, 52, 53] and references cited
therein. For example, the regularity of weak solutions for differential equations with
variable exponent was studied in [2] and [14], and existence of solutions for variable
exponent problems was studied in a series of papers [12, 20, 30, 46, 47, 52]. In this
paper, our aim is to study the existence of boundary blow-up solutions for problem (P)
and the singularity of boundary blow-up solutions.

There are many papers on the boundary blow-up solutions of p-Laplacian problems
[7-9, 16-18, 24, 26-29, 36-39, 41, 44, 45, 49, 50]. But the results on the boundary blow-
up solutions with gradient terms are rare [1, 4, 19, 49]. In [47] and [48], the authors
consider the existence and nonexistence of boundary blow-up solution for −�p(x)u+
f(x, u) = 0. If f(x, u) = (R−|x|)−β(|x|) |u|q(|x|)−2 u is a typical form, then their main
results mean that: (i) If p(R)−β(R)

q(R)−p(R) > 0, then it has radial boundary blow-up solutions;

(ii) If p(R)−β(R)
q(R)−p(R) < 0, then it does not have radial boundary blow-up solution. When

p(x) ≡ p (a constant), K(|x|) ≡ 0 and ρ(x, u) = λ |u|p−2 u, many papers deal with
the boundary blowup solutions of (P) (see [8, 16, 29, 44]), and generally speaking, the
boundary blow-up solutions u satisfy λ|u(x)|p−2u(x)

f(x,u(x))
→ 0 as x→ ∂Ω. In this paper, we

will discuss the existence of boundary blow-up solutions of (P) for a general function
p(|x|) and ρ(x, u) = b( 1

R−|x|)
α(|x|) |u|θ(|x|)−2 u, where θ can be larger than p, and the

case that b( 1
R−|x|)

α(|x|) tends to ∞ as x→ ∂Ω is admissible. Especially, when ρ(x, u)
is a large perturbation, we obtain the existence of boundary blow-up solutions, namely,
ρ(x,u(x))
f(x,u(x)) → 1 as x→ ∂Ω.

Denote
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p∗(x) :=

⎧⎨⎩
Np(x)
N − p(x)

, p(x) < N,

∞, p(x) ≥ N.

Before stating our main results, we make the following assumptions throughout this
paper with σ ∈ [R2 , R) being a constant.

(H1): f(x, u) = a( 1
R−|x|)

β(|x|) |u|q(|x|)−2 u, ρ(x, u) = b( 1
R−|x|)

α(|x|) |u|θ(|x|)−2 u,
where a, b ∈ R

+, β, q, α, θ ∈ C1[0, R], θ, q ≥ 1 and θ(r) < q(r) ≤ p∗(x), ∀r ∈ [0, R].
(H2): p(x) ∈ C1(Ω) is a radial symmetric function, and satisfy 1 < p− ≤ p+,

where p− = inf
Ω
p(x), p+ = sup

Ω
p(x), p(0) > N and p(r) < q(r), ∀r ∈ [σ, R].

(H3): K : Ω → R is a continuous function and satisfies |K(x)| ≤ C1(R − |x|)γ ,

as |x| → R−, and |K(x)| ≤ C2 |x|
δ(x)(N−1)

p(x)−1 as |x| → 0, where γ ∈ R, δ ∈ C[0, R],
0 ≤ δ(x) ≤ p(x) for |x| ≤ R, and C1, C2 are generic positive constants.

We will discuss the existence of boundary blow-up solutions of (P) in the following
three cases:

Case (I) α(R)− β(R) < s1(q(R)− θ(R)), γ > (s1 + 1)(δ(R) + 1 − p(R))− 1;
Case (II) α(R)− β(R) = s1(q(R)− θ(R)), γ > (s1 + 1)(δ(R)+ 1− p(R))− 1;
Case (III) α(R)−β(R) > s1(q(R)− θ(R)), γ > (s2 + 1)(δ(R)+ 1− p(R))− 1;

where s1 = p(R)−β(R)
q(R)−p(R) , s2 = α(R)−β(R)

q(R)−θ(R) .

Under the assumptions (H1)–(H3) as above, now our main results can be stated as
follows:

Theorem 1.1. Suppose case (I) holds, then (P) has a radial boundary blow-up
solution u(·) with the singularity of C0[d(x, ∂Ω)]−s1, i.e.,

lim
d(x,∂Ω)→0

u(x)
C0[d(x, ∂Ω)]−s1

= 1,

where s1 = p(R)−β(R)
q(R)−p(R) , C0 = [ 1

as
p(R)−1
1 (s1 + 1)(p(R)− 1)]

1
q(R)−p(R) .

Theorem 1.2. Suppose case (II) holds, then (P) has a radial boundary blow-up
solution u(·) with the singularity of t0C0[d(x, ∂Ω)]−s1, i.e.,

lim
d(x,∂Ω)→0

u(x)
t0C0[d(x, ∂Ω)]−s1

= 1,

where s1 and C0 are defined in Theorem 1.1, and t0 is the unique positive solution of

−aCq(R)−1
0 tp(R)−1 + aC

q(R)−1
0 tq(R)−1 = bC

θ(R)−1
0 tθ(R)−1.

Theorem 1.3. Suppose case (III) holds, then (P) has a radial boundary blow-up
solution u(·) with the singularity of t∗[d(x, ∂Ω)]−s2, i.e.,
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lim
d(x,∂Ω)→0

u(x)
t∗[d(x, ∂Ω)]−s2

= 1,

where s2 = α(R)−β(R)
q(R)−θ(R)

and t∗ = ( ba)
1

q(R)−θ(R) .

The main difficulties to prove above results are as follows. (i) The non-homogeneity
of p(x)-Laplacian, (ii) The gradient term contained in the equation, and (iii) Lack of
comparison principle.

This paper is organized as follows. First we do some preparations and prove some
Lemmas which will be used to prove the theorems in Section 2. In Section 2, we
present proofs of Theorems 1.1-1.3 stated as above.

2. PRELIMINARIES

In order to deal with p(x)-Laplacian problem, we need introduce functional spaces
Lp(·)(Ω), W 1,p(·)(Ω) and properties of p(x) -Laplacian which we will use later (see
[11, 25]). Let

Lp(·)(Ω) =
{
u | u is a measurable real-valued function,

∫
Ω |u(x)|p(x) dx <∞

}
,

with the norm

|u|p(·) = inf

{
λ > 0

∣∣∣∣∣
∫

Ω

∣∣∣∣u(x)λ
∣∣∣∣p(x) dx ≤ 1

}
.

The space (Lp(·)(Ω), |·|p(·)) becomes a Banach space. We call it variable exponent
Lebesgue space. Moreover, the space (Lp(·)(Ω), |·|p(·)) is a separable and uniform
convex Banach space (see [11], Theorem 1.10, Theorem 1.14).

The variable exponent Sobolev space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) =
{
u ∈ Lp(·) (Ω)

∣∣∣ |∇u| ∈ Lp(·) (Ω)
}
,

and it can be equipped with the norm

‖u‖ = |u|p(·) + |∇u|p(·) , ∀u ∈W 1,p(·) (Ω) .

W
1,p(·)
0 (Ω) is the closure of C∞

0 (Ω) in W 1,p(·) (Ω). W 1,p(·) (Ω) and W 1,p(·)
0 (Ω) are

separable and uniform convex Banach spaces (see [11], Theorem 2.1).

Definition 2.1. u ∈ W
1,p(·)
loc (Ω) is called a boundary blow-up solution of (P) if it

satisfies∫
Q
|∇u|p(x)−2∇u∇ϕdx+

∫
Q
f#(x, u,∇u)ϕdx= 0, ∀ϕ ∈W

1,p(·)
0 (Q) ∩ L∞(Q),
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for any open domain Q � Ω , and max(k − u, 0) ∈ W
1,p(·)
0 (Ω) for every positive

integer k, where

f#(x, u,∇u) = f(x, u)− ρ(x, u)−K(|x|) |∇u|δ(|x|) .

For any open domain Q � Ω, ∀u ∈W
1,p(·)
loc (Ω), we define

Ψ, L : W 1,p(·)
loc (Ω) → (W 1,p(·)

0 (Q) ∩ L∞(Q))∗,

as

〈Ψu, ϕ〉 =
∫
Q
(|∇u|p(x)−2∇u∇ϕ+ f#(x, u,∇u)ϕ)dx,∀ϕ ∈W

1,p(·)
0 (Q) ∩ L∞(Q),

〈Lu, ϕ〉 =
∫
Q
(|∇u|p(x)−2∇u∇ϕ+ f(x, u)ϕ)dx, ∀ϕ ∈W

1,p(·)
0 (Q) ∩ L∞(Q),

then we have

Lemma 2.2. (see [[12], Theorem 3.1]). For any open domain Q � Ω, if q ≤ p∗,
h ∈ W 1,p(·)(Q) and X = h +W

1,p(·)
0 (Q), then, L : X → (W 1,p(·)

0 (Q) ∩ L∞(Q))∗ is
strictly monotone.

Let g ∈ (W 1,p(·)
0 (Q) ∩ L∞(Q))∗, if

〈g, ϕ〉 ≥ 0, ∀ϕ ∈W
1,p(·)
0 (Q) ∩ L∞(Q), ϕ ≥ 0 a.e. in Ω,

then denote g ≥ 0 in (W 1,p(·)
0 (Q)∩L∞(Q))∗; correspondingly, if −g ≥ 0 in (W 1,p(·)

0 (Q)
∩L∞(Q))∗, then denote g ≤ 0 in (W 1,p(·)

0 (Q) ∩ L∞(Q))∗.

Definition 2.3. Let u ∈ W
1,p(·)
loc (Ω). If Ψu ≥ 0 (Ψu ≤ 0) in (W 1,p(·)

0 (Q) ∩
L∞(Q))∗, for any open domain Q � Ω, then u is called a weak super-solution (weak
sub-solution) of equation (P).

Lemma 2.4. (see [[14], Theorem 1.1]). Under the conditions of (H1)-(H3), if
u ∈ W 1,p(·)(Q) is a bounded weak solution of −�p(·)u + f#(x, u,∇u) = 0 in Q,
u = w0 on ∂Q , where w0 ∈ W 1,p(·)(Q), Q ⊂⊂ Ω ; then u ∈ C1,α

loc (Q), where
α ∈ (0, 1) is a constant.

Here we note that if u(x) = u(|x|) = u(r), a radial solution of (P), then (P) can
be rewritten as follows:

(rN−1
∣∣u′∣∣p(r)−2

u′)′ = rN−1[f(r, u)− ρ(r, u)−K(r) |∇u|δ(r)], r ∈ (0, R),(1)

u(0) = u∗, u′ (0) = 0.
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In order to deal with the existence of solutions of (P), we need to do some prepa-
ration work. For any (t, x) ∈ [0, R] × R

N , denote ϕ(t, x) = |x|p(t)−2 x. It is well
known that ϕ(t, ·) is a homeomorphism from R

N to R
N for any fixed t ∈ [0, R]. For

any t ∈ [0, R], denote by ϕ−1(t, ·) the inverse operator of ϕ(t, ·), then

ϕ−1(t, x) = |x|
2−p(t)
p(t)−1 x, for x ∈ R

N\{0}, ϕ−1(t, 0) = 0.

It is clear that ϕ−1(t, ·) is continuous and maps a bounded set into a bounded set.
Next we consider the existence of solutions for the following auxiliary weighted

p(r)-Laplacian ordinary equation with right hand terms depending on the first order
derivative

(2) −(rN−1
∣∣u′∣∣p(r)−2

u′)′ + rN−1f∗(r, u, r
N−1

p(r)−1u′) = 0, r ∈ (0, R#),

where R# ∈ (0, R), and with one of the following boundary value conditions:

(3) u(0) = c, u(R#) = d.

(4) lim
r→0+

r
N−1

p(r)−1u′(r) = 0, u(R#) = d.

(5) lim
r→0+

r
N−1

p(r)−1u′(r) = 0, u′(R#) = d∗.

The function f∗ : [0, R#]×R×R → R is assumed to be Caratheodory, by this we
mean:

(i) for almost every t ∈ [0, R#] the function f∗(t, ·, ·) is continuous;
(ii) for each (x, y) ∈ R × R the function f∗(·, x, y) is measurable on [0, R#];
(iii) for each ς > 0 there is a ης ∈ L1([0, R#],R) such that, for almost every

t ∈ [0, R#] and every (x, y) ∈ R × R with |x| ≤ ς , |y| ≤ ς , one has

|f∗(t, x, y)| ≤ ης(t).
Denote

C1
#[0, R#] = {u ∈ C[0, R#] | u′ is continuous in (0, R#], lim

r→0+
r

N−1
p(r)−1u′(r) exist},

‖u‖0 = sup
r∈(0,R#)

|u(r)| and ‖u‖1 = ‖u‖0 +‖r N−1
p(r)−1u′‖0. The spaces C[0, R#] and

C1
#[0, R#] are equipped with the norm ‖ · ‖0 and ‖ · ‖1 respectively.

Definition 2.5. Function φ ∈ C[0, R#] (resp. ψ) is called a sub-solution of
(2) (resp. super-solution), if there exists R∗ ∈ (0, R#) such that φ ∈ C1

#[0, R∗]
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and φ ∈ C1[R∗, R#] (resp. ψ), rN−1 |φ′|p(r)−2 φ′(r) and rN−1 |ψ′|p(r)−2 ψ′(r) are
absolutely continuous on (0, R∗) and (R∗, R#) respectively (resp. ψ) and

−(rN−1
∣∣φ′∣∣p(r)−2

φ′(r))′ + rN−1f∗(r, φ, r
N−1

p(r)−1φ′)

≤ 0, a.e. in (0, R∗) and (R∗, R#), (≥)

φ′(R∗−) ≤ φ′(R∗+). (≥)

u is a solution of (2) if and only if u is a sub-solution and a super-solution of (2).
Denote

Q0 = {(t, x) | t ∈ [0, R#], x ∈ [φ(t), ψ(t)]},
Q1 = {(t, x, y) | t ∈ [0, R#], x ∈ [φ(t), ψ(t)], y ∈ R}.

We also assume that
(H∗) |f∗(t, x, y)| ≤ A1(t, x)(|y|p(t) + 1) for all (t, x, y) ∈ Q1, where A1(t, x) is

positive and continuous on Q0.
In this section, we always assume that φ and ψ are a sub-solution and a super-

solution of (2) respectively. In this section, the main goal is to give the following
lemma 2.6-2.8.

Lemma 2.6. If f∗ is Caratheodory and satisfies (H∗), φ ≤ ψ satisfies φ(0) ≤ c ≤
ψ(0), φ(R#) ≤ d ≤ ψ(R#), then (2) with (3) has a solution u satisfying φ ≤ u ≤ ψ.

Lemma 2.7. If f∗ is Caratheodory and satisfies (H∗), φ ≤ ψ satisfies φ(R#) ≤
d ≤ ψ(R#) and

lim
r→0+

r
N−1

p(r)−1φ′(r) ≥ 0 ≥ lim
r→0+

r
N−1

p(r)−1ψ′(r),

then (2) with (4) has a solution u satisfying φ ≤ u ≤ ψ.

Lemma 2.8. If f∗ is Caratheodory and satisfies (H∗), φ ≤ ψ satisfies φ′(R#) ≤
d∗ ≤ ψ′(R#) and

lim
r→0+

r
N−1

p(r)−1φ′(r) ≥ 0 ≥ lim
r→0+

r
N−1

p(r)−1ψ′(r),

then (2) with (5) has a solution u satisfying φ ≤ u ≤ ψ.

Our main task in the rest of this section is to prove the Lemmas 2.6-2.8 stated
as above. But we need do some preparation work before giving proofs. Now let’s
consider the problem

(6) (rN−1ϕ(r, u′(r)))′ = rN−1f∗(r),

with boundary value condition (3), where f∗ ∈ L1. If u is a solution of (6) with (3),
by integrating (6) from 0 to r, we find that

(7) rN−1ϕ(r, u′(r)) = � + F (rN−1f∗)(r),
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where
F (rN−1f∗)(r) =

∫ r

0
tN−1f∗(t)dt, � = lim

r→0+
rN−1ϕ(r, u′(r)).

The boundary conditions imply that∫ R#

0

ϕ−1[r, r1−N(� + F (rN−1f∗)(r))]dr = d− c.

For fixed h ∈ C[0, R#], we denote

Λh(�) =
∫ R#

0
ϕ−1[r, r1−N(� + h(r))]dr+ c− d.

We have

Lemma 2.9. The function Λh has the following properties

(i) For any fixed h ∈ C[0, R#], the equation

(8) Λh(�) = 0

has a unique solution �̂(h) ∈ R.

(ii) The function �̂ : C[0, R#] → R defined in (i), is continuous and maps bounded
sets into bounded sets.

Proof. (i) It is not difficult to check that for any fixed h ∈ C[0, R#], Λh(·) is
continuous and strictly increasing, therefore, if (8) has a solution, it must be unique.

By the assumption (H2), p(0) > N , thus r
1−N

p(r)−1 ∈ L1(0, R). Since h ∈ C[0, R#],
it is easy to see that

lim
�→+∞Λh(�) = +∞, lim

�→−∞Λh(�) = −∞.

It means the existence and boundedness of solutions of Λh(�) = 0.
In this way, we define a function �̂(h) : C[0, R#] → R, which satisfies∫ R#

0
ϕ−1[r, r1−N(�̂(h) + h(r))]dr+ c− d = 0.

(ii) Similar to the proof of (i), �̂ maps bounded sets into bounded sets. Next
we show the continuity of �̂. Let {un} is a convergent sequence in C[0, R#] and
un → u, as n→ +∞. Then {�̂(un)} is a bounded sequence and therefore it contains
a convergent subsequence {�̂(unj)}. Let �̂(un) → �0 as j → +∞. Since∫ R#

0
ϕ−1[r, r1−N(�̂(unj ) + unj (r))]dr+ c− d = 0,
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letting j → +∞, we have∫ R#

0

ϕ−1[r, r1−N(�0 + u(r))]dr+ c− d = 0,

from (i) we get �0 = �̂(u), it means �̂ is continuous. This completes the proof.
Now we define � : L1 → R by

�(h) = �̂(F (rN−1h)).

Then it is clear that � is a continuous function which maps bounded sets of L1 into
bounded sets of R, and hence it is a compact continuous mapping.

Now we continue our argument previous to Lemma 2.9. By solving for u′ in (7)
and integrating we get

u(r) = u(0) + F{ϕ−1[r, r1−N(�(f∗) + F (rN−1f∗)(r))]}(r).
It is clear that ϕ−1(r, ·) is continuous and maps bounded sets into bounded sets.
We define

M(h)(t) = F{ϕ−1[r, r1−N(�(h) + F (rN−1h))]}(t), ∀t ∈ [0, R#].

Let Nf∗(u) : C1
#[0, R#] → L1 be the Nemytskii operator associated to f∗ defined by

Nf∗(u)(r) = f∗(r, u(r), r
N−1

p(r)−1u′(r)), a.e. on [0, R#].

Then it is easy to see that

Lemma 2.10. u is a solution of (2) with (3) if and only if u is a solution of the
following abstract equation

u = c+M(Nf∗(u)).

Next we present a lemma related to the operator M .

Lemma 2.11. The operator M is continuous and maps equi-integrable sets in L1

into relatively compact sets in C1
#[0, R#].

Proof. First we remark that M(h)(t) ∈ C1
#[0, R#]. Moreover, M is a continuous

operator from L1 to C1
#[0, R#] due to the fact that

t
N−1

p(t)−1M(h)′(t) = ϕ−1[t, (�(h) + F (tN−1h)], ∀t ∈ [0, R#].

Now suppose U is an equi-integrable set in L1, then there exists η(·) ∈ L1, such
that, for any u ∈ U

|u(t)| ≤ η(t) a.e. in [0, R#].

Next we show that M(U) ⊂ C1
#[0, R#] is a compact set.
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Let {un} be a sequence in M(U), then there exists a sequence {hn} ∈ U such
that un = M(hn). For t1, t2 ∈ [0, R#], we have∣∣F (rN−1hn)(t1)− F (rN−1hn)(t2)

∣∣ ≤ R#

∫ t2

t1

| η(t)| dt.

Hence the sequence {F (rN−1hn)} is uniformly bounded and equi-continuous, then
there exists a subsequence of {F (rN−1hn)} which is convergent in C[0, R#], and for
simplicity we still denote the subsequence by {F (rN−1hn)}. Since the operator �
is bounded and continuous, we can choose a convergent subsequence of {�(hn) +
F (rN−1hn)} in C[0, R#] which we still denote by {�(hn) +F (rN−1hn)}. Then we
have

tN−1ϕ(t, (M(hn))′(t) = �(hn) + F (rN−1hn)

is convergent in C[0, R#]. Note that

M(hn)(t) = F{r 1−N
p(r)−1ϕ−1[r, (�(hn) + F (rN−1hn)]}(t), ∀t ∈ [0, R#].

Due to the continuity of ϕ−1, M(hn) is convergent in C[0, R#]. Thus we conclude
that {un} is convergent in C1

#[0, R#]. The proof is completed.

Lemma 2.12. Let φ, ψ ∈ C[0, R#] be a sub-solution and a super-solution of (2),
respectively; and satisfy φ(t) ≤ ψ(t) for any t ∈ [0, R#]. Then there exists a positive
constant L (which depends on A1, p) such that for any solution y of (2) with (3) and
φ(t) ≤ y(t) ≤ ψ(t), we have ‖t N−1

p(t)−1 y′‖0 ≤ L.

Proof. Denote

μ0 = 4
∫ R#

0
tN−1[1 +A1(t, y(t))]dt,

a0 = max{r N−1
p(r)−1 | r ∈ [0, R#]},

σ = max{ψ(s)− φ(t) | t, s ∈ [0, R#]},

κ = max{t
(N−1)p(t)

p(t)−1 A1(t, x) | (t, x) ∈ Q0}.
Then there exists a t0 ∈ (0, R#) such that∣∣∣t0 N−1

p(t0)−1 y′(t0)
∣∣∣ ≤ a0

∣∣y′(t0)∣∣ ≤ a0
σ

R#
.

Here we note that there exist positive numbers σ1 and N1 ≥ 1 + (a0
σ
R#

)p(t0)−1

such that ∫ N1

σ1

1
w
dw > κσ + μ0.
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Now suppose our conclusion is not true. Without loss of generality, we may assume
that there exists t# ∈ [0, R#] such that t#N−1 |y′(t#)|p(t#)−2 y′(t#) ≥ σ1+N1. Since
rN−1 |y′|p(r)−2 y′(r) is absolutely continuous, there exists [t1, t2] ⊂ [0, R#] such that

rN−1
∣∣y′∣∣p(r)−2

y′(r) ≥ 1 + (a0
σ

R#
)p(t0)−1 on [t1, t2]

and either

tN−1
1

∣∣y′∣∣p(t1)−2
y′(t1) = σ1, tN−1

2

∣∣y′∣∣p(t2)−2
y′(t2) = N1

or
tN−1
1

∣∣y′∣∣p(t1)−2
y′(t1) = N1, tN−1

2

∣∣y′∣∣p(t2)−2
y′(t2) = σ1.

Without loss of generality, we assume the former case happens. Hence

κσ + μ0 <

∣∣∣∣∫ N1

σ1

1
w
dw

∣∣∣∣
=

∣∣∣∣∣
∫ t2

t1

(rN−1 |y′|p(r)−2 y′)′

rN−1 |y′|p(r)−2 y′
dr

∣∣∣∣∣
=

∫ t2

t1

∣∣∣∣∣rN−1f∗(r, x, r
N−1

p(r)−1 y′)

rN−1 |y′|p(r)−2 y′

∣∣∣∣∣dr
≤

∫ t2

t1

r
(N−1)p(r)

p(r)−1 A1(r, y(r))
∣∣y′∣∣ dr + μ0

≤ κσ + μ0,

which is a contradiction. The proof is completed.
Next we consider an auxiliary problem of the form

(SBVP)
(rN−1 |u′|p(r)−2 u′)′ = rN−1f∗(r, R(r, u), R1[r

N−1
p(r)−1u′]) + rN−1R2(r, u)

def
= rN−1f̃(r, u, r

N−1
p(r)−1u′), r ∈ (0, R#),

where

R(t, u) =

⎧⎪⎨⎪⎩
ψ(t), u(t) > ψ(t),
u , φ(t) ≤ u(t) ≤ ψ(t),
φ, u(t) < φ(t),

R1[y] =

⎧⎪⎨⎪⎩
L1, y > L1,

y, |y| ≤ L1,

−L1, y < −L1,

with L1 = 1 + max{L, sup
r∈(0,R#)

∣∣∣r N−1
p(r)−1ψ′(r)

∣∣∣ , sup
r∈(0,R#)

∣∣∣r N−1
p(r)−1φ′(r)

∣∣∣}, and
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R2(t, u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e(t, u)

u − ψ(t)
2 + u2 + ψ2(t)

, u(t) > ψ(t),

0, φ(t) ≤ u(t) ≤ ψ(t),

e(t, u)
u − φ(t)

2 + u2 + φ2(t)
, u(t) < φ(t),

where e(t, u) = 1 + A1(t, R(t, u)).

Lemma 2.13. Let φ, ψ ∈ C[0, R#] be a sub-solution and a super-solution of (2),
respectively; and satisfy φ(t) ≤ ψ(t) for any t ∈ [0, R#], φ(0) ≤ c ≤ ψ(0), φ(R#) ≤
d ≤ ψ(R#). Let u(t) be a solution of SBVP with (3), then φ(t) ≤ u(t) ≤ ψ(t) for
any t ∈ [0, R#].

Proof. We only prove that u(t) ≤ ψ(t) for any t ∈ [0, R#]. For the case of
φ(t) ≤ u(t) for any t ∈ [0, R#], the argument is similar and thus it is omitted.

First we note that u satisfies the boundary value condition φ(0) ≤ c = u(0) ≤ ψ(0),
φ(R#) ≤ d = u(0) ≤ ψ(R#). Assume that u(t) > ψ(t) for some t ∈ (0, R#), then
u(t)− ψ(t) achieves its positive maximum at t0, i.e., there exist a t0 ∈ (0, R#) and a
positive number δ such that u(t0) = ψ(t0) + δ, u(t) ≤ ψ(t) + δ for any t ∈ [0, R#].

At first, we may assume that t0 = R∗ (recall R∗ is defined in the Definition 2.5).
We will prove the result according to the following three cases:

Case (a) ψ′(R∗−) = ψ′(R∗+);

Case (b) u′(R∗) < ψ′(R∗−);

Case (c) u′(R∗) ≥ ψ′(R∗−) and ψ′(R∗−) �= ψ′(R∗+).

Suppose Case (a) holds. Then ψ ∈ C1
#[0, R#]. Hence

(9) t0
N−1

p(t0)−1u′(t0) = t0
N−1

p(t0)−1ψ′(t0).

There exists a positive number η such that u(t) > ψ(t) for any t ∈ J := (t0 −
η, t0 + η) ⊂ [0, R#]. From the definition of ψ, u and f̃ we conclude that

(rN−1
∣∣ψ′∣∣p(r)−2

ψ′)′ ≤ rN−1f∗(r, ψ, r
N−1

p(r)−1ψ′) = rN−1f̃∗(r, ψ, r
N−1

p(r)−1ψ′)

< rN−1f̃∗(r, u, r
N−1

p(r)−1u′) on [t0 − η1, t0 + η1],

where η1 ∈ (0, η) is small enough. For any r ∈ (t0, t0 + η1], we have

(10)

∫ r

t0

(tN−1
∣∣ψ′∣∣p(t)−2

ψ′)′dt

<

∫ r

t0

tN−1f̃∗(t, u, t
N−1

p(t)−1u′)dt =
∫ r

t0

(tN−1
∣∣u′∣∣p(t)−2

u′)′dt.
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From (9) and (10) we have∣∣ψ′∣∣p(r)−2
ψ′ <

∣∣u′∣∣p(r)−2
u′ on (t0, t0 + η1],

it means that
(ψ + δ)′ < u′ on (t0, t0 + η1],

which is a contradiction to the definition of t0, so u(t) ≤ ψ(t) for any t ∈ [0, R#].

Suppose Case (b) holds. Since u′(R∗) < ψ′(R∗−) , it is easy to see that u′(t) <
ψ′(t) in (R∗ − ι, R∗) for some constant ι > 0. Then u(t) − ψ(t) is larger than
u(R∗) − ψ(R∗) in (R∗ − ι, R∗), which is a contradiction.

Suppose Case (c) holds. We have u′(R∗) ≥ ψ′(R∗−) > ψ′(R∗+), and we can see
that u′(t) > ψ′(t) in (R∗, R∗ + ι) for some constant ι > 0, then u(t) − ψ(t) is larger
than u(R∗) − ψ(R∗) on (R∗, R∗ + ι), which is a contradiction.

If t0 �= R∗, then u(t) − ψ(t) is differentiable at t0. Since u(t) − ψ(t) achieves its
positive maximum at t0, (9) is valid. By repeating the proof of Case (a), we can also
get a contradiction, so u(t) ≤ ψ(t) for any t ∈ [0, R#]. The proof of Lemma 2.13 is
completed.

Next we present proofs of Lemma 2.6, Lemma 2.7 and Lemma 2.8.

Proof of Lemma 2.6. At first we note that f̃(·, ·, ·) satisfies (H∗). It follows from
Lemma 2.13 that the solution u of SBVP with (3) satisfies φ(·) ≤ u(·) ≤ ψ(·). From
the proof of Lemma 2.12, we can see that the solution u of SBVP with (3) satisfies
‖ t N−1

p(t)−1u′ ‖0≤ L1, thus we only need to prove the existence of solutions for SBVP
with (3). We remark here that u is a solution of SBVP with (3) if and only if u is a
solution of

u = Φ
f̃∗(u) := c+M(N

f̃∗(u)).

Denote
C1
c,d = {u ∈ C1

#[0, R#] | u(0) = c and u(R#) = d}.

Since N
f̃∗(u) maps C1

c,d into a set of equi-integrable functions in L1(0, R#), and
thus similar to the proof of Lemma 2.11, we can conclude that M maps sets of equi-
integrable functions in L1(0, R#) into relatively compact sets in C1

c,d, then Φ
f̃∗(u) is

compact and continuous.
For any u ∈ C1

c,d, we have Φ
f̃∗(u) ∈ C1

c,d. Moreover, Φ
f̃∗(C

1
c,d) is bounded. Then

it follows from the Schauder fixed point theorem that Φ
f̃∗(u) has at least one fixed

point u in C1
c,d. Then u is a solution of SBVP with (3). Proof of Lemma 2.6 is

completed.

Proof of Lemma 2.7. Let d be a fixed constant satisfying φ(R#) ≤ d ≤ ψ(R#).
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We claim that there are two sequences {un} and {vn}, all of them are solutions of
(2) with the boundary value condition (3), and satisfy

(11) lim
r→0+

r
N−1

p(r)−1u′n(r) > 0 > lim
r→0+

r
N−1

p(r)−1 v′n(r),

(12) un(t) ≤ vn(t), [un+1(t), vn+1(t)] ⊆ [un(t), vn(t)], t ∈ [0, R#],

(13) un(R#) = d = vn(R#),

and

(14) vn+1(0)− un+1(0) =
vn(0)− un(0)

2
.

By Lemma 2.12, both sequences {un(t)} and {vn(t)} are bounded in C1
#[0, R#].

Then it follows that { lim
r→0+

r
N−1

p(r)−1u′n(r)} is a bounded set, and { lim
r→0+

r
N−1

p(r)−1u′n(r)}
has a convergent subsequence. Note that {un(t)} are solutions of (2), and satisfy

rN−1ϕ(r, u′n(r)) = �n + F (rN−1Nf∗(un))(r),

where

F (rN−1Nf∗(un))(r) =
∫ r

0

rN−1Nf∗(un)dt, �n = lim
r→0+

rN−1ϕ(r, u′n(r)).

Similar to the proof of Lemma 2.12, {un(t)} has a convergent subsequence{uni(t)}
in C1

#[0, R#], and then {�n} is bounded. We may assume that uni(t) → u(t) in
C1

#[0, R#] and vnj (t) → v(t) in C1
#[0, R#]. It is easy to see that u(t) ≤ v(t) and

both are solutions of (2) with the boundary value condition (4).
It only remain to prove the existence of {un} and {vn}, which are the solutions of

(2) with the boundary value condition (3), and satisfy (11)-(14).
According to Lemma 2.6, equation (2) with boundary value condition

u1(0) = φ(0), u1(R#) = d,

has a solution u1 such that

φ(t) ≤ u1(t) ≤ ψ(t), t ∈ [0, R#].

Since u1(0) = φ(0), we can see that

u1(rn) − φ(rn) = (u′1(ξn) − φ′(ξn))rn ≥ 0, where ξn ∈ (0, rn).

Thus
u′1(ξn)− φ′(ξn) ≥ 0, where ξn → 0+.
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Since lim
r→0+

r
N−1

p(r)−1u′1(r) and lim
r→0+

r
N−1

p(r)−1φ′(r) exist, we have

lim
r→0+

r
N−1

p(r)−1u′1(r) ≥ lim
r→0+

r
N−1

p(r)−1φ′(r).

We may assume that lim
r→0+

r
N−1

p(r)−1u′1(r) > 0, or else we get a solution for (2) with
the boundary value condition (4).

Similarly, equation (2) with the following boundary value condition

v1(0) = ψ(0), v1(R#) = d,

has a solution v1 such that

u1(t) ≤ v1(t) ≤ ψ(t), t ∈ [0, R#],

which satisfies
lim
r→0+

r
N−1

p(r)−1 v′1(r) ≤ lim
r→0+

r
N−1

p(r)−1ψ′(r) ≤ 0.

Obviously, u1(t) and v1(t) are a sub-solution and a super-solution of equation (2)
with (4) respectively.

According to Lemma 2.6, equation (2) with the following boundary value condition

u(0) =
u1(0) + v1(0)

2
, u(R#) = d,

has a solution y such that

u1(t) ≤ y(t) ≤ v1(t), t ∈ [0, R#].

We may assume that lim
r→0+

r
N−1

p(r)−1 y(r) �= 0, or else we get a solution for (2) with
the boundary value condition (4).

If lim
r→0+

r
N−1

p(r)−1 y(r) > 0, then denote u2(t) = y(t) and v2(t) = v1(t); if lim
r→0+

r
N−1

p(r)−1

y(r) < 0, then denote v2(t) = y(t) and u2(t) = u1(t). It is easy to see that u2(t) and
v2(t) both are solutions of (2) and satisfy

lim
r→0+

r
N−1

p(r)−1u′2(r) > 0 > lim
r→0+

r
N−1

p(r)−1 rv′2(r),

u2(t) ≤ v2(t), [u2(t), v2(t)] ⊆ [u1(t), v1(t)], ∀t ∈ [0, R#],

u2(R#) = d = v2(R#),
and

v2(0) − u2(0) =
v1(0)− u1(0)

2
.

By repeating the steps as above, we get the existence of {un} and {vn}, which are
the solutions of (2) with the boundary value condition (3), and satisfy (11)-(14). Proof
of Lemma 2.7 is completed.
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Proof of Lemma 2.8 . The idea is similar to the proof of Lemma 2.7.

By Lemma 2.7, for any constant d satisfying φ(R#) ≤ d ≤ ψ(R#), (2) with the
boundary value condition (4) has a solution u satisfying φ ≤ u ≤ ψ. Let d = φ(R#),
(2) with (4) has a solution u1 satisfying φ ≤ u1 ≤ ψ. Obviously, u′1(R#) ≤ φ′(R#).
Let d = ψ(R#), (2) with (4) has a solution u1 satisfying u1 ≤ u1 ≤ ψ. Moreover,
u′1(R#) ≥ ψ′(R#). Let d = φ(R#)+ψ(R#)

2 , then (2) with (4) has a solution y satisfy
u1 ≤ y ≤ u1. If y′(R#) = d∗, then it is a solution of (2) with the boundary value
condition (5). If y′(R#) > d∗, then denote u2 = u1, u2 = y. If y′(R#) < d∗, then
denote u2 = y, u2 = u1. Similar to the proof of Lemma 2.7, we can get the existence
of solutions of (2) with (5). Proof of Lemma 2.8 is completed.

Next we finish this section with the following lemma.

Lemma 2.14. If ψ(r) and φ(r) are a super-solution and a sub-solution of (1),
respectively, and satisfy ψ′(r) → 0 and φ′(r) → 0 as r → 0, then ψ(|x|) and φ(|x|)
are a super-solution and a sub-solution of (P), respectively. Moreover, if u is a solution
of (1) with lim

r→0+
r

N−1
p(r)−1u′(r) = 0 and u(r) → ∞ as r → R−, then it is a solution of

(P).

Proof. At first, we prove that φ(|x|) is a sub-solution of (P). Denote

Ω1 = {x ∈ Ω | |x| < R∗},Ω2 = {x ∈ Ω | |x| > R∗}.
For nonnegative radial symmetric function w = w(|x|) ∈ C1

0 (Ω), we have∫
Ω
{|∇φ|p(x)−2∇φ∇w + f(x, φ)w− ρ(x, φ)w−K(|x|) ∣∣φ′∣∣δ(|x|)w}dx

=
∫

Ω1

{|∇φ|p(x)−2∇φ∇w + f(x, φ)w− ρ(x, φ)w−K(|x|) ∣∣φ′∣∣δ(|x|)w}dx
+

∫
Ω2

{|∇φ|p(x)−2∇φ∇w + f(x, φ)w− ρ(x, φ)w−K(|x|) ∣∣φ′∣∣δ(|x|) w}dx
= J1 + J2.

Let ξn ∈ C1[0, R∗] satisfy ξn(r) = 0 for r ∈ [ 1
2n+1R

∗, R∗(1 − 1
2n+1 )], and

ξn(r) = 1 for r ∈ [0, 1
4n+2R

∗] ∪ [R∗(1 − 1
4n+2 ), R∗]. By the definition of φ, we have

J1 = lim
n→∞

∫
Ω1

{|∇φ|p(x)−2∇φ∇(1− ξn)w + f(x, φ)(1− ξn)w

−ρ(x, φ)(1− ξn)w −K(|x|) ∣∣φ′∣∣δ(|x|) (1− ξn)w}dx
+ lim
n→∞

∫
Ω1

{|∇φ|p(x)−2∇φ∇(ξnw) + f(x, φ)ξnw

−ρ(x, φ)ξnw −K(|x|) ∣∣φ′∣∣δ(|x|) ξnw}dx
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≤ lim
n→∞

∫
Ω1

|∇φ|p(x)−2∇φ∇(ξnw)dx

= lim
n→∞

∫
Ω1

w|∇φ|p(x)−2∇φ∇ξndx+ lim
n→∞

∫
Ω1

ξn|∇φ|p(x)−2∇φ∇wdx

=
∫
∂Ω1

|φ′(R∗−)|p(R∗)−2φ′(R∗−)w(R∗)dS.

and

J2 =
∫

Ω2

{−�p(x)φ + f(x, φ)− ρ(x, φ)−K(|x|) ∣∣φ′∣∣δ(|x|)}wdx
+

∫
∂Ω2

(|∇φ|p−2∇φ · n2)wdS

≤
∫
∂Ω2

(|∇φ|p(x)−2∇φ · n2)w(R∗)dS

= −
∫
∂Ω1

|φ′|p(R∗)−2φ′(R∗+)w(R∗)dS,

where n2 is the unit outer normal of ∂Ω2.
Then∫

Ω
{|∇φ|p(x)−2∇φ∇w + f(x, φ)w− ρ(x, φ)w−K(|x|) ∣∣φ′∣∣δ(|x|)w}dx

≤
∫
∂Ω1

|φ′(R∗−)|p(R∗)−2φ′(R∗−)w(R∗)dS

−
∫
∂Ω1

|φ′(R∗+)|p(R∗)−2φ′(R∗+)w(R∗)dS

=
∫
∂Ω1

[|φ′(R∗−)|p(R∗)−2φ′(R∗−) − |φ′(R∗+)|p(R∗)−2φ′(R∗+)]w(R∗)dS ≤ 0.

The last inequality follows from definition of φ. Thus φ is a sub-solution of (P).
Similarly, we can prove that ψ is a super-solution of (P).
If u is a solution of (1) with lim

r→0+
r

N−1
p(r)−1u′(r) = 0, then we have

∣∣ϕ(r, u′n(r))
∣∣ =

∣∣∣∣ 1
rN−1

∫ r

0
tN−1Nf#(un)(t)dt

∣∣∣∣
≤ 1
rN−1

∫ r

0
tN−1

∣∣Nf#(un)(t)
∣∣dt

≤
∫ r

0

∣∣Nf#(un)(t)
∣∣ dt→ 0 as r → 0.

Thus u is a solution of (P). Proof of Lemma 2.14 is completed.



616 Yuan Liang, Qihu Zhang and Chunshan Zhao

3. PROOFS OF THEOREMS 1.1-1.3

In this section, we will discuss the existence of boundary blow-up solutions of (P)
in Case (I)–Case (III) as stated in section 1 and then prove Theorems 1.1–1.3.

The method is the sub-super-solution method, that means that we will construct a
super-solution g and a sub-solution v of (P) respectively, which satisfies g ≥ v. Let
Dj = {x | |x| < r∗j := (1 − 1

j+1 )R} (j = 1, 2, · · ·) be local domains of Ω. We will
prove the existence of radial solution uj of the following problem⎧⎪⎨⎪⎩ −�p(x)uj + f(x, uj) = ρ(x, uj) +K(|x|)

∣∣∣u′j∣∣∣δ(|x|) , in Dj ,

uj(x) = v(|x| , s1, ε), for x ∈ ∂Dj,

which satisfy g ≥ uj ≥ v. Similar to the proof of Theorem 3.3 of [47], the solution
sequence {uj} on local domains has a subsequence converging to u which is a boundary
blow-up solution of (P).

3.1. Case (I)

At first, we construct a super-solution of (P). Assume q(r) − p(r) ≥ 1
n0

for r ∈
[σ, R], where n0 > 3 is an integer. Define a function g(r, s, ε) on [0, R) as

g(r, s, ε) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(R− r)−s + k, R0 ≤ r < R,

C(R−R0)−s+k−
∫ R0

r
[Cs(R−R0)−s−1]

p(R0)−1

p(t)−1 [
(R0)N−1

tN−1
sin ε(t− σ)]

1
p(t)−1dt,

σ < r < R0 ,

C(R−R0)−s+k−
∫ R0

σ
[Cs(R−R0)−s−1]

p(R0)−1
p(t)−1 [

(R0)N−1

tN−1
sin ε(t−σ)]

1
p(t)−1dt ,

r ≤ σ,

where s is a positive constant, R0 ∈ (σ, R) and R−R0 is small enough, ε = π
2(R0−σ)

,

ε ∈ (0, (4n2
0)

−1
n0−2 ). k is a sufficiently large constant determined later in the proof of

Lemma 3.1 and

(15) C = Cε = Cε(s) = (1 + ε)[
1
a
sp(R)−1(s+ 1)(p(R)− 1)]

1
q(R)−p(R) .

Here we note that for any positive constant s, g(·, s, ε) ∈ C1[0, R).

Lemma 3.1. For Case (I), g(|x| , s1, ε) defined as above is a super-solution of
(P).
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Proof. By Lemma 2.14, we only need to prove that g(r, s1, ε) is a super-solution
of (1). Since g(·, s, ε) ∈ C1[0, R), according to the definition of the super-solution of
(1), we only need to prove

(rN−1
∣∣g′∣∣p(r)−2

g′)′

≤ rN−1
[
f(r, g)− ρ(r, g)− |K(r)| ∣∣g′∣∣δ(r)] , ∀r ∈ [0, σ)∪ (σ, R0) ∪ (σ, R0).

Step 1. In the interval (σ, R0).
When r ∈ (R0, R), we have

g′ = Cs1(R− r)−s1−1,

and
(rN−1

∣∣g′∣∣p(r)−2
g′)′ = [rN−1(Cs1)p(r)−1(R− r)−(s1+1)(p(r)−1)]′.

By computation, we have

(16)

(rN−1
∣∣g′∣∣p(r)−2

g′)′

= rN−1(Cs1)p(r)−1(s1 + 1)(p(r)− 1)(R− r)−(s1+1)(p(r)−1)−1

+ rN−1(Cs1)p(r)−1(R− r)−(s1+1)(p(r)−1)(−(s1 + 1)p(r))′ ln(R− r)

+ (rN−1(Cs1)p(r)−1)′(R− r)−(s1+1)(p(r)−1)

= rN−1(Cs1)p(r)−1(s1 + 1)(p(r)− 1)(R− r)−(s1+1)(p(r)−1)−1(1 + h(r)),

where

h(r) =
(−(s1 + 1)p(r))′ ln(R− r)

(s1 + 1)(p(r)− 1)
(R− r)

+
(rN−1(Cs1)p(r)−1)′

rN−1(Cs1)p(r)−1(s1 + 1)(p(r)− 1)
(R− r)

=
n0(−(s1 + 1)p(r))′(R− r)

1
n0 ln(R− r)

1
n0

(s1 + 1)(p(r)− 1)
(R− r)1−

1
n0

+
(rN−1(Cs1)p(r)−1)′(R− r)

1
n0

rN−1(Cs1)p(r)−1(s1 + 1)(p(r)− 1)
(R− r)1−

1
n0 .

It is easy to see that there exist positive constants A,B ≥ 1 (A,B depend on
C,R, p, q, n0, s1 ) such that

∣∣∣n0(−(s1 + 1)p(r))′(R− r)
1

n0 ln(R− r)
1

n0

(s1 + 1)(p(r)− 1)

∣∣∣ ≤ A,∣∣∣ (rN−1(Cs1)p(r)−1)′

rN−1(Cs1)p(r)−1(s1 + 1)(p(r)− 1)
(R− r)

1
n0

∣∣∣ ≤ B,
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then we have

(17) |h(r)| ≤ (A+ B)(R− r)1−
1

n0 ≤ [(A+B + 1)(R− R0)
1

n0 ]n0−1.

If R−R0 > 0 is small enough, we get

(18) (A+ B + 1)(R−R0)
1

n0 ≤ ε

2
.

Combining (17) and (18) together, we can find that when R − R0 > 0 is small
enough, then for any r ∈ [R0, R),

(19)

(Cs1)p(r)−1(s1 + 1)(p(r)− 1)(1 + h(r))

≤ (Cs1)p(r)−1(s1 + 1)(p(r)− 1)(1 + εn0−1)

≤ aCq(r)−1(
1

1 + ε
)

1
2n0 .

Since p(r), q(r) and β(r) are C1 continuous, if R −R0 > 0 is small enough, we
obtain

(20) (R− r)−(s1+1)(p(r)−1)−1 ≤ (R− r)−s1(q(r)−1)−β(r)(1 + ε)
1

4n0 , ∀r ∈ [R0, R).

Therefore, under the conditions of Case (I), we have

(21)
ρ(r, g)
f(r, g)

→ 0 and
|K(r)| |g′|δ(r)

f(r, g)
→ 0, as r → R−.

From (16), (19), (20) and (21) it follows that when R − R0 > 0 is small enough
we can get

(rN−1 |g′|p(r)−2 g′)′

≤ rN−1(Cs1)p(r)−1(s1 + 1)(p(r)− 1)(R− r)−(s1+1)(p(r)−1)−1(1 + εn0−1)

≤ (1 + ε)
−1
4n0 rN−1(R− r)−β(r)a(C(R− r)−s1)q(r)−1

≤ (1 + ε)
−1
4n0 rN−1f(r, g)

≤ rN−1
[
f(r, g)− ρ(r, g)− |K(r)| |g′|δ(r)

]
, ∀r ∈ (R0, R).

Thus, when R− R0 > 0 is small enough, we have

(22) (rN−1 |g′|p(r)−2 g′)′≤rN−1
[
f(r, g)−ρ(r, g)−|K(r)| |g′|δ(r)

]
, ∀r∈(R0, R).
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Step 2. On the interval [0, σ) and (σ, R0).
Note that q(r)−1 > θ(r)−1, ∀r ∈ [0, R]. By computation, when k is large enough

it follows that

rN−1(R− r)−β(r)akq(r)−1

≥ (R0)N−1
[
ε(Cs1(R−R0)−(s1+1))(p(R0)−1) cos(ε(r − σ))

+ b(R− r)−α(r)(2k)θ(r)−1 + |K(r)| ∣∣g′∣∣δ(r)]
≥ (rN−1

∣∣g′∣∣p(r)−2
g′)′ + ρ(r, g)+ |K(r)| ∣∣g′∣∣δ(r) , ∀r ∈ (σ, R0).

Therefore, when k is large enough, we have

(23) (rN−1
∣∣g′∣∣p(r)−2

g′)′≤rN−1
[
f(r, g)−ρ(r, g)−|K(r)| ∣∣g′∣∣δ(r)] , ∀r∈(σ, R0),

and

(24) (rN−1
∣∣g′∣∣p(r)−2

g′)′ = 0≤rN−1
[
f(r, g)−ρ(r, g)−|K(r)| ∣∣g′∣∣δ(r)] , 0≤r<σ.

Here we note that g(|x| , s1, ε) is a C1 function on B(0, R). From (22), (23) and
(24), we can see g(|x| , s1, ε) is a super-solution of (P), when R − R0 > 0 is small
enough (R0 is a constant depending on R, p, q, β, n0, s1) and k is large enough. This
completes the proof.

Remark. It is easy to see that g(r, s, ε∗) is a super-solution of (2) for any s ≥ s1
and ε∗ ≥ ε, and then g(|x| , s, ε∗) is a super-solution of (P).

Next, we will construct a sub-solution of (P). Here we point out that there exists a
very small positive number ε depending on R0 such that

−f(r, ε) + ρ(r, ε) ≤ 0, ∀r ∈ [0, R0].

Obviously, for any A ∈ [ε, g(R0)], g is a super-solution of the following equation

(25)

⎧⎪⎪⎨⎪⎪⎩
−(rN−1 |v′|p(r)−2 v′)′

= rN−1
[
−f(r, v) + ρ(r, v)+K(r) |v′|δ(r)

]
, ∀r ∈ [0, R0],

v′(0) = 0, v(R0) = A,

and ε is a sub-solution of (25).
By Lemma 2.7 and Lemma 2.14, (25) has a positive solution φA(r) satisfy ε ≤

φA(r) ≤ g(r, s, ε). Define the function v(r, s1, ε) on [0, R) as

v(r, s, ε) =

{
C∗(R− r)−s − k∗, R0 ≤ r < R,

φA(r), 0 ≤ r < R0,
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where s is a positive constant, R0 ∈ (σ, R) and R − R0 > 0 is small enough, ε is a
small positive constant and

(26)
k∗ = C∗(R− R0)−s − A,

C∗ = C∗
ε = C∗

ε (s) = (1− ε)[
1
a
sp(R)−1(s+ 1)(p(R)− 1)]

1
q(R)−p(R) .

Here we note that for any positive constant s, v(·, s, ε) ∈ C[0, R), and v′(r, s, ε) → 0
as r → 0.

Lemma 3.2. Under the conditions of case (I), there exists a A ∈ [ε, C∗(R −
R0)−s1 ] such that v(|x| , s1, ε) is a sub-solution of (P), where s1 = p(R)−β(R)

q(R)−p(R) .

Proof. By the definition, v(r, s1, ε) is a sub-solution of (25), and therefore v(r, s1, ε)
is a sub-solution of (P) on [0, R0]. By noting that v(r, s1, ε) ≥ A > 0, ∀r ∈ [R0, R).
Since A ∈ [ε, C∗(R− R0)−s1 ], we have k∗ ≥ 0. Similar to the proof of Lemma 3.1,
we can see that v(r, s1, ε) satisfies

−(rN−1
∣∣v′∣∣p(r)−2

v′)′ + rN−1
[
f(r, v)− ρ(r, v)−K(r)

∣∣v′∣∣δ(r)]
≤ −(rN−1

∣∣v′∣∣p(r)−2
v′)′ + rN−1

[
f(r, C∗(R− r)−s1) −K(r)

∣∣v′∣∣δ(r)]
≤ 0, ∀r ∈ [R0, R).

Thus v is a sub-solution of (P) on [R0, R). Denote

hk∗(r) = C∗(R− r)−s1 − k∗.

By Definition 2.5, v is a sub-solution of (P) provided

φ′A(R−
0 ) − h′k∗(R

+
0 ) ≤ 0.

If φ′A(R−
0 ) > h′k∗(R

+
0 ), we will prove that there exists a constant A1 ∈ [ε, A] such

that v(·, s, ε) ∈ C1[0, R). It is sufficient to prove that exists a constant A1 ∈ [ε, A]
such that φ′A1

(R0) = h′k∗(R0). Obviously,

φ′ε(R0) ≤ 0 < h′k∗(R0).

Let’s consider the following equation

(27)

⎧⎪⎪⎨⎪⎪⎩
−(rN−1 |v′|p(r)−2 v′)′

= rN−1
[
−f(r, v) + ρ(r, v)+K(r) |v′|δ(r)

]
, ∀r ∈ [0, R0],

v′(0) = 0, v′(R0) = h′k∗(R0).

Clearly, ε is a sub-solution of (27), φA is a super-solution of (27), and ε ≤ φA.
According to Lemma 2.8, there exist a solution y of (27) which satisfies ε ≤ y ≤ φA.
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Let A1 = y(R0), then φA1(·) = y(·) is a solution of (27). In the definition of v, let
A1 replace A, then v is a sub-solution of (2). By Lemma 2.14, it is a sub-solution of
(P). The proof is completed.

Definition 3.3. If u is a boundary blow-up function and satisfies

lim
d(x,∂Ω)→0

u(x)
μ[d(x, ∂Ω)]−s

= 1,

where μ and s are positive constants, then we say that the singularity of u is μ[d(x, ∂Ω)]−s,
and the blowup rate of u is s.

Proof of Theorem 1.1.

Step 1. The existence of solution.

From Lemma 3.1-3.2 and Lemma 2.14 it follows that (P) has a super-solution
g(|x| , s1, ε) and a sub-solution v(|x| , s1, ε), respectively. Moreover, we have g(|x| , s1, ε) ≥
v(|x| , s1, ε), for any x ∈ Ω.

Let Dj = {x | |x| < r∗j := (1 − 1
j+1 )R} (j = 1, 2, · · ·). Let’s consider the radial

solutions of the following problem

(28)

⎧⎪⎨⎪⎩ −�p(x)uj + f(x, uj) = ρ(x, uj) +K(|x|)
∣∣∣u′j∣∣∣δ(|x|) , in Dj ,

uj(x) = v(|x| , s1, ε), for x ∈ ∂Dj.

It is easy to see that the solution of the following ODE is a radial solution of (28)

(29)

⎧⎪⎨⎪⎩ (rN−1
∣∣∣u′j∣∣∣p(r)−2

u′j)
′ = rN−1

[
f(r, uj) − ρ(r, uj) −K(r)

∣∣∣u′j∣∣∣δ(r)]
u′j(0) = 0, uj(r∗j ) = v(r∗j , s1, ε).

Next Let’s consider

(30)

⎧⎪⎪⎨⎪⎪⎩
(rN−1

∣∣∣u′j∣∣∣p(r)−2
u′j)

′ = rN−1

[
f(r, uj) − ρ(r, uj) −K(r)

∣∣∣u′j∣∣∣δ(r)]
lim
r→0

r
N−1

p(r)−1 u′j(r) = 0, uj(r∗j ) = v(r∗j , s1, ε).

From Lemma 2.6, we can see that (30) has at least one solution uj . By Lemma
2.14, u′j(0) = 0. It means that every solution of (30) is a solution of (29), and it is
a radial solution of (28). Similar to the proof of Theorem 3.3 of [47], {uj} has a
subsequence converging to u which is a boundary blow-up solution of (P).

Step 2. The asymptotic behavior of solution.
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We claim that there are a family sub-solution v∗(r, s1, ε) and a family super-solution
g∗(r, s1, ε) satisfy

(31) v(r, s1,
1
2
) ≤ v∗(r, s1, ε) ≤ g∗(r, s1, ε) ≤ g(r, s1, 1), ε ∈ (0,

1
3
).

In the definition of g∗(r, s1, 1
n+2 ) and v∗(r, s1, 1

n+2 ), let ε = 1
n+2 , it follows from

the former discussion that (P) has a solution un which is between g∗(r, s1, 1
n+2 ) and

v∗(r, s1, 1
n+2 ). Since g∗(r, s1, 1

n+2 ) and v∗(r, s1, 1
n+2 ) are between g∗(r, s1, 1) and

v∗(r, s1, 1
2), each solution un (n = 1, 2, · · ·) is between g∗(r, s1, 1) and v∗(r, s1, 1

2 ).
Similar to the former discussion, the sequence {un} has a subsequence converging to
u, which is a solution of (P). Obviously, u has the singularity of μ[d(x, ∂Ω)]−s1, where

s1 =
p(R)− β(R)
q(R) − p(R)

, μ = C0 = [
1
a
s
p(R)−1
1 (s1 + 1)(p(R)− 1)]

1
q(R)−p(R) .

It only remain to prove the existence of a family sub-solution v∗(r, s1, ε) and a
family super-solution g∗(r, s1, ε) which satisfy (31).

At first, we construct a family of g∗(r, s1, ε) which is between v(r, s1, 1
2 ) and

g(r, s1, 1).

By the definition of super-solution g(r, s1, ε) and sub-solution v(r, s1, ε), we have
g(r, s1, 1) > v(r, s1, 1

2), ∀r ∈ [0, R). Now, let’s consider

(I)

⎧⎨⎩−(rN−1 |v′|p(r)−2 v′)′ = rN−1
[
−f(r, v) + ρ(r, v)+K(r) |v′|δ(r)

]
, ∀r ∈ [0, R1],

v′(0) = 0, v(R1) = A,

where

R0 < R1 < R, and A∗ := v(R1, s1,
1
2
) ≤ A ≤ A∗ := g(R1, s1, 1).

Note that g(r, s1, 1) and v(r, s1, 1
2 ) are a super-solution and a sub-solution of (I),

respectively. According to Lemma 2.6, for any A ∈ [A∗, A∗], (I) has a solution φA(r)
satisfying v(r, s1, 1

2 ) ≤ φA(r) ≤ g(r, s1, 1). Let ε ∈ (0, 1
3 ] be small enough. We define

g∗(r, s1, ε) =

⎧⎨⎩ Cε(R− r)−s1 + k, R1 ≤ r < R,

φA∗(r), 0 ≤ r < R1,

where Cε is defined in (15), and

k := A∗ − Cε(R− R1)−s1 > 0.

We can see that
g′∗(R

−
1 , s1, ε) = φ′A∗(R−

1 ) ≥ g′(R1, s1, 1)

= s1C1(R− r)−s1−1 > s1Cε(R− r)−s1−1 = g′∗(R
+
1 , s1, ε).



On the Boundary Blow-up Solutions of p(x)-Laplacian Equations with Gradient Terms 623

Similar to the proof of Lemma 3.1 and Lemma 2.14, we can see that g∗ is a
super-solution of (P). Moreover, v(r, s1, 1

2 ) ≤ g∗(r, s1, ε) ≤ g(r, s1, 1).

At last, we construct a family of v∗(r, s1, ε) which satisfy (31).

According to Lemma 2.6, (I) has a solution φA∗(r) satisfy v(r, s1, 1
2) ≤ φA∗(r) ≤

g∗(r, s1, ε). We define

v∗(r, s1, ε) =

{
C∗
ε (R− r)−s1 − k∗, R1 ≤ r < R,

φA∗(r), 0 ≤ r < R1,

where C∗
ε is defined in (26), and

k∗ = C∗
ε (R−R0)−s1 − A∗ > 0.

Note that

v′∗(R
−
1 , s1, ε) = φ′A∗(R

−
1 ) ≤ v′(R1, s1,

1
2
)

= s1C
∗
1
2
(R− r)−s1−1 < s1C

∗
ε (R− r)−s1−1 = v′∗(R

+
1 , s1, ε).

Similar to the proof of Lemma 3.2 and Lemma 2.14, we can see that v∗ is a
sub-solution of (P). The proof is completed.

3.2. Case (II)

Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1, the main task
is to construct a pair of sub-solution and super-solution of (P). Set

g2 = t0g(r, s1, ε), ∀r ∈ [0, R),

v2(r, s1, ε) =

{
t0C

∗(R− r)−s1 − k∗, R0 ≤ r < R,

φA(r), 0 ≤ r < R0,

k∗ = t0C
∗(R−R0)−s1 − A,

where g is defined in Case (I), A ∈ [ε, t0C∗(R−R0)−s1 ], ε > 0 is small enough such
that f(r, ε) ≤ ρ(r, ε) for any 0 ≤ r ≤ R0, C∗ is defined in (26), t0 is the unique
positive solution of

−aCq(R)−1
0 tp(R)−1 + aC

q(R)−1
0 tq(R)−1 = bC

θ(R)−1
0 tθ(R)−1,

where C0 = C∗
0 is defined in (15).

Next, we will prove that g2 and v2 are a super-solution and a sub-solution of (P),
respectively. The idea is similar to the proof of Theorem 1.1, and we need small
adjustments.

Step 1. We will prove g2 is a super-solution of (P).
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The major difficulty is to prove

(rN−1
∣∣g′2∣∣p(r)−2

g′2)
′ ≤ rN−1

[
f(r, g2) − ρ(r, g2) − |K(r)| ∣∣g′2∣∣δ(r)] , ∀r ∈ (R0, R).

Denote ζ = (s1 + 1)(p(R)− 1) + 1. Under the conditions of Case (II), we have

(32) β(R) + s1(q(R)− 1) = α(R) + s1(θ(R)− 1) = ζ, and (s1 + 1)δ(R)− γ < ζ.

Let C be defined in (15). Denote

ψ = t0C(R − r)−s1 .

Similar to the proof of Lemma 3.1, by computation, we have

(33)
(rN−1

∣∣ψ′∣∣p(r)−2
ψ′)′

= rN−1(t0Cs1)p(r)−1(s1+1)(p(r)−1)(R−r)−(s1+1)(p(r)−1)−1(1+h(r)),

where

h(r)=
(−(s1+1)p(r))′ ln(R−r)

(s1+1)(p(r)−1)
(R−r)+

(rN−1(t0Cs1)p(r)−1)′

rN−1(t0Cs1)p(r)−1(s1+1)(p(r)−1)
(R−r).

It is easy to see that h(r) → 0 as r → R−.
Note that (C0s1)p(R)−1(s1 +1)(p(R)−1) = aC

q(R)−1
0 . Since p(r), q(r) and β(r)

are C1 continuous, from (32) and the definition of C and C = (1 + ε)C0 it follows
that

(rN−1
∣∣ψ′∣∣p(r)−2

ψ′)′×r1−N(R−r)ζ → (t0Cs1)p(R)−1(s1+1)(p(R)−1)

= a[t0(1+ε)]p(R)−1C
q(R)−1
0 , as r→R−,(34a)

rN−1f(r, ψ)× r1−N(R−r)ζ → a[t0(1+ε)C0]q(R)−1, as r→R−,(34b)

rN−1ρ(r, ψ)× r1−N (R− r)ζ → b[t0(1 + ε)C0]θ(R)−1, as r → R−,(34c)

rN−1 |K(r)| ∣∣ψ′∣∣δ(r)×r1−N(R−r)ζ → 0, as r→R−.(34d)

Since t0 is the unique positive solution of the following equation

−aCq(R)−1
0 tp(R)−1 + aC

q(R)−1
0 tq(R)−1 = bC

θ(R)−1
0 tθ(R)−1,

when t > t0, it follows from q(R) > max{p(R), θ(R)} that

−aCq(R)−1
0 tp(R)−1 + aC

q(R)−1
0 tq(R)−1 > bC

θ(R)−1
0 tθ(R)−1.

Therefore

(35)
−aCq(R)−1

0 [t0(1 + ε)]p(R)−1 + aC
q(R)−1
0 [t0(1 + ε)]q(R)−1

> bC
θ(R)−1
0 [t0(1 + ε)]θ(R)−1.
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From (35) and (34a)-(34d), when R− R0 > 0 is small enough, we can get

0 < (rN−1
∣∣ψ′∣∣p(r)−2

ψ′)′ ≤ rN−1[f(r, ψ)− ρ(r, ψ)−K(r)
∣∣ψ′∣∣δ(r)], ∀r ∈ [R0, R).

By (35), we have f(r, ψ) > ρ(r, ψ) > 0, ∀r ∈ [R0, R). It is easy to see that
f(r, ψ+ k) − ρ(r, ψ+ k) is increasing with respect to k. By noting that g2 = ψ + k
for r ∈ [R0, R), when R−R0 > 0 is small enough, it is easy to check

(36) (rN−1
∣∣g′2∣∣p(r)−2

g′2)
′≤ rN−1

[
f(r, g2)−ρ(r, g2)−|K(r)|∣∣g′2∣∣δ(r)], ∀r∈(R0, R).

Note that q(r)−1 > θ(r)−1, ∀r ∈ [0, R]. By computation, when k is large enough
it is easy to check

(37) (rN−1
∣∣g′2∣∣p(r)−2

g′2)
′≤rN−1

[
f(r, g2)−ρ(r, g2)−|K(r)|∣∣g′2∣∣δ(r)] , ∀r∈(σ, R0),

and

(38) (rN−1
∣∣g′2∣∣p(r)−2

g′2)
′=0≤rN−1

[
f(r, g2)−ρ(r, g2)−|K(r)|∣∣g′2∣∣δ(r)], 0≤r<σ.

It follows from (36)-(38) that g2 is a super-solution of (1) with lim
r→0+

r
N−1

p(r)−1 g′2(r) =

0 and g2(r) → ∞ as r → R−, then it is a super-solution of (P).

Step 2. We will prove v2 is a sub-solution of (P).
The major difficulty is to prove

(rN−1
∣∣v′2∣∣p(r)−2

v2
′)′ + rN−1K(r)

∣∣v2′∣∣δ(r) ≥ rN−1[f(r, v2)−ρ(r, v2)], ∀r ∈ [R0, R).

Obviously

−aCq(R)−1
0 [t0(1− ε)]p(R)−1+aC

q(R)−1
0 [t0(1− ε)]q(R)−1 < bC

θ(R)−1
0 [t0(1− ε)]θ(R)−1.

Thus when R−R0 > 0 is small enough, we can get

(39) (rN−1
∣∣φ′∣∣p(r)−2

φ′)′ ≥ rN−1[f(r, φ)− ρ(r, φ)−K(r)
∣∣φ′∣∣δ(r)], ∀r ∈ [R0, R).

When R− R0 > 0 is small enough, we have

(40) (rN−1
∣∣φ′∣∣p(r)−2

φ′)′ + rN−1K(r)
∣∣φ′∣∣δ(r) > 0, ∀r ∈ [R0, R).

From (39), we have

(41) (rN−1
∣∣φ′∣∣p(r)−2

φ′)′+rN−1K(r)
∣∣φ′∣∣δ(r)≥rN−1[f(r, φ)−ρ(r, φ)], ∀r ∈ [R0, R).

Note that 0 ≤ k∗ < t0C
∗(R−R0)−s1 = min

r∈[R0,R)
φ(r). We claim that
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(42)
(rN−1

∣∣φ′∣∣p(r)−2
φ′)′ +rN−1K(r)

∣∣φ′∣∣δ(r)
≥ rN−1[f(r, φ− k∗) − ρ(r, φ− k∗)], ∀r ∈ [R0, R).

If r ∈ [R0, R) satisfies f(r, φ− k∗) − ρ(r, φ− k∗) ≤ 0, it follows from (40) that

(rN−1
∣∣φ′∣∣p(r)−2

φ′)′ + rN−1K(r)
∣∣φ′∣∣δ(r) > 0 ≥ rN−1[f(r, φ− k∗) − ρ(r, φ− k∗)].

If r ∈ [R0, R) satisfies f(r, φ− k∗) − ρ(r, φ− k∗) > 0, it is easy to check

f(r, φ− k∗)− ρ(r, φ− k∗) ≤ f(r, φ)− ρ(r, φ).

Thus (42) is valid. Since v2(r, s1, ε) = φ − k∗ for any r ∈ [R0, R), then

(rN−1
∣∣v′2∣∣p(r)−2

v2
′)′ + rN−1K(r)

∣∣v2′∣∣δ(r) ≥ rN−1[f(r, v2)−ρ(r, v2)], ∀r ∈ [R0, R).

Similar to the proof of Lemma 3.2, there exists a A ∈ [ε, t0C∗(R−R0)−s1 ] such
that v2(|x| , s1, ε) is a sub-solution of (P).

Step 3 The existence and asymptotic behavior of solution of (P).
Also similar to the proof of Theorem 1.1, we get existence of solution u satisfying

lim
d(x,∂Ω)→0

u(x)
t0μ[d(x, ∂Ω)]−s1

= 1,

The proof is completed.

3.3. Case (III)

Proof of Theorem 1.3. The idea is similar to the proof of Theorem 1.1-1.2, and we
need small adjustments.

Under the conditions of Case (III), we have

(43)
(s2 + 1)δ(R)− γ

< (s2 + 1)(p(R)− 1) + 1 < β(R) + s2(q(R)− 1) = s2(θ(R) − 1) + α.

Note that atq(R)−1
∗ = bt

θ(R)−1
∗ . Similar to the proof of Theorem 1.2, the terms

f(x, t∗(R− |x|)−s2) and ρ(x, t∗(R− |x|)−s2) have the same blowup singularity, and
the blowup rate is larger than −�p(x)t∗(R− |x|)−s2 and K(x) |∇t∗(R− |x|)−s2 |δ(x),
i.e.,

(44)
f(x, t∗(R− |x|)−s2)
ρ(x, t∗(R− |x|)−s2) → 1 as |x| → R−,

and
−�p(x)t∗(R− |x|)−s2
f(x, t∗(R− |x|)−s2) → 0 as |x| → R−,(45)

K(x) |∇t∗(R− |x|)−s2 |δ(x)
−�p(x)t∗(R− |x|)−s2 → 0 as |x| → R−.(46)
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Denote
ψ(r) = (1 + ε)t∗(R− r)−s2 , ∀r ∈ [0, R).

Define

g3(r, s2, ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(r) + k, R0 ≤ r < R,

ψ(R0) + k −
∫ R0

r
[ψ′(R0)]

p(R0)−1
p(t)−1 [

(R0)N−1

tN−1
sin ε(t− σ)]

1
p(t)−1dt,

σ < r < R0 ,

ψ(R0) + k −
∫ R0

r

[ψ′(R0)]
p(R0)−1
p(t)−1 [

(R0)N−1

tN−1
sin ε(t− σ)]

1
p(t)−1dt ,

r ≤ σ,

v3(r, s2, ε) =

{
(1 − ε)t∗(R− r)−s2 − k∗, R0 ≤ r < R,

φA(r), 0 ≤ r < R0,

k∗ = (1− ε)t∗(R− r)−s2 −A,

where k > 0 is large enough, A ∈ [ε, (1− ε)t∗(R−r)−s2], ε > 0 is small enough such
that f(r, ε) ≤ ρ(r, ε) for any 0 ≤ r ≤ R0.

We will prove that g3 and v3 are a super-solution and a sub-solution of (P), respec-
tively.

Step 1. We will prove that g3 is a super-solution and a sub-solution of (P).

Since g3 is C1, when k is large enough, we only to prove

(rN−1
∣∣g′3∣∣p(r)−2

g′3)
′

≤ rN−1
[
f(r, g3) − ρ(r, g3)− |K(r)| ∣∣g′3∣∣δ(r)] , ∀r ∈ [0, σ)∪ (σ, R0) ∪ (R0, R).

It follows from (44) and condition (H1) that
f(x, ψ)
ρ(x, ψ)

→ (1 + ε)q(R)−θ(R) > 1 as |x| → R−.

Combining the above inequality, (45) and (46) together, when R−R0 > 0 is small
enough, we have

(rN−1
∣∣ψ′∣∣p(r)−2

ψ′)′ ≤ rN−1[f(r, ψ)− ρ(r, ψ)−K(r)
∣∣ψ′∣∣δ(r)], ∀r ∈ [R0, R).

Similar to the proof of Theorem 1.2 and Lemma 3.1, when k is large enough, we
can see that g3 is a super-solution of (P).

Step 2. We will prove that v3 is a sub-solution of (P).
We claim that the following inequality is valid when R−R0 > 0 is small enough

(47) (rN−1
∣∣v′3∣∣p(r)−2

v3
′)′ ≥ rN−1[f(r, v3)−ρ(r, v3)−K(r)

∣∣v′3∣∣δ(r)], ∀r ∈ [R0, R).
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Similar to the proof of Lemma 3.2, there exists a A ∈ [ε, (1− ε)t∗(R−r)−s2] such
that v3(|x| , s2, ε) is a sub-solution of (P). It only remain to prove (47).

Denote
φ = (1− ε)t∗(R− r)−s2 .

It follows from (43) and the condition (H1) that

f(x, φ)
ρ(x, φ)

→ (1− ε)q(R)−θ(R) < 1 as |x| → R−.

Combining the above inequality, (45) and (46) together, when R−R0 > 0 is small
enough, we have

(rN−1
∣∣φ′∣∣p(r)−2

φ′)′ ≥ rN−1[f(r, φ)− ρ(r, φ)−K(r)
∣∣φ′∣∣δ(r)], ∀r ∈ [R0, R).

It follows from (46) that

(rN−1
∣∣φ′∣∣p(r)−2

φ′)′ − rN−1K(r)
∣∣φ′∣∣δ(r) ≥ 1

2
(rN−1

∣∣φ′∣∣p(r)−2
φ′)′ > 0 as r → R−.

Note that k∗ ∈ [0, (1− ε)t∗(R−R0)−s2 − ε]. Similar to the proof of Theorem 1.2,
when R−R0 > 0 is small enough, we have

(rN−1
∣∣φ′∣∣p(r)−2

φ′)′+rN−1K(r)
∣∣φ′∣∣δ(r) ≥ rN−1[f(r, φ−k∗)−ρ(r, φ−k∗)], ∀r ∈ [R0, R).

Note that v3 = φ− k∗ on [R0, R). Thus (47) is valid.

Step 3. The existence and asymptotic behavior of solution of (P).
Also similar to the proof of Theorem 1.1, we get the existence of solution u satis-

fying
lim

d(x,∂Ω)→0

u(x)
t∗[d(x, ∂Ω)]−s2

= 1.

The proof is completed.
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