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WEIGHTED HARDY SPACES ON SPACE OF HOMOGENEOUS TYPE
WITH APPLICATIONS

Xinfeng Wu, Zongguang Liu and Lijuan Zhang

Abstract. In this paper, we develop a theory of weighted Hardy spaces Hp
ω

on spaces of homogeneous type and prove that certain class of singular integral
operators are bounded from Hp

ω to itself and from Hp
ω to Lp

ω. As an application,
we give weighted endpoint estimates for Nagel-Stein’s NIS operators studided in
[26].

1. INTRODUCTION

In 2004, Nagel and Stein [26] introduced a new class of singular integral operators
on smooth manifolds and proved the Lp boundedness of them. The geometry on the
manifolds is given by a Carnot-Carathéodory metric induced by a collection of vector
fields of finite type and the operators includes the so-called non-isotropic smoothing
(NIS) operators of order zero arising in several complex varieties, see [26, 27]. Later
on, Ding and the first author of this paper studied the mapping properties of a class of
fractional integral operators on smooth manifolds in [6]. Recently, Han, Li and Lu [15]
developed a theory of multiparameter Hardy spaces on a more general setting, namely,
spaces of homogeneous type and proved the Hp −Hp and Hp − Lp boundedness of
certain class of singular integral operators.

On the other hand, weighted Hardy spaces have been studied extensively in Eu-
clidean setting (see for example Garcia-Guerva [8] and Strömberg-Torchinsky [29] and
many other references therein), where the weighted Hardy space was defined using
the non-tangential maximal functions and atomic decompositions were derived. The
wavelet characterization of weighted Hardy spaces were established by Wu [32] and by
Garcia-Cuerva and Martell [9]. Strömberg and Wheeden [30] studied the relationship
between weighted Hardy spaces Hp

ω and weighted Lebesgue spaces Lp
ω. The molecular
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characterization of weighted Hardy spaces were established by Lee and Lin [23] and
the Hp

ω boundedness of Riesz transforms were obtained in [24] by using the atomic and
molecular decompositions. Recently, Ding, Han, Lu and the first author of this paper
[5] proved the Hp

ω −Hp
ω and Hp

ω − Lp
ω boundedness of singular integral operators on

weighted Hardy spaces, under a rather weak assumption w ∈ A∞.
Motivated by these results and the recent development of discrete Littlewood-Paley

analysis on spaces of homogeneous type, in this paper we study the boundedness of the
singular integral operators on weighted Hardy spaces Hp

ω over space of homogeneous
type. To achieve our goal, we develop the weighted discrete Littlewood-Paley-Stein
theory in the current setting and this allows us to avoid the use of complicated atomic
and molecular decompositions of Hp

ω. Our result naturally extent the recent result in
[5] and can be applied to variant different settings such as Ahlfors n-regular metric
measure spaces, Lie groups of polynomial growth and Carnot-Carathéodory spaces (see,
for instance, [20, 31, 26, 27, 28]).

Before stating the main results, let us first recall some definitions and notions.
Throughout this paper, we use C to denote a positive constant independent of main
parameters involved, which may vary at different occurrences. Let A � B denote
A ≤ CB and let A ≈ B mean A � B and B � A.

The following notion of spaces of homogeneous type was introduced by Coifman
and Weiss in [4].

Definition 1.1. (X , d, μ) is called a space of homogeneous type if d is a quasi-
metric, that is, (1) d(x, y) = 0 iff x = y; (ii) d(x, y) = d(y, x); (iii) d(x, z) ≤
A[d(x, y) + d(y, z)] for some A ≥ 1, and μ is a nonnegative measure satisfying the
doubling property

μ(B(x, 2r)) ≤ C1μ(B(x, r)).(1.1)

In [25], Macias and Segovia have proved that one can replace the quasi-metric d by
another quasi-metric d̃ such that d̃ yields the same topology on X as d and, moreover,

(1.2) μ(B̃(x, r)) ≈ r

where B̃(x, r) = {y ∈ X , d̃(y, x) < r} and d̃ has the following regularity property

(1.3) |d̃(x, y)− d̃(x′, y)| ≤ C0d̃(x, x′)ϑ[d̃(x, y) + d̃(x′, y)]1−ϑ,

for some regularity exponent ϑ: 0 < ϑ < 1, 0 < r < ∞ and all x, x′, y ∈ X .
Throughout this paper, we only assume that (1.3) holds for d and a condition like (1.2)
is not required.

To simplify notation, throughout this paper, we use dx and |B(x, r)| to denote
dμ(x) and μ(B(x, r)), respectively. Denote V (x, y) = |B(x, d(x, y))| and Vt(x) =
μ(B(x, t)), t > 0. It is easy to see V (x, y) ≈ V (y, x). Note that the doubling condition
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(1.1) implies that there exist positive constants C and Q such that for all x ∈ X and
λ ≥ 1,

(1.4) |B(x, λr)| ≤ CλQ|B(x, r)|.
Here Q, if chosen minimal, measures the “dimension” of the space X in some sense.

We now recall some notions on space of homogeneous type in [15].

Definition 1.2. A sequence {Sk}k∈Z of operators is said to be an approximation to
the identity if there exists constantC > 0 such that for all k ∈ Z and all x, x′, y, y′ ∈ X ,
Sk(x, y), the kernel of Sk satisfy the following conditions:

(i) Sk(x, y) = 0 if d(x, y) ≥ C2−k and |Sk(x, y)| ≤ C 1
V

2−k (x)+V
2−k (y) ;

(ii) |Sk(x, y)− Sk(x′, y)| ≤ C2kϑd(x, x′)ϑ 1
V

2−k (x)+V
2−k (y) ;

(iii) property (ii) holds with x and y interchanged;
(iv) |[Sk(x, y)− Sk(x, y′)] − [Sk(x′, y)− Sk(x′, y′)]| ≤ C22kϑd(x, x′)ϑd(y, y′)ϑ

1
V

2−k (x)+V
2−k (y) ;

(v)
∫
X Sk(x, y)dμ(y) =

∫
X Sk(x, y)dμ(x) = 1.

Definition 1.3. Let 0 < β, γ ≤ ϑ where ϑ is the regularity exponent on X given
in and r > 0. A function ϕ on X is said to be a test function of type (x0, r, β, γ) if f
satisfies the following conditions:

(i) |ϕ(x)| ≤ C 1
Vr(x0)+V (x,x0)

(
r

r+d(x,x0)

)γ
;

(ii) |ϕ(x)−ϕ(y)| ≤ C
(

d(x,y)
r+d(x,x0)

)β
1

Vr(x0)+V (x,x0)

(
r

r+d(x,x0)

)γ
for all x, y ∈ X with

d(x, y) ≤ (r + d(x, x0))/(2A).

We denote by G(x1, r, β, γ) the set of all test functions of type (x1, r, β, γ). If ϕ ∈
G(x1, r, β, γ) we define its norm by ‖ϕ‖G(x1,r,β,γ) ≡ inf{C : (i) and (ii) hold}. Now
fix x0 ∈ X we denote G(β, γ) = G(x0, 1, β, γ) and by G0(β, γ) the collection of all
test functions in G(β, γ) with

∫
X f(x)dx = 0. It is easy to check that G(x1, r, β, γ) =

G(β, γ) with equivalent norms for all x1 ∈ X and r > 0. Furthermore, it is also easy to
see that G(β, γ) is a Banach space with respect to the norm in G(β, γ). Let

◦
Gϑ (β, γ)

be the completion of the space G0(ϑ, ϑ) in the norm of G(β, γ) when 0 < β, γ < ϑ.
If f ∈ ◦

Gϑ (β, γ), we then define ‖f‖◦
Gϑ(β,γ)

= ‖f‖G(β,γ). (
◦
Gϑ (β, γ))′, the distribution

space, is defined to be the set of all linear functionals L from
◦
Gϑ (β, γ) to C with the

property that there exists C ≥ 0 such that for all f ∈ ◦
Gϑ (β, γ), |L(f)| ≤ C‖f‖◦

Gϑ(β,γ)
.

Christ [3] provides an analogue of the grid of Euclidean dyadic cubes on space of
homogeneous type.
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Lemma 1.1. Let X be a space of homogeneous type, then, there exists a collection
{Ik

α ⊂ X : k ∈ Z, α ∈ Ik} of open subsets, where Ik is some index set, and
C1, C2 > 0, such that

(i) μ(X\ ∪α I
k
α) = 0 for each fixed k and Ik

α ∩ Ik
β = ∅, if α = β;

(ii) for any α, β, k, l with l ≥ k, either I l
β ⊂ Ik

α or I l
β ∩ Ik

α = ∅;
(iii) for each (k, α) and each l ≤ k there is a unique β such that Ik

α ⊂ I l
β;

(iv) diam(Ik
α) ≤ C12−k;

(v) each Ik
α contains some ball B(zk

α, C22−k), where zk
α ∈ X .

We can think of Ik
α as being a dyadic cube with side-length �(Ik

α) = 2−k centered
at zk

α.
Based on Lemma 1.1, Han, Li and Lu [15] established the following discrete

Calderón’s reproducing formula.

Lemma 1.2. Let {Sk}k∈Z be an approximation to the identity with regularity
exponent ϑ. Set Dk = Sk −Sk−1, k ∈ Z. Then there exist families of linear operators
{D̃k}k∈Z and { ˜̃

Dk}k∈Z such that for any fixed xI ∈ I , where N is a fixed constant,
and all (

◦
Gϑ(β, γ))′ with 0 < β, γ < ϑ

f(x) =
∑
k∈Z

∑
I∈Qk

|I | D̃k(x, xI)Dk(f)(xI)

=
∑
k∈Z

∑
I∈Qk

|I |Dk(x, xI)
˜̃
Dk(f)(xI),

where Qk denotes the set of all dyadic cubes I with sidelength �(I) = 2−(k+N) for
some fixed large constantN and the series converges in (

◦
Gϑ(β, γ))′ with 0 < β, γ < ϑ,

and in Lp(X ), 1 < p < ∞. Moreover, for 0 < ε < ϑ, D̃k(x, y) , the kernel of D̃k

satisfies

(i) |D̃k(x, y)| ≤ C
1

V2−k(x) + V2−k(y) + V (x, y)
2−kε

(2−k + d(x, y))ε
;

(ii) |D̃k(x, y)− D̃k(x′, y)| ≤ C
( d(x, x′)

2−k + d(x, y)

)ε 1
V2−k(x) + V2−k(y) + V (x, y)

,

× 2−kε

(2−k + d(x, y))ε
for d(x, x′) ≤ (2−k + d(x, y))/2A;

(iii)
∫
X
D̃k(x, y)dμ(y) =

∫
X
D̃k(x, y)dμ(x) = 0,

and ˜̃
Dk(x, y) the kernel of ˜̃

Dk satisfies the similar estimates but with x and y inter-
changed in (ii).



Weighted Hardy Spaces 563

We remark that the continuous and discrete version of Calderón’s reproducing
formula on spaces of homogeneous type with the conditions (1.2) and (1.3) were de-
veloped in [19] and [13]. Such kind of formula is also a key tool in establishing the
T (b) theorem in the Euclidean setting (see [11]).

Let Dk = Sk − Sk−1, where Sk is an approximation to the identity on X with
the regularity exponent ϑ. For each f ∈ (

◦
Gϑ(β, γ))′ with 0 < β, γ < ϑ, S(f), the

Littlewood-Paley square function of f , is defined by

G(f)(x) =
{∑

k∈Z

|Dk(f)(x)|2
}1/2

.

Definition 1.4. Let ω ∈ L1
loc(X ) be a nonnegative function in X . We say that ω

is an Ap(X ) weight, if there exists a constant C > 0 such that for every dyadic cube
I ⊂ X , ( 1

|I |
∫

I
ω(x)dx

)( 1
|I |

∫
I
ω(x)−

1
p−1 dx

)p−1 ≤ C, if 1 < p <∞,

M(ω)(x) ≤ Cω(x), if p = 1,

where M denotes the Hardy-Littlewood maximal function on X . In this case, we write
ω ∈ Ap(X ). Define A∞(X ) ≡ ⋃

1≤p<∞Ap(X ). Let qω ≡ inf{q : ω ∈ Aq(X )}
denote the critical index of ω. We use ω(A) to denote

∫
A ω(x)dx.

For more details about the Ap weight, we refer the reader to [10]. We now give
the definition of weighed Hardy spaces Hp

ω(X ).

Definition 1.5. Let ω ∈ A∞(X ) with qω < 1+ ϑ
Q , p ∈ ( Qqω

Q+ϑ ,∞) and β, γ ∈ (0, ϑ).
The weighed Hardy space Hp

ω(X ) is defined by

Hp
ω(X ) = {f ∈ (

◦
Gϑ(β, γ))′ : G(f) ∈ Lp

ω(X )}
with Hp

ω quasi-norm ‖f‖Hp
ω(X ) ≡ ‖G(f)‖Lp

ω(X ).

To show that Hp
ω(X ) is well defined, we prove the following Plancherel-Pôlya

inequalities.

Theorem 1.1. Suppose ω ∈ A∞(X ) with qω < 1 + ϑ
Q . Let {Sk}k∈Z and {Pk}k∈Z

be two approximations to the identity with regularity exponent ϑ. For k ∈ Z, set
Dk = Sk −Sk−1 and Ek = Pk −Pk−1. For a fixed large integer N as in Lemma 1.2
and all f ∈ (

◦
Gϑ(β, γ))′ with 0 < β, γ < ϑ, p ∈ ( Qqω

Q+ϑ ,∞), where Q is the dimension
of X given in (1.4),∥∥∥{ ∑

k∈Z

∑
I∈Qk

sup
z∈I

|Dk(f)(z)|2χI

}1/2∥∥∥
L

p
w

≈
∥∥∥{ ∑

k′∈Z

∑
I′∈Qk′

inf
z′∈I′

|Ek′(f)(z′)|2χI′
}1/2∥∥∥

L
p
w

.
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Remark 1.1. In the unweighted case, such kind of inequalities were first proved in
[12] on space of homogeneous type with the conditions (1.2) and (1.3). In this paper,
we establish new Plancherel-Pôlya inequality for Hp

ω over space of homogeneous type,
which implies that the weighted Hardy spaces Hp

ω are well introduced.

We consider a class of singular integral operators T which are initially defined from
Cη

0 (X ), Cη functions with compact supports, 0 < η ≤ ϑ to Cη(X ) with a distribution
kernel K(x, y) and satisfy the following properties:

(I-1) If ϕ, ψ ∈ Cη
0 (X ) have disjoint supports, then

〈Tϕ, ψ〉 =
∫
X×X

K(x, y)ϕ(y)ψ(x)dydx.

(I-2) If ϕ is a normalized bump function associated to a ball of radius r, then ‖Tϕ‖∞ �
1 and ‖Tϕ‖ε � r−ε, ε ≤ η.

(I-3) If x �= y, then |K(x, y)| � V (x, y)−1 and |K(x, y) − K(x, y′)| � (d(y,y′)
d(x,y) )ε

V (x, y)−1 for d(y, y′) ≤ 1
2Ad(x, y).

(I-4) Properties (I-1) through (I-3) also hold with x and y interchanged. That is, these
properties also hold for the adjoint operator T t defined by 〈T tϕ, ψ〉 = 〈Tψ, ϕ〉.

We now give our main result as follows.

Theorem 1.2. Let ω ∈ A∞(X ) with qw < 1 + ε/Q. Then each singular integral
operator T satisfying (I-1) through (I-4) is bounded from Hp

ω(X ) to Hp
ω(X ) for qwQ

Q+ε <

p <∞, and bounded from Hp
ω(X ) to Lp

ω(X ) for qwQ
Q+ε < p ≤ 1.

We end the introduction with the following remarks.
First, the singular integral operators considered in this paper are similar to NIS

operator considered in [26]. Theorem 1.2 thus provides the weighted endpoint estimate
for the NIS operators studied in [26]. Moreover, our results naturally generalize the
results of Bownik-Li-Yang-Zhou [2] and Ding-Han-Lu-Wu [5].

Second, there is only one moment condition on spaces of homogeneous type, namely,
the moment condition of order 0. Consequently, singular integral operators are bounded
on Hardy spaces only for p > Q/(Q+ε) in the unweighted case (see [15]). The ranges
of p in Theorem 1.2 are best possible in the sense that when w ≡ 1 ∈ A1(X ) they
become the same as in the unweighted case in [15].

Third, if the double measure μ satisfies certain reverse doubling condition, then the
space of homogeneous type (X , d, μ) is called RD-space. Han-Müller-Yang [17, 18]
developed the Littlewood-Paley theory of Hardy, Triebel-Lizorkin and Besov spaces on
RD-spaces. Maximal function characterizations of Hardy spaces on RD-spaces were
established by Grafakos-Liu-Yang in [21, 22]. The theory of weak Hardy spaces in
this setting was set up in [7, 33].
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Fourth, the main tools used in establishing our whole theory are the discrete
Littlewood-Paley theory with weights and discrete Calderón-type identity in the current
setting. These ideas have been used before in other one-parameter or multiparameter
settings, see [5, 14, 15, 16] etc.

2. PROOF OF THEOREM 1.1

To prove Theorem 1.1, we need the following two lemmas (see [15]).

Lemma 2.1. Let {Sk}k∈Z and {Pk}k∈Z be two approximations to the identity with
regularity exponent ϑ and Dk = Sk−Sk−1, Ek = Pk−Pk−1. Then for any ε ∈ (0, ϑ),
there exists a positive constant C depending only on ε such that DlEk(x, y), the kernel
of DlEk, satisfy the following estimate,

(2.1)
|DlEk(x, y)|

≤ C2−ε|k−l| 1
V2−(k∧l)(x) + V2−(k∧l)(y) + V (x, y)

2−(k∧l)ε

(2−(k∧l) + d(x, y))ε
.

Lemma 2.2. Let ε > 0, k, k′ ∈ Z and yk
τ be any point in Ik

τ for τ ∈ Ik. If
Q

Q+ε < r < p ≤ 1, then there exists a constant C > 0 depending only on r such that
for all ak

τ ∈ C and all x ∈ X ,
∑
τ∈Ik

|Ik
τ |

1
V2−(k∧k′)(x) + V (x, yk

τ )
2−(k∧k′)ε

(2−(k∧k′) + d(x, yk
τ ))ε

|ak
τ |

� 2|k
′−k|Q(1/r−1)

{
M

( ∑
τ∈Ik

|ak
τ |2χIk

τ

)r/2
(x)

}1/r
,

where [a]+ = max(a, 0).

We now give

Proof of Theorem 1.1. For f ∈ (
◦
Gϑ(β, γ))′, we use the discrete Calderón’s repro-

ducing formula in Lemma 1.2 to write

f =
∑
k′

∑
I′∈Qk′

|I ′|Ẽk′(·, xI′)Ek′(f)(xI′),

where the series converges in (
◦
Gϑ(β, γ))′ and xI′ is any fixed point in the dyadic cube

I . Note that by Lemma 1.2, Ẽk′(x, y) satisfies the same cancellation and smoothness
conditions as Ek′(x, y). Therefore DkẼk′(x, xI′) satisfy the same almost orthogonality
estimate in (2.1) as DkEk′(x, xI′). Applying the Calderón’s identity in Lemma 1.2
and the almost orthogonality estimate for DkẼk′(x, xI′), we get that for any k ∈ Z,
any x, xI ∈ I and any xI′ ∈ I ′,
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|Dk(f)(x)| =
∣∣∣∣∑

k

∑
I′∈Qk′

|I ′|DkẼk′(x, xI′)Ek′(f)(xI′)
∣∣∣∣

�
∑
k′

2−ε|k−k′ | ∑
I′∈Qk′

|I ′||Ek′(f)(xI′)|

× 1
V (x, xI′) + V2−(k∧k′)(x) + V2−(k∧k′)(xI′)

( 2−(k∧k′)

2−(k∧k′) + d(x, xI′)

)ε

∼
∑
k′

2−ε|k−k′ | ∑
I′∈Qk′

|I ′||Ek′(f)(xI′)|

× 1
V (xI , xI′) + V2−(k∧k′)(xI)+V2−(k∧k′)(xI′)

( 2−(k∧k′)

2−(k∧k′)+d(xI, xI′)

)ε
,

for any ε ∈ (0, ϑ), where in the last equivalence we have used

V (x, xI′) + V2−(k∧k′)(x) + V2−(k∧k′)(xI′) ∼ V (xI , xI′) + V2−(k∧k′)(xI) + V2−(k∧k′)

and
2−(k∧k′) + d(x, xI′) ∼ 2−(k∧k′) + d(xI , xI′).

Given any r satisfying Q/(Q+ϑ) < r < min(p/qw, 1), we choose ε sufficiently close
to ϑ in the last inequality so that

(2.2)
Q

Q+ ε
< r < min

( p

qw
, 1

)
.

For the above ε and r, applying Lemma 2.2 yields

|Dk(f)(xI)| �
∑
k′

2−ε|k−k′ | ∑
I′∈Qk′

|I ′||Ek′(f)(xI′)|

× 1
V (xI , xI′) + V2−(k∧k′)(xI) + V2−(k∧k′)(xI′)

( 2−(k∧k′)

2−(k∧k′) + d(xI , xI′)

)ε

�
∑
k′

2−|k−k′ |ε′
[
M

( ∑
I′∈Qk′

|Ek′(f)(xI′)|2χI′
)r/2

(x)
]1/r

,

where ε′ = ε−Q(1/r− 1) > 0 by (2.2).
Using the fact that xI and xI′ are arbitrary points in I and I ′ respectively and

applying Cauchy-Schwarz’s inequality, we get
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sup
u∈I

|Dk(f)(u)|2

�
{ ∑

k′
2−|k−k′|ε′

[
M

( ∑
I′∈Qk′

inf
v∈I′

|Ek′(f)(v)|2χI′
)r/2

(x)
]1/r}2

≤
{∑

k′
2−|k−k′|ε′

}{ ∑
k′

2−|k−k′|ε′
[
M

( ∑
I′∈Qk′

inf
v∈I′

|Ek′(f)(v)|2χI′
)r/2

(x)
]2/r

}

�
∑
k′

2−|k−k′|ε′
[
M

( ∑
I′∈Qk′

inf
v∈I′

|Ek′(f)(v)|2χI′
)r/2

(x)
]2/r

,

where x is arbitrary point in I. Then it is easy to see that for any x ∈ X ,∑
I∈Qk

sup
u∈I

|Dk(f)(u)|2χI(x)

�
∑
k′

2−|k−k′|ε′
[
M

( ∑
I′∈Qk′

inf
v∈I′

|Ek′(f)(v)|2χI′
)r/2

(x)
]2/r

.

It follows that ∑
k

∑
I∈Qk

sup
u∈I

|Dk(f)(u)|2χI(x)

�
∑

k

∑
k′

2−|k−k′|ε′
[
M

( ∑
I′∈Qk′

inf
v∈I′

|Ek′(f)(v)|2χI′
)r/2

(x)
]2/r

≤
∑
k′

[∑
k

2−|k−k′|ε′
][
M

( ∑
I′∈Qk′

inf
v∈I′

|Ek′(f)(v)|2χI′
)r/2

(x)
]2/r

�
∑
k′

[
M

( ∑
I′∈Qk′

inf
v∈I′

|Ek′(f)(v)|2χI′
)r/2

(x)
]2/r

,

(2.3)

where in the last inequality we have used the inequality
∑

k 2−|k−k′|ε′ < C.
Since p/r > qw by (2.2), we see that w ∈ Ap/r(X ). Taking the square root first

and then the Lp
ω(X ) norm on both sides of (2.3) and using Lp/r

ω (�2/r) boundedness of
M (by the weighted Fefferman-Stein’s vector-valued inequality in [1]) yield∥∥∥{ ∑

k

∑
I∈Qk

sup
u∈I

|Dk(f)(u)|2χI

}1/2∥∥∥
Lp

w(X )

�
∥∥∥{ ∑

k′

[
M

( ∑
I′∈Qk′

inf
v∈I′

|Ek′(f)(v)|2χI′
)r/2]2/r}1/2∥∥∥

Lp
w(X )

�
∥∥∥{ ∑

k′

∑
I′∈Qk′

inf
v∈I′

|Ek′(f)(v)|2χI′
}1/2∥∥∥

Lp
w(X )

.
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The converse inequality can be proved in the same way This concludes the proof of
Theorem 1.1.

We also prove the following proposition, which will be used in proof of Theorem
1.2.

Proposition 2.1. For ω ∈ A∞(X ) with qω < 1 + ϑ
Q and qωQ

Q+ϑ < p ≤ 1, G0(ϑ, ϑ)
is dense in Hp

ω(X ).

Proof. Suppose that notations are the same as in the proof of Theorem 1.1. Fix
x0 ∈ X and let

RL = {(k′, I ′) : I ′ ∈ Qk′ , |k′| ≤ L, I ′ ⊆ B(x0, L)} for L ∈ Z
+.

Repeating the same proof as in Theorem 1.1, we can get∥∥∥f −
∑

(k′,I′)∈RL

|I ′| Ẽk′(·, xI′)Ek′(f)(xI′)
∥∥∥

Hp
ω(X )

=
∥∥∥{ ∑

k

∑
I∈Qk

|
∑

(k′,I′)∈Rc
L

|I ′|DkẼk′(x, xI′)Ek′(f)(xI′)|2χI

}1/2∥∥∥
Lp

w(X )

�
∥∥∥{ ∑

(k′,I′)∈Rc
L

|Ek′(f)|2χI′
}1/2∥∥∥

Lp
w(X )

→ 0,

as N → ∞ whenever f ∈ Hp
ω(X ). Note that for (k, I) ∈ RL, D̃k(x, xI) belongs to

G0(ϑ, ϑ). Therefore, the finite linear combination
∑

(k,I)∈RL

|I | D̃k(x, xI)Dk(f)(xI)

also belongs to G0(ϑ, ϑ). This concludes the proof of Proposition 2.1.

3. PROOF OF THEOREM 1.2

To prove Theorem 1.2, we first establish the following

Theorem 3.1. Let ω ∈ A∞(X ) with qω < 1 + ϑ
Q and qωQ

Q+ϑ < p ≤ 1. If f ∈
L2(X ) ∩ Hp

ω(X ), then f ∈ Lp
ω(X ) and there exists a constant C > 0 which is

independent of the L2 norm of f such that

‖f‖L
p
ω(X ) ≤ C‖f‖H

p
ω(X ).
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Proof. Assume f ∈ L2(X ) ∩Hp
w(X ). By Lemma 1.2,

(3.1) f =
∑

k

∑
I∈Qk

|I |Dk(·, xI)
˜̃
Dk(f)(xI),

where the series converges in L2(X ) and hence converges almost everywhere. Since
Sk(x, y) are supported where d(x, y)< C2−k by Definition 1.2,

Dk(x, xI) = Sk(x, xI) − Sk−1(x, xI)

also has compact support. Moreover, by the same proof as the proof of Theorem 1.1,
we get

‖f‖Hp
ω
≈

∥∥∥{ ∑
k

∑
I∈Qk

| ˜̃Dk(f)|2χI

}1/2∥∥∥
Lp

ω

.

Set
Ωi =

{
x ∈ X :

{ ∑
k

∑
I∈Qk

| ˜̃Dk(f)(x)|2χI (x)
}1/2

> 2i
}

and

Bi = {(k, I) : I ∈ Qk, |I ∩ Ωi| > (1/2A)|I |, |I ∩ Ωi+1| ≤ (1/2A)|I |}.

We claim

(3.2)
∥∥∥ ∑

(k,I)∈Bi

|I |Dk(·, xI)D̃k(f)(xI)
∥∥∥p

L
p
ω(X )

≤ C2ipω(Ωi).

Assume the claim for the moment. This together with the fact (
∑

i |ai|)p ≤ ∑
i |ai|p, 0 <

p ≤ 1 would yield

‖f‖p
Lp

ω(X )
=

∥∥∥ ∑
i∈Z

∑
(k,I)∈Bi

|I |Dk(·, xI)D̃k(f)(xI)
∥∥∥p

Lp
ω(X )

≤
∑

i

∥∥∥ ∑
(k,I)∈Bi

|I |Dk(·, xI)D̃k(f)(xI)
∥∥∥p

Lp
ω(X )

�
∑

i

2ipω(Ωi) � ‖f‖p
Hp

ω(X )
.

To finish the proof of Theorem 3.1, it thus suffices to verify claim (3.2). Note that
if (k, I) ∈ Bi, then the support of Dk(x, xI) is contained in

Ω̃i =
{
x : M(χΩi)(x) >

1
(2A)10

}
.
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Therefore, by Hölder’s inequality,∥∥∥ ∑
(k,I)∈Bi

|I |Dk(·, xI)
˜̃
Dk(f)(xI)

∥∥∥p

Lp
ω(X )

≤ [w(Ω̃i)]
1−p

q

∥∥∥ ∑
(k,I)∈Bi

|I |Dk(·, xI)
˜̃
Dk(f)(xI)

∥∥∥p

Lq
ω(X )

.

We now estimate the last Lq
ω(X ) norm by the duality argument. For all g ∈ Lq′

ω1−q′ (X )
with ‖g‖

Lq′
ω1−q′

≤ 1,

∣∣∣〈 ∑
(k,I)∈Bi

|I |Dk(·, xI)
˜̃
Dk(f)(xI), g

〉∣∣∣
=

∣∣∣ ∫
X

∑
(k,I)∈Bi

|I |D∗
k(g)(xI)

˜̃
Dk(f)(xI)χI(x)dx

∣∣∣
≤

∥∥∥( ∑
(k,I)∈Bi

|D∗
k(g)(xI)|2χI(·)

)1/2
∥∥∥

L
q′
ω1−q′ (X )

∥∥∥( ∑
(k,I)∈Bi

| ˜̃Dk(f)(xI)|2χI (·)
)1/2

∥∥∥
L

q
ω(X )

,

where D∗
k is an operator defined by

D∗
k(g)(x) =

∫
X
Dk(y, xI)g(y)dy.

By Definition 1.2, we can see that Sk(x, y) satisfies the same properties as Sk(y, x).
Thus Dk(y, xI) satisfies the same properties as Dk(xI , y). Note that ω ∈ Aq(X ) im-
plies ω1−q′ ∈ Aq′(X ). Thus by the weighted Fefferman-Stein vector-valued inequality,
we have ∥∥∥(

∑
(k,I)∈Bi

|D∗
k(g)(xI)|2χI)1/2

∥∥∥
Lq′

w1−q′ (X )∥∥∥(
∑

(k,I)∈Bi

| inf
u∈I

M(D∗
k(g))(u)|2χI)1/2

∥∥∥
Lq′

ω1−q′ (X )

≤
∥∥∥(

∑
k

|M(D∗
k(g))(·)|2χI (·))1/2

∥∥∥
Lq′

ω1−q′ (X )

� ‖g‖
L

q′
ω1−q′ (X )

≤ 1,

where in the next to the last inequality we have used weighted Littlewood-Paley in-
equality in [1]. Altogether yields

(3.3)

∥∥∥ ∑
(k,I)∈Bi

|I |Dk(·, xI)
˜̃
Dk(f)(xI)

∥∥∥
L

q
ω(X )

�
∥∥∥{ ∑

(k,I)∈Bi

| ˜̃Dk(f)(xI)|2χI

}1/2∥∥∥
Lq

ω(X )
.
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Note also that

2qiω(Ωi) �
∫

Ω̃i\Ωi+1

{∑
k

∑
I∈Qk

| ˜̃Dk(f)(x)|2χI(x)
}q/2

ω(x)dx

�
∫
X

{ ∑
(k,I)∈Bi

| ˜̃Dk(f)(xI)M(I ∩ (Ω̃i\Ωi+1))(x)|2
}q/2

ω(x)dx

�
∫
X

{ ∑
(k,I)∈Bi

| ˜̃Dk(f)(xI)|2χI (x)
}q/2

ω(x)dx,

where in the last inequality we have used the fact that ω(I ∩ (Ω̃i\Ωi+1)) ≥ 1
2Aω(I)

whenever (k, I) ∈ Bi. This finishes the proof of claim (3.2) and hence Theorem
3.1.

Now, we are ready to give

Proof of Theorem 1.2. We assume f ∈ L2 ∩Hp
ω(X ). Let xI and xI′ be arbitrary

points in I and I ′, respectively. Repeating the same argument as in the proof of
Theorem 1.1, we get

‖T (f)‖Hp
ω(X ) ∼

∥∥∥{ ∑
k

∑
I∈Qk

Dk(Tf)(xI)χI

}1/2∥∥∥
Lp

ω(X )

�
∥∥∥{∑

k

∑
I∈Qk

∑
k′

∑
I′∈Qk′

|I ′|DkTD̃k′(xI , xI′)Dk′(f)(xI′)χI

}1/2∥∥∥
L

p
ω(X )

�
∥∥∥{ ∑

k′

[
M

( ∑
I′∈Qk′

|Dk′(f)(xI′)|2χI′
)r/2]2/r}1/2∥∥∥

Lp
w(X )

�
∥∥∥{ ∑

k′

∑
I∈Qk′

|Dk′(f)(xI′)|2χI′
}1/2∥∥∥

L
p
ω(X )

� ‖f‖Hp
ω(X ),

where we have used the following estimate (see [15])

|DkTD̃k′(x, y)|�2−|k−k′|ε′ 1
V (x, y)+V2−(k∧k′)(x)+V2−(k∧k′)(y)

( 2−(k∧k′)

2−(k∧k′)+d(x, y)

)ε′

for any ε′ < ε. By Proposition 2.1, a limiting argument yields the Hp
ω(X ) boundedness

of T .
To prove Hp

ω(X )−Lp
ω(X ) boundedness of T , we assume f ∈ L2 ∩Hp

w(X ). Then
from the Hp

ω(X ) boundedness and Theorem 3.1, it follows that

‖T (f)‖Lp
ω(X ) � ‖T (f)‖Hp

ω(X ) � ‖f‖Hp
ω(X ).

Use Proposition 2.1 again to get the desired conclusion. Hence the proof of Theorem
1.2 is complete.



572 Xinfeng Wu, Zongguang Liu and Lijuan Zhang

ACKNOWLEDGMENTS

The authors would like to thank the referee for his/her helpful comments and
suggestions, which improved the exposition of the paper.

REFERENCES

1. K. F. Andersen and R. T. John, Weighted inequalities for vector-valued maximal function
and singular integrals, Studia Math., 69 (1980), 19-31.

2. M. Bownik, B. Li, D. Yang and Y. Zhou, Weighted anisotropic Hardy spaces and their
applications in boundedness of sublinear operators, Indiana Univ. Math. J., 57 (2008),
3065-3100.

3. M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral,
Colloq. Math., 60/61 (1990), 601-628.

4. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull.
Amer. Math. Soc., 83 (1977), 569-645.

5. Y. Ding, Y. Han, G. Lu and X. Wu, Boundedness of singular integrals on multiparameter
weighted Hardy spaces Hp

w(Rn × Rm), Potent. Anal., 37 (2012), 31-56.

6. Y. Ding and X. Wu, Fractional integrals on product manifolds, Potential Anal., 30 (2009),
371-383.

7. Y. Ding and X. Wu, Weak Hardy space and endpoint estimates for singular integrals on
space of homogeneous type, Turk. J. Math., 34 (2010), 235-247.

8. J. Garcia-Cuerva, Weighted Hardy spaces, Dissertations Math., 162 (1979), 1-63.

9. J. Garcia-Cuerva and J. M. Martell, Wavelet characterization of weighted spaces, J.
Geometric Anal., 11 (2001), 241-264.

10. J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related
Topics, North-Holland, Amsterdam, 1985.

11. Y. Han, Calderón-type reproducing formula and the Tb theorem, Rev. Mat. Iberoameri-
cana, 10 (1994), 51-91.
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spaces and product spaces of homogeneous type, Trans. Amer. Math. Soc., 365 (2013),
319-360.



Weighted Hardy Spaces 573

16. Y. Han and G. Lu, Some Recent Works on Multiparameter Hardy Space Theory and
Discrete Littlewood-Paley Analysis, Trends in Partial Differential Equations, ALM 10,
99-191, High Education Press and International Press, Beijing-Boston, 2009.

17. Y. Han, D. Müller and D. Yang, A theory of Besov and Triebel-Lizorkin spaces on
metric measure spaces modeled on Carnot-Caratheodory spaces, Abstract and Applied
Analysis, Vol. 2008, Article ID 893409.

18. Y. Han, D. Müller and D. Yang, Littlewood-Paley-Stein characterizations for Hardy
spaces on spaces of homogeneous type, Math. Nachr., 279 (2006), 1505-1537.

19. Y. Han and E. Sawyer, Littlewood-Paley thoery on space of homogeneous type and
classical function spaces, Mem. Amer. Math. Soc., 110 (1984), 1-126.

20. J. Heinonen, Lectures on Analysis on Metric spaces, Springer-Verlag, New York, 2001.

21. L. Grafakos, L. Liu and D. Yang, Maximal function characterizations of Hardy spaces
on RD-spaces and their applications, Sci. China Ser. A, 51 (2008), 2253-2284.

22. L. Grafakos, L. Liu and D. Yang, Radial function characterizations of Hardy spaces on
RD-spaces, Bull. Soc. Math. France, 137 (2009), 225-251.

23. M.-Y. Lee and C.-C. Lin, The molecular characterization of weighted Hardy Spaces, J.
Func. Anal., 188 (2002), 442-460.

24. M.-Y. Lee, C.-C. Lin and W.-C. Yang, Hp
w boundedness of Riesz transforms, J. Math.

Anal. Appl., 301 (2005), 394-400.

25. R. A. Macias and C. Segovia, A decomposition into atoms of distributions on spaces of
homogeneous type, Adv. in Math., 33 (1979), 271-309.

26. A. Nagel and E. M. Stein, On the product theory of singular integrals, Rev. Mat.
Iberoame., 20 (2004), 531-561.

27. A. Nagel and E. M. Stein, The ∂b-complex on decoupled boundaries in Cn, Ann. of
Math., 164 (2006), 649-713.

28. A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields I. Basic
properties, Acta Math., 155 (1985), 103-147.
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