TAIWANESE JOURNAL OF MATHEMATICS

Vol. 18, No. 2, pp. 497-507, April 2014

DOI: 10.11650/tjm.18.2014.2794

This paper is available online at http://journal.taiwanmathsoc.org.tw

THE INTEGER PARTS OF A NONLINEAR FORM
WITH MIXED POWERS 3 AND k

Baiyun Su and Weiping Li*

Abstract. Using the Davenport-Heilbronn circle method, we show that if Ay, -, A5
are positive real numbers, at least one of the ratios X\;/\;(1 < i < j < 5)
is irrational, then, for arbitrary positive integer & > 4, the integer parts of
A3 4+ A3 4+ A3 w3 + M + As2¥ are prime infinitely often for natural numbers
T1, -, T

1. INTRODUCTION

The study of additive diophantine inequalities has been one of the guiding themes
in diophantine approximation. Davenport and Heilbronn [1] showed that if Ay, - -, A
are nonzero real numbers, not all of the same sign, and not all in rational ratio, then
for every € > 0 the inequality

Nz 4 Aoxh + -+ Aa2h| < €

has infinitely many solutions in natural numbers z; provided that s > 2% + 1. Brudern
[2] proved that if Ay, ---, Ag are nonzero real numbers such that at least one of the
ratios \;/\;(1 < i < j < 8) is irrational, and 4 is real number. Then, for some o > 0
the inequality

IMzd 4+ Noxp + Arad + Agza + p| < (max|z])°

has infinitely many solutions in positive integers z1, - - - , xs.

In 2010, Brudern, Kawada and Wooley [3] proved that if A1, - - - , A are positive real
numbers, A1/ is irrational, all Dirichlet L-functions satisfy the Riemann Hypothesis,
s > 2k +2. Then, the integer parts of Ajaf + Xoah + - - -+ A,z% are prime infinitely
often for natural numbers x;.
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In present paper, using the Davenport-Heilbronn circle method we consider above
problems with mixed powers, and our main result is as follows.

Theorem 1.1. Let A\q,---, A5 be positive real numbers, at least one of the ratios
Ai/Aj(1 < i < j <5)isirrational. Then, for arbitrary positive integer k£ > 4, the
integer parts of \1x$ + Aozl + A323 + A\gxd + Asxf are prime infinitely often for
natural numbers x4, - - - , x5.

Note that the above theorem do not assume the Riemann Hypothesis. No doubt,
these results will be optimum if the k-th power can be removed. But, at present, using
Davenport and Heilbronn method they are out of reach.

2. NoTATION

Throughout this paper p, with or without subscripts, always denotes a prime number,
and x; denotes a natural number. We denote by ¢ a sufficiently small positive number,
and by e an arbitrarily small positive number. Constants both explicit and implicit,
in Landau or Vinogradov symbols may depend on Ay, ---,Xs. We write e(z) =
exp(2miz). We use [z] to denote the integer part of real variable . We take X to
be the basic parameter, a large real integer. Since at least one of the ratios A;/\;(1 <
i < j < 5) is irrational, we break into two cases to consider. Case 1: We assume
that \;/\o is irrational. Case 2: We may assume that one of \;/A\s(i = 1,---,4) is
irrational, and without loss of generality we assume A;/As is irrational.

In the case that \; /)2 is irrational, then there are infinitely many pairs of integers
q,a With [\1/X2 —a/q| < q72,(a,q) =1,¢ > 0and a # 0. ¢ is large and is taken to
be a convergent to the continued fraction expansion of A;/\,. We make the following
definitions.

N = X3 L =logN,[N" ) = g 7= N147,
Q = (M| + Ao HNIO P = NP T = N,
For the case \1/\5 is irrational, we define a,q, N, X, 7, P, T as above, only in
place of Q = (|A1|~' +|X5|~})N'=%. We note that the only difference of dealing with

the two cases is in section 4.
Let v is positive real number, we define

. 2
K (o) =v <Smmo‘) La#0, K,(0)=v,

4o’

oy F@ = 3 eloa’) gla)= DT elrh), ha)=_ (oxp)e(ap),

1<z<X

Ula) = /1 Y 0z, V(a)= /1 Y c(aat)dr, T(a)= /1 Y o).
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It follows from (2.1) that

(2.2) K, (o) < min(v, v a| ™),

+oo
(2.3) / e(ay) K, (a)da = max(0,1 — v y)).

—00

From (2.3) it is clear that

+oo 4
J::/_ [T Fio)a(rsa)h(~a)e(—50) K

i1

< log N Z 1

BT x?+-44+k4xi+k5x}g—p—%|<%
1<y, wy <X <05 <X3/K p<N

=: (log N)N(X),

(a)dev

N[

thus
N(X) > (logN)"'J.

Next, we shall split the range of infinite integration into three sections, traditional
named the neighbourhood of the origin € = {& € R : |a| < 7}, the intermediate region
D ={a€R:7 < |af <P}, the trivial region ¢ = {a € R : |a] > P}. If we can
prove . . ,

J(@) > X J(®D) =o(XTR), J(c) =o(X* k),
then 5 5
J> XME O N(X) > XML
namely, under conditions of Theorem 1.1,

1 1
(2.4) \A1x§’+-~~+/\4xi+/\5xlg—p—§\<§
has infinitely many solutions in positive integers x1, - - - , x5 and prime p. It is evident

from (2.4) that
p</\1x§’+~~~+/\4xi+/\5a:lg <p+1,

and hence X N
Az + -+ Az + As2f] = p.

Theorem 1.1 can be established.

3. THE NEIGHBOURHOOD OF THE ORIGIN

Lemma 3.1. If « = a/q + 3, where (a,q) = 1, then

q N1/t
Z e(azt) = ¢ Z e(am’/q) / e(By")dy + O<q1/2+6<1 + N|BI))-

1<z<N1/t m=1 L
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Proof. This is Theorem 4.1 of Vaughan [4].
If || € €, by Lemma 3.1, taking a = 0, ¢ = 1, then
fla) =U(a) + O(X™), g(a)=V(a)+O(X¥).

Lemma 3.2. Let p = 3+ i~y be a typical zero of the Riemann zeta function, and
write

A@)= Y Y wle(na), Bla) =0 ((1+]a|N)NILE),
|y|<T,3>2 n<N

then

N|—=

ha) = T(a) - Ala) + B(a), / | A(o)Pda

2
r

< Nesp(-LY), [ |Bla)Pda < Nexp(~L)

—T
Proof. These results can be seen in [5].

Lemma 3.3. We have

1
/2 U () 2da < X112, / V() 2da < X312,

1 1
2 2

Proof. These results are from (5.16) of Vaughan [6].

Lemma 3.4. We have
4

LITLsov)at0m(=a) = [[U)V (se)T(0)

=1

Ki(a)do < XHELL
Proof. It is easily seen that
f(/\la) < X, U(/\ZCO < X,1=1,2,3,4,
g(hsa) < X%, V(Asa) < XE, h(—a) < N, T(-a)< N,
Hf/\a (Asa)h HU/\a (Asa)T(—a)
= (f(/\la) U(/\la))f(AzOé)f(ASOé)f(/\4a) (Asa)h(—a)
+U (M) (f(A2e) = U(A2e)) f(As) f(Aar) g(As) h(—cx)
+ -+ UMa)U(A20)U(A3)U (M) (g(Ascr) — V(Asr) ) h(—cv)
+U(Ma)U(A2)U (A30)U (M) V(As) (h(—a) — T(—av)).
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Then
/¢\(f(A1Q> —U(Ma)) f(A2a) f(Aza) f(Asa)g(Ase) h(—a) [ K 1 (@) dar

< N‘1+5X35X3X%N < X3+%+66

/@\(U(/\la)U(/\ga)U(/\ga)U(/\4a)(g(/\5a) — V(/\5a))h(—a)\K%(a)da

<« N HIXAX3IN « x4+60,
/ U(Ma)U (A2a)U (Asa)U (Maa)V (Asa) (h(—a) — T(—a))|K

< x* (/\v As) K da) </\B )\QK%(a)da)%
< x4 </_\ (Asa) da) </¢\B( )\Zda—i—/_l | A(0) 2da

2

< XYHXE3L2)2(N exp(—L5))

W=

NI
|

N|—=

< XL
The proof of Lemma 3.4 is completed.

Lemma 3.5. We have

/ HU (M)V (As)T (=) [ Ky (a)da < X0,
|a|>N—1+6

Proof. It follows from Vaughan [4] that for « # 0,
Uhio) < |a| 73, i=1,2,3,4, V(hsa) < |a| %, T(-a)< |a| ™"

Thus
4

/||>N 145 | HU(/\iO‘)V(/\W)T(—Oé)\K%(a)da

< / o Fda < XD,
|a|>N—1+6

Lemma 3.6. We have

l\JI»—A

+oo 4
/ HU(/\Z‘CV)V(/\5Q)T(_@>€(_%@> (a)da > A+E

0 =1
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Proof. From (2.3), one has

4 1

+oo
/l IILK&@HKAy@T@%@d—§aﬂ(

/ //%/N/+Ooe(a(§;kix?+A5x’g—x—%))

(a)dev

Ki(a)dadzdzs - -
2
X3 X3 +o0 _2
Ki(«a dada:da:5
2 X3 X3 2 1.4
-max (0 \Zx\ T — \)da:da:5~~~da:1.

Let\/\1x1+~~~+/\5x5—x—%\<i then

M+ 4 Aszs — — <z < Map 4+ Aszs — —
Based on

3 1
/\1$1+~~~+/\5$5—Z>1,/\1$1+~~~+/\5$5—Z<N7

one may take
5 5

A]X3(8ZAZ>_1 Sx] SA]XS(ZLZAZ)_Ia .7:17 757
i=1 i1

hence (3.1) ; ;

1 3
> —— 118 N) x4,
> g L[ 000 o

i=1
This completes the proof of Lemma 3.6.
From Lemma 3.4-3.6, we therefore conclude that

J(€) > X4E.
4, THE INTERMEDIATE REGION

Lemma 4.1. We have

1
2

+oo 5
(4.1) / (0B (a)da < X5, =1, 4,

—00
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Foo k 3 k
(42) | la0s) K y(a)da < (xR
+oo
(4.3) / Ih(~0) K (a)da < NL.

Proof. By (2.2) and Hua’s inequality, for = 1,--- , 4, we have

+oo
/ )P 1 (a)da

Too  mtl .
<3 /m F(ha) Ky (a)da
1 m+1 +oo m-+1
< Z/ |f (i) |Bde + Zm—2/ |f (Nia) [Bdox
=0 m m=2 m
+oo
<< X5+8 +X5+6 Z m—2
m=2
< X5+6

The proofs of (4.2) and (4.3) are similar to (4.1).

Lemma 4.2. If a = a/q+ 3, where (a,q) = 1 and 1 < ¢ < X'79, 8 «
g 1 X159 then
Z elaz®) < ¢ VkX.
X<z<2X

Proof. This is Lemma 4 of Davenport and Roth [7].

Lemma 4.3. Suppose thatA;/ ), is irrational. For every real number « € D, let
W(a) = min(|f (M), [f(A2a)[), then

W(a) < X17120Fe,

Proof. For a € © and j = 1,2, we choose a;, ¢; such that
(4.4) Nja—aj/gl <q;'Q7

with (a,j,qj) =land 1< q; <Q.

We firstly note that ajas # 0. For if a; = 0 or ap = 0, then |\ja| < Q1
and |a] < [X\j|71Q7! < 7,5 = 1 or 2, this contradicts 7 < || < P. Secondly, if
q1,q2 < P, then

al/Ql
/\ga

A
‘a2QI_1 —a1q2] < |

a /Q2 a1
Moa——)|+
Ao Q1Q2( 1 ql)\ ‘

2 as 1
Gl ——=)| K PQ™ < —.
Ao 102( G2 ) 2q
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We recall that ¢ was chosen as the denominator of a convergent to the continued fraction
for A1/Xqe. Thus, by Legendre’s law of best approximation, we have \q’:\\—; —d| > 2%1
for all integers o/, ¢’ with 1 < ¢/ < ¢, thus |asq1| > ¢ = [N171%9]. However, from (4.4)
we have |asq1| < q1g2 P < N3, this is a contradiction. We have thus established
that for at least one j, P < ¢; < Q. Hence, by Lemma 4.2 and with k£ = 3, gives the
desired inequality for W («).

If one of X\;/As(¢ = 1,---,4) is irrational, without loss of generality we may
assume that A; /A5 is irrational.

Lemma 4.4. Suppose thatA;/ )5 is irrational. For every real number « € D, let
. 3
Z(a) = min(|f(A1@)[*, [g(Asa)]), then

Z(a) < X0t

Proof. For o € © and j = 1, 5, we choose a;, g; such that |\ ja—a;/q;| < qj‘lQ—1
with (a,j,qj) =land 1< q; <Q.

From Lemma 4.3, we know that at least one j, P < ¢; < Q for o € ® and A\ /)5
irrational. Thus, by Lemma 4.2 gives the desired inequality for Z(«).

Lemma 4.5. We have

3 _ 966
(a)da < X*T°7 2 Te,

1
2

| [[/ualg(aa)bi-a)e(—0)K

Proof.

Case 1. If A;/)Ay is irrational, by Lemma 4.1, 4.3 and Holder’s inequality, we
have

/@ ZH1 f</\i04>9</\504)h(—04)6(—%a)K (a)da

1
2

<<glgg\W(a)\2_’“/@\f(ha)\l_?’“H\f(kia)\\g(%a)h(—a)\ff (@)da

=2

1
2

4
e W@ [ 170005 T[1F 0w llgOseh(-0)] K3 (@)
i#£2
8 +oo %_2% 4 +oo %
ceermE ([ rapny@da) T [ 170w PEy @do)
e i=2 N T

| </_:O ‘g</\50‘>‘2kK%(a)da) : </_;OO \h(—a)\QK%(a)da)%
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s (f " FOue) PR (@)da)

o0

: </+OO ‘9(/\504)\2kK%(a)d04) * </+°O \h(—a)\QK%(a)da) :

—00 —00

Nl—

< (X1 3 (043 (X F)2 ke (VL)
4+%—9;Lk5+5.

<X

Case 2. If Ay/Xs5 is irrational, by Lemma 4.1, 4.4 and Holder’s inequality, we
have

(a)dev

N|—=

[ ILsovassan(-ajet—go)

<mag 2G| [ TTI7uelb(-0)l (@)do

4
8k_ _8
+maX\Z(a>\2’“3/ [FOue) [ [T I ia)llgs)h(—a) | K1 (a)da
aE® D i—o 2
3 _ 369 1 +oo % +oo %
extE =TT ([T roars;@ae) ([ IR e
i=1 o —00
1 1
+oo 8ok 4 +oo
rxt e F ([ T lonapny@da)” I[Py @do)
- 1 =2 1
400 ok ok ~+00 9 2
([ o ry@ia) ([ 0Py @da)
C XETR (XTI E(NL)E 4 () 3k (X0 e ()2 ke B (V)
< XHETSRe
From Lemma 4.5, it follows that
J(D) = o(X"H)
regardless of irrational.
5. THE TRIVIAL REGION
Lemma 5.1. Let F(a) = Y e(af(z1, - ,xm)), where f is any real function

and the summation is over any finite set of values of z1, - - - , z,,. Then, for any A > 4,
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we have 16 (o
\F(a)\QKV(a)da < " \F(a)\QKV(a)da.

|a|>A —0o0
Proof. This is Lemma 2 of Davenport and Roth [7].
Lemma 5.2. We have

(a)da < X460 +te

1
2

4
1
/H f</\i0‘>9(/\5a)h(—a)e(—§a)[(
Ci=1
Proof. By Lemma 5.1, Schwarz’s inequality, (4.1) and (4.3), we have

/H f</\i04>9(/\504)h(—a)e(—%a)K (a)da

(a)dev

1
2

<<![\I1fp&amp&aﬂw—aﬂkf

4

1 [t
< 5 | 1L 0dsamn(-aiiyain

N |—

< N1 max g [ ( / o) PR <a>da)%

1
=1

([ oy @in)

< N—IZ(SX% <X5+5>%<NL>%
< X4+%—366+5.
We therefore find from Lemma 5.2 that
J(c) = o( X47).
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