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THE TIME OPTIMAL CONTROL OF PARABOLIC
INTEGRODIFFERENTIAL EQUATION IN REACTOR DYNAMICS

Qiang Tao* and Zheng-An Yao

Abstract. In this paper, we first study the lack of global null controllability
and the local null controllability respectively. Based on the null controllability,
we establish the existence of the time optimal control for nonlinear parabolic
integrodifferential equations with internal distributive control.

1. INTRODUCTION

Let T > 0 and Ω be a bounded domain in R
N , with the smooth boundary ∂Ω. We

consider the following controlled parabolic integrodifferential equation:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yt − Δy = y

∫ t

0
y(x, s)ds + by + χωu, in Q∞,

y(x, t) = 0, on Σ∞,

y(x, 0) = y0(x), in Ω,

(1.1)

where y and u are respectively the state variable and the control variable. b is a
constant. Put Q∞ = Ω× (0,∞) and Σ∞ = ∂Ω× (0,∞). Assume ω to be two given
nonempty open subset of Ω. Denote by χω the characteristic function of the set ω.

The equation (1.1) with u ≡ 0 arises in the analysis of space time dependent
nuclear reactor dynamics. If the effect of a linear temperature feedback is taken into
consideration and the reactor model is considered as an infinite rod, then the one group
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neutron flux y(x, t) and the temperature v(x, t) in the reactor are given by the following
coupled equation (see [4, 7] and [9]):{

yt − (a(x)yx)x = (c1v + c2 − 1)Σfy, −∞ < x < ∞, t > 0,

ρ̃c2vt = c3Σgy,
(1.2)

where a is the diffusion coefficient and Σf , Σg, ρ̃, c1, c2, c3 are the physical quantities.
By integrating the second equation in (1.2) in the interval (0, t) and substituting it into
the first equation, we get the following nonlinear integrodifferential diffusion equation:

yt − (a(x)yx)x = βy

∫ t

0
y(x, s)ds + by −∞ < x < ∞, t > 0,

where β, b are the constants associated with the initial temperature and various physical
parameters. Throughout the paper, we will take a ≡ 1 and β = 1 for the sake of
simplicity. All the results can be extended without difficulty to the other diffusion
coefficient which is uniformly elliptic and β arbitrary.

Let the control function u taken from a given set

Uρ = {u ∈ L∞(Ω × (0,∞)); ‖u‖L∞(Ω×(0,∞)) ≤ ρ},

where ρ is a positive constant. In this paper, we shall study the following time optimal
control problem:

(P) minT := min{T ; y(·, T ) = 0, a.e. in Ω, u ∈ Uρ and y is
the solution to (1.1) corresponding to u }.

A function u ∈ Uρ is called admissible if the corresponding solution y to (1.1) satisfying
y(·, T )=0, a.e. in Ω for some T >0. And T ∗ :=min{T ; y(·, T ) = 0, a.e. in Ω, u ∈
Uρ} is called the minimal time for (P) and a control u∗ ∈ Uρ such that y∗(·, T ∗) =
0, a.e. in Ω is called a time optimal control.

The time optimal control problem was studied first for the finite-dimensional case
[6]. Thereafter, the problem was developed to infinite-dimensional case (see [1, 2] and
[8]). However, the method is suitable only for the case where the control is distributed
in the whole domain Ω. In [13], the authors obtained the existence of a time optimal
control for phase-field systems with control distributed in a subdomain ω ⊂ Ω. Their
method is based on a modified Carleman inequality. Recently, in [14], by the local
null controllability and some special type of feedback stabilization, the time optimal
control was obtained for the general nonlinear parabolic equation. It follows from [14]
that the key to get the existence of a time optimal control on a local domain ω is to
show the existence of an admissible control which is related to a type of controllability
of the equation with some suitable control functions.
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Our main aim in this paper is to show the existence of the time optimal control
for (1.1). Following some of the ideas developed by Wang [14], the proof is based on
the controllability control for (1.1). We prove the null controllability of system (1.1)
does not hold for large initial data. In other words, no matter what control function
is chosen, making use of a localized estimate in Ω\ω̄, we can see that the blow-up
phenomena will still happen. On the other hand, we shall show that the system (1.1)
is null controllability for small initial data. It is worth mentioning that the local null
controllability we obtain improved the results in [10] and [11], since we do not need
the technical condition on the kernel at 0 and T . With the help of null controllability,
we obtain the existence of the time optimal control.

2. EXACT NULL CONTROLLABILITY

In this section, we prove the lack of global null controllability and the local null
controllability respectively. Let T > 0. Denote QT = Ω×(0, T ) and ΣT = ∂Ω×(0, T ).
Consider the following system:

(2.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yt − Δy = y

∫ t

0
y(x, s)ds + by + χωu, in QT ,

y(x, t) = 0, on ΣT ,

y(x, 0) = y0(x), in Ω.

As in [12], for any y0 ∈ L∞(Ω) ∩ H1
0 (Ω) and u ∈ L∞(Ω × (0, T )), we can give

the definition of the weak solution to (2.1) in C([0, T ]; L2(Ω)) ∩ L2(0, T ; H1
0(Ω)) ∩

L∞(QT ). The existence and uniqueness of the local weak solution can be obtained by
exactly the same methods as used in [12]. So, we omit the proof here.

2.1. Lack of global null controllability

We first give the proof of the lack of global null controllability for the system (2.1).
We prove a localized estimate in Ω\ω̄ which shows that the control cannot compensate
the blow-up phenomena occurring.

Theorem 2.1. Let T > 0. Then, there exist initial conditions y0 ∈ L∞(Ω)∩H1
0 (Ω)

such that for any control function u ∈ L∞(Ω × (0, T )) the associated solution y to
(2.1) is not identically equal zero at time T .

Proof. In order to obtain this result, we employ the eigenfunction method. Let
ω′ ⊂ Ω be a subdomain of Ω such that ω ⊂ ω′ and E = Ω \ ω′. Let ϕ1 be the first
eigenfunction of the following eigenvalue problem:{

−Δϕ1 = λ1ϕ1, in E,

ϕ1(x) = 0, on ∂E,
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where λ1 is the first eigenvalue. Then it is known that ϕ1 is a non-negative smooth
function on E and ϕ1 is positive in E . In particular, we shall normalize ϕ1 in sup-norm,
that is, sup

x∈E

ϕ1(x) = 1. Denote

ρ =

{
ϕ1, in E,

0, otherwise.

Multiplying (1.1) by ρ, we have

ρyt − ρΔy = ρy

∫ t

0
y(x, s)ds + ρby

≥ 1
2
∂t(

∫ t

0
ρy(x, s)ds)2 + ρby.

Integrating this by parts over (0, t)× Ω, we get
∫

Ω
ρy(x, t)dx−

∫ t

0

∫
Ω

Δρydxdt ≥
∫

Ω
ρy0dx +

1
2

∫
Ω
(
∫ t

0
ρydt)2dx +

∫ t

0

∫
Ω

ρbydxdt,

that is,∫
E
ϕ1y(x, t)dx−

∫ t

0

∫
E
Δϕ1ydxdt ≥

∫
E
ϕ1y0dx+

1
2

∫
E
(
∫ t

0
ϕ1ydt)2dx+b

∫ t

0

∫
E
ϕ1ydxdt.

According to Hölder’s inequality, we obtain∫
E

ϕ1y(x, t)dx

≥
∫

E
ϕ1y0dx + (b − λ1)

∫ t

0

∫
E

ϕ1ydxdt +
1
2

∫
E
(
∫ t

0
ϕ1ydt)2dx

≥
∫

E
ϕ1y0dx + (b − λ1)

∫ t

0

∫
E

ϕ1ydxdt +
1

2|Ω|(
∫ t

0

∫
E

ϕ1ydxdt)2.

(2.2)

Define the function

Z(t) =
∫ t

0

∫
E

ϕ1ydxdt,

then, Z ∈ C1([0, 1)) with Z(0) = 0. In view of (2.2), we have

Z ′ ≥
∫

E

ϕ1y0dx + (b − λ1)Z +
1

2|Ω|Z
2,
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where ′ denotes once differentiation with respect to time t. Thus, we easily see that if
we take an arbitrary initial data y0 ≥ 0 such that∫

E

ϕ1y0dx >
(b − λ1)2|Ω|

2
,

then Z blows up in finite time T ∗ (dependent of y0). Obviously, as y0 → ∞, the blow-
up time of Z tends to zero and so is y. This completes the proof of Theorem 2.1.

2.2. Local null controllability

Let us consider the well-known linear parabolic system:

(2.3)

⎧⎪⎪⎨
⎪⎪⎩

yt − Δy = ay + χωu, in QT ,

y(x, t) = 0, on ΣT ,

y(x, 0) = y0(x), in Ω,

where a ∈ L∞(QT ). The following result holds:

Lemma 2.1. ([3]). For any T > 0, any a ∈ L∞(QT ) and any y0 ∈ L2(Ω),
there exist controls u ∈ L∞(ω × (0, T )) such that the corresponding solution of (2.3)
satisfies y(x, T ) = 0, a.e. in Ω. Furthermore, u can be chosen such that the following
estimate holds:

(2.4)
‖u‖L∞(ω×(0,T ))

≤ exp
[
C

(
1+

1
T

+T +(T 1/2+T )‖a‖L∞(QT )+‖a‖2/3
L∞(QT )

)]
‖y0‖L2(Ω).

From the classical L∞ estimates on the solutions of (2.3) [5], we can get the
following result.

Corollary 2.1. For any T > 0, any a ∈ L∞(QT ) and any y0 ∈ L∞(Ω) ∩
H1

0 (Ω), there exist controls u ∈ L∞(Ω × (0, T )) such that (2.3) has a solution y ∈
C([0, T ]; L2(Ω)) ∩ L2(0, T ; H1

0(Ω)) ∩ L∞(QT ) satisfying y(x, T ) = 0, a.e. in Ω.
Furthermore, u can be chosen such that the following estimate holds:

(2.5)
‖u‖L∞(Ω×(0,T ))

≤ exp
[
C

(
1+

1
T

+T +(T 1/2+T )‖a‖L∞(QT )+‖a‖2/3
L∞(QT )

)]
‖y0‖L∞(Ω).

With the null controllability for the linear parabolic system at hand, we are in a
position to prove the local null controllability of (1.1). The proof is based on the
Kakutani fixed point theorem.
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Theorem 2.2. Let T > 0. Then there exists a constant c > 0 such that for each
y0 ∈ L∞(Ω) ∩ H1

0 (Ω) satisfying

‖y0‖L∞(Ω) ≤ exp
[
−c

(
1 + T +

1
T

)]
min{1, ρ},(2.6)

there is a control function u ∈ Uρ such that the system (1.1) has a solution y ∈
C([0, T ]; L2(Ω)) ∩ L2(0, T ; H1

0(Ω)) ∩ L∞(QT ) satisfying y(x, T ) = 0, a.e. in Ω.

Proof. Define

KT = {z ∈ L∞(QT ); ‖z‖L∞(QT ) ≤ 1}.

For each z ∈ KT , we consider the controllability of the following linearized system:

(2.7)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yt − Δy = y

∫ t

0
z(x, s)ds + by + χωu, in QT ,

y(x, t) = 0, on ΣT ,

y(x, 0) = y0(x), in Ω.

Now, by Corollary 2.1, the system (2.7) is null controllable at time T . Moreover,
it follows from (2.5) that

‖u‖L∞(Ω×(0,T )) ≤ exp
[
C0

(
1 + T +

1
T

)]
‖y0‖L∞(Ω).(2.8)

where the constant C0 is independent of T .
For each z ∈ KT , we define a map Φ : KT (⊂ L2(QT )) → 2L2(QT ) by

Φ(z)={y ∈ C([0, T ]; L2(Ω))∩ L2(0, T ; H1
0(Ω)) ∩ L∞(QT ); ∃ u ∈ L∞(Ω × (0, T ))

satisfying (2.8) such that y is the solution to the system
(2.3) corresponding to z, u and y(x, T ) = 0, a.e. in Ω}.

It is readily seen that Φ(z) is nonempty, closed and convex in L2(QT ). Then we prove
Φ(KT ) ⊂ KT . By (2.5) and the classical L∞ estimates on the solutions of (2.7), we
have

‖y‖L∞(QT ) ≤ eT 2+bT ‖y0‖L∞(Ω) + TeT 2+bT ‖u‖L∞(Ω×(0,T ))

≤ exp
[
C1C0

(
1 + T +

1
T

)]
‖y0‖L∞(Ω),

where the constant C1 >1 is independent of T . Let c=C1C0. It follow from (2.6) that

‖y‖L∞(QT ) ≤ 1.
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This implies that Φ(KT ) ⊂ KT .
Moreover, from parabolic regularity, Φ(KT ) is a relatively compact subset of

L2(QT ) and Φ is upper semicontinuous in L2(QT ) exactly as in [3].
Then applying the Kakutani fixed point theorem (see, for instance, [1]), we infer

that there is at least one y ∈ KT such that y ∈ Φ(y). Moreover, by (2.5) and (2.8), it
is easy to check that u ∈ Uρ (which can be extended by 0 to the whole time interval).
Hence, our assertion is proved.

3. TIME OPTIMAL CONTROL

Based on the null controllability of the system (1.1), we now study the existence
of the time optimal control.

Theorem 3.1. Let c be the constant in Theorem 2.2. Then, for each y0 ∈ L∞(Ω)∩
H1

0 (Ω) satisfying

‖y0‖L∞(Ω) ≤ exp(−3c)min{1, ρ},(3.1)

there exists at least one time optimal control for problem (P).

Proof. Note that the function exp[−c(1 + T + 1
T )] attains its maximum exp(−3c)

at T = 1. It follows from Theorem 2.2 that for any y0 ∈ L∞(Ω) ∩ H1
0 (Ω) satisfying

(3.1), there is a control function u ∈ Uρ such that the solution of the system (1.1)(where
T = 1) satisfying y(x, 1) = 0, a.e. in Ω. This implies that the set T is nonempty.

Let T ∗ = minT . Then there exist sequences {Tn}∞n=1 with Tn → T ∗, Tn ≥
T ∗ and {un}∞n=1 ⊂ Uρ such that the solutions yn to (1.1), where u = un, satisfies
yn(·, Tn) = 0, a.e. in Ω for all n ∈ N

+. Denote

ũn(x, t) =

{
un(x, t), x ∈ Ω, 0 ≤ t ≤ Tn,

0, x ∈ Ω, t > Tn.

Let ỹn be the solutions of (1.1) with u = ũn. Then, ỹn(·, Tn) = 0, a.e. in Ω.
Given T > T ∗, we can take n∗ ∈ N

+ such that T ≥ Tn for all n > n∗. Since
‖ũn‖L∞(QT ) ≤ ρ, there exist a subsequence of {ũn}∞n=1, denoted also by itself, and a
ũ∗ such that

ũn → ũ∗ weakly star in L∞(QT ),(3.2)

which implies ‖ũ∗‖L∞(QT ) ≤ ρ.
By the standard energy estimate and the boundedness of {ỹn}∞n=1 in L∞(QT ) (from

the proof in Theorem 2.2 ỹn ∈ KT ), there is ỹ∗ such that (selecting a subsequence if
necessary)
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ỹn → ỹ∗ weakly star in L∞(QT ),

weakly in W 1,2(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0(Ω)),

strongly in C([0, T ]; L2(Ω)).

(3.3)

It follows from (3.2) and (3.3) that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ỹ∗t − Δỹ∗ = ỹ∗
∫ t

0
ỹ∗(x, s)ds + bỹ∗ + χω ũ∗, in QT ,

ỹ∗(x, t) = 0, on ΣT ,

ỹ∗(x, 0) = y0(x), in Ω.

Since ỹn(·, Tn) = 0, a.e. in Ω, we have

‖ỹ∗(·, T ∗) − ỹn(·, Tn)‖L2(Ω) ≤‖ỹ∗(·, T ∗) − ỹn(·, T ∗)‖L2(Ω)

+ ‖ỹn(·, Tn)− ỹn(·, T ∗)‖L2(Ω) → 0,

as n → ∞, which implies ỹ∗(·, T ∗) = 0. Finally, denote

u∗(x, t) =

{
ũ∗(x, t), x ∈ Ω, 0 ≤ t ≤ T ∗,
0, x ∈ Ω, t > T ∗.

and y∗ be the solution to (1.1) with u = u∗. Then, y∗(·, T ∗) = 0, a.e. in Ω, and hence
T ∗ is the optimal time of the problem (P). This completes the proof.
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