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STABILITY ANALYSIS FOR GENERALIZED f -PROJECTION OPERATORS
WITH AN APPLICATION

Zhong-bao Wang and Nan-jing Huang*

Abstract. In this paper, stability results for generalized f-projection operators
with parametric perturbations are given in reflexive, smooth, and strictly convex
Banach spaces. By using the stability of generalized f-projection operators and
the degree theory for the generalized set-valued variational inequality introduced
by Wang and Huang [30], the lower continuity of the solution mapping for the
parametric generalized set-valued variational inequality is established under some
suitable conditions.

1. INTRODUCTION

Throughout this paper, unless otherwise stated, assume that B is a real Banach
space with the dual space B∗, the norm and the dual pair between B and B∗ are
denoted by ‖ · ‖ and 〈·, ·〉, respectively. Let K be a nonempty closed convex subset of
B.
It is well known that the projection operators in finite dimensional spaces and

infinite dimensional spaces are widely used in different areas of mathematics such as
functional and numerical analysis, theory of optimization and approximation, and also
for the problems of optimal control and operations research, nonlinear and stochastic
programming and game theory, variational inequalities, complementarity problems, etc.
(for example, see [2, 3, 4, 21] and the references therein). Alber [3] introduced the
generalized projections πK : B∗ → K and ΠK : B → K in uniformly convex and
uniformly smooth Banach spaces and studied their properties in detail. Alber [4] studied
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the stability of ΠK and πK with respect to a perturbation of the set and presented some
new properties of the generalized projections πK : B∗ → K and ΠK : B → K.
Li [21] extended the generalized projections from uniformly convex and uniformly
smooth Banach spaces to reflexive Banach spaces. Recently, Wu and Huang [32]
introduced and studied generalized f -projection operators πf

K : B∗ → 2K in Banach
spaces, which extended the definition of the generalized projections πK introduced and
studied by Alber [2, 4] and Li [21]. Some properties of the generalized f -projection
operators πf

K are given in [13, 32] and further study for variational inequalities with
the generalized f -projection operators πf

K can be found in [23, 24, 33, 34]. Let B
be a reflexive, smooth, and strictly convex Banach space, C be a nonempty closed
convex subset of B, and {Kn} ⊂ C be a sequence of nonempty closed convex subsets.
Ibaraki et al. [14] showed that for any x ∈ C, ΠKnx converges strongly to ΠKx,
as Kn Mosco-converging to K. However, it remains unknown whether there is the
similar results for generalized f -projection operators πf

K .
On the other hand, it is well known that the variational inequalities theory has wide

applications in finance, economics, transportation, optimization, operations research,
and engineering sciences. Among many desirable properties of the solution sets for
variational inequalities, stability analysis of solution set is of considerable interest (see,
for example, [19, 12, 15, 16, 17, 18, 20, 27, 28] and the references therein). Pang
[27] used degree theory to obtain interesting results on sensitivity of a parametric
nonsmooth equation with multivalued perturbed solution sets. This paper has been
very influential for the optimization community. By using the metric projection method
of Dafermos [8], Yen [35] obtained a theorem on Höder continuity of the solution to
a parametric variational inequalities in Hilbert spaces for strongly monotone operators.
Based on the normal map and the degree-theoretic method, Robinson [28] established
a result on the solution stability of the variational conditions in finite dimensional
spaces. By using homeomorhisms between the solution set of variational inequalities
and the solution set of generalized normal maps, Kien and Yao [18] proved that the
solution map of parametric variational inequalities is lower semicontinuous. By using
the degree theory and the natural map, Kien and Wong [16] showed that under certain
conditions, the solution mapping of parametric single-valued variational inequalities is
lower semicontinuous with respect to parameters in finite dimensional spaces.
Note that although there have been many papers which study solution stability of

parametric variational inequalities, very few paper which focus on a such study for
parametric generalized variational inequalities and parametric generalized set-valued
variational inequalities by using degree theory. Recently, Kien et al. [17] built a
degree theory for the generalized variational inequality in finite dimensional spaces and
employed the degree to prove some results on existence and stability of the solutions for
the generalized variational inequality. Very recently, Wang and Huang [30] introduced
and studied the degree theory for a generalized set-valued variational inequality in
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Banach spaces and gave an existence result of solutions for the generalized set-valued
variational inequality under some suitable conditions.
We remark that the result about stability of the solutions for the generalized vari-

ational inequality in Kien et al. [17] deal with the case of finite dimensional spaces,
where the compactness of sets are easy to obtain and the duality mapping and met-
ric projection have many nice properties. Such problem will be more difficult if the
space is infinite-dimensional because some properties of duality mappings and metric
projections are no longer valid.
Motivated and inspired by the work mentioned above, in this paper, we study

the stability of generalized f -projection operators πf
K with parametric perturbations

in a reflexive, smooth, and strictly convex Banach space. By using the stability of
generalized f -projection operators πf

K and the degree theory for a generalized set-
valued variational inequality introduced by [30], we show that the solution mapping
of the parametric generalized set-valued variational inequality is lower semicontinuous
with respect to the parameters. The results presented in this paper extend and improve
some corresponding results in [14, 16, 17, 18]. The rest of the paper is organized as
follows. In Section 2, we recall some concepts and preliminary results. In Section 3, we
establish the stability of generalized f -projection operators. In Section 4, by using the
stability of generalized f -projection operators and the degree theory for a generalized
set-valued variational inequality introduced by [30],we give sufficient conditions for the
lower semicontinuity of the solution mapping for the parametric generalized set-valued
variational inequality.

2. PRELIMINARIES

We firstly recall some definitions and results of the degree theory (see, for example,
[25]). Let R = (−∞,+∞) and Ω1 be an open bounded set in Rn. We denote by ∂Ω1

the boundary of Ω1 and Ω1 the closure of Ω1. Let C1(Ω1) = C1(Ω1)∩C(Ω1), where
C1(Ω1) is the set of all continuously differentiable functions h : Ω1 
→ Rn and C(Ω1)
is the set of all continuous functions on Ω1. We will denote by ρ(x, A1) the distance
from a point x ∈ Rn to a set A1 ⊂ Rn, i.e.,

ρ(x, A1) := inf{|x− y| : y ∈ A1}.

If h ∈ C1(Ω1), let Jh(x) = det(grad h(x)) and

Zh = {x ∈ Ω1 : Jh(x) = 0}.

Here grad h(x) denotes the gradient of function h with respect to vector x. It is well
known that if h ∈ C1(Ω1) and p �∈ h(Zh), then the set h−1(p) is finite (see, for
example, Theorem 1.1.2 in [25]).
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Definition 2.1. (a1) Let h ∈ C1(Ω1) and p �∈ h(Zh) ∪ h(∂Ω1). The degree of h
at p with respect to Ω1 is defined by

d(h,Ω1, p) :=
∑

x∈h−1(p)

sgn(Jh(x)).

(a2) Let h ∈ C1(Ω1) and p �∈ h(∂Ω1) such that p ∈ h(Zh). We define the degree of
h at p with respect to Ω1 to be the number d(h,Ω1, q) such that |p−q| < ρ(p, h(∂Ω1))
for all q �∈ h(Zh) ∪ h(∂Ω1).
(a3) Let h ∈ C(Ω1) and p �∈ h(∂Ω1). We define d(h,Ω1, p), the degree of h at p

with respect to Ω1, to be d(h1,Ω, p) such that |h(x) − h1(x)| < ρ(p, h(∂Ω1)) for all
h1 ∈ C1(Ω1) and x ∈ Ω1.
Let D be an open, bounded set in a Banach space X with the boundary ∂D and

the closure D. We say that a single-valued mapping F̂1 : D → X is compact if F̂1 is
continuous and for every bounded subset A of D, F̂1(A) = ∪x∈AF̂1(x) is a relatively
compact set, i.e., F̂1(A) is a compact set. We denote by K̂(D) the set of all mappings
φ : D → X such that φ = I − T̃ , where T̃ : D → X is compact.

Definition 2.2. Suppose that φ = I − T̃ , where T̃ : D → X is a compact
mapping, I is the identity mapping on D and p ∈ X \ φ(∂D). Let φ̂ = I − T̂ ,
where T̂ is a continuous mapping defined in D with finite dimensional range such that
‖T̃ (x)− T̂ (x)‖ < ρ(p, φ(∂D)) for all x ∈ D. Choose a finite dimensional linear space
V to contain T̂ (D) and let DV = D ∩ V . Then define d(φ,D, p) = d(φ̂, DV , p).
The following Theorem lists some basic properties of the degree.

Theorem 2.1. The Leray-Schauder degree has the following properties:

(a1) (Existence). If φ ∈ K̂(D) and d(φ,D, p) �= 0 then there is x ∈ D such that
φ(x) = p;

(a2) (Homotopy invariance). H : [0, 1] × D → X is a compact mapping. Put
φt(x) = x − H(t, x). If p �∈ φt(∂D) for all t ∈ [0, 1], then d(φt, D, p) is
independent of t ∈ [0, 1];

(a3) (Excision). If φ ∈ K̂(D) p �∈ φ(∂D), D0 ⊂ D is closed and p �∈ φ(D0), then
d(φ,D, p) = d(φ,D \D0, p).

Recall that a point x̄0 is said to be an isolated solution of the equation φ(x) = p if
there exists a bounded open set U ⊂ X such that x̄0 is the unique solution in U ⊂ D.
We denote by U the collection of such bounded open sets. By the excision property, it
follows that d(φ, U1, p) = d(φ, U2, p) for all U1, U2 ∈ U . The index of x̄0, denoted
by index(φ, x̄0, p), is the common value d(φ, U, p) for all U ∈ U .
Throughout this paper, unless otherwise stated, we use→ for convergence in strong

sense and ⇀ for convergence in weak sense. Let T : K → 2B∗ be a set-valued
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mapping, f : K → R∪{+∞} be a proper, convex and lower semi-continuous function
and Ω ⊂ B be an open bounded set with the boundary ∂Ω and the closure Ω such that
K ∩ Ω �= ∅.
Next we recall the concept of the normalized duality mapping. The normalized

duality mapping J : B → 2B∗ is defined by

J(x) = {j(x) ∈ B∗: 〈j(x), x〉 = ‖j(x)‖‖x‖ = ‖x‖2 = ‖j(x)‖2} , ∀ x ∈ B.

Without confusion, one understands that ‖j(x)‖ is theB∗-norm and ‖x‖ is theB-norm.
In this paper, we consider the following generalized set-valued variational inequality
(in short, GSVI): find x ∈ K and x∗ ∈ F (x) such that

(2.1) 〈x∗, y − x〉 + f(y)− f(x) ≥ 0, for all y ∈ K.

where F (x) = J(x) − T (x) for every x ∈ K. It is well known that GSVI (2.1) is
encountered in many applications, in particular, in mechanical problems and equilibrium
problems (see, for example, [7, 12, 19]).
For any x ∈ B, the generalized f -normal cone of K at x, denoted by N f

K(x), is
defined as follows (see [30], Definition 1.2):

N
f
K(x) =

{ {ϕ ∈ B∗ : 〈ϕ, y − x〉 + f(x)− f(y) ≤ 0, ∀y ∈ K}, if x ∈ K,

∅, otherwise.

Remark 2.1. (a1) If f = 0, then the generalized f -normal cone of K at x reduces
to the generalized normal cone of K at x considered in [22], that is,

NK(x) =
{ {ϕ ∈ B∗ : 〈ϕ, y − x〉 ≤ 0, ∀y ∈ K}, if x ∈ K,

∅, otherwise.

(a2) If B is a Hilbert space and f = 0, then the generalized f -normal cone reduces
to the normal cone defined as follows:

NK(x) =
{ {ϕ ∈ H : 〈ϕ, y− x〉 ≤ 0, ∀y ∈ K}, if x ∈ K,

∅, otherwise.

Definition 2.3. Let F : K → 2B∗ be a set-valued mapping. (i) F is said to be
upper semicontinuous at x ∈ K if, for any open set V ⊂ B∗ with F (x) ⊂ V , there
exists an open neighborhood U of x such that F (y) ⊂ V for all y ∈ U ∩K . If F is
upper semicontinuous at every x ∈ K , we say that F is upper semicontinuous on K.
(ii) F is said to be compact if F is upper semicontinuous and F (A) is relatively

compact for any bounded subset A of K, that is, F (A) is a compact set.
For any fixed ρ > 0, let G : B∗ × K → (−∞,+∞] be a function defined as

follows:

(2.2) G(ϕ, x) = ‖x‖2 − 2〈ϕ, x〉+ ‖ϕ‖2 + 2ρf(x), ∀ ϕ ∈ B∗, ∀ x ∈ K,
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where ϕ ∈ B∗, x ∈ K and f : K ⊂ B → R
⋃{+∞} is proper, convex and lower

semi-continuous. It is easy to see thatG(ϕ, x) ≥ (‖x‖−‖ϕ‖)2+2ρf(x) for all ϕ ∈ B∗

and x ∈ K.

Definition 2.4. We say that B has the property (h) if xn ⇀ x weakly and ‖xn‖ →
‖x‖ implies xn → x.

Remark 2.2. It is well known that any locally uniformly convex Banach space has
the property (h) and B∗ has a Fréchet differentiable norm if and only if B is reflexive,
strictly convex, and has the property (h) (see, for example, [29]).

Definition 2.5. [32]. We say that πf
K : B∗ → 2K is a generalized f -projection

operator if

πf
Kϕ = {u ∈ K : G(ϕ, u) = infy∈KG(ϕ, y)}, ∀ ϕ ∈ B∗.

Remark 2.3. (i) If f(x) = 0 for all x ∈ K , then the generalized f -projection
operator πf

K reduces to the generalized projection operator πk defined by Alber [3] and
Li [21], that is,

πKϕ = {u ∈ K : G1(ϕ, u) = infy∈KG1(ϕ, y)}, ∀ ϕ ∈ B∗,

where G1(ϕ, x) = ‖x‖2 − 2〈ϕ, x〉+ ‖ϕ‖2 for all ϕ ∈ B∗ and x ∈ K.
(ii) If f(x) = 0 for all x ∈ K and B = H is a Hilbert space, then the generalized

f -projection operator πf
K is equivalent to the following metric projection operator

PK(ϕ) = {u ∈ K : ‖u− ϕ‖ = infy∈K‖y − ϕ‖}, ∀ ϕ ∈ H.
Theorem 2.2. [13, 32]. If B is a reflexive Banach space with dual space B∗ and

K is a nonempty closed convex subset of B, then the following conclusions hold:

(i) For any given ϕ ∈ B∗, πf
Kϕ is a nonempty, closed and convex subset of K;

(ii) If B is smooth, then for any given ϕ ∈ B∗, x ∈ πf
Kϕ if and only if

〈ϕ− J(x), x− y〉+ ρf(y)− ρf(x) ≥ 0, ∀ y ∈ K;

(iii) If B is strictly convex, then the operator πf
K : B∗ → K is single-valued.

Theorem 2.3. [13]. Let B be a reflexive and strictly convex Banach space
with dual space B∗ and K be a nonempty closed convex subset of B. Suppose
that f : K ⊂ B → (−∞,+∞] is proper, convex and lower semi-continuous. Then

(i) πf
K : B∗ → K is norm-weak continuous;

(ii) If B has the property (h), then πf
K : B∗ → K is continuous.
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Lemma 2.1. [26]. Let B be a reflexive Banach space, C ⊂ B be a closed convex
set. Let b : C → (−∞,+∞] be a lower semicontinuous and convex function with
bounded from below such that lim‖x‖→∞b(x) = +∞. Then there exists x0 ∈ C such
that infx∈Cb(x) = b(x0).

Lemma 2.2. [30]. Let T : K → 2B∗ be an upper semicontinuous mapping with
closed convex values. For any ε > 0, there is a continuous single-valued mapping
Tε : B → B∗ such that for every x ∈ K , there exist y ∈ K and z ∈ T(y) such that

(2.3) ‖y − x‖ < ε and ‖z − Tε(x)‖ < ε.

Moreover, R(Tε|K) ⊂ co(R(T)), where Tε|K denotes the restriction of Tε on K , R(T)
is the range of T and R(Tε|K) is the range of Tε|K . In particular, Tε|K is compact if
T is compact.
We consider F (x) = J(x) − T (x) for all x ∈ K, where J : B → 2B∗ is the

normalized duality mapping and T : K → B∗ is a compact mapping with closed
convex values. For any ε > 0, we define a mapping Φε : B → B as follows:

Φε(x) = x− πf
K(J(x) − Fε(x)) = x− πf

K(Tε(x)), ∀ x ∈ K,

where Fε = J −Tε and Tε is an approximate continuous selection of T which satisfies
the conclusions of Lemma 2.2.

Through the rest of this paper, unless otherwise stated, we take ρ = 1 in (2.2). By
Theorem 2.2, it is easy to know the following theorem holds.

Theorem 2.4. [30]. Assume that B is a reflexive and smooth Banach space with
dual space B∗ and K is a nonempty closed convex subset of B. Then the following
statements are mutually equivalent:
(a1) x ∈ K and x∗ ∈ F (x) is a solution of GSVI (1);
(a2) x ∈ K satisfies x ∈ πf

K(J(x) − F (x));
(a3) x ∈ K satisfies 0 ∈ F (x) +N f

K(x).

Lemma 2.3. [30]. Assume that B is a reflexive, smooth and strictly convex
Banach space with the dual space B∗, B has the property (h) and K is a nonempty
closed convex subset of B. Let f : K → (−∞,+∞] be proper, convex and lower
semi-continuous and F (x) = J(x) − T (x) for all x ∈ K , where J : B → 2B∗ is the
normalized duality mapping and T : K → 2B∗ is a compact mapping with compact
convex values. Moreover, 0 �∈ (F +N f

K)(∂Ω). Then the following assertions hold:
(i) There exists ε1 > 0 such that 0 �∈ Φε(∂Ω) for all ε ∈ (0, ε1];
(ii) There exists ε2 > 0 such that

d(Φε,Ω, 0) = d(Φε′ ,Ω, 0), ∀ ε, ε′ ∈ (0, ε2].
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It follows from Lemma 2.3 that there exists ε̄ > 0 such that 0 �∈ Φε(∂Ω) and
d(Φε,Ω, 0) = d(Φε′ ,Ω, 0) for all ε, ε′ ∈ (0, ε̄]. Based on Lemma 2.3, we can
introduce the following definition.

Definition 2.6. [30]. Assume that B is a reflexive, smooth and strictly convex
Banach space with the dual space B∗, B has the property (h) and K is a nonempty
closed convex subset of B. Let f : K → (−∞,+∞] is proper, convex and lower
semi-continuous. Let F (x) = J(x) − T (x) for all x ∈ K, where J : B → 2B∗ is the
normalized duality mapping and T : K → 2B∗ is a compact mapping with compact
convex values. Moreover, 0 �∈ (F + N f

K)(∂Ω). The degree of the generalized set-
valued variational inequality defined by F and K respect to Ω at 0 is the common
value d(Φε,Ω, 0) for ε > 0 sufficiently small and denoted by d(F +N f

K ,Ω, 0).

Remark 2.4. If B = Rn and f = 0 is a finite dimensional space, then Definition
2.6 is equivalent to the degree of the generalized variational inequality defined by
Definition 2.1 in [17]. For details, see [30].
The following theorem contains some properties of the degree of the generalized

set-valued variational inequality in Banach spaces.

Theorem 2.5. [30]. Assume that B is a reflexive, smooth and strictly convex
Banach space with the dual space B∗, B has the property (h) and K is a nonempty
closed convex subset of B. Suppose that f : K → (−∞,+∞] is proper, convex and
lower semi-continuous. Let F (x) = J(x) − T (x) for all x ∈ K , where J : B → 2B∗

is the normalized duality mapping and T : K → 2B∗ is a compact mapping with
compact convex values. Then the following assertions hold:

(a1) (Normalization). Suppose that there exists x̂ ∈ Ω ∩ K such that f(x̂) =
infx∈Kf(x). If 0 �∈ (F +N f

K)(∂Ω) with F =J−J(x̂), then d(F+N f
k ,Ω, 0)=1.

(a2) (Existence). If 0 �∈ (F +N f
K)(∂Ω) and d(F +N f

K,Ω, 0) �= 0, then there exists
x ∈ K ∩ Ω such that

0 ∈ F (x) +N f
K(x).

(a3) (Homotopy invariance). For ĩ ∈ {1, 2}, Fĩ(x) = J(x) − T ĩ(x) for all x ∈ K,
where J : B → 2B∗ is the normalized duality mapping and T ĩ : K → 2B∗ is
a compact mapping with compact convex values. Moreover, 0 �∈ (tF1 + (1 −
t)F2 +N f

K)(∂Ω) for all t ∈ [0, 1]. Then

d(F1 +N f
K,Ω, 0) = d(F2 +N f

K,Ω, 0).

(a4) (Excision). If 0 �∈ (F + N f
K)(∂Ω) and D ⊂ Ω is a closed set such that

0 �∈ (F +N f
k )(D) then

d(F +N
f
K ,Ω, 0) = d(F +N

f
K ,Ω \D, 0).
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(a5) If 0 �∈ (F +N f
K)(∂Ω) and T1 : B → B∗ is a single-valued continuous mapping

such that T1(x) ∈ T (x) for all x ∈ K , then d(F + N f
K ,Ω, 0) = d(Φ,Ω, 0),

where Φ(x) = x− πf
K(T1(x)).

Remark 2.5. If f is bounded from below and lim‖x‖→∞f(x) = +∞, then Lemma
2.1 shows that f(x̂) = infx∈Kf(x) is true. Thus, the assumption of (a1) holds under
some suitable conditions.

Definition 2.7 A vector x0 ∈ K is called an isolated solution of GSVI (2.1) if
there exists a neighborhood V1 ⊂ K of x0 such that x0 is the unique solution of GSVI
(2.1) in V1.

Theorem 2.6. Assume that B is a reflexive, smooth and strictly convex Banach
space with the dual space B∗, B has the property (h) and K is a nonempty closed
convex subset of B. Suppose that f : K ⊂ B → R ∪ {+∞} is proper, convex and
lower semi-continuous. Let F (x) = J(x) − T (x) for all x ∈ K , where J : B → 2B∗

is the normalized duality mapping and T : K → 2B∗ is a compact mapping with
compact convex values. Suppose that x0 is an isolated solution of GSVI (2.1) and U

is the collection of all open bounded neighborhoods V1 of x0 such that V1 does not
contain another solution of GSVI (2.1). Then

d(F +N f
K , V2, 0) = d(F +N f

K, V3, 0)

for all V2, V3 ∈ U. The common value d(F + N f
K, V1, 0) for V1 ∈ U is called the

index of F +N f
K and denoted by i(F +N f

K, x0, 0).

Proof. Taking any Ṽ ∈U we have 0 �∈ (F+N f
K)(∂Ṽ ). Therefore d(F+N f

K , Ṽ , 0)
is well defined. We now assume that V2, V3 ∈ U. Put V1 = V2 ∪ V3 ∈ U and
D1 = V 2 ∩ V c

3 , where V c
3 = B \ V3. We have that D1 is a bound and closed set in V

and 0 �∈ (F +N f
K)(D1). By (a4) in Theorem 2.5, we get

d(F +N f
K, V1, 0) = d(F +N f

K , V1 \D1, 0) = d(F +N f
K , V3, 0).

Using a similar argument for D1 = V 3 ∩ V c
2 , we get

d(F +N f
K , V1, 0) = d(F +N f

K , V1 \D1, 0) = d(F +N f
K , V2, 0)

and so
d(F +N

f
K, V2, 0) = d(F +N

f
K , V3, 0), ∀ V2, V3 ∈ U.

This completes the proof.

Remark 2.6. Theorem 2.6 and Definition 2.7 generalize, extend and improve
Theorem 2.3 and Definition 2.2 in [17] from finite dimensional spaces to Banach
spaces, respectively.
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Remark 2.7 It is well known that Hilbert spaces and Rn are reflexive, uniformly
convex and uniformly smooth. Therefore, Lemmas 2.2 and 2.3, Definitions 2.6 and
2.7, Theorems 2.4, 2.5 and 2.6 still hold in Hilbert spaces and Rn.

3. STABILITY ANALYSIS FOR GENERALIZED f -PROJECTION OPERATORS

Lemma 3.1. [9]. Let f : B → (−∞,+∞] be a convex and lower semicontinuous
function. Then there exist x∗ ∈ B∗ and β ∈ R such that

f(x) ≥ 〈x∗, x〉+ β, ∀ x ∈ B.

Definition 3.1. [23]. Let B be a reflexive, smooth and strictly convex Banach
space with the dual space B∗, and K be a nonempty closed convex subset of B. We
say that Πf

K : B → 2K is a generalized f -projection operator if

Πf
Kx = {u ∈ K : G3(Jx, u) = infy∈KG3(Jx, y)}, ∀ x ∈ B,

where

G3(Jx, ξ) = ‖x‖2 − 2〈Jx, ξ〉+ ‖ξ‖2 + 2ρf(ξ), ∀ x ∈ B, ∀ ξ ∈ K.

Remark 3.1.

(i) If f(x) = 0 for all x ∈ K, then the generalized f -projection operator Πf
K reduces

to the generalized projection operator Πk defined by Alber [3] and Li [21], that
is,

ΠKx = {u ∈ K : G2(Jx, u) = infy∈KG2(Jx, y)}, ∀ x ∈ B,

where G2(Jx, ξ) = ‖x‖2 − 2〈Jx, ξ〉+ ‖ξ‖2 for all x ∈ B and ξ ∈ K.

(ii) If f(x) = 0 for all x ∈ K and B = H is a Hilbert space, then the generalized f -
projection operator Πf

K is equivalent to the following metric projection operator

PK(ϕ) = {u ∈ K : ‖u− ϕ‖ = infy∈K‖y − ϕ‖}, ∀ ϕ ∈ H.
(iii) Let B be a reflexive, smooth and strictly convex Banach space with the dual

space B∗, and K be a nonempty closed convex subset of B. According to
Definitions 2.5 and 3.1, it is easy to see that Πf

K = πf
KJ and π

f
K = Πf

KJ
∗,

where J∗ : B∗ → B is a normalized duality mapping in B∗.

Definition 3.2. Let O be a nonempty subset of B andK ′ : O → 2B be a set-valued
mapping. For any {wn} ⊂ O with wn → w0 ∈ O, we say that the sequence of sets
K(wn) Mosco-converges to K(w) if the following two assumptions are satisfied:

(i) for every sequence un ∈ K ′(wn) such that un weakly converges to u0, then
u0 ∈ K ′(w0);



Stability Analysis for Generalized f -Projection Operators with an Application 1737

(ii) for every u0 ∈ K ′(w0), there exists un ∈ K ′(wn) (for n large enough) such that
un strongly converges to u0.

Let A and B be nonempty subsets in B. The Hausdorff metric between A and B
is defined as follows:

H(A,B) = max{sup
a∈A

d(a, B); sup
b∈B

d(A, b)},

where d(a, B) = inf
b∈B

‖ a− b ‖ and d(A, b) = inf
a∈A

‖ a− b ‖.

Proposition 3.1. Assume that (Λ, d) is a metric space and K : Λ → 2B is a
set-valued mapping with nonempty closed convex values. For any sequence {λn} with
λn → λ0 ∈ Λ as n → +∞, H(K(λn), K(λ0)) → 0. Then K(λn) Mosco-converges
to K(λ0).

Proof. Since H(K(λn), K(λ0)) → 0 as λn → λ0, for any ε̂ > 0, there exist
N > 0, for any n ≥ N , such that

(3.1) K(λ0) ⊂ K(λn) + ε̂B(0, 1) and K(λn) ⊂ K(λ0) + ε̂B(0, 1),

where B(0, 1) is the open unit ball of B. For any u0 ∈ K(λ0), (3.1) implies that there
exists un ∈ K(λn) (for n large enough) such that un → u0. On the other hand, for
every sequence un ∈ K(wn) such that un converges weakly to û0, by (3.1), we know
there exists yn ∈ K(λ0) such that ‖un − yn‖ ≤ ε̂. Thus yn ⇀ û0. Since K(λ0) is
a nonempty, closed and convex set and yn ∈ K(λ0), we get û0 ∈ K(λ0). Therefore
K(λn) Mosco-converges to K(λ0). This completes the proof.

Proposition 3.1 shows that, for any sequence {λn} with λn → λ0 ∈ Λ as n→ +∞,
K(λn) converges to K(λ0) in Hausdorff metric implies that K(λn) Mosco-converges
to K(λ0). However, the following example shows that the inverse is not true, in
general.

Example 3.1. Let K : R → R2 be defined by K(λ) = {(x, y)|y = λx, x ∈
R}. We claim that for any λn → λ0, K(λn) Mosco-converges to K(λ0). In fact,
for any (x̄, ȳ) ∈ K(λ0), taking xn = x̄ and yn = λnx̄, we get that (xn, yn) ∈
K(λn) and (xn, yn) → (x̄, ȳ). On the other hand, for any (x̄n, ȳn) ∈ K(λn) with
(x̄n, ȳn) → (x̄0, ȳ0), it is easy to see that (x̄0, ȳ0) ∈ K(λ0) and so the claim is
true. In addition, we know that K is not Hausdorff lower semicontinuous at 0 and
so K is not Hausdorff continuous at 0. Indeed, fix ε0 > 0. For all δ1 > 0, we
can choose λ̄ ∈ B(0, δ1) and (x̄, 0) = ( 2ε0

√
1+λ̄2

|λ̄| , 0) ∈ K(0). It is easy to get that

d((x̄, 0), K(λ̄)) = |λ̄||x̄|√
1+λ̄2

= 2ε0 > ε0. Thus, for any sequence {λn} with λn → 0 as

n→ +∞, H(K(λn), K(0)) �→ 0.
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Remark 3.2. If O = X and wn ⇀ w0, then Definition 3.1 becomes Definition 2
in [1].

Theorem 3.1. Assume that (Λ, d) is a metric space, B is a reflexive and strictly
convex Banach space with the dual space B∗ andK : Λ → 2B is a set-valued mapping
with nonempty closed convex values. Suppose that f : B → (−∞,+∞) is convex
and continuous, and for any sequence {λn} with λn → λ0 ∈ Λ as n→ +∞, K(λn)
Mosco-converges to K(λ0). Then for each sequence {(u∗n, λn)} ⊂ B∗ × Λ such that
u∗n → u∗0 and λn → λ0 ∈ Λ as n→ +∞, πf

K(λn)
u∗n converges weakly to π

f
K(λ0)

u∗0.

Proof. For any fixing sequence {(u∗n, λn)} ⊂ B∗×Λ with u∗n → u∗0 and λn → λ0

as n → +∞, put xn = πf
K(λn)u

∗
n. Since K(λn) Mosco-converges to K(λ0), for any

fixing ȳ ∈ K(λ0), there exists yn ∈ K(λn) such that yn → ȳ as n → +∞. Since
f : B → (−∞,+∞) is convex and continuous, applying Lemma 3.1, we know there
exist h ∈ B∗ and α ∈ R such that

f(y) ≥ 〈h, y〉+ α, ∀ y ∈ B.

It follows that

G(u∗n, xn) = ‖u∗n‖2 − 2〈u∗n, xn〉+ ‖xn‖2 + 2ρf(xn)

≥ ‖u∗n‖2 − 2〈u∗n, xn〉+ ‖xn‖2 + 2ρ〈h, xn〉 + 2ρα

= ‖u∗n‖2 − 2〈u∗n − ρh, xn〉 + ‖xn‖2 + 2ρα

≥ ‖u∗n‖2 − 2‖u∗n − ρh‖‖xn‖ + ‖xn‖2 + 2ρα

= (‖xn‖ − ‖u∗n − ρh‖)2 + ‖u∗n‖2 − ‖u∗n − ρh‖2 + 2ρα.

(3.2)

Since f is continuous, it is easy to see that G(·, ·) is continuous and so G(u∗n, yn) →
G(u∗0, ȳ) as n → +∞. Hence the sequence {G(u∗n, yn)} is bounded. Now xn =
πf

K(λn)
u∗n and (3.2) imply that

G(u∗n, yn) ≥ G(u∗n, xn) ≥ (‖xn‖ − ‖u∗n − ρh‖)2 + ‖u∗n‖2 − ‖u∗n − ρh‖2 + 2ρα

and so the sequence {xn} is bounded. Since B is reflexive, there exists a subsequence,
again denoted by {xn}, such that it converges weakly to x0 ∈ B. xn ∈ K(λn) and
K(λn) Mosco-converges to K(λ0) imply that x0 ∈ K(λ0).
Next we prove that x0 = π

f
K(λ0)

u∗0. Since f is convex and continuous, the norm
is weakly lower semicontinuous and u∗n → u∗0 as n→ +∞, we get

lim inf
n→+∞ G(u∗n, xn) = lim inf

n→+∞(‖u∗n‖2 − 2〈u∗n, xn〉 + ‖xn‖2 + 2ρf(xn))

≥ ‖u∗0‖2 − 2〈u∗0, x0〉 + ‖x0‖2 + 2ρf(x0) = G(u∗0, x0).
(3.3)
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On the other hand, since xn = πf
K(λn)

u∗n and G(·, ·) is continuous, we get

lim inf
n→+∞ G(u∗n, xn) ≤ lim inf

n→+∞ G(u∗n, yn) = G(u∗0, ȳ).(3.4)

By x0 ∈ K(λ0), (3.3) and (3.4), we know G(u∗0, x0) = minȳ∈K(λ0)G(u∗0, ȳ). Defini-
tion 2.5 and Theorem 2.2 imply that x0 = πf

K(λ0)
u∗0. According to our consideration

above, each sequence {xn} has, in turn, a subsequence which converges weakly to the
unique point πf

K(λ0)
u∗0. Therefore, the sequence {xn} converges weakly to πf

K(λ0)
u∗0.

This completes the proof.

Corollary 3.1. Let B be a smooth Banach space such that B∗ has a Fréchet dif-
ferentiable norm, and C be a nonempty closed convex subset of B. Let C1, C2, C3, · · ·
be nonempty closed convex subsets of C. If Cn Mosco-converges to C0, as n → ∞
and C0 is nonempty, then C0 is a closed convex subset of C and, for each x ∈ C,
ΠCnx converges weakly to ΠC0x.

Proof. It is easy to prove that C0 is closed and convex if Cn is a closed convex
subset of C. By taking f = 0, Λ = R, K(0) = C0 and K( 1

n) = Cn (n = 1, 2, · · ·) in
Theorem 3.1, we get πCnJ(x) converges strongly to πC0J(x). It follows from [4] that
πCnJ(x) = ΠCnx and πC0J(x) = ΠC0x. Thus, ΠCnx converges weakly to ΠC0x.
The proof is complete.

Remark 3.3. We would like to mention that Corollary 3.1 is Theorem 3.1 of [14].

Theorem 3.2. Assume that (Λ, d) is a metric space, B is a reflexive and strictly
convex Banach space with the dual space B∗, B has the property (h) and K : Λ →
2B is a set-valued mapping with nonempty closed convex values. Suppose that f :
B → (−∞,+∞) is convex and continuous, and for any sequence {λn} with λn →
λ0 ∈ Λ as n → +∞, K(λn) Mosco-converges to K(λ0). Then for each sequence
{(u∗n, λn)} ⊂ B∗ × Λ such that u∗n → u∗0 and λn → λ0 ∈ Λ as n → +∞, πf

K(λn)u
∗
n

converges strongly to πf
K(λ0)

u∗0.

Proof. Fix {(u∗n, λn)} ⊂ B∗ × Λ with u∗n → u∗0 and λn → λ0 as n → +∞,
arbitrarily. We write xn = π

f
K(λn)u

∗
n and x0 = π

f
K(λ0)

u∗0. By Theorem 3.1, we obtain
{xn} converges weakly to x0. Since B has the property (h), it is sufficient to prove
that ‖xn‖ → ‖x0‖ as n → +∞. Since x0 ∈ K(λ0) and K(λn) Mosco-converges to
K(λ0), there exists a sequence {yn} such that yn ∈ K(λn) and yn → x0 as n→ +∞.
Since xn = πf

K(λn)
u∗n and G(·, ·) is continuous, by (3.3) we get

(3.5)
G(u∗0, x0) ≤ lim inf

n→+∞ G(u∗n, xn)

≤ lim sup
n→+∞

G(u∗n, xn) ≤ lim sup
n→+∞

G(u∗n, yn) = G(u∗0, x0),
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which implies that limn→+∞G(u∗n, xn) = G(u∗0, x0). Since f : B → (−∞,+∞) is
convex and continuous and f is subdifferentiable, there exists an element x̄∗ ∈ B∗

such that
f(x) − f(x0) ≥ 〈x̄∗, x− x0〉, ∀ x ∈ B.

It follows that

(3.6) f(xn) ≥ f(x0) + 〈x̄∗, xn − x0〉.

Now (3.6) implies that

‖u∗n‖2 − 2〈u∗n, xn〉 + ‖xn‖2 + 2ρf(x0) + 2ρ〈x̄∗, xn − x0〉
≤ ‖u∗n‖2 − 2〈u∗n, xn〉 + ‖xn‖2 + 2ρf(xn) = G(u∗n, xn).

(3.7)

Since xn ⇀ x0 and u∗n → u∗0, we get

(3.8)
lim

n→+∞(−2〈u∗n, xn〉 + ‖u∗n‖2 + 2ρf(x0) + 2ρ〈x̄∗, xn − x0〉)
= −2〈u∗0, x0〉 + ‖u∗0‖2 + 2ρf(x0).

From (3.7), (3.8) and limn→+∞G(u∗n, xn) = G(u∗0, x0), we have

lim sup
n→+∞

‖xn‖2 − 2〈u∗0, x0〉 + ‖u∗0‖2 + 2ρf(x0)

= lim sup
n→+∞

(‖xn‖2 − 2〈u∗n, xn〉 + ‖u∗n‖2 + 2ρf(x0) + 2ρ〈x̄∗, xn − x0〉)

≤ lim sup
n→+∞

(‖xn‖2 − 2〈u∗n, xn〉 + ‖u∗n‖2 + 2ρf(xn))

= lim sup
n→+∞

G(u∗n, xn)

= G(u∗0, x0) = ‖x0‖2 − 2〈u∗0, x0〉 + ‖u∗0‖2 + 2ρf(x0),

(3.9)

which implies lim supn→+∞ ‖xn‖2 ≤ ‖x0‖2. Thus,

(3.10) lim sup
n→+∞

‖xn‖ ≤ ‖x0‖.

On the other hand, the weakly lower semi-continuity of the norm implies that

(3.11) lim inf
n→+∞ ‖xn‖ ≥ ‖x0‖.

Now (3.10) and (3.11) show that limn→+∞ ‖xn‖ = ‖x0‖. Using the property (h) of
B, we obtain that {xn} converges strongly to x0. This completes the proof.

Remark 3.4. By using similar arguments in Corollary 3.1, from Theorem 3.2, it is
easy to get Theorem 4.1 of [14].
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Corollary 3.2. Assume that (Λ, d) is a metric space, B is a reflexive and locally
uniformly convex Banach space with the dual space B∗, B has a Fréchet differentiable
norm and K : Λ → 2B is a set-valued mapping with nonempty closed convex values.
Suppose that f : B → (−∞,+∞) is convex and continuous, and for any sequence
{λn} with λn → λ0 ∈ Λ as n → +∞, K(λn) Mosco-converges to K(λ0). Then
for each sequence {(un, λn)} ⊂ B × Λ such that un → u0 and λn → λ0 ∈ Λ as
n→ +∞, Πf

K(λn)
un converges strongly to Πf

K(λ0)
u0.

Proof. Since un → u0 and J is continuous, we know that J(un) → J(u0). It
follows from Theorem 3.2 that πf

K(λn)
J(un) converges strongly to πf

K(λ0)
J(u0). Since

π
f
K(λn)J(un) = Πf

K(λn)(un) and πf
K(λ0)

J(u0) = Πf
K(λ0)

(u0), Πf
K(λn)un converges

strongly to Πf
K(λ0)

u0. The proof is complete.

The following example shows that the assumptions of Theorem 3.2 can be satisfied.

Example 3.2. Let U be a bounded domain of RN with Lipschitz boundary and
1 < p < N . Let B = W 1,p

0 (U), W1 = W 1,p
0 (U) ∩W 2,p(U) and Λ = W1 ×W1. Set

U = {w = (ϕ, ψ) ∈W1 ×W1 = Λ : ϕ ≤ ψ a.e. Ω}.

For any λ = (ϕ, ψ) ∈ Λ, we define

K(λ) = {v ∈W
1,p
0 (U), ϕ ≤ v ≤ ψ a.e. Ω}.

By Lemma 3.1 in [31] , we know for any sequence {λn} with λn → λ0 ∈ Λ as
n → +∞, K(λn) Mosco-converges to K(λ0). Let f(x) = 3x, for all x ∈ B.
Therefore, all the conditions of Theorems 3.2 are satisfied. By Theorem 3.2, for each
sequence {(u∗n, λn)} ⊂ B∗ × Λ with u∗n → u∗0 and λn → λ0 ∈ Λ as n → +∞, we
know that πf

K(λn)
u∗n converges strongly to π

f
K(λ0)

u∗0.

4. AN APPLICATION

As an application of Theorem 3.2, in this section, we will discuss the stability of
solutions for a class of parametric generalized set-valued variational inequalities under
some suitable conditions.
Through the rest of this paper, unless otherwise stated, we assume that B is a

reflexive, strictly convex and smooth Banach space with the dual space B∗ and B has
the property (h). Let (M, d) and (Λ, d) be complete metric spaces, K : Λ → 2B be
a set-valued mapping and for each λ ∈ Λ, f : K(λ) ⊂ B → R be single-valued
mapping. Let F (μ, x) = J(x)− T (μ, x) for all (μ, x) ∈M ×B, where J : B → 2B∗

is the normalized duality mapping and T : M ×B → 2B∗ is a set-valued mapping.
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In this section, we consider the following parametric generalized set-valued varia-
tional inequality: for each given (λ, μ) ∈ Λ ×M , find x ∈ K(λ) and x∗ ∈ F (μ, x)
such that

(4.1) 〈x∗, y − x〉 + f(y) − f(x) ≥ 0, for all y ∈ K(λ).

By Theorem 2.4, we know x ∈ K(λ) and x∗ ∈ F (μ, x) is a solution of the problem
(4.1) if and only if x ∈ K(λ) satisfies

(4.2) 0 ∈ F (μ, x) +N f
K(λ)(x),

where N f
K(λ)(x) is the value at x of the generalized f -normal cone operator associated

with the set K(λ) and (μ, λ) are parameters.
If f = 0, M = Rk, Λ = Rm, B = Rn and F = F1 is a set-valued mapping, then

the problem (4.2) reduces to the following problem: find x ∈ K(λ) satisfies

(4.3) 0 ∈ F1(μ, x) +NK(λ)(x),

The problem (4.3) is called the parametric generalized variational inequalities, intro-
duced and studied by Kien et al. [17].
If f = 0 and F = F2 is a single valued mapping, then the problem (4.2) reduces

to the following problem: find x ∈ K(λ) satisfies

(4.4) 0 ∈ F2(μ, x) + NK(λ)(x),

The problem (4.4) is introduced and studied by Kien and Yao [18].
We denote by S(μ, λ), S1(μ, λ) and S2(μ, λ) the solution set of the problems

(4.1), (4.3) and (4.4) corresponding to (μ, λ), respectively. Our main concern is now to
investigate the behavior of S(μ, λ) when (μ, λ) varies around (μ0, λ0). This problem
and special cases has been addressed by many authors in the last two decades (see, for
example, [8, 15, 16, 17, 18, 20, 27, 28, 35, 36] and the references therein).
A set-valued mapping K : Λ → 2B is said to have the Aubin property of order

α > 0 at a point (λ0, x0) if there exist positive constants k, ε0 and β0 such that

(4.5) K(λ′) ∩B(x0, ε0) ⊂ K(λ) + kd(λ′, λ)αB(0, 1), ∀ λ, λ′ ∈ B(λ0, β0),

where B(0, 1) is the closed unit ball of B,

B(x0, ε0) = x0 + ε0B(0, 1) = {y : ‖y − x0‖ ≤ ε0}
and B(λ0, β) is an open ball centered at λ0 with radius β in the metric space Λ. If
K satisfies property (4.5) for α = 1 then K is said to be pseudo-Lipschitz around
(λ0, x0), for example, see [5]. For each ε > 0, we put

(4.6) Kε = K(λ) ∩B(x0, ε).
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Lemma 4.1. [15]. Suppose thatK : Λ → 2B is set-valued mapping with nonempty
closed and convex values and satisfies (4.5). Then for any ε in (0, ε0] and any β with
0 < β < min{β0, ( ε

4k)
1
α }, the multifunctionKε defined by (4.6), is Hölder continuous

with constant 5k on the ball B(λ0, β), that is,

(4.7) Kε(λ′) ⊂ Kε(λ) + 5kd(λ′, λ)αB(0, 1) ∀ λ, λ′ ∈ B(λ0, β).

Lemma 4.2. [10]. Let X be an arbitrary metric space, A be a closed subset of
X , L be a locally convex linear space and G : A → L be a continuous mapping.
Then there exists an extension F : X → L of G, i.e, F (a) = G(a) for all a ∈ A.
Furthermore, F (X) ⊂ con(G(A)), where con(G(A)) is convex hull of G(A).

Proposition 4.1. Let Λ0 ⊂ Λ be a neighborhood of λ0, X0 ⊂ B be a neighborhood
of x0 and K : Λ0 → 2B be a set-valued mapping with nonempty closed convex values
and satisfies (4.5). Then there exist positive constants β1, r1 such that, for any

{λn} ⊂ B(λ0, β1) = {λ̄ ∈ Λ : ‖λ̄− λ0‖ < β1} ⊂ Λ0

with λn → λ′0 ∈ B(λ0, β1) as n → +∞, K(λn) ∩ B(x0, r1) Mosco-converges to
K(λ′0) ∩ B(x0, r1), where

B(x0, r1) = {y ∈ B : ‖y − x0‖ ≤ r1} ⊂ X0.

Proof. Choose r1 = ε0 and β1 = β for some β with 0 < β < min{β0, ( ε0
4k )

1
α }

in Lemma 4.1. Putting λ′ = λ′0 and λ = λn in (4.7), we know for every u0 ∈
K(λ′0) ∩ B(x0, r1), there exists un ∈ K(λn) ∩B(x0, r1) such that

‖un − u0‖ ≤ 5kd(λ′0, λn)α.

Since λn → λ′0, we know that un → u0 as n→ +∞.
On the other hand, fix any sequence {ūn} with ūn ∈ K(λn) ∩ B(x0, r1) and

ūn ⇀ ū0 as n → +∞. Letting λ′ = λn and λ = λ′0 in (4.7), it is easy to see that for
each ūn ∈ K(λn) ∩B(x0, r1), there exists yn ∈ K(λ′0) ∩ B(x0, r1) such that

‖ūn − yn‖ ≤ 5kd(λ′0, λn)α.

Since λn → λ′0, ‖ūn − yn‖ ≤ 5kd(λ′0, λn)α and ūn ⇀ ū0, we know yn ⇀ ū0 as n→
+∞. Since K(λ′0) and B(x0, r1) are closed convex set and yn ∈ K(λ′0) ∩ B(x0, r1),
it follows that ū0 ∈ K(λ′0)∩B(x0, r1) and so K(λn)∩B(x0, r1) Mosco-converges to
K(λ′0) ∩ B(x0, r1). This completes the proof.

Theorem 4.1. Suppose x0 ∈ S(μ0, λ0) is an isolated solution. Let X0, Λ0 and
M0 be neighborhoods of x0, λ0 and μ0, respectively. Let K : Λ0 → 2B be a set-
valued mapping with nonempty closed convex values and f : B → R be convex and
continuous. Assume that the following conditions are satisfied:
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(i) T (·, ·) is a lower semicontinuous mapping with nonempty closed convex values
on M0 ×X0 and T (μ0, ·) is a compact mapping with compact convex values on
X0;

(ii) there exist positive constants β1 and r1 such that, for any

{λn} ⊂ B(λ0, β1) = {λ̄ ∈ Λ : ‖λ̄− λ0‖ < β1} ⊂ Λ0

with λn → λ′0 ∈ B(λ0, β1) as n → +∞, K(λn) ∩ B(x0, r1) Mosco-converges
to K(λ′0) ∩ B(x0, r1);

(iii) the mapping πf
K(·)(T (·, ·)) has finite dimensional range and

i(F (μ0, ·) +N f

K(λ0)∩B(x0,r1)
, x0, 0) �= 0,

where
B(x0, r1) = {y ∈ B : ‖y − x0‖ ≤ r1} ⊂ X0.

Then there exist a neighborhood M1 of μ0, a neighborhood Λ1 of λ0 and an open
bounded neighborhood Q0 of x0 such that the following assertions are fulfilled:

(a) The solution map Ŝ : M1 ×Λ1 → 2B of the problem (4.1) defined by Ŝ(μ, λ) =
S(μ, λ)∩Q0 is nonempty for all (μ, λ) ∈M1 × Λ1 and Ŝ(μ0, λ0) = {x0};

(b) Ŝ is lower semicontinuous at (μ0, λ0).

Proof. By (i) and the continuous selection theorem due to Michael (see [11]),
there exists a continuous mapping T1 : M0 × X0 → B∗ such that T1(μ, x) ∈
T (μ, x), ∀ (μ, x) ∈ M0 × X0. By Lemma 4.2, we can assume that T1 is contin-
uous on B ×M . We know T1(μ0, ·) is compact on X0 when T (μ0, ·) is compact on
X0. Put g(μ, x) = J(x) − T1(μ, x), then g(μ, x) ∈ J(x) − T (μ, x) ⊂ F (μ, x). For
any (μ, λ, x) ∈M0 × Λ0 ×X0, consider the mapping

Φ(μ, λ, x) = x − πf

K(λ)∩B(x0,r1)
(J(x)− g(μ, x)) = x− πf

K(λ)∩B(x0,r1)
(T1(μ, x)).

We claim that Φ is continuous on M0 × B(λ0, β)× B(x0, r1). Indeed, for any fixed
point (μ̃0, λ̃0, x̃0) ∈M0 ×B(λ0, β)×B(x0, r1) and for any sequence (μ̃n, λ̃n, x̃n) in
M0 × B(λ0, β) × B(x0, r1) with (μ̃n, λ̃n, x̃n) → (μ̃0, λ̃0, x̃0) as n → +∞, from the
condition (ii), it follows thatK(λ̃n)∩B(x0, r1)Mosco-converges toK(λ̃0)∩B(x0, r1).
The continuity of T1 implies that T1(μ̃n, x̃n) → T1(μ̃0, x̃0) as n→ +∞. By Theorem
3.2, we get

πf

K(λ̃n)∩B(x0,r1)
(T1(μ̃n, x̃n)) → πf

K(λ̃0)∩B(x0,r1)
(T1(μ̃0, x̃0)), as n→ +∞.

Thus, Φ is continuous on M0 × B(λ0, β) ×B(x0, r1).
Moreover, since x0 ∈ S(μ0, λ0) is an isolated solution, there exists an open bounded

neighborhood Q0 ⊂ X0 of x0 such that x0 is the unique solution in Q0 of the gener-
alized equation
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0 ∈ F (μ0, x) +N f
K(λ0)

(x).

Since x0 belongs to the interior of X0, it is also the unique solution in Q0 of the
generalized equation

0 ∈ F (μ0, x) +N f

K(λ0)∩B(x0,r1)
(x).

By (iii) and Theorem 2.6, we have

d(F (μ0, ·) +N
f

K(λ0)∩B(x0,r1)
, Q0, 0) = i(F (μ0, ·) +N

f

K(λ0)∩B(x0,r1)
, x0, 0) �= 0.

(a5) in Theorem 2.5 implies

d(Φ(μ0, λ0, ·), Q0, 0) = d(F (μ0, ·) +N f

K(λ0)∩B(x0,r1)
, Q0, 0) �= 0.

Note that any solution of the equation Φ(μ0, λ0, x) = 0 is also a solution of

0 ∈ F (μ0, x) +N f

K(λ0)∩B(x0,r1)
(x).

Hence, x0 is a unique solution of the equation Φ(μ0, λ0, x) = 0 in Q0. Since the
mapping πf

K(·)(T (·, ·)) has finite dimensional range, we can choose a finite dimensional
subspace Y containing the range of πf

K(·)(T (·, ·)) on M0 × Λ0 ×X0. Thus,

d(Φ(μ0, λ0, ·), Q0, 0) = d(Φ(μ0, λ0, ·), Q0 ∩ Y, 0) �= 0.

In the rest of the proof we will use some techniques from Robinson [28].
(a) Taking any w ∈ ∂(Q0 ∩Y ), we have Φ(μ0, λ0, w) �= 0. This implies that there

exists a δw > 0 such that

0 �∈ B(Φ(μ0, λ0, w), δw) := {ỹ ∈ B : ‖ỹ − Φ(μ0, λ0, w)‖ < δw} = Bw.

By the continuity of Φ, there exists a neighborhood Uw ⊂ M0 of μ0, a neighborhood
Λw ⊂ Λ0 of λ0 and a neighborhood Qw of w such that Φ(μ, λ, z) ∈ Bw for all
(μ, λ, z) ∈ Uw × Λw × Qw. Since ∂(Q0 ∩ Y ) is a compact set, there exist some
w1, w2, · · · , wn such that ∂(Q0 ∩ Y ) ⊂ ∪n

i=1Qwi . Put M1 = ∩n
i=1Uwi and Λ1 =

∩n
i=1Λwi . We shall show that M1, Λ1 and Q0 satisfy the conclusion of the theorem.
In fact, we fix any (μ, λ) ∈M1 × Λ1. For any x ∈ Q0 and any t ∈ [0, 1], let

H(t, x) = x− (1− t)πf

K(λ0)∩B(x0,r1)
(T1(μ0, x))− tπf

K(λ)∩B(x0,r1)
(T1(μ, x)).

Then we have H(0, x) = Φ(μ0, λ0, x) and H(1, x) = Φ(μ, λ, x). Choose any x̄ ∈
∂(Q0 ∩ Y ), then x̄ ∈ Qwi for some i ∈ {1, · · · , n} and hence (μ, λ) ∈ Uwi × Λwi .
By the convexity of Bwi , H(t, x̄) ∈ Bwi . Hence H(t, x̄) �= 0. This means that
0 �∈ H(t, ∂(Q0 ∩ Y )). By (a2) of Theorem 2.1, we have
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d(Φ(μ0, λ0, ·), Q0 ∩ Y, 0) = d(Φ(μ, λ, ·), Q0∩ Y, 0) �= 0.

By (a1) of Theorem 2.1, there exists x̂ = x̂(μ, λ) ∈ Q0 such that Φ(μ, λ, x̂) = 0.
Hence S(μ, λ) ∩Q0 �= ∅ for all (μ, λ) ∈ M1 × Λ1. Moreover, by the assumptions of
Q0 we get Ŝ(μ0, λ0) = S(μ0, λ0) ∩Q0 = {x0}.
(b) Suppose that V ⊂ B is an open set such that Ŝ(μ0, λ0) ∩ V �= ∅. Since

Ŝ(μ0, λ0) = {x0}, x0 ∈ V . By the boundedness of Q0, the set G̃ := V ∩ Q0 is
bounded and open. By excising Q0 \ G̃, we we obtain from (a3) of Theorem 2.1 that

(4.8) d(Φ(μ0, λ0, ·), Q0 ∩ Y, 0) = d(Φ(μ0, λ0, ·), G̃∩ Y, 0) �= 0.

For any w ∈ ∂(G̃ ∩ Y ) we have Φ(μ0, λ0, w) �= 0. Hence there exists a θw > 0 such
that

0 �∈ B(Φ(μ0, λ0, w), θw) := {y′ ∈ B : ‖y′ − Φ(μ0, λ0, w)‖ < θw} = B′
w.

By the continuity of Φ, there exist a neighborhood U ′
w ⊂ M0 of μ0, a neighbor-

hood Λ′
w ⊂ Λ0 of λ0 and a neighborhood Q′

w of w such that Φ(μ, λ, z) ∈ B′
w

for all (μ, λ, z) ∈ U ′
w × Λ′

w × Q′
w . Since ∂(G̃ ∩ Y ) is a compact set, there are

some w1, w2, · · · , wn such that ∂(G̃ ∩ Y ) ⊂ ∪n
i=1Q

′
wi
. Put M2 = ∩n

i=1U
′
wi
and

Λ2 = ∩n
i=1Λ

′
wi
. By the similar argument as the proof of the part (a) and using (4.8),

for any fixed (μ̃, λ̃) ∈M2 × Λ2, we can show that

d(Φ(μ0, λ0, ·), G̃∩ Y, 0) = d(Φ(μ̃, λ̃, ·), G̃∩ Y, 0) �= 0.

According to (a1) of Theorem 2.1, there exists x̂′ = x̂′(μ̃, λ̃) ∈ G̃ such that Φ(μ̃, λ̃, x̂′) =
0. This means that S(μ̃, λ̃) ∩ G̃ = Ŝ(μ̃, λ̃) ∩ V �= ∅ for all (μ̃, λ̃) ∈ M2 × Λ2. Hence
Ŝ is lower semicontinuous at (μ0, λ0). The proof is complete.

Remark 4.1.
(a) If we replace the condition (ii) with the following condition (ii)′:

(ii)′ K : Λ0 → 2B is a set-valued mapping with nonempty closed convex values and
K : Λ0 → 2B is pseudo-Lipschitz continuous at a point (λ0, x0), i.e., there exist
positive constants k, ε0 and β0 such that

K(λ′) ∩B(x0, ε0) ⊂ K(λ) + kd(λ′, λ)B(0, 1) ∀ λ, λ′ ∈ B(λ0, β0),

then by Proposition 4.1, we know the conclusions of Theorem 4.1 still hold. The
condition (ii)′ has been applied to establish the continuity of the projection operators
(see, for example, [16, 17, 18]). (b) The conditions and proof method of Theorem 4.1
are quite different from ones in Theorem 1.1 of [15].

Corollary 4.1. Suppose x0 ∈ S1(μ0, λ0) is an isolated solution. Let X0 ⊂ Rn,
Λ0 ⊂ Rk and M0 ⊂ Rm be neighborhoods of x0, λ0 and μ0, respectively. Let
K : Λ0 → 2Rn be a set-valued mapping with nonempty closed convex values. Assume
that the following conditions are satisfied:
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(i) F1(·, ·) is a lower semicontinuous mapping with nonempty closed convex values
on M0 ×X0 and F1(μ0, ·) is an upper semicontinuous mapping with compact
convex values on X0;

(ii) there exist positive constants β1, r1 such that for any

{λn} ⊂ B(λ0, β1) = {λ̄ ∈ Rk : ‖λ̄− λ0‖ < β1} ⊂ Λ0

with λn → λ′0 ∈ B(λ0, β1) as n → +∞, K(λn) ∩ B(x0, r1) Mosco-converges
to K(λ′0) ∩ B(x0, r1);

(iii) i(F1(μ0, ·) + N
K(λ0)∩B(x0,r1)

, x0, 0) �= 0, where B(x0, r1) = {y ∈ Rn : ‖y −
x0‖ ≤ r1} ⊂ X0.

Then there exist a neighborhood M1 of μ0, a neighborhood Λ1 of λ0 and an open
bounded neighborhood Q0 of x0 such that the following assertions are fulfilled:

(a) The solution map Ŝ1 : M1 × Λ1 → 2Rn of the problem (4.3) defined by
Ŝ1(μ, λ) = S1(μ, λ)∩Q0 is nonempty for all (μ, λ) ∈M1×Λ1 and Ŝ1(μ0, λ0) =
{x0};

(b) Ŝ1 is lower semicontinuous at (μ0, λ0).

Proof. For any bounded set Ã ⊂ X0, it is easy to see that F1(μ0, Ã) ⊂ F1(μ0, Ã).
Since F1(μ0, ·) : X0 → 2Rn is an upper semicontinuous mapping with compact convex
values, F1(μ0, Ã) is a compact set and so F1(μ0, Ã) is compact. Hence F1(μ0, ·) is
a compact mapping with compact convex values on X0. Letting f = 0, M = Rk,
Λ = Rm, B = Rn and T (μ, x) = x−F1(μ, x) for any (μ, x) ∈ Rm ×Rn in Theorem
4.1, we know that Corollary 4.1 holds.

Remark 4.2. Proposition 4.1 and Example 4.1 imply that the condition (ii) in
Corollary 4.1 is weaker than the one (ii) in Theorem 3.2 of [17]. Therefore, Corollary
4.1 extends and improves Theorem 2.4 in [16] and Theorem 3.2 in [17].

Corollary 4.2. Suppose that B and B∗ are locally uniformly convex and x0 ∈
S2(μ0, λ0) is an isolated solution. Let X0, Λ0 and M0 be neighborhoods of x0, λ0

and μ0, respectively. Let K : Λ0 → 2B be a set-valued mapping with nonempty closed
convex values. Assume that the following conditions are satisfied:

(i) F2 : M0 ×X0 → B∗ is a continuous mapping;
(ii) there exist positive constants β1, r1 such that for any

{λn} ⊂ B(λ0, β1) = {λ̄ ∈ Λ : ‖λ̄− λ0‖ < β1} ⊂ Λ0

with λn → λ′0 ∈ B(λ0, β1) as n → +∞, K(λn) ∩ B(x0, r1) Mosco-converges
to K(λ′0) ∩ B(x0, r1);
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(iii) the mapping πK(·)(J(·)− F2(·, ·)) has finite dimensional range and

idex(Φ(μ0, λ0, ·), x0, 0) �= 0,

where
Φ(μ0, λ0, x) = x− πK(λ0)∩B(x0,r1)

(J(x) − F2(μ0, x))

for all x ∈ X0 and B(x0, r1) = {y ∈ X0 : ‖y − x0‖ ≤ r1}.
Then there exist a neighborhood M1 of μ0, a neighborhood Λ1 of λ0 and an open
bounded neighborhood Q0 of x0 such that the following assertions are fulfilled:

(a) The solution map Ŝ2 : M1×Λ1 → 2B of the problem (4.4) defined by Ŝ2(μ, λ) =
S2(μ, λ)∩Q0 is nonempty for all (μ, λ) ∈M1 × Λ1 and Ŝ2(μ0, λ0) = {x0};

(b) Ŝ2 is lower semicontinuous at (μ0, λ0).

Proof. Since J and F2 are continuous, by using the similar arguments to the proof
of Theorem 4.1, we obtain that Φ is continuous on M0 ×B(λ0, β)×B(x0, r1). Since
x0 ∈ S2(μ0, λ0) is an isolated solution and index(Φ(μ0, λ0, ·), x0, 0) �= 0, there exists
an open bounded neighborhoodQ0 ⊂ X0 of x0 such that x0 is the unique solution of the
equation Φ(μ0, λ0, x) = 0 in Q0. Moreover, since the mapping πK(·)(J(·) − F2(·, ·))
has finite dimensional range, we can choose a finite dimensional subspace Y containing
the range of πK(·)(J(·) − F2(·, ·)) on M0 × Λ0 ×X0. Thus,

d(Φ(μ0, λ0, ·), Q0, 0) = d(Φ(μ0, λ0, ·), Q0 ∩ Y, 0) �= 0.

By using similar arguments to the proof of Theorem 4.1, we know that Corollary 4.2
holds.

Remark 4.3. Corollary 4.2 is proved directly without the homeomorphic result
between the solution sets, which is a different version of Theorem 3.1 in [18].
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