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ON VECTOR GENERALIZATIONS OF VANDERMONDE’S CONVOLUTION

Yao Lin Ong

Abstract. In this paper, we introduce the vector generalizations of the well-known
Vandermonde’s convolution such as

∑
j=α1+···+αk

∑
�=β1+···+βk

k∏
i=1

(|αi|+ |βi|
|αi|

)
M(αi)M(βi)

= M(j)M(�)
(|j|+ |�|+ k − 1

|j|, |�|, k− 1

)
,

where j , �, αi and βi are the vectors with nonnegative integer components, and
M(j) is the multinomial coefficient defined by

(
j1+j2+···+jm

j1,...,jm

)
with the value

|j|!
j1!···jm!

. The main interest in such generalization comes from the number of
multiple zeta values in the relations produced from the shuffle product of two sets
of multiple zeta values in their iterated integral representations over simplices.
Several generalizations of Vandermonde’s convolution type are given as well.

1. INTRODUCTION

For a r-tuple of positive integers α = (α1, . . . , αr) with αr ≥ 2, the multiple zeta
value or r-fold Euler sum ζ(α) is defined as [3]

ζ(α) =
∑

1≤n1<n2<···<nr

n−α1
1 n−α2

2 · · ·n−αr
r ,

The numbers r and |α| = α1 + · · · + αr are called the depth and weight of ζ(α),
respectively. Multiple zeta values can be represented by iterated integrals over simplices
in the weighted-dimensional Euclidean space as [2, 3, 13]

∫
E|α|

Ω1 · · ·Ω|α| or
∫ 1

0
Ω1 · · ·Ω|α|
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with the simplex E|α| defined by

0 < t1 < t2 < · · · < t|α| < 1

and

Ωj =

⎧⎪⎪⎨
⎪⎪⎩

dtj
1 − tj

, if j = 1, α1 + 1, α1 + α2 + 1, . . . , α1 + · · ·+ αr−1 + 1

dtj
tj

, otherwise.

In particular, we have for nonnegative integers m and n that

ζ({1}m , n + 2) =
∫

Em+n+2

m+1∏
j=1

dtj
1 − tj

m+n+2∏
k=m+2

dtk
tk

.

Note that the change of variables

u1 = 1 − tm+n+2 , u2 = 1 − tm+n+1 , . . . , um+n+2 = 1− t1

yields the duality theorem [10, 13]

ζ({1}m , n + 2) = ζ({1}n , m + 2).

Once the multiple zeta values are expressed as iterated integrals, the shuffle product
formula [2] of two multiple zeta values take the form

∫ 1

0
Ω1 · · ·Ωm

∫ 1

0
Ωm+1 · · ·Ωm+n =

∑
σ

∫ 1

0
Ωσ(1) · · ·Ωσ(m+n),

where σ ranges over all
(
m+n

n

)
permutations on the set {1, 2, . . . , m + n} which pre-

serves the orders of Ω1 · · ·Ωm and Ωm+1 · · ·Ωm+n, i.e., for 1 ≤ i < j ≤ m or
m + 1 ≤ i < j ≤ m + n, we have σ−1(i) < σ−1(j).
The following two propositions are essential to transform multiple zeta values into

integrals, and vice versa.

Proposition 1.1. [5]. For nonnegative integers m and n, we have

ζ({1}m , n + 2) =
1

m!(n + 1)!

∫ 1

0

(
log

1
1 − t

)m (
log

1
t

)n+1 dt

1 − t

=
1

m!n!

∫
0<t1<t2<1

(
log

1
1 − t1

)m (
log

1
t2

)n dt1dt2
(1 − t1)t2

.
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Proposition 1.2. [5, 6]. For nonnegative integers p, q, r, and n, we have
∑

|α|=q+r+1

ζ({1}p , α0, . . . , αq + n + 1)

=
1

p!q!r!n!

∫
0<t1<t2<1

(
log

1
1−t1

)p(
log

1−t1
1−t2

)q (
log

t2
t1

)r (
log

1
t2

)n dt1dt2
(1 − t1)t2

.

In particular, for integers k, r ≥ 0, one has

∑
|α|=k+r+1

ζ(α0, . . . , αk−1, αk +1) =
1

k!r!

∫
0<t1<t2<1

(
log

1−t1
1−t2

)k(
log

t2
t1

)r dt1dt2
(1−t1)t2

.

Here we demonstrate an application of shuffle process of two multiple zeta values
to reprove the well-known Euler decomposition formula as well as the Pascal’s identity.

Theorem 1.3. For a pair of positive integers p, q, one has

ζ(p + 1)ζ(q + 1) =
∑

|α|=p+q+1

(
α2

p

)
ζ(α1, α2 + 1) +

∑
|α|=p+q+1

(
α2

q

)
ζ(α1, α2 + 1).

Proof. By Proposition 1.1, we obtain the following integral expression

(1.1) ζ(p + 1)ζ(q + 1) =
1

p!q!

∫ 1

0

∫ 1

0

(
log

1
t

)p (
log

1
u

)q dt

1 − t

du

1 − u
.

Subdivide the region of the integration into two simplices as

D1 : 0 < t < u < 1 and D2 : 0 < u < t < 1.

On the simplex D1, we replace the factor
(
log 1

t

)p by its binomial expression

p∑
a=0

p!
a!(p− a)!

(
log

u

t

)a
(

log
1
u

)p−a

,

so that the value of the integration over D1 is

p∑
a=0

(
p + q − a

q

)
ζ(a + 1, p + q − a + 1),

or equivalently,

(1.2)
∑

|α|=p+q+1

(
α2

q

)
ζ(α1, α2 + 1).
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On the other hand, the value of the integration over D2 is

q∑
b=0

(
p + q − b

p

)
ζ(b + 1, p + q − b + 1),

or equivalently,

(1.3)
∑

|α|=p+q+1

(
α2

p

)
ζ(α1, α2 + 1).

Our assertion then follows since the value of the integral (1.1) is equal to the sum of
(1.2) and (1.3).

Remark 1.4. Theorem 1.3 is equivalent to the classical Euler’s decomposition
formula

ζ(s)ζ(t) =
s−1∑
a=0

(
a + t + 1

t − 1

)
ζ(t + a, s− a) +

t−1∑
a=0

(
a + s + 1

s − 1

)
ζ(s + a, t − a)

for any positive integers s, t with s ≥ 2 and t ≥ 2 after some refinements in variables.
On the other hand, if we let p = � + 1 and q = r − � + 1 with 0 ≤ � ≤ r, then we

get

(1.4) ζ(� + 2)ζ(r − � + 2) =
∑

|α|=r+3

ζ(α1, α2 + 1)
{(

α2

� + 1

)
+

(
α2

r − � + 1

)}
.

The number of multiple zeta values appeared in the left-hand side of (1.4) must be
equal to (

(� + 2) + (r − � + 2)
� + 2

)
=

(
r + 4
� + 2

)
.

In other words, we obtain the identity

r+2∑
α=1

[(
α

� + 1

)
+

(
α

r − � + 1

)]
=

(
r + 4
� + 2

)
,

or with an elementary calculation that
(

r + 3
� + 2

)
+

(
r + 3
� + 1

)
=

(
r + 4
� + 2

)
,

which is the well-known Pascal’s identity.
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2. COMBINATORIAL IDENTITIES OF CONVOLUTION TYPE

The combinatorial identities of convolution type arose from the following identity
developed in [4]:

∑
a+b=k

(
m + a

m

)
(μ + 1)b =

(m + k + 1)!
m!k!

∫ 1

0
xm(μ + 1 − μx)kdx,

where m and k are nonnegative integers, and μ is a complex number. By comparing
the coefficient of μj (0 ≤ j ≤ k) on both sides of the above identity, we obtain the
following formula involving the binomial coefficient:

(2.1)
∑

a+b=k

(
m + a

m

)(
b

j

)
=

(
m + k + 1
m + j + 1

)
,

which is quite similar to the classical identity appeared on page 169 of [8], given as

(2.2)
∑

0≤k≤�

(
� − k

m

)(
q + k

n

)
=

(
� + q + 1
m + n + 1

)

with integers �, m ≥ 0 and n ≥ q ≥ 0. Both identities can be restated as

(2.3)
∑

a+b=k

(
m + a

m

)(
n + b

n

)
=

(
m + n + k + 1

m + n + 1

)

with integers k, m, n ≥ 0. As a matter of fact, such identity came from the following
widely known Vandermonde’s convolution

(2.4)
r∑

k=0

(
m

k

)(
n

r − k

)
=

(
m + n

r

)
, m, n, r ∈ N ∪ {0},

which was named after Alexandre-Théophile Vandermonde in the late 1700s [1]. How-
ever, it was also appeared in a book written by Chu Shih-Chieh in China around 1303.
Differentiate both sides of the well-known geometry series expansion

1
1 − x

=
∞∑

a=0

xa, |x| < 1

m times, then we get

(2.5)
1

(1− x)m+1
=

∞∑
a=0

(
m + a

m

)
xa, |x| < 1.

So the sum of products of binomial coefficients on the left hand side of (2.3) is just
the coefficient of xk in the product

1
(1 − x)m+1

· 1
(1 − x)n+1

when both of them are expanded in power series. Therefore, the assertion (2.3) is
proved and it has further extensions in the following.
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Proposition 2.1. For nonnegative integers j, β1, β2, . . . , βk with � = β1 + β2 +
. . . + βk, we have

(2.6)
∑
|α|=j

(
α1 + β1

β1

)(
α2 + β2

β2

)
· · ·

(
αk + βk

βk

)
=

(
j + � + k − 1

� + k − 1

)
.

Proof. The sum of products of k binomial coefficients is just the coefficient of
xj in the product

k∏
i=1

1
(1− x)βi+1

,

since
1

(1− x)βi+1
=

∞∑
αi=0

(
αi + βi

βi

)
xαi , i = 1, 2, . . . , k.

By the power series expansion of the function

1
(1 − x)�+k

,

we get our assertion.

Remark 2.2. [11]. If we also sum over all β1, β2, . . . , βn with β1+β2+. . .+βn = �,
then we get

(2.7)
∑
|α|=j

∑
|β|=�

(
α1 + β1

α1

)(
α2 + β2

α2

)
· · ·

(
αk + βk

αk

)
=

(
j + � + k − 1

j, �, k− 1

)
,

where
(
j+�+k−1
j,�,k−1

)
is the multinomial coefficient defined by (j+�+k−1)!

j!�!(k−1)! .

Vandermonde’s convolution (2.2) and its general forms are useful in counting the
numbers of multiple zeta values produced from the shuffle process of multiple zeta
values through their integral representations. Moreover, they can be extended in vector
forms, which are difficult to be proved straightforwardly.
For simplicity, we adopt the following vector notations throughout this paper. For

a vector g = (g1, g2, . . . , gn) with nonnegative integer components, denote

|g| = g1 + · · ·+ gn,

g! = g1! · · ·gn!,

and
M(g) =

(
g1 + g2 + . . . + gn

g1, g2, . . . , gn

)
, the multinomial coefficient,
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respectively.
Now, let us introduce new combinatorial identities of Vandermonde’s convolution

type. First of all, consider the integral

(2.8)
1

m!k!n!

∫∫
0<t1<t2<1

(
log

1
1 − t1

)m (
log

1
1− t2

)k (
log

t2
t1

)n dt1
(1− t1)

dt2
t2

for nonnegative integers m, k, and n. As
(

log
1

1 − t2

)k

=
(

log
1

1 − t1
+ log

1 − t1
1 − t2

)k

=
∑

a+b=k

k!
a!b!

(
log

1
1 − t1

)a (
log

1 − t1
1 − t2

)b

,

the sum of multiple zeta values represented by the integral (2.8) is

(2.9)
∑

a+b=k

(
m + a

m

) ∑
|α|=b+n+1

ζ({1}m+a, α0, . . . , αb + 1)

in light of Proposition 1.2. Therefore, the number of multiple zeta values in (2.9) is
∑

a+b=k

(
m + a

m

)(
n + b

n

)
,

or equivalently, (
m + k + n + 1

k

)

by the help of (2.2).
However, if we replace the factor

(2.10)
1
k!

(
log

1
1 − t2

)k

of the integral (2.8) by its vector form

(2.11)
1
k!

(
log

1
1 − t2

)|k|

where k = (k1, k2, . . . , kr) is a vector with nonnegative integer components, then there
would be at least two ways to count the number of multiple zeta values.
If we treat the factor (2.11) as only one factor, then the number of multiple zeta

values of the integral (2.8) is

M(k)
∑

a+b=|k|

(
m + a

m

)(
n + b

n

)
.
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On the other hand, if we replace each component
(

log
1

1 − t2

)kj

of the factor (2.11) by its binomial expansion as

∑
αj+βj=kj

kj!
αj!βj!

(
log

1
1− t1

)αj
(

log
1 − t1
1 − t2

)βj

,

j = 1, 2, . . . , r, then the number of multiple zeta values of the integral (2.8) is
∑

α+β=k

(
m + α1 + α2 + . . . + αr

m, α1, α2, . . . , αr

)(
n + β1 + β2 + . . . + βr

n, β1, β2, . . . , βr

)
.

This leads to the following nontrivial combinatorial identity of convolution type.

Theorem 2.3. Let k = (k1, k2, . . . , kr) be a vector with nonnegative integer com-
ponents. Then for nonnegative integers m and n, we have

∑
α+β=k

(
m + |α|

m, α

)(
n + |β|
n, β

)

= M(k)
(

m + |k| + n + 1
|k|

)
,

(2.12)

where the vectors α and β are r-tuples of nonnegative integers as the vector k.

3. APPLICATIONS OF VANDERMONDE’S CONVOLUTION TO SHUFFLE RELATIONS

The shuffle product of two multiple zeta values of weight m and n, respectively,
will produce

(m+n
n

)
multiple zeta values of weight m + n. If we are able to count the

total numbers of multiple zeta values produced from a shuffle product of two multiple
zeta values, then we obtain an identity among binomial coefficients, which might be of
interest to combinatorics. This motivates us to focus on the integrals arising from the
shuffle product of two sets of multiple zeta values of the form ζ({1}m, n + 2), or the
so-called multiple zeta values of height one, since their double integral representations
over simplicies of dimension two in Proposition 1.1 are critical to proceed with the
shuffle process. We shall introduce another vector generalization of Vandermonde’s
convolution in the following.
For integers k, r, j, � with 0 ≤ j ≤ k and 0 ≤ � ≤ r, let us consider the integral

1
j!(k − j)!(� + 1)!(r − � + 1)!

×
∫∫

0<t1<t2<1

(
log

1
1−t1

)k−j(
log

1
t1

)�+1(
log

1
1−t2

)j(
log

1
t2

)r−�+1 dt1
1−t1

dt2
1−t2

,

(3.1)
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which represents the product of two multiple zeta values

ζ({1}k−j, � + 2)ζ({1}j, r − � + 2)

in light of Proposition 1.1. Replace the factor
(

log
1
t1

)�+1

and
(

log
1

1 − t2

)j

by their binomial expansions

∑
c+d=�+1

(� + 1)!
c!d!

(
log

t2
t1

)c (
log

1
t2

)d

and

∑
a+b=j

j!
a!b!

(
log

1
1− t1

)a (
log

1− t1
1− t2

)b

respectively, we see that the number of multiple zeta values represented by the integral
(3.1) is

(3.2)
∑

a+b=j

(
k − j + a

k − j

) ∑
c+d=�+1

(
d + r − � + 1

r − � + 1

)(
c + b

b

)
.

Apply Vandermonde’s convolution (2.2) to the inner sum, the number (3.2) then turns
out to be ∑

a+b=j

(
k − j + a

k − j

)(
b + r + 3

� + 1

)
,

or simply ∑
a+b=k

(
a

k − j

)(
b + r + 3

� + 1

)
.

On the other hand, let

j = (j1, j2, . . . , jm) and � = (�1, �2, . . . , �n)

be two vectors of nonnegative integer components together with the symbols

j! = j1! · · ·jm! and �! = �1! · · ·�n!

as mentioned earlier.
Consider the integral

(3.3)

1
j!(k − j)!�!(r− � + 1)!

×
∫∫

0<t1<t2<1

(
log

1
1−t1

)k−j(
log

1
t1

)|�|+1(
log

1
1−t2

)|j|(
log

1
t2

)r−�+1 dt1
1−t1

dt2
1−t2

.
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Then the number of multiple zeta values represented by (3.3) is given by

∑
α+β=j

∑
γ+δ=�

(|α|+ k − j

α, k − j

)(|β|+ |γ|
β, γ

)(|δ|+ r − � + 1
δ, r − � + 1

)
,

or
∑

α+β=j

∑
γ+δ=�

(|α|+ k − j

|α|
)(|β|+ |γ|

|β|
)(|δ|+ r − � + 1

|δ|
)

M(α)M(β)M(γ)M(δ).

Again, two different expressions for the number of multiple zeta values represented
by (3.3) leads to the following combinatorial identity.

Theorem 3.1. For integers k, r, j, � with 0 ≤ j ≤ k and 0 ≤ � ≤ r, we have

∑
α+β=j

∑
γ+δ=�

(|α|+k−j

|α|
)(|β|+|γ|

|β|
)(|δ|+r−�+1

|δ|
)
M(α)M(β)M(γ)M(δ)

= M(j)M(�)
∑

a+b=k

(
a

k − j

)(
b + r + 3

� + 1

)
,

(3.4)

where the vectors α and β are m-tuples of nonnegative integers as the vector j, and
the vectors γ and δ are n-tuples of nonnegative integers as the vector �.

For further generalizations of Vandermonde’s convolution of vector type, we are
going to carry out the shuffle product of

ζ({1}p, q + � + 2) and ζ({1}m, n + 2)

through their integral representations

(3.5)
1

p!q!�!

∫
0<t1<t2<1

(
log

1
1 − t2

)p (
log

t2
t1

)q (
log

1
t2

)� dt1
(1− t1)

dt2
t2

and

(3.6)
1

m!(n + 1)!

∫ 1

0

(
log

1
1 − u

)m (
log

1
u

)n+1 du

1 − u

with nonnegative integers p, q, �, m, and n. Note that the weights of these two multiple
zeta values are w1 = p + q + � + 2 and w2 = m + n + 2. Therefore, it will produce

(3.7)
(

w1 + w2

w1

)

multiple zeta values of weight w1 + w2.
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As the replacement of the shuffle process, we decompose the domain D of the
shuffle product of (3.5) and (3.6) into 3 simplicies, namely,

D1 : 0 < t1 < t2 < u < 1,

D2 : 0 < t1 < u < t2 < 1 and
D3 : 0 < u < t1 < t2 < 1.

On the shuffle process over the simplex D1 : 0 < t1 < t2 < u < 1, we replace the
factors (

log
1
t2

)�

and
(

log
1

1 − u

)m

by (
log

u

t2
+ log

1
u

)�

and (
log

1
1 − t1

+ log
1 − t1
1 − t2

+ log
1 − t2
1 − u

)m

respectively.
Expand them into multinomial expansions, then the number of multiple zeta values

obtained from the evaluations of the integrals over D1 is given by

(3.8)
∑

m1+m2+m3=m

∑
�1+�2=�

(
m1 + p

p

)(
m2 + q

q

)(
m3 + �1

�1

)(
�2 + n + 1

n + 1

)
.

By summing over m1 + m2 + m3 = m, the number (3.8) becomes

(3.9)
∑

�1+�2=�

(
�1 + m + p + q + 2

m

)(
�2 + n + 1

n + 1

)
.

In a similar manner, the numbers of multiple zeta values obtained from the eval-
uations of the integrals over the simplicies D2 : 0 < t1 < u < t2 < 1 and
D3 : 0 < u < t1 < t2 < 1 are given by

(3.10)
∑

a+b=q

(
a + m + p + 1

m

)(
b + n + � + 2

n + 1

)

and

(3.11)
∑

p1+p2=p

(
p1 + m

m

)(
p2 + q + � + n + 3

n + 1

)

respectively.
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In a word, if we express (3.7) as
∑

α1+α2=w1

(
α1 + m

m

)(
α2 + n + 1

n + 1

)

in light of (2.3), then it is divided into three parts corresponding to

0 ≤ α1 ≤ p, p + 1 ≤ α1 ≤ p + q + 1, p + q + 2 ≤ α1 ≤ p + q + � + 2.

That is, we conclude that
∑

α1+α2=p+q+�+2

(
α1+m

m

)(
α2 + n + 1

n + 1

)

=
∑

p1+p2=p

(
p1 + m

m

)(
p2+q+�+n+3

n+1

)
+

∑
a+b=q

(
a+m+p+1

m

)(
b+n+�+2

n+1

)

+
∑

�1+�2=�

(
�1+m+p+q+2

m

)(
�2+n+1

n+1

)

for nonnegative integers p, q, �, m, n.

Replace the factor 1
q!

(
log t2

t1

)q
by its vector form 1

q!

(
log t2

t1

)|q|
in the shuffle

product of (3.5) and (3.6) over the simplex D2, and count the number of multiple zeta
values in the resulted integral, the following vector generalization of convolution type
is obtained at hand.

Theorem 3.2. Suppose that p, �, m, nare nonnegative integers and q = (q1, q2, . . . ,
qr) is a vector with nonnegative integer components. Then

∑
α+β=q

(|α|+ m + p + 1
m

)
M(α)M(β)

(|β|+ n + � + 2
n + 1

)

= M(q)
∑

a+b=q

(
a + m + p + 1

m

)(
b + n + � + 2

n + 1

)
,

(3.12)

where the vectors α and β are r-tuples of nonnegative integers as the vector q.

4. FURTHER GENERALIZATIONS

For the final remark, we are able to obtain various vector generalizations of con-
volution type through different vector decompositions provided that we exchange the
suitable integer exponents of particular terms into vectors in the iterated integral rep-
resentations of multiple zeta values. For example, the number of multiple zeta values
in the following integral

(4.1)
1

j!�!

∫∫
0<t1<t2<1
0<u1<u2<1

(
log

1−t1
1−t2

−log
1−u1

1−u2

)j(
log

t2
t1
−log

u2

u1

)� dt1
1−t1

dt2
t2

du1

1−u1

du2

u2
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for nonnegative integers j and � is given by

(4.2)
∑

a+b=j

∑
c+d=�

(−1)b+d

(
a + c

a

)(
b + d

b

)
,

since such an integral is separable and it could be expressed in terms of sums of
products of multiple zeta values as
∑

a+b=j

∑
c+d=�

(−1)b+d
∑

|α|=a+c+1

ζ(α0, . . . , αa−1, αa+1)
∑

|β|=b+d+1

ζ(β0, . . . , βb−1, αb+1)

by the help of Proposition 1.2. However, the number (4.2) also comes from the coef-
ficient of x� in the power series expansion at x = 0 of the function

(4.3)
∑

a+b=j

(−1)b 1
(1 − x)a+1

· 1
(1 + x)b+1

.

This leads to the following combinatorial identity involving binomial coefficients

(4.4)
∑

a+b=j

∑
c+d=�

(−1)b+d

(
a + c

a

)(
b + d

b

)
=

1
2

(
1 + (−1)j+�

) (
j + �

j

)

in light of the equivalent expression of (4.3)

1
2

(
1

(1 − x)j+1
+

(−1)j

(1 + x)j+1

)
.

Again, replacing the exponents j and � in the integral (4.1) by their vector forms
respectively gives another vector generalization of the combinatorial identity (4.4).

Theorem 4.1. Let j = (j1, . . . , jm) and � = (�1, . . . , �n) be two vectors of non-
negative integer components. Then we have

(4.5)

∑
α+β=j

∑
γ+δ=�

(−1)|β|+|δ|
(|α|+ |γ|

α, γ

)(|β|+ |δ|
β, δ

)

=
1
2
M(j)M(�)

(
1 + (−1)|j|+|�|

)(|j| + |�|
|j|

)
,

where the vectors α and β are m-tuples of nonnegative integers as the vector j, and
the vectors γ and δ are n-tuples of nonnegative integers as the vector �.

Finally, the generalizations of Vandermonde’s convolution (2.6) and (2.7) are both
generalized to vector types in the following.
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Theorem 4.2. Let j = (j1, j2, . . . , jm) be a vector with nonnegative integer com-
ponents. Then for any positive integer k ≥ 2, we have

(4.6)
∑

j=α1+···+αk

M(α1)M(α2) · · ·M(αk) = M(j)
(|j|+ k − 1

|j|
)

,

where the vectors αi’s are m-tuples of nonnegative integers as the vector j.

Theorem 4.3. Let j = (j1, j2, . . . , jm) and � = (�1, �2, . . . , �n) be a pair of vectors
with nonnegative integer components. Then for any positive integer k ≥ 2, we have

(4.7)

∑
j=α1+···+αk

∑
�=β1+···+βk

k∏
i=1

(|αi| + |βi|
|αi|

)
M(αi)M(βi)

= M(j)M(�)
(|j| + |�|+ k − 1

|j|, |�|, k− 1

)
,

where the vectors αi’s are m-tuples of nonnegative integers as the vector j, and the
vectors βi’s are n-tuples of nonnegative integers as the vector �.
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