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SLANT SUBMANIFOLDS OF LORENTZIAN SASAKIAN AND PARA
SASAKIAN MANIFOLDS

Pablo Alegre

Abstract. In this paper we introduce the notion of slant submanifolds of a
Lorentzian almost contact manifold and of a Lorentzian almost para contact mani-
fold.

1. INTRODUCTION

Slant submanifolds of Kaehler manifolds were introduced by B. Y. Chen in [7] as a
generalization of both invariant and anti-invariant submanifolds. Later J.L. Cabrerizo,
A. Carriazo, L.M. Fernández and M. Fernández, [6], defined slant submanifolds of an
almost contact manifold. Many authors have studied those submanifolds and certain
generalizations, like semi-slant and generic submanifolds, in both complex and con-
tact geometry. Also, B. Sahin has studied slant submanifolds of an almost product
Riemannian manifold in [12].
Recently, it has been initiated the study of slant submanifolds of an indefinite

Kaehler manifold [3] and of a Lorentzian para contact manifold [9]. Now, we define
slant submanifolds of an odd dimensional Lorentzian metric manifold doted with an
almost contact structure. In this paper we study slant submanifolds of both almost
contact and almost para contact manifolds. We englobe this two structures because
they can be treated in a similar way.
After some preliminaries, where we fixe the notation, we introduce slant subman-

ifolds. We present two sections with examples of slant submanifolds in a Lorentzian
almost contact and in a Lorentzian almost para contact manifold. Finally, some cha-
racterization results are given and low dimensional slant submanifolds are studied.
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2. PRELIMINARIES

Let M̃ be a (2n+1)-dimensional Lorentzian metric manifold, if it is endowed with
a structure (φ, ξ, η, g), where φ is a (1, 1) tensor, ξ a vector field, η a 1-form on M̃
and g is a Lorentz metric, satisfying

(1)
φ2X = εX + η(X)ξ, g(φX, φY ) = g(X, Y ) + η(X)η(Y ),

η(ξ) = −ε, η(X) = εg(X, ξ),

for any vector fields X, Y in M̃ , it is called Lorentzian almost contact manifold or
Lorentzian almost para contact manifold for ε = −1 or 1, respectively. It follows that
g(φX, Y ) = εg(X, φY ) for any X, Y .
Let Φ denote the 2-form in M̃ given by Φ(X, Y ) = g(X, φY ), if dη = Φ, M̃ is

called normal contact Lorentzian manifold.
If ξ is a Killing tensor vector field, the (para) contact structure is called K-(para)

contact. In such a case, we have

(2) ∇̃Xξ = εφX.

Finally, it is called Lorentzian Sasakian (LS) or Lorentzian para Sasakian (LPS) if

(3) (∇̃Xφ)Y = εg(φX, φY )ξ + η(Y )φ2X.

Let M be a submanifold of (M̃, φ, ξ, η, g), the Gauss and Weingarten formulas are
given by

(4) ∇̃XY = ∇XY + h(X, Y ),

(5) ∇̃XN = −ANX + ∇⊥
XN,

for any X, Y tangent vector fields and N normal vector field, where h is the second
fundamental form of M , AN is the Weingarten endomorphism associated with N and
∇⊥ is the connection in the normal bundle TM⊥.
For every tangent vector field, X , we write

(6) φX = TX + NX,

where TX in the tangential component and NX is the normal one. And for every
normal vector field, V ,

φV = tV + nV,

where tV in the tangential component and nV is the normal one.
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3. SLANT SUBMANIFOLDS

A submanifold M of a Lorentzian almost (para) contact manifold, (M̃, φ, ξ, η, g),
is said to be a slant submanifold if for any x ∈ M and any X ∈ TxM , the Wirtinger’s
angle, the angle between φX and TX , is a constant θ ∈ [0, 2π]. In such a case, θ it
is called the slant angle of M in M̃ . They englobe both invariant and anti-invariant
submanifold for θ = 0 and θ = π/2, respectively. A slant submanifold is called proper
if it is neither invariant nor anti-invariant. Slant submanifolds of a Lorentzian para
contact manifold have been already defined by M.A. Khan, K. Singh and V. A. Khan
in [9].
Span{ξ} defines the time like vector field distribution. If X is a space-like vector

field, it is orthogonal to ξ, then

g(φX, φX) = g(X, X) ≥ 0,

so φX is also space-like, the same is valid for TX . For space-like vector fields the
Cauchy-Schawrz inequality, g(X, Y ) ≤ |X ||Y |, is verified. Therefore the Wirtinger
angle, θ, is given by:

g(φX, TX)
|φX ||TX | = cos θ.

For a Lorentzian almost contact manifold we distinguish two important cases for
which the submanifold turns to be anti-invariant.

Proposition 3.1. Every submanifold M of a Lorentzian contact metric manifold,
M̃ , normal to ξ is an anti-invariant submanifold.

Proof. Let be X, Y ∈ TM ,

(7) dη(X, Y ) =
1
2
(Xη(Y ) − Y η(X)− η([X, Y ]),

so if M is normal to ξ, dη = 0. But for a Lorentzian contact metric manifold dη = Φ,
then g(TX, Y ) = g(φX, Y ) = Φ(X, Y ) = 0. As a consequence, T ≡ 0 and M is an
anti-invariant submanifold.

Proposition 3.2. Every two dimensional submanifold of a Lorentzian almost con-
tact manifold tangent to ξ is anti-invariant.

Proof. As M is two dimensional, TM =< ξ > ⊕ < X >. For this X ,
g(φX, X) = 0 and g(φX, ξ) = 0 so φX = NX and M is anti-invariant.

Now, we characterize slant submanifolds of a Lorentzian almost contact manifold,
the characterization for the para contact case already appeared in [9].
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Theorem 3.3. Let M be a submanifold of a Lorentzian almost (para) contact
metric manifold M̃ . Then, M is slant if and only there exits a constant λ ∈ [0, 1] such

(8) T 2 = λ(εI + η ⊗ ξ).

Moreover, in such a case, λ = cos2 θ, where θ is the slant angle.

Proof. First, if M is anti-invariant, φX is normal, TX = 0 and it is equivalent
to T 2X = 0.
If M is not an anti-invariant slant submanifold, then for any X ∈ TM ,

(9) cos θ =
g(φX, TX)
|φX ||TX | =

|TX |2
|φX ||TX | =

|TX |
|φX | .

But also TX ∈ D, so

(10) cos θ =
|T 2X |
|φTX | =

|T 2X |
|TX | .

On the one hand, g(T 2X, X) = g(φTX, X) = εg(TX, φX) = εg(TX, TX) =
ε|TX |2 and using (9), (10) g(T 2X, X) = ε|T 2X ||φX | = ε|T 2X ||φ2X |.
On the other hand, g(T 2X, φ2X) = εg(T 2X, X). So, g(T 2X, φ2X) = |T 2X ||φ2X |

and, as they are space-like vector fields, it follows that they are colineal, that is
T 2X = λφ2X = λ(εX + η(X)ξ).
The reciprocal is just a simple computation, from (8) and (9), cos θ =

√
λ is

constant and M is a slant submanifold.

4. EXAMPLES IN A LORENTZIAN ALMOST CONTACT MANIFOLD

Beginning with the examples of slant submanifolds in complex geometry given by
B. Y. Chen in [7] and proceeding in a similar way to [6] for almost contact manifolds,
we can present examples of slant submanifolds of a Lorentzian Sasakian manifold.
In R5, (x1, x2, y1, y2, z), we consider this vector field basis{

2
∂

∂y1
, 2

∂

∂y2
, 2
(

∂

∂x1
+ y1 ∂

∂z

)
, 2
(

∂

∂x2
+ y2 ∂

∂z

)
,

∂

∂z

}
,

and the following structure on R2n+1:

φ0

(
n∑

i=1

Xi
∂

∂xi
+ Yi

∂

∂yi
+ Z

∂

∂z

)
=

n∑
i=1

Yi
∂

∂xi
−

n∑
i=1

Xi
∂

∂yi
+

n∑
i=1

Yiy
i ∂

∂z

ξ = 2
∂

∂z
,
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η =
1
2

(
dz −

n∑
i=1

yidxi

)
,

g = −η ⊗ η +
1
4

(
n∑

i=1

dxi ⊗ dxi +
n∑

i=1

dyi ⊗ dyi

)
.

Then, (R5, φ0, ξ, η, g) is a Lorentzian Sasakian manifold, [4].

Theorem 4.1. Let S be a slant submanifold of C2 with Wirtinger angle different to
0, and π/2 and equation x(u′, v′) = (f1(u′, v′), f2(u′, v′), f3(u′, v′), f4(u′, v′)), with
∂/∂u′ and ∂/∂v′ no null and orthogonal. Then, y(u, v, t) = 2(f1(u, v), f2(u, v),
f3(u, v), f4(u, v), t) defines a slant submanifoldM of (R5, φ0, ξ, η, g).

Proof. Let us consider,

e1 =
∂

∂u
+
(

2f3(u, v)
∂f1

∂u
+ 2f4(u, v)

∂f2

∂u

)
∂

∂t
and

e2 =
∂

∂v
+
(

2f3(u, v)
∂f1

∂v
+ 2f4(u, v)

∂f2

∂v

)
∂

∂t
.

Then, {e1, e2, ξ} is an orthogonal frame.
If x(u′, v′) is a slant submanifold with slant angle θ, for every tangent vector field

X = x1e1 + x2e2 + η(X)ξ,

g(φX, e1) = x2g(φe2, e1)

= x2g

(
−2

∂f1

∂v

∂

∂y1
− 2

∂f2

∂v

∂

∂y2
+ 2

∂f3

∂v

∂

∂x1
+ 2

∂f4

∂v

∂

∂x2
+ 2

∂f3

∂v
f3

∂

∂z

+2
∂f4

∂v
f4

∂

∂z
,

∂

∂u
+
(

2f3(u, v)
∂f1

∂u
+ 2f4(u, v)

∂f2

∂u

)
∂

∂t

)
= −x2G

(
JX ′,

∂

∂u′

)
,

where J is the complex structure and X ′ is a vector field in TS given by X ′ =

x1
∂

∂u′ + x2
∂

∂v′
. In the same way, g(φX, e2) = −x1G

(
JX ′,

∂

∂v′

)
.

Therefore, TX =
g(φX, e1)
g(e1, e1)

e1 +
g(φX, e2)
g(e2, e2)

e2, and

|TX |√|X2| − η2(X)
=

|PX ′|
|X ′| = cos θ,
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with PX ′ the tangent projection of JX ′ and θ the slant angle of S. That is the
Wirtinger angle is constant and hence M is a slant submanifold.

From Theorem 4.1 and Examples 8.3, 8.4, 8.5 and 8.6 of [7] we obtain the following
examples of slant submanifolds of the Lorentzian Sasakian manifold (R5, φ0, ξ, η, g).

Example 4.2. For any θ, 0 < θ < π/2,

x(u, v, t) = 2(u cos θ, u sinθ, v, 0, t)

defines a slant submanifold with slant angle θ in (R5, φ0, ξ, η, g).

Example 4.3. For any positive constant k,

x(u, v, t) = 2(eku cos u cos v, eku sinu cos v, eku cosu sin v, eku sinu sin v, t)

defines a slant submanifold with slant angle cos−1(k/
√

1+k2) in (R5, φ0, ξ, η, g).

Example 4.4. For any positive constant k,

x(u, v, t) = 2(u, k cos v, v, k sin v, t)

defines a proper slant submanifold with slant angle cos−1(k/
√

1+k2) in (R5, φ0, ξ, η, g).

We can also present examples in higher dimensions.

Example 4.5. For any positive constant k,

x(u, v, w, z, t) = 2(u, v, k sinw, sinz, kw, kz, k cosw, k cos z, t)

defines a slant submanifold with slant angle cos−1 k in (R9, φ0, ξ, η, g).
Moreover, we can construct an example that does not come from Theorem 4.1, it

is inspired in Example 3.17 of [6].

Example 4.6. For any θ ∈ [0, 2π],

x(u, v, t) = 2(u, 0, v cos θ, v sin θ, 2uv cos θ + t)

defines a slant submanifold in (R5, φ0, ξ, η, g) with slant angle θ.
We can also present examples of slant submanifolds in manifolds doted with a

Lorentzian β Kenmotsu structure instead of a Lorentzian Sasakian one.
Given an almost Hermitian manifold (Ñ 2n, J, G), the warped product M̃2n+1 =

R ×f Ñ can be endowed with the following Lorentzian almost contact structure
(φ, ξ, η, gf),

gf = −π∗(gR) + (f ◦ π)2σ∗(G),
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where f > 0 is a function on R and π and σ are the projections from R × Ñ on R

and Ñ , respectively, φX = (Jσ∗X)∗ for any vector field X on M̃ , and ξ =
∂

∂t
, where

t denotes the coordinate of R.
In this case, M̃ is not a Lorentzian Sasakian manifold, in fact if (Ñ , J, G) is a

Kaehlerian manifold then (M̃, φ, ξ, η, gf) is a Lorentzian β-Kenmotsu manifold [2],
that is

(∇Xφ)Y = β(−gf(φX, Y )ξ − η(Y )φX).

Theorem 4.7. Let N be a slant submanifold of an almost Hermitian manifold
(Ñ, J, G). Then the warped product M = R ×f N is a slant submanifold of the
Lorentzian almost contact manifold M̃ = R×f Ñ .

Proof. For every tangent vector field X ofM , TX = (Pσ∗X)∗ where P denotes
the part of J tangent to N . Then, T 2X = (P 2σ∗X)∗ = − cos2 θ(σ∗X)∗ because N is
a slant submanifold with slant angle θ. Therefore, T 2X = cos2 θ(−X + η(X)ξ) and
M is a slant submanifold.

The same demonstration proves that N immersed in M̃ = R ×f Ñ is a slant
submanifold orthogonal to the structure vector field ξ, in this case it is not anti-invariant
and it is an even dimensional submanifold. There is no contradiction with Proposition
3.1 because M̃ is not a Lorentzian contact metric manifold.

5. EXAMPLES IN A LORENTZIAN ALMOST PARA CONTACT MANIFOLD

We can consider different almost para contact structures on R2n+1:

φ1

(
n∑

i=1

Xi
∂

∂xi
+ Yi

∂

∂yi
+ Z

∂

∂z

)
= −

n∑
i=1

Yi
∂

∂xi
−

n∑
i=1

Xi
∂

∂yi
+

n∑
i=1

Yiy
i ∂

∂z

φ2

(
n∑

i=1

Xi
∂

∂xi
+ Yi

∂

∂yi
+ Z

∂

∂z

)
=

n∑
i=1

Xi
∂

∂xi
−

n∑
i=1

Yi
∂

∂yi
+

n∑
i=1

Xiy
i ∂

∂z

φ3

(
n∑

i=1

Xi
∂

∂xi
+ Yi

∂

∂yi
+ Z

∂

∂z

)
=

n∑
i=1

Yi
∂

∂xi
+

n∑
i=1

Xi
∂

∂yi
+

n∑
i=1

Yiy
i ∂

∂z

ξ = 2
∂

∂z
,

η = −1
2

(
dz −

n∑
i=1

yidxi

)
,
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g = −η ⊗ η +
1
4

(
n∑

i=1

dxi ⊗ dxi +
n∑

i=1

dyi ⊗ dyi

)
.

In [12], B. Sahin presented various examples of slant submanifolds of an almost
product manifold, we use them for constructing examples in a Lorentzian almost para
contact manifold.
First, consider in Rn1 × Rn2 , with coordinates (x1, ..., xn1, y1, ..., yn2) and the

almost product structure given by

J

(
∂

∂xi
,

∂

∂yi

)
=
(

∂

∂xi
,− ∂

∂yi

)
.

Theorem 5.1. Let S be a slant submanifold of R2×R2 with Wirtinger angle diffe-
rent to 0, and π/2 and equation x(u′, v′) = (f1(u′, v′), f2(u′, v′), f3(u′, v′), f4(u′, v′)),
with ∂/∂u′ and ∂/∂v′ no null and orthogonal. Then, y(u, v, t) = 2(f1(u, v), f2(u, v),
f3(u, v), f4(u, v), t) defines a slant submanifold of (R5, φ2, ξ, η, g).

Proof. The proof is similar to the Theorem 4.1, having into account that, in this
case, g(φei, ei) �= 0.

From Theorem 5.1 and Examples 3.1, 3.2 and 3.3 of [12] we obtain the follow-
ing examples of slant submanifolds of the Lorentzian almost para contact manifold
(R5, φ2, ξ, η, g).

Example 5.2. For any θ, 0 < θ < π/2,

x(u, v, t) = 2(u cosθ, v cos θ, u sinθ, v sin θ, t)

defines a slant submanifold with slant angle 2θ in (R5, φ2, ξ, η, g).

Example 5.3. For any u, v ∈ (0, π/2), and any positive constant k �= 1,

x(u, v, t) = 2(u, v,−k sinu,−k sin v, k cos u, k cos v, t)

defines a proper slant submanifold with slant angle θ = cos−1

(
1 − k2

1 + k2

)
in (R7, φ2,

ξ, η, g).

Example 5.4. Consider a submanifold M of (R5, φ2, ξ, η, g) given by equation:

x(u, v, t) = 2(u + v, u + v,
√

2v,
√

2u, t).

Then M is a slant submanifold with slant angle π/3.
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Consider in R4 with coordinates (x1, x2, y1, y2) and almost product structure

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
=

∂

∂xi
.

Again, like in Theorem 4.1 and 5.1, from a slant submanifold of R4 with this
almost product structure we can obtain a slant submanifold of a Lorentzian almost para
contact manifold.

Theorem 5.5. Let S be a slant submanifold of R4 with Wirtinger angle different to
0, and π/2 and equation x(u′, v′) = (f1(u′, v′), f2(u′, v′), f3(u′, v′), f4(u′, v′)), with
∂/∂u′ and ∂/∂v′ no null and orthogonal. Then, y(u, v, t) = 2(f1(u, v), f2(u, v),
f3(u, v), f4(u, v), t) defines a slant submanifold of (R5, φ3, ξ, η, g).

Example 5.6. For any θ, 0 < θ < π/2,

x(u, v, t) = 2(u cos θ, u sinθ, v, 0, t)

defines a slant submanifold with slant angle θ in (R5, φ3, ξ, η, g).

We can also obtain examples of slant submanifolds of a Lorentzian almost para
contact manifold using warped products.

Theorem 5.7. Let N be a slant submanifold of a Riemannian almost product
manifold (Ñ, J, G). Then the warped product M = R ×f N is a slant submanifold
of the Lorentzian almost para contact manifold M̃ = R×f Ñ .

Proof. It was proved in [2] that this warped product is a Lorentzian almost
para contact manifold. Here, the proof is similar to the Theorem 4.7, but in this
case P 2σ∗X = cos2 θ(σ∗X) using the characterization of slant submanifolds of an
almost product manifold, [12]. Therefore, T 2X =cos2 θ(X+η(X)ξ) and M is a slant
submanifold.

Again, N immersed in M̃ = R ×f Ñ is a slant even dimensional submanifold
orthogonal to the structure vector field ξ, and it not anti-invariant.
Finally we construct a slant surface tangent to ξ. Comparing with Proposition 3.2,

this shows that the para contact case is completely different from the contact one: there
exists both even and odd dimensional slant submanifolds tangent to ξ, including the
two dimensional case. The main fact is that here g(X, φX) could be different from 0.

Example 5.8. For any θ, 0 < θ < π/2,

x(u, t) = 2(u cosθ, 0, u sinθ, 0, t)

defines a slant submanifold with slant angle cos−1(cos2 θ− sin2 θ) in (R5, φ2, ξ, η, g).
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Let us consider the following orthonormal frame in TM{
e1 =

∂

∂u
+ 2u sin θ cos θ

∂

∂t
, ξ = 2

∂

∂z

}
.

As, g(φ2e1, e1) = cos2 θ − sin2 θ, it results Te1 = (cos2 θ − sin2 θ)e1, then for every
X ∈ TM , T 2X = (cos2 θ − sin2 θ)2(X + η(X)ξ, which proves the result.

6. SOME CHARACTERIZATION RESULTS

If the ambient manifold has certain structure, slant submanifolds can be characte-
rized. We put these results in a relation with similar results known for the Sasakian
and Lorentzian para Sasakian case.

Theorem 6.1. Let M be a proper slant submanifold of a Lorentzian contact ma-
nifold, tangent to ξ. Then the contact distribution D is not integrable.

Proof. Let be X ∈ D, if θ is the slant angle,

T 2TX = TT 2X = − cos2 θTX,

so TX also belongs to D. From (7), η([X, TX ]) = −2g(TX, TX) which is not zero
because TX is space like. Then [X, TX ] is not orthogonal to ξ and it does not belong
to D, so this distribution is not integrable.
Now we characterize slant submanifolds of both Lorentzian K-contact and Lorentzian

K-para contact manifold in virtue of the behavior of T 2 = Q.

Proposition 6.2. Let M be a slant submanifold of a Lorentzian K-(para) contact
manifold, M̃ , tangent to ξ, and slant angle θ. Then,

(∇XQ)Y = cos2 θ(g(TX, Y )ξ + εη(Y )TX),

for each X, Y tangent to M .

Proof. On the one hand, ∇XY is tangent to M so from (8)

Q∇XY = cos2 θ(ε∇XY + η(∇XY )ξ),

∇XQY = ∇X(cos2 θ(εY + η(Y )ξ)) = cos2 θ(ε∇XY + η(Y )∇Xξ + ∇Xη(Y )ξ).

On the other hand from (2) and (6) it follows that ∇Xξ = εTX , so

Xη(Y ) = εXg(Y, ξ) = η(∇XY ) + g(Y, TX).

Therefore, (∇XQ)Y = cos2 θ(g(TX, Y )ξ + εη(Y )TX).

This result and the following theorem were stated in [9] for slant submanifolds of
a Lorentzian para Sasakian manifold.
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Theorem 6.3. Let M be a submanifold of a Lorentzian K-(para) contact manifold,
M̃ , tangent to ξ is a slant submanifold if and only if the following conditions are
verified:

(i) The endomorphism Q|D has just one eigenvalue at each point of M .
(ii) There exists a function λ : M −→ [0, 1] such as

(∇XQ)Y = λ(g(TX, Y )ξ + εη(Y )TX),

for each X, Y tangent to M .

Proof. If M is slant, then both the conditions are verified by Proposition 6.2.
Reciprocally, let λ1(x) be the eigenvalue of Q|D at each point x ∈ M and Y ∈ D an
unit eigenvector associated with λ1.
For each X ∈ TM ,

(11)
X(λ1)Y + λ1∇XY = ∇X(λ1Y ) = ∇X(QY )

= Q∇XY + λ1(g(TX, Y )ξ + εη(Y )TX).

But for both Lorentzian almost contact and almost para contact manifolds Q is a
selfadjoint endomorphism so

g(Q∇XY, Y ) = g(∇XY, QY ) = λ1g(∇XY, Y ) = 0,

because Y is an unitary vector field. Then, multiplying in (11) by Y , we deduce
X(λ1) = 0, so λ is constant.
For each X ∈ TM , X = X − εη(X)ξ with X ∈ D,

(12) QX = QX = λ1X = λ1(X + εη(X)ξ),

because Q|D = λ1I . We can write, with λ1 = ε cos2 θ, T 2X = cos2 θ(εX +
η(X)ξ). Then from (12), in virtue of Theorem 3.3, it is proved that M is a slant
submanifold.

For low dimensional submanifolds being slant can be characterized by ∇T . We
distinguish the almost contact and almost para contact cases. Similar results have been
obtained for slant submanifolds of a Sasakian manifold, [6].

Theorem 6.4. LetM be a three dimensional submanifold of a Lorentzian K-contact
manifold tangent to ξ. The following statemets are equivalent:

(i) M is slant,
(ii) (∇XT )Y = − cos2 θ(g(X, Y )ξ + η(Y )X), for any X, Y ∈ TM .
(iii) (∇XQ)Y = cos2 θ(g(TX, Y )ξ − η(Y )TX), for any X, Y ∈ TM .
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Proof. From Theorem 6.3, the first and third enunciates are equivalent, and its
just a simple computation that ii) implies iii). So it only rests to prove that every slant
submanifold verifies this expresion of (∇XT )Y . For a three dimensional submanifold,
let us consider {e1, e2, ξ} and orthogonal frame on TM , with e2 = sec θTe1. First,

(∇XT )e1 = ∇XTe1 −T∇Xe1 = ∇X cos θe2 −T (ω1
1(X)e1+ω2

1 (X)e2−ω3
1(X)ξ) =

= cos θ(ω1
2(X)e1 + ω2

2(X)e2 − ω3
2(X)ξ)− ω2

1(X)Te2),

where ωj
i (X) = g(∇Xei, ej). Taking into account that ωi

i = 0, ωj
i = −ωi

j and
Te2 = cos θe1, it follows (∇XT )e1 = − cos θω3

2(X)ξ. But,

ω3
2(X) = g(∇Xe2, ξ) = −g(e2,∇Xξ) = g(e2, TX),

because for a K contact manifold ∇Xξ = −TX , and thefore:

(13) (∇XT )e1 = − cos2 θg(e1, X)ξ.

Analogously,

(14) (∇XT )e2 = − cos2 θg(e2, X)ξ.

Finally,

(15) (∇XT )ξ = −T∇Xξ = T 2X = cos2 θ(−X + η(X)ξ).

Then, for Y ∈ TM , Y = Y 1e1 + Y 2e2 + η(Y )ξ, and

(∇XT )Y = Y 1(∇XT )e1 + Y 2(∇XT )e2 + η(Y )(∇XT )ξ,

so using (13), (14) and (15)

(∇XT )Y = − cos2 θ(Y 1g(e1, X)ξ + Y 2g(e2, X)ξ + η(Y )(X − η(X)ξ))

= − cos2 θ(g(X, Y )ξ + η(Y )X),

this is the form stated in ii), which finishes the proof.

For the para contact case we can consider a two dimensional slant submanifold,
now we obtained a quite different expresion for ∇T .

Theorem 6.5. Let M be a two dimensional submanifold of a Lorentzian K-para
contact manifold tangent to ξ. The following statemets are equivalent:

(i) M is slant,
(ii) (∇XT )Y = cos2 θ(g(X, Y )ξ + η(Y )X + 2η(X)η(Y )ξ, for any X, Y ∈ TM .
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(iii) (∇XQ)Y = cos2 θ(g(TX, Y )ξ + η(Y )TX , for any X, Y ∈ TM .

Proof. Again it is only necessary to prove that i) implies ii). For a surface
tangent to ξ we consider {e1, ξ} a orthogonal basis in TM . If it is a slant submanifold
Te1 = cos θe1.

(16)
(∇XT )e1 = ∇XTe1 − T∇Xe1 = ∇X cos θe1 − T (ω1

1(X)e1 − ω2
1(X)ξ)

= cos θ∇Xe1 = cos θ(ω1
1(X)e1 − ω2

1(X)ξ) = cos2 θg(e1, X)ξ,

because ω1
1 = 0 and

ω2
1(X)=g(∇Xe1, ξ)=−g(e1,∇Xξ)=−g(e1, TX) = −g(Te1, X)=− cosθg(e1, X),

where we have use that, for a K para contact manifold, ∇Xξ = TX . Moreover,

(17) (∇XT )ξ = −T∇Xξ = −T 2X = − cos2 θ(X + η(X)ξ).

Then, for Y ∈ TM , Y = Y 1e1 − η(Y )ξ, and

(∇XT )Y = Y 1(∇XT )e1 − η(Y )(∇XT )ξ,

so using (16) and (17)

(∇XT )Y = cos2 θ(Y 1g(e1, X)ξ + η(Y )(X + η(X)ξ))

= cos2 θ(g(X, Y )ξ + η(Y )X + 2η(X)η(Y )ξ),

this is the form stated in ii), which finishes the proof.
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