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MINIMAL TRANSLATION SURFACES IN H2 × R

D. W. Yoon
Dedicated to Professor Young Ho Kim on his sixtieth birthday

Abstract. In this paper, we define translation surfaces in the Riemannian product
space H2 × R and completely classify minimal translation surfaces in H2 × R.

1. INTRODUCTION

A homogenous space is a Riemannian manifoldM such that for every two points p
and q inM , there exists an isometry of M mapping p into q. This means that the space
looks the same at every point. Homogenous geometries have main roles in the modern
theory of manifolds. Homogenous spaces are, in a sense, the nicest examples of Rie-
mannian manifolds and have applications in physics [2]. To underline their importance
from the mathematical point of view we roughly cite the famous Thurston conjec-
ture. This conjecture asserts that every compact orientable 3-dimensional manifold has
a canonical decomposition into pieces, each of which admits a canonical geometric
structure from among the eight maximal simple connected homogenous Riemannian
3-dimensional geometries [10]. These eight spaces are: E3, H3, S3, S2 × R, H2 × R,
S̃L2(R), Nil3 and Sol3.
Constant mean curvature and constant Gaussian curvature surfaces are one of main

objects which have drawn geometers’ interest for a very long time [1, 6, 7, 8, 9].
In particular, as the study of minimal surfaces, L. Euler found that the only minimal
surfaces of revolution are the planes and the catenoids, and E. Catalan proved that
the planes and the helicoids are the only minimal ruled surfaces in the 3-dimensional
Euclidean space E3. Also, H. F. Scherk in 1835 studied translation surfaces in E3

defined as graph of the function z(x, y) = f(x)+ g(y) and he proved that, besides the
planes, the only minimal translation surfaces are the surfaces given by

z =
1
a

log
∣∣∣∣cos(ax)
cos(ay)

∣∣∣∣ = 1
a

log | cos(ax)| − 1
a

log | cos(ay)|,
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where f(x) and g(y) are smooth functions on some interval of R and a is a non-zero
constant.
Recently, R. López [4] studied translation surfaces in the 3-dimensional hyperbolic

space H3 and classified minimal translation surfaces, and J. Inoguchi, R. López and
M. I. Munteanu [3] defined translation surfaces in the 3-dimensional Heisenberg group
Nil3 in terms of a pair of two planar curves lying in orthogonal planes. They classified
minimal translation surfaces in Nil3. Also, in [11] the present author and C. W. Lee
considered translation surfaces in Nil3 generated as product of two planar curves lying
in planes, which are not orthogonal, and the authors classified such minimal translation
surfaces. R. López and M. I. Munteanu [5] constructed translation surfaces in Sol3
and investigated properties of minimal one.
The purpose of this paper is to study and classify minimal translation surfaces in

the Riemannian product space H2 × R.

2. PRELIMINARIES

Let H2 be represented by the upper half-plane model {(x, y) ∈ R2 | y > 0}
equipped with the metric gH = (dx2+dy2)/y2. The space H2, with the group structure
derived by the composition of proper affine maps, is a Lie group and the metric gH is
left invariant. Therefore the Riemannian product space H2 × R is a Lie group with
respect to the operation (cf. [9])

(x, y, z) ∗ (x̄, ȳ, z̄) = (x̄y + x, yȳ, z + z̄)

and the left invariant product metric

g =
dx2 + dy2

y2
+ dz2.

With respect to the metric g an orthonormal basis of left invariant vector fields on
H2 × R is

e1 = y
∂

∂x
, e2 = y

∂

∂y
, e3 =

∂

∂z

with the only nontrivial commutator relation [e1, e2] = −e1. It follows that the Levi-
Civita connection �̃ of H2 × R is expressed as

�̃e1e1 = e2, �̃e1e2 = −e1, �̃e1e3 = 0,

�̃e2e1 = 0, �̃e2e2 = 0, �̃e2e3 = 0,

�̃e3e1 = 0, �̃e3e2 = 0, �̃e3e3 = 0.

On the other hand, for any vectors X = x1e1+y1e2+z1e3 and Y = x2e1+y2e2+z2e3

in H2 × R the cross product × is defined by

X × Y = (y1z2 − y2z1)e1 + (x2z1 − x1z2)e2 + (x1y2 − x2y1)e3.
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A translation surface in the 3-dimensional Lie group equipped with a left invariant
metric is a surface in the group parametrized as a product of two curves (cf. [3]).
Therefore, a translation surfaces Σ(α, β) in H2 × R is a surface parametrized by

x : Σ → H2 × R, x(s, t) = α(s) ∗ β(t),

where α and β are any generating planar curves lying in orthogonal planes of R3. Since
the group operation ∗ is not commutative, we have two translation surfaces, namely
Σ(α, β) and Σ(β, α), which are different. According to planar curves α and β, we
distinguish two types as follows:
We assume that α(s) and β(t) lie in the yz-plane and xy-plane of R3, respectively.

That is,
α(s) = (0, s, f(s)),
β(t) = (g(t), t, 0),

where f(s) and g(t) are smooth functions and s, t > 0.
In this case, we have two translation surfaces Σ1(α, β) and Σ2(β, α) parametrized

by
x(s, t) = α(s) ∗ β(t)

= (sg(t), st, f(s))

and
x(s, t) = β(t) ∗ α(s)

= (g(t), st, f(s))

which are called the translation surfaces of type 1 and 2, respectively.

Remarks. 1. If one curve lies in the xz-plane, then the translation surface is a part of
xz-plane.
2. The translation surfaces generated by α(s) = (0, c1, s) and β(t) = (t, c2, 0)

(c1, c2 ∈ R+) are planes. So, translation surfaces except for Remarks 1 and 2 are
meaningful for our study, because planes are trivial minimal surfaces.

3. MINIMAL TRANSLATION SURFACES OF TYPE 1

Let Σ1 be a translation surface of type 1 in Riemannian product space H2 × R.
Then, Σ1 is parametrized by

(3.1) x(s, t) = (sg(t), st, f(s))

for all s > 0 and t > 0. We have the natural frame {xs, xt} given by
∂x

∂s
:= xs =

g(t)
st

e1 +
1
s
e2 + f ′(s)e3,

∂x

∂t
:= xt =

g′(t)
t

e1 +
1
t
e2.
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From this, the unit normal vector field U of Σ1 is given by

U =
xs × xt

||xs × xt|| = −f ′(s)
wt

e1 +
f ′(s)g′(t)

wt
e2 +

(
g(t)− tg′(t)

wst2

)
e3,

where w = ||xs × xt||.
On the other hand, the coefficients of the first fundamental form of Σ1 are

E = 〈xs, xs〉 =
(

g(t)
st

)2

+
1
s2

+ (f ′(s))2,

F = 〈xs, xt〉 =
g(t)g′(t)

st2
+

1
st

,

G = 〈xt, xt〉 =
(

g′(t)
t

)2

+
1
t2

.

To compute the second fundamental form of Σ1, we have to calculate the following:

�̃xsxs = −2g(t)
s2t

e1 +
(

g(t)2

s2t2
− 1

s2

)
e2 + f ′′(s)e3,

�̃xsxt = −g(t)
st2

e1 +
g(t)g′(t)

st2
e2,

�̃xtxt =
(

tg′′(t)− 2g′(t)
t2

)
e1 +

(
g′(t)2 − 1

t2

)
e2,

which imply the coefficients of the second fundamental form of Σ1 are given by

L = 〈�̃xsxs, U〉 =
1

ws2t3
(
2tf ′(s)g(t) + f ′(s)g(t)2g′(t) − t2f ′(s)g′(t)

+stf ′′(s)g(t)− st2f ′′(s)g′(t)
)
,

M = 〈�̃xsxt, U〉 =
1

wst3

(
f ′(s)g(t) + f ′(s)g(t)g′(t)2

)
,

N = 〈�̃xtxt, U〉 =
1

wt3

(
−tf ′(s)g′′(t) + f ′(s)g′(t) + f ′(s)g′(t)3

)
.

We suppose that the translation surface Σ1 of type 1 is minimal. Then we obtain

(3.2)
s2f ′(s)3[t2g′′(t) − tg′(t) − tg′(t)3] + sf ′′(s)[tg′(t)3

+tg′(t) − g(t)g′(t)2 − g(t)] + f ′(s)[g(t)2g′′(t) + t2g′′(t)] = 0.

If f ′(s) = 0, that is, f(s) = k (k ∈ R), the surface Σ1 is parametrized by

x(s, t) = (sg(t), st, k),
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where g(t) is an arbitrary function.
Now, we assume that f ′(s) �= 0 on an open interval. Since s > 0, divide (3.2) by

s2f ′(s)3 and take the derivative with respect to s. Then we have

d

ds

(
f ′′(s)

sf ′(s)3

)
[tg′(t)3 + tg′(t) − g(t)g′(t)2 − g(t)]

+
d

ds

(
1

s2f ′(s)2

)
[g(t)2g′′(t) + t2g′′(t)] = 0.

Hence, we deduce the existence of a real number a ∈ R such that

(3.3)
d

ds

(
f ′′(s)

sf ′(s)3

)
= −a

d

ds

(
1

s2f ′(s)2

)
,

g(t)2g′′(t) + t2g′′(t) = a[tg′(t)3 + tg′(t) − g(t)g′(t)2 − g(t)].

Let us distinguish the following cases:

1 If a = 0, then f ′′(s)
sf ′(s)3

= b and g′′(t) = 0, that is, g(t) = c1t + c2 (b, c1, c2 ∈ R).

(i) Let b = 0. Then f(s) = d1s + d2 (d1, d2 ∈ R, d1 �= 0). In this case, equation
(3.2) becomes c1(1+ c2

1)d
3
1s

2t = 0, it follows that c1 = 0. Thus, the surface can
be parametrize as

x(s, t) = (c2s, st, d1s + d2).

(ii) If b = −k2 �= 0, then f ′′(s) = −k2sf ′(s)3 and the general solution of the ODE
is given by

(3.4) f(s) =
1
k

ln

(
s +

√
s2 +

2d1

k2

)
+ d2,

Substituting (3.4) into (3.2), we easily obtain c1 = c2 = 0. Thus, g(t) = 0.
where d1 and d2 are constants of integration.

(iii) If b = k2 �= 0, then the general solution of the ODE f ′′(s) = k2sf ′(s)3 is given
by

f(s) =
1
k

sin−1 ks√
2d1

+ d2, d1 �= 0

which implies from (3.2) we can also obtain c1 = c2 = 0, that is, g(t) = 0.

2 Suppose now a �= 0. From the first equation in (3.3), we obtain

(3.5) f ′′(s) +
a

s
f ′(s) = c1sf

′(s)3,
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where c1 is a constant of integration. We put f ′(s) = p(s). Then we find the
Bernoulli’s equation as follows:

dp

ds
+

a

s
p = c1sp

3.

From this, the function p(s) is given by

(3.6) p−2 = s2a

(∫
−2c1s

−2a+1ds + c2

)
,

where c2 is a constant of integration.

(i) Let a = 1. Then from (3.6) we have

(3.7) f(s) = − 1
c1

√
c2 − 2c1 ln s + c3,

where c3 ∈ R and c1 �= 0.

Substituting (3.7) into (3.2) and using the second equation in (3.3), we get

(3.8) [(1 + c1)t2 + c1g(t)2]g′′(t) = tg′(t)[1 + g′(t)2].

If c1 = 0, then equation (3.8) becomes g′′(t) − 1
t g

′(t) − 1
t g

′(t)3 = 0, it follows
that the general solution is given by g(t) = −√

d1 − t2. And from (3.5) f(s) =
d2 ln s + d3 (d1, d2, d3 ∈ R).

(ii) Let a �= 1. In this case, the function f(s) satisfying equation (3.5) appears in
the form

(3.9) f(s) =
1√|c2|

∫
1

s
√

s2(a−1) + c1
c2(a−1)

ds.

Substituting (3.9) into (3.2) and using the second equation in (3.3), we get

s2[a(t2g′′(t) − tg′(t) − tg′(t)3) + c1(g(t)2g′′(t) + t2g′′(t))] = 0,

which implies

(3.10) [(a + c1)t2 + c1g(t)2]g′′(t) = atg′(t)[1 + g′(t)2].

If c1 = 0, then the general solution of (3.10) is given by g(t) = −√
d1 − t2.

And from (3.5) f(s) = d2
1−as1−a + d3 (d1, d2, d3 ∈ R) (see Fig. 1).
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We conclude with the following:

Fig. 1.

Theorem 3.1. Let Σ1 be a translation surface of type 1 in H2 × R. If Σ1 is
minimal surface, then Σ1 is a plane or parametrized as

x(s, t) = (sg(t), st, f(s)),

where

(1) either f(s) = c1s + c2 and g(t) = c3 or
(2) f(s) = c1 ln s + c2 and g(t) = −√

c3 − t2 or
(3) f(s) = c1

1−as1−a + c2 and g(t) = −√
c3 − t2, or

(4) f(s) = −1
c1

√
c2−2c1 ln s+c3 and g(t) is the function satisfying equation (3.8)

(5) or f(s) = 1√
|c2|
∫

1

s
√

s2(a−1)+
c1

c2(a−1)

ds and g(t) is the function satisfying equa-

tion (3.10).

4. MINIMAL TRANSLATION SURFACES OF TYPE 2

Let Σ2 be a translation surface of type 2 in Riemannian product space H2 × R.
Then, Σ2 is parametrized by

(4.1) x(s, t) = (g(t), st, f(s))
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for all s > 0 and t > 0. It follows that we have

xs =
1
s
e2 + f ′(s)e3, xt =

g′(t)
st

e1 +
1
t
e2,

the unit normal vector U of Σ2 is

U = −f ′(s)
wt

e1 +
f ′(s)g′(t)

wst
e2 − g′(t)

ws2t
e3,

where w = ||xs × xt||.
On the other hand, the coefficients of the first fundamental form of Σ2 are given

by

E =
1
s2

+ f ′(s)2, F =
1
st

, G =
g′(t)2

s2t2
+

1
t2

.

By a straightforward computation, we get

�̃xsxs = − 1
s2

e2 + f ′′(s)e3,

�̃xsxt = −g′(t)
s2t

e1,

�̃xtxt =
(

tg′′(t) − 2g′(t)
st2

)
e1 +

(
g′(t)2 − s2

s2t2

)
e2,

which imply the coefficients of the second fundamental form of Σ2 are given by

L = − g′(t)
ws3t

(f ′(s) + sf ′′(s)),

M =
1

ws2t2
f ′(s)g′(t),

N =
1

ws3t3
[f ′(s)g′(t)(g′(t)2 − s2)− s2f ′(s)(tg′′(t) − 2g′(t))].

Suppose that the translation surface Σ2 is minimal. Then we have

(4.2)
tg′′(t)[sf ′(s) + s3f ′(s)3] + g′(t)[2sf ′(s) − s3f ′(s)3 + s2f ′′(s)]

+ g′(t)3[f ′′(s)− sf ′(s)3] = 0.

If g′(t) = 0, that is, g(t) = c (c ∈ R), the surface Σ2 is parametrized by

x(s, t) = (c, st, f(s)),

where f(s) is an arbitrary function.
Now, we assume that g′(t) �= 0 on an open interval. Dividing (4.2) by g′(t) and

taking the derivative with respect to t we have
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d

dt

(
tg′′(t)
g′(t)

)
(sf ′(s) + s3f ′(s)3) +

d

dt

(
g′(t)2

)
)(f ′′(s)− sf ′(s)3) = 0.

Therefore, there exists a real number a ∈ R such that

(4.3)
d

dt

(
tg′′(t)
g′(t)

)
= −a

d

dt

(
g′(t)2

)
,

f ′′(s) − sf ′(s)3 = a(sf ′(s) + s3f ′(s)3).

Let us distinguish the following cases:

1. Suppose that a = 0. Then the first equation of (4.3) leads to tg′′(t) = bg′(t)
(b ∈ R). It follows that g′(t) = c1t

b, where c1 is a constant of integration. If
b �= −1, then g(t) = c1

b+1 tb+1 +c2 (c1, c2 ∈ R) and if b = −1, g(t) = c1 ln t+c2

(see Fig. 2). From the second equation of (4.3), we have the ordinary differential
equation f ′′(s) = sf ′(s)3, and the general solution is given by f(s) = constant
or f(s) = sin−1 s

c3
+ c4 (c3 �= 0, c4 ∈ R).

2. If a �= 0, then the first equation of (4.3) writes as

(4.4) g′′(t) − b

t
g′(t) = −a

t
g′(t)3,

where b is a constant of integration. We put g′(t) = q(t). Then we can obtain
the Bernoulli’s equation as follows:

dq

dt
− b

t
q = −a

t
q3

and its solution is given by

(4.5) q−2 =
1
t2b

∫
2at2b−1dt.

(i) If b = 0, then the general solution of (4.4) appears in the form

(4.6) g(t) =
∫

1√
2a ln t − d1

dt.

Substituting (4.6) into (4.2) and using the second equation in (4.3), we get

(4.7) (2a ln t − 2d1)[2sf ′(s) − s3f ′(s)3 + s2f ′′(s)] = 0.

From this, we obtain 2sf ′(s) − s3f ′(s)3 + s2f ′′(s) = 0, and it’s solution is

f(s) = ± ln
(

1+
√

1+d2s2

s

)
+d3 (d2, d3 ∈ R).
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(ii) If b = 1, then from (4.5) the function g(t) is given by g(t) = 1
a

√
c1 + at2 + c2

(c2 ∈ R). In this case, the left hand side of equation (4.2) is polynomial in t
with functions of s as the coefficients. Therefore, the leading coefficient must
vanish. Thus s2f ′′(s) + 3sf ′(s) = 0 and so, f(s) = − d1

2s2 + d2 (d1, d2 ∈ R)
(see Fig. 3).

Fig. 2.

Fig. 3.
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(iii) If b /∈ R−{0, 1}, then the general solution of (4.4) is g(t) =
√|b|∫ tb√

at2b+bc1
dt,

it follows that equation (4.2) is polynomial equation on t with functions of s as
the coefficients. So, the leading coefficient must vanish, that is,

f ′′(s) + (b + 2)
1
s
f ′(s) = s(1 − b)f ′(s)3.

This yields f(s) =
∫

1

s
√

d1s2(b+1)− b−1
b+1

ds (d1 ∈ R).

Thus, we have the following:

Theorem 4.1. Let Σ2 be a translation surface of type 2 in H2 × R. If Σ2 is
minimal surface, then Σ2 is a plane or parametrized as

x(s, t) = (g(t), st, f(s)),

where

(1) either f(s) = sin−1 s
c3

+ c4 and g(t) = c1 ln t + c2 or

(2) f(s) = sin−1 s
c3

+ c4 and g(t) = c1
b+1 tb+1 + c2 or

(3) f(s) = ± ln
(

1+
√

1+d2s2

s

)
+ d3 and g(t) =

∫
1√

2a ln t−d1
dt or

(4) f(s) = − d1
2s2 + d2 and g(t) = 1

a

√
c1 + at2 + c2

(5) or f(s) =
∫

1

s
√

d1s2(b+1)− b−1
b+1

ds and g(t) =
√|b|∫ tb√

at2b+bc1
dt.
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