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THE EXISTENCE OF SOLUTIONS AND WELL-POSEDNESS FOR
BILEVEL MIXED EQUILIBRIUM PROBLEMS IN BANACH SPACES

Jia Wei Chen*, Zhongping Wan and Yeol Je Cho

Abstract. In this paper, a new class of bilevel mixed equilibrium problems (for
short, (BMEP)) is introduced and investigated in reflexive Banach space and some
topological properties of solution sets for the lower level mixed equilibrium prob-
lem and the problem (BMEP) are established without coercivity. Subsequently,
we construct a new iterative algorithm which can directly compute some solutions
of the problem (BMEP). Some strong convergence theorems of the sequence gen-
erated by the proposed algorithm are also presented. Finally, the well-posedness
and generalized well-posedness for the problem (BMEP) are introduced by an
ε-bilevel mixed equilibrium problem. Also, we explore the sufficient and nec-
essary conditions for (generalized) well-posedness of the problem (BMEP) and
show that, under some suitable conditions, the well-posedness and generalized
well-posedness of (BMEP) are equivalent to the uniqueness and existence of its
solutions, respectively. These results are new and improve some recent results in
this field.

1. INTRODUCTION

The equilibrium problem, which was first introduced by Blum and Oettli [6], pro-
vides a unified model of many problems such as optimization problems, variational
inequalities problems, complementarity problems and fixed point problems and so on.
Subsequently, equilibrium and generalized different types of equilibrium problems were
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intensively studied (see, for example, [8, 9, 10, 11, 12, 21, 29, 32, 33] and the refer-
ence therein). For the past decades, mathematical programs with variational inequality,
equilibrium and complementarity constraints have been caused many scholars’ inter-
ests (see, for example, [5, 19, 23, 24, 25, 26, 30, 31] and references therein). In 2010,
Moudafi [27] introduced a class of bilevel equilibrium problem (for short, (BEP)):
Find x ∈ SF such that

H(x, y) ≥ 0, ∀y ∈ SF ,

where SF is the solution set of the following equilibrium problem:
Find u ∈ K such that

F (u, y) ≥ 0, ∀y ∈ K,

where K is a nonempty closed convex subset of a Hilbert space and H, F : K×K →
R are two functions. He pointed out that this class is absorbing since it includes
hierarchical optimization problems, optimization problems with equilibrium, variational
inequalities, complementarity constraints as special cases. Also, by using the proximal
method, an iterative algorithm to compute approximate solution of the problem (BEP)
and the weak convergence of the iterative sequence generated by the algorithm were
suggested and derived, respectively.
Throughout this paper, let E be a real Banach space with its dual space E∗, the

norm and the dual pair between E and E∗ are denoted by ‖ · ‖ and 〈·, ·〉, respectively.
Let K be a nonempty convex subset of E and Φ,Ψ : K × K → R ∪ {+∞} and
φ, ψ : E × E → R ∪ {+∞} be functions.
Motivated by Moudafi’s works [27], Ding [13, 14] considered the following bilevel

mixed equilibrium problem (for short, (BMEP)) in reflexive Banach spaces as follows:
Find x ∈ SΨ,ψ such that

Φ(x, y) + φ(y, x)− φ(x, x) ≥ 0, ∀y ∈ SΨ,ψ ,(1.1)

where SΨ,ψ is the solution set of the following mixed equilibrium problem:
Find y ∈ K such that

Ψ(y, z) + ψ(z, y)− ψ(y, y) ≥ 0, ∀z ∈ K.(1.2)

Ding et al. [17] also extended the problem (BEP) model to the bilevel generalized
mixed equilibrium problems in reflexive Banach space. Ding [13, 14] and Ding et
al. Yao [17] studied the existence results of solutions and the behavior of solution set
for the mixed equilibrium problems and the bilevel mixed equilibrium problems under
suitable assumptions. By using auxiliary principle technique, he/they also suggested
some iterative algorithms for solving the mixed equilibrium problems and the bilevel
mixed equilibrium problems. Also, some strong convergence theorems of the iterative
sequences generated by the proposed algorithms was proved under suitable assumptions.
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In [15, 16], Ding further studied the generalized problem (BMEP) involving generalized
variational inequalities in Banach spaces: the existence and iterative algorithm aspects
by the same method as in [13, 14, 17]. We observe that Ding [13, 14, 15, 16] and
Ding, Liou and Yao [17] solved the bilevel mixed equilibrium problems by the iterative
algorithms which divided into two stages, i.e., firstly constructed an iterative algorithm
to solve the lower level mixed equilibrium problem and then constructed another iter-
ative algorithm for the upper level mixed equilibrium problem on the solution set of
the lower level one. However, (BMEP) was reduced to one-level mixed equilibrium
problem under the strongly monotone assumptions which imposed on the mappings
of lower level one since the solution set of the lower mixed equilibrium problem is a
singleton (see, for example, Theorem 3.1 [13, 16, 17], Theorem 3.2[14, 15]). Recently,
Dinh and Muu [18] extended the problem (BEP) to the bilevel pseudomonotone equi-
librium problems in finite dimensional Euclidean spaces. They used a penalty function
to convert a bilevel problem into one-level ones, and proved that under pseudo-∇-
monotonicity property any stationary point of a regularized gap function is a solution
of the penalized equilibrium problem. Chadli et al. [7] studied the existence and al-
gorithmic aspects of a class of the problems (BMEP) in Banach spaces, introduced a
suitable regularization of the problem (BMEP) by means of an auxiliary problem and
then constructed an iterative algorithm by the auxiliary problem. They also proved that
a sequence generated by the proposed algorithm is strongly convergent to a solution
of the bilevel mixed equilibrium problem. Very recently, Anh et al. [1] analyzed the
convergence of an extragradient algorithm for a class of bilevel pseudomonotone vari-
ational inequalities (for short, (BPVI)) in finite dimensional Euclidean spaces, which
is a special model of the problem (BEP) in [27].
It is well-known that the well-posedness plays an important role in stability analysis

and numerical method in optimization theory and applications. Many scholars studied
various kinds of the well-posedness for optimization problems, variational inequalities
and equilibrium problems (see, for example, [19, 22, 28] and others). In [2], Anh et al.
gave some sufficient conditions for the well-posedness and unique well-posedness to
the bilevel equilibrium and optimization problems with equilibrium constraints under
the assumptions of existence of solutions and the relaxed level closedness and pseu-
docontinuity. As we know, the well-posedness is closely related to the existence of
solutions. So it is necessary to study the existence of solutions for the bilevel equilib-
rium problems.
Motivated and inspired by the above results, we introduce and investigate the fol-

lowing bilevel mixed equilibrium problem (for short, (BMEP)):
Find x ∈ SΨ,B,ψ such that

Φ(x, y) + 〈Ax, y − x〉 + φ(y, x)− φ(x, x) ≥ 0, ∀y ∈ SΨ,B,ψ,(1.3)

where SΨ,B,ψ is the solution set of the lower level mixed equilibrium problem:
Find y∗ ∈ K such that
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Ψ(y∗, z) + 〈By∗, z − y∗〉+ ψ(z, y∗) − ψ(y∗, y∗) ≥ 0, ∀z ∈ K,(1.4)

where A,B : E → E∗ are two vector-valued mappings.
Denote the solution set of the problem (BMEP) (1.3) with (1.4) by ℵ.

Special cases of the problem (BMEP) (1.3) with (1.4):
(1) If A = B = 0, then problem (BMEP) (1.3) with (1.4) reduces to the problem

(BMEP) (1.1) with (1.2) studied by Ding [13, 14, 15].
(2) If E is a Hilbert space or a finite Euclidean space, A = B = 0 and φ = ψ = 0,

then the problem (BMEP) (1.3) with (1.4) reduces to the following problem (BEP):
Find x ∈ SΨ such that

Φ(x, y) ≥ 0, ∀y ∈ SΨ,

where SF is the solution set of the following equilibrium problem:
Find u ∈ K such that

Ψ(x, y) ≥ 0, ∀y ∈ K,

which was studied by Moudafi[27] and Dinh and Muu[18].
(3) If E is a finite Euclidean space and Φ = Ψ = φ = ψ = 0, then the problem

(BMEP) (1.3) with (1.4) reduces to the following bilevel variational inequalities:
Find x ∈ SB such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ SB ,(1.5)

where SB is the solution set of the lower level variational inequality problem:
Find y∗ ∈ K such that

〈By∗, z − y∗〉 ≥ 0, ∀z ∈ K,(1.6)

which was studied by Anh, Kim and Muu[1].
(4) Let W : K → R be functional. If the mappings A = 0, φ = ψ = 0 and

Φ(x, y) = W (y) −W (x), then the problem (BMEP) (1.3) with (1.4) reduces to the
following optimization problem with mixed equilibrium constraints:

min W (x) subject to x ∈ SΨ,B,ψ,(1.7)

where SΨ,B,ψ is the solution set of the lower level mixed equilibrium problem (1.4).

We now recall some definitions and lemmas which are needed in the sequel.

Definition 1.1. ([4]). Let K be a closed convex subset of E and Ψ : K×K → R
be functional. Ψ is said to be:
(1) monotone if Ψ(z, y) + Ψ(y, z) ≤ 0 for all (y, z) ∈ K ×K;
(2) strictly monotone if Ψ(z, y) + Ψ(y, z) < 0 for all (y, z) ∈ K ×K and y �= z;
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(3) α-strongly monotone if there exists a positively constant α such that

Ψ(z, y) + Ψ(y, z) ≤ −α‖y − z‖2, ∀(y, z) ∈ K ×K;

(4) β-Lipschitz if there exists a positively constant β such that

|Ψ(y, z)| ≤ β‖y − z‖, ∀(y, z) ∈ K ×K.

Definition 1.2. ([4]). Let A : E → E∗ be a vector-valued mapping. A is said to
be
(1) monotone if 〈Ay − Az, y − z〉 ≥ 0 for all (y, z) ∈ E ×E;
(2) strictly monotone if 〈Ay −Az, y − z〉 > 0 for all (y, z) ∈ E ×E, y �= z;
(3) ζ-strongly monotone if there exists a positively constant ζ such that

〈Ay −Az, y − z〉 ≥ ζ‖y − z‖2, ∀(y, z) ∈ E ×E;

(4) ι-Lipschitz if there exists a positively constant ι such that

‖Ay − Az‖ ≤ ι‖y − z‖, ∀(y, z) ∈ E ×E.

Remark 1.1. It is easy to see that, if A : E → E∗ is ι-Lipschitz, then, for each
(y, z) ∈ E × E , the mapping Ψ(y, z) = 〈Ay −Az, y − z〉 is also ι-Lipschitz.
Definition 1.3. ([3]). A function ψ : E ×E → R is said to be skew symmetric if

ψ(y, y)− ψ(y, z)− ψ(z, y) + ψ(z, z) ≥ 0, ∀(y, z) ∈ E × E.

Remark 1.2. If a function ψ : E × E → R is skew symmetric, then, for any
x, y ∈ E, the function Υ(x, y) = ψ(x, y) − ψ(x, x) is monotone. Indeed, for each
x, y ∈ E ,

Υ(x, y) + Υ(y, x) = ψ(x, y)− ψ(x, x) + ψ(y, x)− ψ(y, y)
= −[ψ(x, x)− ψ(x, y)− ψ(y, x)+ ψ(y, y)] ≤ 0.

Remark 1.3. The skew symmetric functions have the properties which can be
considered an analogous results of monotonicity of gradient and nonnegativity of a
second derivative for the convex function. For the applications and properties of this
function, the readers refer to Antipin [3].

The remaining of this paper is organized as follows: Section 2 investigates the exis-
tence of solutions and the behavior of solution sets to the upper level mixed equilibrium
problem (1.3) and (BMEP) (1.3) with (1.4). Section 3 proposes an iterative algorithm
which directly compute some solutions of the problem (BMEP) and analyze the strong
convergence of the sequence generated by the proposed algorithm. Also, we explore
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the sufficient and necessary conditions of the well-posedness for thye problem (BMEP)
and establish the equivalence between the well-posedness (generalized well-posedness)
of the problem (BMEP) and the uniqueness and existence of its solutions under some
suitable conditions in Section 4.

2. THE EXISTENCE RESULTS FOR (BMEP)

In this section, we investigate the sufficient optimality conditions for (BMEP) (1.3)
with (1.4) and the lower level mixed equilibrium problem, and discuss some topological
properties of their solutions.

Lemma 2.1. ([14]). Let K be a bounded closed convex subset of reflexive Banach
space E . Let Ψ : K ×K → R and ψ : E ×E → R be two bifunctions. Suppose that
the following conditions are satisfied:

(a) Ψ(y, y) ≥ 0 for each y ∈ K;
(b) for each z ∈ K, y �→ Ψ(y, z) is weakly upper semicontinuous and, for each

y ∈ K, z �→ Ψ(y, z) is convex;
(c) ψ is weakly continuous and ψ is convex in the first argument.

Then SΨ,ψ �= ∅.
If, further, assume that
(d) Ψ is monotone and ψ is skew symmetric and, for each y ∈ K , z �→ Ψ(y, z) is

lower semicontinuous.
Then SΨ,ψ is nonempty closed convex.

Lemma 2.2. ([14]). Let K be a closed convex subset of reflexive Banach space
E with intK �= ∅. Let Ψ : K × K → R and ψ : E × E → R be two bifunctions.
Suppose that the following conditions are satisfied:

(a) Ψ is α-strongly monotone and δ-Lipschitz continuous such that Ψ(y, y) ≥ 0
for each y ∈ K;

(b) for each z ∈ K, y �→ Ψ(y, z) is weakly upper semicontinuous and, for each
y ∈ K, z �→ Ψ(y, z) is convex and weakly lower semicontinuous;

(c) ψ is skew symmetric and weakly continuous and ψ is convex in the first
argument.
Then SΨ,ψ is nonempty closed convex.

Next, we establish the behavior of solution set of lower level mixed equilibrium
problem (1.4).

Theorem 2.1. Let K be a bounded closed convex subset of reflexive Banach space
E , B : K → E∗ be monotone and weakly upper semicontinuous and Ψ : K×K → R,
ψ : E×E → R be two bifunctions. Assume that Ψ and ψ satisfy the conditions (a)-(c)
of Lemma 2.1. Then SΨ,B,ψ �= ∅. Moreover, if Ψ and ψ also satisfy the condition (d)
of Lemma 2.1, then SΨ,B,ψ is weakly compact convex.
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Proof. Define the mapping F : K ×K → R by

F (y, z) = Ψ(y, z) + 〈By, z − y〉, ∀(y, z) ∈ K ×K.

From Ψ(z, z) ≥ 0 for all z ∈ K, one has F (z, z) ≥ 0. Since B : K → E∗ is weakly
upper semicontinuous and, from the condition (b) of Lemma 2.1, it follows that F is
weakly upper semicontinuous with respect to the first argument. We declare that F is
also convex with respect to the second argument. Indeed, for any z1, z2 ∈ K, t ∈ (0, 1),
let zt = tz1 + (1 − t)z2. Then zt ∈ K for all t ∈ (0, 1). By the convexity of Ψ with
respect to the second argument, we have, for each y ∈ K,

F (y, zt) = Ψ(y, zt) + 〈By, zt − y〉
= Ψ(y, tz1 + (1 − t)z2) + 〈By, t(z1 − y) + (1− t)(z2 − y)〉
≤ t[Ψ(y, z1) + 〈By, z1 − y〉] + (1− t)[Ψ(y, z2) + 〈By, z2 − y〉]
= tF (y, z1) + (1 − t)F (y, z2).

Therefore, by Lemma 2.1, there exists y∗ ∈ K such that

F (y∗, z) + ψ(z, y∗) − ψ(y∗, y∗) ≥ 0, ∀z ∈ K.

Moreover, one has

Ψ(y∗, z) + 〈By∗, z − y∗〉+ ψ(z, y∗) − ψ(y∗, y∗) ≥ 0, ∀z ∈ K.

This implies that SΨ,B,ψ �= ∅.
Let us show that F is monotone and F is lower semicontinuous in the second

argument. We first prove that F is monotone. For any y, z ∈ K, we have

F (y, z) + F (z, y) = Ψ(y, z) + 〈By, z − y〉+ Ψ(z, y) + 〈Bz, y − z〉
= [Ψ(y, z) + Ψ(z, y)] + [〈By, z − y〉 + 〈Bz, y − z〉]
≤ −〈Bz −By, z − y〉
≤ 0,

i.e., F is monotone. From the lower semicontinuity of Ψ with respect to the second
argument, it follows that F is lower semicontinuous in the second argument. Again,
from Lemma 2.1, SΨ,B,ψ is nonempty closed convex. Taking into account of the
boundedness of K, SΨ,B,ψ is nonempty bounded closed convex. Since E is a reflexive
Banach space, we conclude that SΨ,B,ψ is nonempty weakly compact convex. This
completes the proof.

Example 2.1. Let E = R = (−∞,+∞) and K = [−1, 1]. For each y, z ∈ E, let
Ψ(y, z) = z − y, ψ(y, z) = y − z and

B(y) =
{ −2, if y ≤ 0,

−2 + y, if y > 0.



732 Jia Wei Chen, Zhongping Wan and Yeol Je Cho

Clearly, Ψ, B are monotone and ψ is skew symmetric. Moreover, all the conditions of
Theorem 2.1 are satisfied. Simple computation allows that SΨ,B,ψ = [−1, 0].

If the monotonicity of Ψ is strengthened, then the solution set SΨ,B,ψ is a singleton.

Theorem 2.2. Suppose that all the conditions of Theorem 2.1 hold and Ψ or B is
strictly monotone. Then SΨ,B,ψ is a singleton.

Proof. By Theorem 2.1, the solution set SΨ,B,ψ is nonempty weakly compact
convex. Suppose that there exist y∗1, y∗2 ∈ SΨ,B,ψ and y∗1 �= y∗2 . Then we have

Ψ(y∗1, z) + 〈By∗1 , z − y∗1〉+ ψ(z, y∗1) − ψ(y∗1, y
∗
1) ≥ 0, ∀z ∈ K,(2.8)

and

Ψ(y∗2, z) + 〈By∗2 , z − y∗2〉+ ψ(z, y∗2) − ψ(y∗2, y
∗
2) ≥ 0, ∀z ∈ K.(2.9)

Substituting z = y∗2 and z = y∗1 into (2.1) and (2.2), respectively, one has

Ψ(y∗1, y
∗
2) + 〈By∗1 , y∗2 − y∗1〉 + ψ(y∗2, y

∗
1) − ψ(y∗1, y

∗
1) ≥ 0,(2.10)

and

Ψ(y∗2, y
∗
1) + 〈By∗2 , y∗1 − y∗2〉 + ψ(y∗1, y

∗
2) − ψ(y∗2, y

∗
2) ≥ 0.(2.11)

Adding up (2.3) and (2.4), one has

0 ≤ [Ψ(y∗1 , y
∗
2) + 〈By∗1 , y∗2 − y∗1〉+ ψ(y∗2, y

∗
1) − ψ(y∗1, y

∗
1)]

+ [Ψ(y∗2, y
∗
1) + 〈By∗2 , y∗1 − y∗2〉+ ψ(y∗1, y

∗
2) − ψ(y∗2, y

∗
2)]

= [Ψ(y∗1 , y
∗
2) + Ψ(y∗2, y

∗
1)] + [〈By∗1 , y∗2 − y∗1〉+ 〈By∗2 , y∗1 − y∗2〉]

− [ψ(y∗1, y
∗
1) − ψ(y∗1, y

∗
2) − ψ(y∗2, y

∗
1) + ψ(y∗2, y

∗
2)]

≤ [Ψ(y∗1 , y
∗
2) + Ψ(y∗2, y

∗
1)]− 〈By∗2 − By∗1 , y

∗
2 − y∗1〉.

Since Ψ or B is strictly monotone, by the above inequality, we get

0 ≤ [Ψ(y∗1 , y
∗
2) + Ψ(y∗2, y

∗
1)] − 〈By∗2 − By∗1 , y

∗
2 − y∗1〉 < 0,

which is a contradiction. Therefore, SΨ,B,ψ is a singleton. This completes the
proof.

Example 2.2. LetE = R2 = (−∞,+∞)×(−∞,+∞) andK = [0, 1]×[0, 1]. For
each x, y ∈ E, let Ψ(x, y) = 〈y + x, y − x〉, ψ(x, y) = 〈x, y〉 and B(x) = (ex1, ex2),
where x = (x1, x2), y = (y1, y2). Note that

Ψ(x, y) + Ψ(y, x) = 〈y + x, y − x〉 + 〈y + x, x− y〉 ≤ 0, ∀x, y ∈ E,
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ψ(x, x)−ψ(x, y)−ψ(y, x)+ψ(y, y) = 〈x, x〉−〈x, y〉−〈y, x〉+〈y, y〉 ≥ 0, ∀x, y ∈ E

and

〈Bx− By, x− y〉 = (x1 − y1)(ex1 − ey1)
+(x2 − y2)(ex2 − ey2) > 0, ∀x, y ∈ E, x �= y.

Therefore, all the conditions of Theorem 2.2 are satisfied. From a simple computation,
we have SΨ,B,ψ = {(0, 0)}.

Corollary 2.1. Assume that all the conditions of Theorem 2.2 are satisfied and
Φ(y, y) ≥ for all y ∈ K. Then (BMEP) (1.3) with (1.4) has a unique solution.

Proof. It directly follows from Theorem 2.2 and Φ(y, y) ≥ 0 for all y ∈ K .

If B ≡ 0, then, from Theorem 2.2, we have the following:

Corollary 2.2. Assume that K, Ψ and ψ satisfy all the conditions of Theorem 2.2
and Ψ be strictly monotone. Then SΨ,ψ is a singleton.

If A = B ≡ 0, then, from Corollary 2.1, we obtain the following:

Corollary 2.3. Assume that K, Ψ, Φ and ψ satisfy all the conditions of Corollary
2.1. Then (BMEP) (1.1) with (1.2)] has a unique solution.

Theorem 2.3. Let K be a nonempty closed convex subset of a reflexive Banach
space E with intK �= ∅, B : K → E∗ be monotone and weakly continuous such that
‖By‖ ≤ l for all y ∈ K and l > 0 and Ψ : K × K → R, ψ : E × E → R be two
bifunctions. Assume that Ψ and ψ satisfy the conditions (a)-(c) of Lemma 2.2. Then
SΨ,B,ψ is nonempty closed convex. Moreover, SΨ,B,ψ is a singleton.

Proof. Define the mapping F : K ×K → R by

F (y, z) = Ψ(y, z) + 〈By, z − y〉, ∀(y, z) ∈ K ×K.

Since B : K → E∗ is weakly continuous, this together with the condition (b) of
Lemma 2.2 yields that, for each z ∈ K, y �→ F (y, z) is weakly upper semicontinuous
and for each y ∈ K, z �→ F (y, z) is convex and weakly lower semicontinuous. By the
monotonicity of B and Ψ, for any y, z ∈ K , we have

0 ≤ 〈By − Bz, y − z〉 = −〈Bz −By, y − z〉(2.12)

and

Ψ(y, z) + Ψ(z, y) ≤ −α‖y − z‖2.(2.13)
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From both (2.5) and (2.6), we have

F (y, z) + F (z, y) = Ψ(y, z) + 〈By, z − y〉 + Ψ(z, y) + 〈Bz, y − z〉
= Ψ(y, z) + Ψ(z, y) + 〈Bz − By, y − z〉
≤ −α‖y − z‖2.

Therefore, F is α-strongly monotone. In view of Ψ(z, z) ≥ 0 for all z ∈ K, we have

F (z, z) = Ψ(z, z) + 〈Bz, z − z〉 = Ψ(z, z) ≥ 0.

Now, we show that F is Lipschitz continuous. Noticing that Ψ is δ-Lipschtiz
continuous, we have

|Ψ(y, z)| ≤ δ‖y − z‖, ∀y, z ∈ K.

Thus, for any y, z ∈ K, one has
|F (y, z)| = |Ψ(y, z) + 〈By, z − y〉| ≤ |Ψ(y, z)|+ |〈By, z − y〉|

≤ δ‖y − z‖ + ‖By‖ · ‖z − y‖
≤ (δ + l)‖y − z‖,

that is, F is (δ + l)-Lipschitz continuous. By Lemma 2.2, it follows that the set

{y∗ ∈ K : F (y∗, z) + ψ(z, y∗) − ψ(y∗, y∗) ≥ 0, ∀z ∈ K}
is nonempty and closed convex. This shows that

SΨ,B,ψ = {y∗ ∈ K : Ψ(y∗, z) + 〈By∗, z − y∗〉 + ψ(z, y∗) − ψ(y∗, y∗) ≥ 0, ∀z ∈ K}
is nonempty closed and convex. As in the proof of Theorem 2.2, for any y∗1, y∗2 ∈
SΨ,B,ψ, we have

0 ≤ [Ψ(y∗1, y
∗
2) + Ψ(y∗2 , y

∗
1)]− 〈By∗2 −By∗1 , y

∗
2 − y∗1〉 ≤ −α‖y∗1 − y∗2‖2 ≤ 0

and hence ‖y∗1−y∗2‖2 = 0. Therefore, y∗1 = y∗2, which yields that SΨ,B,ψ is a singleton.
This completes the proof.

Remark 2.1. If B ≡ 0, then Theorem 2.3 reduces to Theorem 3.2 of Ding [14].
The proofs of Theorem 2.3 illustrate that SΨ,ψ is a singleton under the assumptions of
Lemma 2.2.

In the sequel, we investigate the sufficient optimality conditions for (BMEP) (1.3)
with (1.4).

Theorem 2.4. Assume that all the conditions of Theorem 2.1 hold. Let A :
K → E∗ be monotone and weakly upper semicontinuous and Φ : K ×K → R and
φ : E ×E → R be two bifunctions. If Ψ and ψ satisfy the following conditions:
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(a) Φ(y, y) ≥ 0 for each y ∈ K;
(b) for each y ∈ K, x �→ Φ(x, y) is weakly upper semicontinuous and, for each

x ∈ K, y �→ Φ(x, y) is convex;
(c) φ is weakly continuous and φ is convex in the first argument.

Then (BMEP)[(1.3)-(1.4)] is solvable.

Moreover, ifΦ is monotone, φ is skew symmetric and, for each x ∈ K , y �→ Φ(x, y)
is lower semicontinuous, then the solution set of (BMEP) (1.3) with (1.4) is weakly
compact convex.

Proof. It immediately follows from the proofs of Theorem 2.1 that SΨ,B,ψ is a
nonempty bounded closed convex subset of K. By the similar methods to the proof of
Theorem 2.1, we know that the solution set of (BMEP) (1.3) with (1.4) is a nonempty
bounded closed convex subset of SΨ,B,ψ and so it is weakly compact convex. This
completes the proof.

Example 2.3. Let E , K, Ψ, B and ψ be the same as Example 2.1. For each
x, y ∈ E, let Φ(x, y) = y − x, φ(x, y) = x− y and

A(x) =
{ −2, if x < 0,

−2 + x, if x ≥ 0.

It is easy to verify that Φ,Ψ, φ, ψ, A and B satisfy all the conditions of Theorem 2.4
and so, ℵ = [−1, 0].

Theorem 2.5. Assume that all the conditions of Theorem 2.4 hold and Φ or A is
strictly monotone. Then (BMEP) (1.3) with (1.4) has a unique solution.

Proof. From Theorem 2.4, we know that the solution set of (BMEP) (1.3) with
(1.4) is nonempty and weakly compact convex. By the similar proofs of Theorem 2.2,
(BMEP) (1.3) with (1.4) has a unique solution.

Example 2.4. Let E , K, Φ, Ψ, φ, B and ψ be the same as Example 2.3. For each
x ∈ E, let A(x) = x. It is easy to verify that Φ, Ψ, φ, ψ, A and B satisfy all the
conditions of Theorem 2.5 and so ℵ = {0}.
The following results are direct consequences of Theorems 2.4 and 2.5.

Corollary 2.4. Let K, Φ, φ, Ψ and ψ be the same as Theorem 2.4. Then the
solution set of (BMEP) (1.1) with (1.2) is nonempty and weakly compact convex.

Corollary 2.5. Let K, Φ, φ, Ψ and ψ be the same as Theorem 2.4 and Φ is strictly
monotone. Then the solution set of (BMEP) (1.1) with (1.2) is a singleton.

Theorem 2.6. Let K be a closed convex subset of a reflexive Banach space E
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with intK �= ∅, A : K → E∗ be a vector-valued mapping, Φ : K × K → R and
φ : E × E → R be two bifunctions such that Φ(x, x) ≥ 0. Assume that all the
conditions of Theorem 2.3 are satisfied. Then (BMEP) (1.3) with (1.4) has a unique
solution.

Proof. By Theorem 2.3, we know that SΨ,B,ψ is a singleton. Set the solution set
SΨ,B,ψ = {y∗}. Then we have

Φ(y∗, y∗) + 〈Ay∗, y∗ − y∗〉 + φ(y∗, y∗) − φ(y∗, y∗) = Φ(y∗, y∗) ≥ 0.

Therefore, y∗ is the unique solution of (BMEP) (1.3) with (1.4). This completes the
proof.

If the mappings A = B ≡ 0, then, from Theorem 2.6, we have the following:

Corollary 2.6. Let K, Φ, φ, Ψ and ψ be the same as Theorem 2.6. Then (BMEP)
(1.1) with (1.2) has a unique solution.

Remark 2.2. Compared with Theorem 3.3 of Ding [14], the conditions of Corollary
2.6 is weaker than those of Theorem 3.3 in [14]. Since Φ and φ do not involve the
strong monotonicity, Lipschitz continuity, convexity, weak upper (lower) semicontinuity
and skew symmetry, respectively.

3. ALGORITHMS AND CONVERGENCE ANALYSIS FOR (BMEP)

In this section, letE be a Hilbert space. We suggest an iterative algorithm to directly
compute the solution of the problem (BMEP) (1.3) with (1.4) from the perspective of
the theoretical analysis and analyze the convergence of the proposed algorithm. We
firstly consider the following mixed variational inequalities.
For any ρ, β > 0 and x ∈ E , we consider the following mixed variational inequal-

ities (MVI):
Find y∗ ∈ K such that

〈y∗ − x, z − y∗〉 + ρ[Φ(y∗, z) + 〈Ay∗, z − y∗〉 + φ(z, y∗)− φ(y∗, y∗)]
+ β[Ψ(y∗, z) + 〈By∗, z − y∗〉 + ψ(z, y∗)− ψ(y∗, y∗)] ≥ 0, ∀z ∈ K.

Now, we show that (MVI) is solvable.

Lemma 3.1. Assume that all the conditions of Theorem 2.4 hold. Then, for each
ρ, β > 0 and x ∈ E , the problem (MVI) has a unique solution.

Proof. For the sake of brevity, let T (y, z) = Φ(y, z)+〈Ay, z−y〉+φ(z, y)−φ(y, y)
and H(y, z) = Ψ(y, z) + 〈By, z − y〉 and M(y, z) = ρT (y, z) + βH(y, z) for all
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y, z ∈ K. It is easy to verify that, for each z ∈ K , M(z, z) ≥ 0, y �→ M(y, z) is
weakly upper semicontinuous and so, for each y ∈ K, z �→ M(y, z) is convex. For
any y, z ∈ K, we have

M(y, z) +M(z, y)

= ρ[Φ(y, z)+ 〈Ay, z − y〉 + φ(z, y)− φ(y, y)] + β[Ψ(y, z) + 〈By, z − y〉]
+ ρ[Φ(z, y) + 〈Az, y − z〉 + φ(y, z)− φ(z, z)] + β[Ψ(z, y) + 〈Bz, y − z〉]

= ρ[Φ(y, z)+ Φ(z, y) + 〈Ay −Az, z − y〉 − (φ(y, y)− φ(y, z)− φ(z, y) + φ(z, z))]

+ β[Ψ(y, z) + Ψ(z, y) + 〈By − Bz, z − y〉] ≤ 0,

which implies that M is monotone on K × K . Since ψ satisfies the conditions of
Lemma 2.1, βψ still satisfies the conditions (c) and (d) of Lemma 2.1. Set P (y, z) =
〈y − x, z − y〉 for all y, z ∈ K. Then, for any y, z ∈ K , P (z, z) = P (y, y) = 0 and

P (y, z) + P (z, y) = 〈y − x, z − y〉 + 〈z − x, y − z〉 = 〈y − z, z − y〉 ≤ −‖y − z‖2,

that is, P is 1-strongly monotone on K × K. So, M + P is 1-strongly monotone on
K×K. Moreover, for each z ∈ K,M(z, z)+P (z, z) ≥ 0 and y �→M(y, z)+P (y, z)
is weakly upper semicontinuous and so, for each y ∈ K, z �→ M(y, z) + P (y, z) is
convex. By Corollary 2.2, there exists a unique y∗ ∈ K such that

M(y∗, z) + P (y∗, z) + βψ(z, y∗) − βψ(y∗, y∗) ≥ 0, ∀z ∈ K,

that is, there exists a unique y∗ ∈ K such that

〈y∗ − x, z − y∗〉 + ρ[Φ(y∗, z) + 〈Ay∗, z − y∗〉 + φ(z, y∗)− φ(y∗, y∗)]

+ β[Ψ(y∗, z) + 〈By∗, z − y∗〉 + ψ(z, y∗)− ψ(y∗, y∗)] ≥ 0, ∀z ∈ K.

Therefore, for each ρ, β > 0 and x ∈ E , the problem (MVI) has a unique solution.
This completes the proof.

Remark 3.1. The monotonicity of Φ, Ψ, A and B can not be relaxed for the
pseudomonotonicity. Since the sums of two pseudomonotone mappings is not neces-
sarily pseudomonotone. Moreover, if the bifunctions f and g are pseudomonotone and
monotone, respectively, then the function f + g is also not necessarily monotone (see,
Examples 3.1 and 3.2).

Example 3.1. (Example 2.8, [18]). Let C = {(x1, x2) : x1 ≥ −1, x1−9
10 ≤

x2 ≤ 10x1 + 9}, f(x, y) = (x1y2 − x2y1)ex1 and g(x, y) = (x2y1 − x1y2)ex2 for all
x, y ∈ C. It is easy to check that f and g are pseudomonotone on C × C. However,
for all ρ, β > 0, the function ρf(x, y) + βg(x, y) is not pseudomonotone.
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Example 3.2. Let f(x, y) = x2 +xy− 2y2 and g(x, y) = −3x2y +xy2 + 2y3 for
all x, y ∈ C = [1,+∞). For each x, y ∈ K , we have

f(x, y) + f(y, x) = x2 + xy − 2y2 + y2 + xy − 2x2 = −(x− y)2 ≤ 0.

So, f is monotone on C×C. Now, we verify that g is pseudomonotone. Suppose that,
for any x, y ∈ C, g(x, y) ≥ 0. Then we have

g(x, y) = −3x2y + xy2 + 2y3 = y(3x+ 2y)(y − x) ≥ 0,

that is, y ≥ x. From this, we have

g(y, x) = −3y2x+ yx2 + 2x3 = x(3y + 2x)(x− y) ≤ 0.

Consequently, g is pseudomonotone on C ×C. However, for any x, y ∈ C,

f(x, y) + g(x, y) + f(y, x) + g(y, x)
= −(x− y)2 + y(3x+ 2y)(y − x) + x(3y + 2x)(x− y)
= −(x− y)2 + 2(x+ y)(x− y)2

= (2x+ 2y − 1)(x− y)2

≥ 0.

Therefore, the function f(x, y) + g(x, y) is not monotone on C × C.

Remark 3.2. We observe that, if x ∈ E is a solution of the problem (BMEP) (1.3)
with (1.4), then x remains a solution of the problem (MVI). Conversely, if x ∈ E is
a solution of (MVI) and the problem (1.4) has a unique solution y∗, then x is also a
solution of the problem (BMEP) (1.3) with (1.4). Motivated by this, we construct the
following iterative algorithm for solving the problem (BMEP) (1.3) with (1.4).

Algorithm I.

Step 1. Take {βk}, {ρk} ⊂ (0,+∞) and choose y0 ∈ E arbitrarily. Let k = 0
and go to Step 2.

Step 2. For any given yk ∈ E , compute yk+1 ∈ K such that, for each z ∈ K ,

〈yk+1 − yk, z − yk+1〉 + βk+1ρk+1[Φ(yk+1, z)
+ 〈Ayk+1, z − yk+1〉 + φ(z, yk+1) − φ(yk+1, yk+1)]
+ βk+1[Ψ(yk+1, z) + 〈Byk+1, z − yk+1〉 + ψ(z, yk+1) − ψ(yk+1, yk+1)] ≥ 0.

Step 3. States updating: let k := k + 1 and go to Step 2.
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Theorem 3.1. Assume that all the conditions of Theorem 2.4 hold and there exists
σ > 0 such that

Φ(y, z) + 〈Ay, z − y〉+ φ(z, y)− φ(y, y) ≥ −σ‖y − z‖2, ∀y, z ∈ K.

If the following conditions are satisfied:
(a) βk → +∞ and ρk → 0 such that 1

ρkβk
is finite in Algorithm I;

(b) 0 ≤ βk
βk+1

+ (ρk+1 − ρk)βkσ < τ , where τ < 1,
then the sequence {yk} generated by Algorithm I converges strongly to a solution of
the problem (BMEP) (1.3) with (1.4).

Proof. For the sake of brevity, let

T (yk+1, z) = Φ(yk+1, z) + 〈Ayk+1, z − yk+1〉+ φ(z, yk+1)− φ(yk+1, yk+1)

and
H(yk+1, z) = Ψ(yk+1, z) + 〈Byk+1, z − yk+1〉.

By Algorithm I, one has

〈yk − yk−1, z − yk〉 + βkρkT (yk, z) + βk[H(yk, z) + ψ(z, yk) − ψ(yk, yk)] ≥ 0

and

〈yk+1 − yk, z − yk+1〉 + βk+1ρk+1T (yk+1, z)

+βk+1[H(yk+1, z) + ψ(z, yk+1) − ψ(yk+1, yk+1)] ≥ 0.

Moreover, it follows that

(3.14)
1
βk

〈yk − yk−1, z − yk〉 + ρkT (yk, z)

+[H(yk, z) + ψ(z, yk) − ψ(yk, yk)] ≥ 0

and

(3.15)
1

βk+1
〈yk+1 − yk, z − yk+1〉+ ρk+1T (yk+1, z)

+[H(yk+1, z) + ψ(z, yk+1)− ψ(yk+1, yk+1)] ≥ 0.

Substituting z = yk+1 and z = yk into (3.1) and (3.2), respectively, we have

(3.16)
〈yk − yk−1, yk+1 − yk〉

βk
+ ρkT (yk, yk+1)

+[H(yk, yk+1) + ψ(yk+1, yk) − ψ(yk, yk)] ≥ 0

and
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(3.17)
〈yk+1 − yk, yk − yk+1〉

βk+1
+ ρk+1T (yk+1, yk)

+[H(yk+1, yk) + ψ(yk, yk+1) − ψ(yk+1, yk+1)] ≥ 0.

Since Φ,Ψ, A, B are monotone and φ, ψ are skew symmetric,

(3.18) T (yk, yk+1) + T (yk+1, yk) ≤ 0, H(yk, yk+1) +H(yk+1, yk) ≤ 0

and so,

(3.19)
[H(yk, yk+1) + ψ(yk+1, yk)− ψ(yk, yk)]

+[H(yk+1, yk) + ψ(yk, yk+1) − ψ(yk+1, yk+1)] ≤ 0.

From (3.3)-(3.6), it follows that

〈yk − yk−1, yk+1 − yk〉
βk

≥ (ρk − ρk+1)T (yk+1, yk) +
1

βk+1
‖yk+1 − yk‖2

≥ (ρk − ρk+1)(−σ)‖yk+1 − yk‖2 +
1

βk+1
‖yk+1 − yk‖2

≥ [
1

βk+1
− (ρk − ρk+1)σ]‖yk+1 − yk‖2

and so,

‖yk − yk−1‖‖yk+1 − yk‖ ≥ 〈yk − yk−1, yk+1 − yk〉
≥ [

βk
βk+1

− (ρk − ρk+1)βkσ]‖yk+1 − yk‖2.

Consequently, one has

‖yk − yk−1‖ ≥ [
βk
βk+1

+ (ρk+1 − ρk)βkσ]‖yk+1 − yk‖.

This together with the condition (b) yields that {yk} is a Cauchy sequence. Without
loss of generality, let yk → ȳ ∈ K. Since Ψ and B are upper semicontinuous, ψ is
continuous, it follows from (3.2) and (a) that

Ψ(ȳ, z) + 〈Bȳ, z − ȳ〉+ ψ(z, ȳ) − ψ(ȳ, ȳ) ≥ 0, ∀z ∈ K,

that is, ȳ ∈ SΨ,B,ψ.
Now, we show that ȳ ∈ SΨ,B,ψ is a solution of the problem (1.3). For any

y ∈ SΨ,B,ψ ⊆ K, from Algorithm I, we have

〈yk+1 − yk, y − yk+1〉 + βk+1ρk+1T (yk+1, y)

+βk+1[H(yk+1, y) + ψ(y, yk+1) − ψ(yk+1, yk+1)] ≥ 0,
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which implies that, for any y ∈ SΨ,B,ψ,

T (yk+1, y) +
1

βk+1ρk+1
〈yk+1 − yk, y − yk+1〉

≥ − 1
ρk+1

(H(yk+1, y) + ψ(y, yk+1) − ψ(yk+1, yk+1))

≥ 1
ρk+1

(H(y, yk+1) + ψ(yk+1, y)− ψ(y, y))

≥ 0,

that is,

Φ(yk+1, y) + 〈Ayk+1, y − yk+1〉 + φ(y, yk+1)− φ(yk+1, yk+1)

+
1

βk+1ρk+1
〈yk+1 − yk, y − yk+1〉 ≥ 0.

Since Φ, A are upper semicontinuous and φ is continuous, by the condition (a), one
has

Φ(ȳ, y) + 〈Aȳ, y − ȳ〉 + φ(y, ȳ) − φ(ȳ, ȳ) ≥ 0, ∀y ∈ SΨ,B,ψ.

Therefore, the sequence {yk} generated by Algorithm I converges strongly to a solution
of the problem (BMEP) (1.3) with (1.4). This completes the proof.

The following result is a direct consequence of Theorem 3.1.

Corollary 3.1. Assume that all the conditions of Theorem 2.5 hold and there exists
σ > 0 such that

Φ(y, z) + 〈Ay, z − y〉+ φ(z, y)− φ(y, y) ≥ −σ‖y − z‖2, ∀y, z ∈ K.

If the conditions (a) and (b) of Theorem 3.1 are satisfied, then the sequence {yk}
generated by Algorithm I converges strongly to the unique solution of the problem
(BMEP) (1.3) with (1.4).

Remark 3.3. If we let ρk+1 = 1
βk+1

, then the condition (a) of Theorem 3.1 holds.

For the condition (b) of Theorem 3.1, we give the following example.

Example 3.3. Let E = (−∞,+∞) = K, Φ(y, z) = z − y, A(y) = −2 and
φ(y, z) = y − z for all y, z ∈ E . It is easy to check that Φ, A and φ satisfy all the
conditions of Theorems 2.4 and 2.5. Simple computation allows that, for any positive
number σ,

Φ(y, z) + 〈Ay, z − y〉 + φ(z, y)− φ(y, y) ≥ −σ‖y − z‖2, ∀y, z ∈ E.
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Particularly, we put σ ∈ (0, 1) and τ = 1 − σ. If βk+1 = 2k and ρk = 1
2k , then we

have
βk
βk+1

+ (ρk+1 − ρk)βkσ =
1 − σ

2
< 1 − σ = τ, ∀k ∈ N ∪ {0}.

4. THE WELL-POSEDNESS FOR (BMEP)

In this section, we firstly consider a class of ε-bilevel mixed equilibrium problem,
discuss the behavior of solution set to this class of (BMEP). Further, the concepts of
the well-posedness and generalized well-posedness for the problem (BMEP) (1.3) with
(1.4) are introduced. The relationships between the well-posedness (generalized well-
posedness) for the problem (BMEP) (1.3) with (1.4) and the uniqueness and existence
of its solution are established.
For any ε > 0, consider the following ε-bilevel mixed equilibrium problem (for

short, (BMEP)) (4.1) with (4.2):
Find x ∈ SΨ,B,ψ(ε) such that

Φ(x, y) + 〈Ax, y − x〉 + φ(y, x)− φ(x, x) + ε ≥ 0, ∀y ∈ SΨ,B,ψ(ε),(4.1)

where SΨ,B,ψ(ε) is the solution set of the following mixed equilibrium problem:
Find y∗ ∈ K such that

Ψ(y∗, z) + 〈By∗, z − y∗〉+ ψ(z, y∗)− ψ(y∗, y∗) + ε ≥ 0, ∀z ∈ K.(4.2)

Denote the solution set of the problem (BMEP) (4.1) with (4.2) by ℵ(ε). It is easy
to see that ℵ ⊆ ℵ(ε) and ℵ(ε1) ⊆ ℵ(ε2) for any ε1, ε2 > 0 with ε1 ≤ ε2.

Lemma 4.1. Assume that all the conditions of Theorem 2.1 are satisfied. Then the
following statements hold:

(1) for each ε > 0, SΨ,B,ψ(ε) is nonempty and weakly compact convex;
(2) SΨ,B,ψ =

⋂
ε>0 SΨ,B,ψ(ε).

Proof. (1) The proofs are similar to those of Theorem 2.1 and so it is omitted here.
(2) We know that SΨ,B,ψ ⊆ ⋂

ε>0 SΨ,B,ψ(ε). Now, we only need to prove that
SΨ,B,ψ ⊇ ⋂

ε>0 SΨ,B,ψ(ε). Let y∗ ∈ ⋂
ε>0 SΨ,B,ψ(ε). Then, for each ε > 0, y∗ ∈

SΨ,B,ψ(ε). Without loss of generality, suppose that 0 < εn → 0. Then we have
y∗ ∈ SΨ,B,ψ(εn), that is, y∗ ∈ K such that

Ψ(y∗, z) + 〈By∗, z − y∗〉 + ψ(z, y∗) − ψ(y∗, y∗) + εn ≥ 0, ∀z ∈ K.

Taking the limit in the above inequality, one has

Ψ(y∗, z) + 〈By∗, z − y∗〉+ ψ(z, y∗) − ψ(y∗, y∗) ≥ 0, ∀z ∈ K.
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Therefore, y∗ ∈ SΨ,B,ψ. This completes the proof.

Lemma 4.2. Assume that all the conditions of Theorem 2.4 hold. Then the fol-
lowing statements hold:

(1) for each ε > 0, ℵ(ε) is nonempty and weakly compact convex;
(2) ℵ =

⋂
ε>0 ℵ(ε).

Proof. The proofs of (1) and (2) are similar to those of Theorem 2.4 and Lemma
4.1 (2), respectively, and so it is omitted here.

Lemma 4.3. Assume that all the conditions of Theorem 2.5 hold. Then, for each
ε > 0, ℵ(ε) is a singleton.

Proof. The proofs are similar to those of Theorem 2.5 and so it is omitted here.

Definition 4.1. A sequence {xn} ⊆ K is called an approximation solution se-
quence of the problem (BMEP) (1.3) with (1.4) if there exists a sequence {εn} with
0 < εn → 0 and xn ∈ SΨ,B,ψ(εn) such that

(4.3) Φ(xn, y)+ 〈Axn, y−xn〉+φ(y, xn)−φ(xn, xn)+ εn ≥ 0, ∀y ∈ SΨ,B,ψ(εn).

Remark 4.1. By Definition 4.1, for any approximation solution sequence {xn} of
the problem (BMEP) (1.3) with (1.4), there exists a sequence {εn} of nonnegative real
numbers with εn → 0 such that xn ∈ ℵ(εn).

Definition 4.2. The problem (BMEP) (1.3) with (1.4) is said to be:
(1) well-posed if the problem (BMEP) (1.3) with (1.4) has a unique solution and

any approximation solution sequence {xn} of the problem (BMEP) (1.3) with (1.4)
converges strongly to the unique solution.
(2) generalized well-posed if the solution set ℵ of the problem (BMEP) (1.3)

with (1.4) is nonempty and any approximation solution sequence {xn} of the prob-
lem (BMEP) (1.3) with (1.4) has a subsequence which converges strongly to some
point of ℵ.

Remark 4.2. By Definition 4.2, we know that the well-posedness and generalized
well-posedness of the problem (BMEP) (1.3) with (1.4) imply that ℵ is compact.

Definition 4.3. Let Ω and Ξ be nonempty subsets of E .
(1) The Hausdorff distance D(Ω,Ξ) between Ω and Ξ defined by

D(Ω,Ξ) = max{e(Ω,Ξ), e(Ξ,Ω)},
where e(Ω,Ξ) = supω∈Ω d(ω,Ξ) with d(ω,Ξ) = infξ∈Ξ ‖ω − ξ‖.
(2) For a given x∗ ∈ ℵ, we define
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ϑ(ε) = sup{‖x∗ − x‖ : x ∈ ℵ(ε)}.
Theorem 4.1. Let x∗ ∈ ℵ. Then the problem (BMEP) (1.3) with (1.4) is well-

posed if and only if ϑ(ε) → 0 as ε→ 0.

Proof. Suppose that ϑ(ε) �→ 0 as ε → 0. Then there exist � > 0 and 0 < εn → 0
such that ϑ(εn) > �. This implies that there exists xn ∈ ℵ(εn) such that ‖x∗−xn‖ > �.
In view of xn ∈ ℵ(εn), it follows that xn ∈ SΨ,B,ψ(εn) and

Φ(xn, y) + 〈Axn, y − xn〉+ φ(y, xn) − φ(xn, xn) + εn ≥ 0, ∀y ∈ SΨ,B,ψ(εn).(4.4)

This implies that {xn} is an approximation solution sequence of the problem (BMEP)
(1.3) with (1.4). By Definition 4.2, it follows that xn → x∗, which contradicts with
‖x∗ − xn‖ > �.
Conversely, suppose that ϑ(ε) → 0 as ε → 0. Clearly, ℵ = {x∗}. For any

approximation solution sequence {xn} of the problem (BMEP) (1.3) with (1.4). Then
there exists 0 < εn → 0 such that xn ∈ ℵ(εn). Take into account of ℵ ⊆ ℵ(εn), one
has

‖xn − x∗‖ ≤ ϑ(εn) → 0.

Moreover, the sequence {xn} converges strongly to x∗. Therefore, the problem (BMEP)
(1.3) with (1.4) is well-posed. This completes the proof.

Theorem 4.2. The problem (BMEP) (1.3) with (1.4) is generalized well-posed if
and only if ℵ is nonempty compact and D(ℵ, ℵ(ε)) → 0 as ε→ 0.

Proof. Assume that the problem (BMEP) (1.3) with (1.4) is generalized well-
posed. Then ℵ is compact. As a matter of fact, for any sequence {xn} ⊆ ℵ, there
exists 0 < εn → 0 such that xn ∈ ℵ(εn) and so {xn} is an approximation solution
sequence of the problem (BMEP) (1.3) with (1.4). Then {xn} has a subsequence which
converges strongly to some point of ℵ. So, ℵ is a compact subset of K.
Let us show that D(ℵ, ℵ(ε)) → 0 as ε → 0. We only need to prove that

e(ℵ(ε), ℵ) → 0 as ε→ 0. Since ℵ ⊆ ℵ(ε) for any ε > 0, e(ℵ, ℵ(ε)) = 0. Suppose that
0 < ε → 0 and e(ℵ(ε), ℵ) �→ 0. Then there exist b > 0, 0 < εn → 0 and xn ∈ ℵ(εn)
such that d(xn, ℵ) ≥ b. Again, from xn ∈ ℵ(εn), {xn} is an approximation solution
sequence of the problem (BMEP) (1.3) with (1.4). By the generalized well-posedness of
the problem (BMEP) (1.3) with (1.4), {xn} has a subsequence {xnk

} which converges
strongly to a point of ℵ. So, limk→+∞ d(xnk

, ℵ) = 0, which contradicts d(xn, ℵ) ≥ b.
Therefore, D(ℵ, ℵ(ε)) → 0 as ε→ 0.
Conversely, assume that ℵ is nonempty compact andD(ℵ, ℵ(ε)) → 0 as ε→ 0. For

any approximation solution sequence {xn} of the problem (BMEP) (1.3) with (1.4),
there exists 0 < εn → 0 such that xn ∈ ℵ(εn). Consequently, we have

d(xn, ℵ) ≤ D(ℵ, ℵ(εn)) → 0.
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Due to the compactness of ℵ, there exists yn ∈ ℵ such that
d(xn, ℵ) = ‖xn − yn‖ → 0.

It follows from the compactness of ℵ that yn has a subsequence {ynk
} which converges

strongly to a point ỹ ∈ ℵ. Thus there exists the corresponding sequence xnk
of {xn}

such that

‖xnk
− ỹ‖ ≤ ‖xnk

− ynk
‖ + ‖ynk

− ỹ‖ → 0,

that is, {xnk
} converges strongly to the point ỹ. Therefore, the problem (BMEP) (1.3)

with (1.4) is generalized well-posed. This completes the proof.

Theorem 4.3. Assume that all the conditions of Theorem 2.5 are satisfied. Then
the problem (BMEP) (1.3) with (1.4) is well-posed.

Proof. From Theorem 2.5, one has the solution set ℵ of the problem (BMEP)
(1.3) with (1.4) is a singleton. Without loss of generality, let ℵ = {x∗}. For any
approximation solution sequence {xn} of the problem (BMEP) (1.3) with (1.4), there
exists 0 < εn → 0 and xn ∈ SΨ,B,ψ(εn) such that (4.3) holds. Moreover, xn ∈ ℵ(εn).
By Lemmas 4.2 and 4.3, xn = x∗, that is, {xn} is strongly convergent to x∗. Therefore,
the problem (BMEP) (1.3) with (1.4) is well-posed. This completes the proof.

Theorem 4.4. Assume that all the conditions of Theorem 2.4 are satisfied. Then
the problem (BMEP) (1.3) with (1.4) is generalized well-posed.

Proof. By Lemma 4.2, we know that, for each ε > 0, ℵ(ε) is nonempty and
weakly compact convex. For any approximation solution sequence {xn} of the problem
(BMEP) (1.3) with (1.4), there exist 0 < εn → 0 and xn ∈ SΨ,B,ψ(εn) such that (4.3)
holds. Moreover, xn ∈ ℵ(εn). Since ℵ(ε̃) ⊆ ℵ(ε̂) for 0 < ε̃ ≤ ε̂, there exists ε̄ > 0
such that ℵ(εn) ⊆ ℵ(ε̄). So, {xn} ⊆ ℵ(ε̄). By the compactness of ℵ(ε̄), there exists
a subsequence xnk

of {xn} such that xnk
→ x0 ∈ ℵ(ε̄). Again, from Definition 4.1,

xnk
∈ SΨ,B,ψ(εnk

) such that

(4.5) Φ(xnk
, y) + 〈Axnk

, y − xnk
〉 + φ(y, xnk

)
−φ(xnk

, xnk
) + εnk

≥ 0, ∀y ∈ SΨ,B,ψ(εnk
).

Observe that SΨ,B,ψ(εnk
) → SΨ,B,ψ as εnk

→ 0. By virtue of the conditions of
Theorem 2.4, x0 ∈ SΨ,B,ψ and

Φ(x0, y) + 〈Ax0, y − x0〉 + φ(y, x0) − φ(x0, x0) ≥ 0, ∀y ∈ SΨ,B,ψ,

that is, x0 ∈ ℵ. Therefore, the problem (BMEP) (1.3) with (1.4) is generalized well-
posed. This completes the proof.
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Remark 4.3. Theorem 4.3 illustrate not only the well-posedness of the problem
(BMEP) (1.3) with (1.4), but also the equivalence between the well-posedness of the
problem (BMEP) (1.3) with (1.4) and the existence and uniqueness of its solution;
Theorem 4.4 implies that the generalized well-posedness of the problem (BMEP) (1.3)
with (1.4) is equivalent to the existence of its solution.
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