TAIWANESE JOURNAL OF MATHEMATICS Vol. 17, No. 6, pp. 2011-2017, December 2013 DOI: 10.11650/tjm.17.2013.2309 This paper is available online at http://journal.taiwanmathsoc.org.tw

CONNECTED GRAPHS WITH A LARGE NUMBER OF INDEPENDENT SETS

Min-Jen Jou

Abstract. For a simple undirected graph G = (V(G), E(G)), a subset I of V(G) is said to be an independent set of G if any two vertices in I are not adjacent in G. An empty set is also an independent set in G. The set of all independent sets of a graph G is denoted by I(G) and its cardinality by i(G) (known as the Merrifield-Simmons index in mathematical chemistry). Let h(n, x) be the x-th largest number of independent sets among all connected n-vertex graphs. In this paper, we determine the numbers h(n, x) for $1 \le x \le \lfloor \frac{n}{2} \rfloor^2 - 3 \cdot \lfloor \frac{n}{2} \rfloor + 3$. Besides, we also characterize the connected n-vertex graphs achieving these values.

1. INTRODUCTION AND PRELIMINARY

Given a graph G = (V(G), E(G)), a subset $S \subseteq V(G)$ is called *independent* set if no two vertices of S are adjacent in G. An empty set is also an independent set in G. The set of all independent sets of a graph G is denoted by I(G) and its cardinality by i(G). For a vertex $v \in V(G)$, let $I_{-v}(G) = \{S \in I(G) : v \notin S\}$ and $I_{+v}(G) = \{S \in I(G) : v \in S\}$. Their cardinalities are denoted by $i_{-v}(G)$ and $i_{+v}(G)$, respectively. Note that $i(G) = i_{-v}(G) + i_{+v}(G)$. The study of the number of independent sets in a graph has a long history. This number is also called the Merrifield-Simmons index. The Merrifield-Simmons index was introduced by Merrifield and Simmons [8] in 1989. In [4] Gutman first named its index the Merrifield-Simmons index. This index is one of the most popular topological indices in mathematical chemistry, there is a correlation between this index and boiling points. There are researchers developed a topological approach to structural chemistry (see [5, 8, 11]).

Enumerating independent sets in a graph is well-studied problem arising in many fields. Much recent research has focused on the problem of maximizing the number of in a special graph with certain restrictions (see [1, 3]). Several papers deal with

2010 Mathematics Subject Classification: 05C69, 05C30, 68R10.

Received August 17, 2012, accepted May 19, 2013.

Communicated by Gerard Jennhwa Chang.

Key words and phrases: Independent set, Connected n-vertex graph.

Min-Jen Jou

the characterization of the extremal graphs with respect to this number in some special graphs. The problem was extensively studied for various classes of graphs, including trees ([6, 13]), unicyclic graphs ([1, 9]), regular bipartite graphs [2] and (n, n + 2)-graphs [5]. It is known [10] that the star $K_{1,n-1}$ has the largest number of independent sets and the path P_n has the smallest number of independent sets among all trees with n vertices. The problems of determining the second largest and the second smallest values of independent sets for a tree T with n vertices and those graphs achieving these values were solved in [6] and [7], respectively. For $1 \le x$, let h(n, x) be the x-th largest number of independent sets among all connected n-vertex graphs. In this paper, we determine the numbers h(n, x) for $1 \le x \le \lfloor \frac{n}{2} \rfloor^2 - 3 \cdot \lfloor \frac{n}{2} \rfloor + 3$. Besides, we also characterize the connected n-vertex graphs achieving these values.

In order to state our results, we introduce some notation and terminology. For other undefined terms we refer to [12]. We denote by G = (V(G), E(G)) a graph of order n = |G|. The graph G is called *null* if |G| = 0. A maximal connected subgraph of G is called a *component* of G. For a subset $X \subseteq V(G)$, we define the *neighborhood* $N_G(X)$ of X in G to be the set of all vertices adjacent to vertices in X and the *closed neighborhood* $N_G[X] = N_G(X) \cup X$. For a vertex $x \in V(G)$, let $\deg_G(x)$ denote its *degree*. A *leaf* is a vertex of degree 1. For a subset $A \subseteq V(G)$, the *deletion of* A from G is the graph G - A obtained from G by removing all vertices in A and all edges incident to these vertices. If $A = \{v\}$, we write G - v instead of $G - \{v\}$. For a subset $B \subseteq E(G)$, the *edge-deletion of* B from G is the graph G - B obtained from G by removing all edges in B. If $B = \{e\}$, we write G - e instead of $G - \{e\}$. If a graph G is isomorphic to another graph H, we denote G = H. nG is the short notation for the union of n copies of disjoint graphs isomorphic to G. For $n \ge 1$, P_n a *path* with n vertices and $K_{1,n-1}$ a *star* with n vertices. Note that $K_{1,0} = P_1$. The following useful lemmas and theorems which are needed in this paper.

Lemma 1.1. ([6, 7]) Given a graph G = (V(G), E(G)) and $v \in V(G)$, then $i(G) = i_{-v}(G) + i_{+v}(G) = i(G - v) + i(G - N[v])$.

Lemma 1.2. ([6]) If H is an edge-deletion of G, then i(G) < i(H).

Lemma 1.3. ([6]) If G is the union of $G_1, G_2, ..., G_k$, then $i(G) = \prod_{j=1}^k i(G_j)$.

Lemma 1.4. ([6, 7]) For an integer $n \ge 2$, $i(P_n) = i(P_{n-1}) + i(P_{n-2})$, where $i(P_0) = 1$ and $i(P_1) = 2$.

Lemma 1.5. ([6]) For an integer $n \ge 5$, $i(C_n) = i(C_{n-1}) + i(C_{n-2})$, where $i(C_3) = 4$ and $i(C_4) = 7$.

Theorem 1.6. ([6, 7]) If T is a tree of order $n \ge 1$, then $i(T) \le 2^{n-1} + 1$. Furthermore, the equality holds if and only if $T = K_{1,n-1}$.

2. *n*-Vertex Graphs

Let g(n, x) be the x-th largest number of independent sets among all n-vertex graphs and G(n, x) be the n-vertex graphs achieving the number g(n, x). In this section, we determine the numbers g(n, x) for $1 \le x \le n$. Moreover, we also characterize the n-vertex graphs achieving these values.

Lemma 2.1. Let G be a n-vertex graph.

- (i) If G has at least one cycle, then $i(G) \leq 2^{n-1}$.
- (ii) If G has a component which is not a star, then $i(G) \leq 2^{n-1}$.
- (iii) If G have at least two nontrivial components such that $G \neq 2P_2 \cup (n-4)P_1$, then $i(G) < 2^{n-1}$.

Proof. (i) If G has a cycle C_k , where $k \ge 3$, then $C_k \cup (n-k)P_1$ is an edge-deletion of G. By Lemma 1.5 and an induction, $i(C_k) \le 2^{k-1}$. Then, by Lemmas 1.2 and 1.3, $i(G) \le i(C_k \cup (n-k)P_1) \le 2^{k-1}2^{n-k} = 2^{n-1}$. (ii) If G has a component H which is not a star, then $C_3 \cup (n-3)P_1$ or $P_4 \cup (n-4)P_1$ is an edge-deletion of G. By Lemmas 1.2 and 1.3, $i(G) \le \min\{i(C_3 \cup (n-3)P_1), i(P_4 \cup (n-4)P_1)\} = 2^{n-1}$, since $i(C_3) = 4$ and $i(P_4) = 8$. (iii) If G have at least three nontrivial components, then $3P_2 \cup (n-6)P_1$ is an edge-deletion of G. By Lemma 1.2, $i(G) \le i(3P_2 \cup (n-6)P_1) = 27 \cdot 2^{n-6} < 2^{n-1}$. Assume that G have exactly two nontrivial components. Note that $G \ne 2P_2 \cup (n-4)P_1$, then $P_3 \cup P_2 \cup (n-5)P_1$ is an edge-deletion of G. By Lemma 1.2, $i(G) \le i(P_3 \cup P_2 \cup (n-5)P_1) = 15 \cdot 2^{n-5} < 2^{n-1}$.

Note that $i(2P_2 \cup (n-4)P_1) = 9 \cdot 2^{n-4} > 2^{n-1}$ and $i(K_{1,x-1} \cup (n-x)P_1) = 2^{n-1} + 2^{n-x} > 2^{n-1}$, where $1 \le x \le n$. If $i(G) \ge 2^{n-1} + 1$, where |G| = n, by Lemma 2.1, then $G = 2P_2 \cup (n-4)P_1$ or $K_{1,x-1} \cup (n-x)P_1$.

Theorem 2.2. For $1 \le x \le n$, $g(n, x) = (2^{x-1} + 1)2^{n-x} = 2^{n-1} + 2^{n-x}$ and

$$G(n,x) = \begin{cases} K_{1,3} \cup (n-4)P_1 \text{ or } 2P_2 \cup (n-4)P_1, & \text{if } x = 4; \\ K_{1,x-1} \cup (n-x)P_1, & \text{if } x \neq 4. \end{cases}$$

3. Connected n-Vertex Graphs

Let h(n, x) be the *x*-th largest number of independent sets among all connected *n*-vertex graphs and H(n, x) be the connected *n*-vertex graphs achieving the number h(n, x). In this section, we determine the numbers h(n, x) for $1 \le x \le \lfloor \frac{n}{2} \rfloor^2 - 3 \cdot \lfloor \frac{n}{2} \rfloor + 3$. Moreover, we also characterize the connected *n*-vertex graphs achieving these values. For $1 \le k \le \lfloor \frac{n}{2} \rfloor - 2$, let I_n^k be the interval $[2^{n-2}+2^{n-k-2}+1, 2^{n-2}+2^{n-k-1}]$ and let $\frac{k}{n}$ be the collection of all connected *n*-vertex graphs *H* having $i(H) \in I_n^k$.

Theorem 3.1. For $n \ge 1$, $h(n, 1) = 2^{n-1} + 1$ and $H(n, 1) = K_{1,n-1}$.

Min-Jen Jou

Proof. Suppose G is a connected n-vertex graph such that i(G) as large as possible, by Lemma 1.2, H(n, 1) contains just a tree. By Theorem 1.6, $H(n, 1) = K_{1,n-1}$ and $h(n, 1) = 2^{n-1} + 1$.

For $2 \le x \le \lfloor \frac{n}{2} \rfloor^2 - 3 \cdot \lfloor \frac{n}{2} \rfloor + 3$, we characterize the graphs H(n, x) in Theorem 3.2. For this purpose, define graphs $H^1(n, k, a)$ and $H^2(n, k, a)$, see Figure 1. For $0 \le a \le k \le n-2$, the graphs $H^1(n, k, a)$ is the *n*-vertex graph containing an edge uv such that u and v have a common neighbors of degree 2, u has k-a private neighbors of degree 1 and v has n-k-2 private neighbors of degree 1. The graph $H^2(n, k, a) = H^1(n, k, a) - uv$.

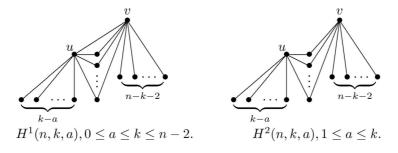


Fig. 1. The graphs $H^1(n, k, a)$ and $H^2(n, k, a)$.

Theorem 3.2. Let n and x be two nonnegative integers such that $2 \le x \le \lfloor \frac{n}{2} \rfloor^2 - 3 \cdot \lfloor \frac{n}{2} \rfloor + 3$. Suppose that $k = \lceil \frac{-1 + \sqrt{4x-3}}{2} \rceil$ and $t = x - (k^2 - k + 1)$, then

$$h(n,x) = \begin{cases} 2^{n-2} + 2^{n-k-2} + 2^{\left(k - \frac{t-1}{2}\right)}, & \text{if } 1 \le t \le 2k - 1 \text{ is odd}; \\ 2^{n-2} + 2^{n-k-2} + 2^{\left(k - \frac{t}{2}\right)} + 1, & \text{if } 2 \le t \le 2k - 2 \text{ is even}; \\ 2^{n-2} + 2^{n-k-2} + 1, & \text{if } t = 2k; \end{cases}$$

and

$$H(n,x) = \begin{cases} H^1(n,k,\frac{t-1}{2}), & \text{if } 1 \le t \le 2k-3 \text{ is odd}; \\ H^2(n,k,\frac{t}{2}), & \text{if } 2 \le t \le 2k-2 \text{ is even}; \\ H^1(n,k,k-1) \text{ or } H^2(n,k,k), & \text{if } t = 2k-1; \\ H^1(n,k,k), & \text{if } t = 2k. \end{cases}$$

The graphs in Figure 2 are the exceptional cases of H(n, 10), H(n, 12) and H(n, 13).

We prove the Theorem 3.2 by establishing the following lemmas.

2014

Connected Graphs with a Large Number of Independent Sets

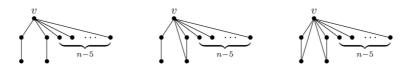


Fig. 2. The exceptional cases of H(n, 10), H(n, 12) and H(n, 13).

Lemma 3.3. For $1 \le k \le \lfloor \frac{n}{2} \rfloor - 2$, if $H \in \mathcal{H}_n^k$ and v is a vertex of maximum degree in H such that $H - v \ne 2P_2 \cup (n-5)P_1$, then we have the following results. (i) H - v = G(n - 1, k + 1).

(ii) $H - N[v] = sP_1$ ($0 \le s \le k$) or $K_{1,t}$ ($1 \le t \le k - 1$). (iii) $i(H - N[v]) = 2^k, 2^{k-1} + 1, 2^{k-1}, 2^{k-2} + 1, \dots, 2^1 + 1, 2^1 = 2^0 + 1, 1$.

Proof. Since $i(H) \leq 2^{n-2} + 2^{n-k-1}$ and $i(H - N[v]) \geq 1$, by Lemma 1.1, $i(H - v) = i(H) - i(H - N[v]) \leq 2^{n-2} + 2^{n-k-1} - 1$. By Theorem 2.2, H - v = G(n - 1, x), where $x \geq k + 1$. Since $H - v \neq 2P_2 \cup (n - 5)P_1$, $H - v = G(n - 1, x) = K_{1,x-1} \cup (n - 1 - x)P_1$ for some $x \geq k + 1$.

Claim. x = k + 1. Assume that $x \ge k + 2$, then $n - x \le n - k - 2$. Let $|N_H(v) \cap L(K_{1,x-1})| = a$, where $L(K_{1,x-1})$ is the set of leaves in $K_{1,x-1}$. So $i(H - N_H[v]) \le 2^{x-1-a} + 1$. Since v is a vertex of maximum degree in H, this implies that $x - 1 \le n - 1 - x + a$. Thus $x - 1 - a \le n - 1 - x$. Thus $2^{n-2} + 2^{n-k-2} + 1 \le i(H) = i(H - v) + i(H - N_H[v]) \le (2^{x-1} + 1) \cdot 2^{n-1-x} + 2^{x-1-a} + 1 = 2^{n-2} + 2^{n-1-x} + 2^{x-1-a} + 1 \le 2^{n-2} + 2 \cdot 2^{n-1-x} + 1 = 2^{n-2} + 2^{n-x} + 1 \le 2^{n-2} + 2^{n-k-2} + 1$, the equalities hold. Thus we got three equalities, x = k + 2, x - 1 - a = n - 1 - x and $i(H - N_H[v]) = 2^{x-1-a} + 1$. Since $i(H - N_H[v]) = 2^{x-1-a} + 1$, this means that u, the center of $K_{1,x-1}$, is not adjacent to v in H. By the connection property of H, so $a \ge 1$. Thus $n - 1 - (k + 2) = n - 1 - x = x - 1 - a \le (k + 2) - 1 - 1$, then $n - 3 \le 2k \le 2 \cdot (\lfloor \frac{n}{2} \rfloor - 2) \le n - 4$. This is a contradiction, hence x = k + 1.

Then $H - v = \overline{G}(n - 1, k + 1) = K_{1,k} \cup (n - k - 2)P_1$ and $H - N[v] = sP_1$ $(0 \le s \le k)$ or $K_{1,t}$ $(1 \le t \le k - 1)$. So $i(H - N[v]) = 2^k, 2^{k-1} + 1, 2^{k-1}, 2^{k-2} + 1, \dots, 2^1 + 1, 2^1 = 2^0 + 1, 1$.

Suppose $H - v = 2P_2 \cup (n-5)P_1$, then k = 3 and $i(H - N_H[v]) = 1, 2$ or 4. Hence $H \in \mathcal{H}_n^3$, so $H \in H(n, 10), H(n, 12)$ or H(n, 13). The graphs in Figure 2 have the tenth, eleventh and thirteenth largest numbers of independent sets among all connected *n*-vertex graphs.

Lemma 3.4. For $k \ge 1$, let $c(n, k) = |\{i(H); H \in \mathcal{H}_n^k, H - v \ne 2P_2 \cup (n-5)P_1\}|$. Then $|\mathcal{H}_n^k| = 2k + 1$ and c(n, k) = 2k.

Proof. By Lemma 3.3, we obtain that $|\mathcal{H}_n^k| = 2k + 1$. Note that $i(H - N[v]) = i(P_1) = i(K_{1,0}) = 2$. Then $i(H - N[v]) = 2^k, 2^{k-1} + 1, 2^{k-1}, 2^{k-2} + 1, \dots, 2^1 + 1, 2^1 = 2^0 + 1, 1$. Hence c(n, k) = 2k.

Min-Jen Jou

Lemma 3.5. Let n and x be two nonnegative integers such that $x \leq \lfloor \frac{n}{2} \rfloor^2 - 3 \cdot \lfloor \frac{n}{2} \rfloor + 3$. Suppose that $H(n, x) \in \mathcal{H}_{n}^k$, then $k = \lceil \frac{-1 + \sqrt{4x-3}}{2} \rceil$.

Proof. By Lemma 3.4, $|\bigcup_{j=1}^{k-1} \mathcal{H}_n^j| = \sum_{j=1}^{k-1} c(n, j) = k^2 - k$ and $|\bigcup_{j=1}^k \mathcal{H}_n^j| = \sum_{j=1}^k c(n, j) = k^2 + k$. Note that $K_{1,n-1}$ is the connected *n*-vertex graph having the largest number of independent sets. If $H(n, x) \in \mathcal{H}_n^k$, then $k^2 - k + 1 < x \le k^2 + k + 1$. Hence $k = \lceil \frac{-1 + \sqrt{4x-3}}{2} \rceil$.

Theorem 3.2 then follows from Lemmas 3.3 to 3.5.

ACKNOWLEDGMENTS

We thank the anonymous referees, whose suggestions helped to improve the presentation of the paper.

References

- 1. G. Chen and Z. Zhu, The number of independent sets of unicyclic graphs with given matching number, *Discrete Applied Math.*, **160** (2012), 108-115.
- 2. J. Kahn, An entropy approach to the hard-core model on bipartite graphs, *Combin. Probab. Comput.*, **10(3)** (2001), 219-237.
- J. Culter and A. T. Radcliffe, Extremal problems for independent set enumeration, *Elect. J. Combin.*, 18 (2011), P. 169.
- 4. I. Gutman, Extremal hexagonal chains, J. MATH. Chem., 12 (1993), 197-210.
- 5. M. S. Haghighat, A. Dolata, M. Tabari and E. Mohseni, The extremal graph with the largest Merrifield-Simmons index of (n, n + 2)-graph, World Academy of Science, Engineering and Technology, **69** (2010), 490-492.
- 6. M. J. Jou, *Counting independent sets*, Ph.D Thesis, Department of Applied Mathematics, National Chiao Tung University, Taiwan, 1996.
- S. B. Lin and C. Lin, Trees and forests with large and small independent indices, *Chinese J. Math.*, 23 (1995), 199-210.
- R. E. Merrifield and H. E. Simmons, *Topological Methods in Chemistry*, Wiley, New York, 1989.
- 9. A. S. Pedersen and P. D. Vestergaad, The number of independent sets in unicyclic graphs, *Discrete Appl. Math.*, **152** (2005), 246-256.
- H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, *Fibonacci Quart.*, 20 (1982), 16-21.
- 11. Y. Wang, X. Li and I. Gutman, More examples and counterexamples for a conjecture of Merrifeld and Simmons, *Publ. Inst. Math. (Beograd)*, **69** (2001), 41-50.

2016

12. D. B. West, Introduction to Graph Theory, Second Edition.

13. A. Yu and X. Lv, The Merrifield-Simmons indices and Hosoya indices of trees with k pendant vertices, *J. Math. Chem.*, **41** (2007), 33-43.

Min-Jen Jou Ling Tung University Taichung 40852, Taiwan E-mail: mjjou@teamail.ltu.edu.tw