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ESTIMATES FOR ∂̄ AND HANKEL OPERATORS
ON GENERALIZED FOCK SPACES ON C

n

Hong Rae Cho

Abstract. Let ϕ : Cn → R be a C2 plurisubharmonic function on Cn. Suppose
that there exist C1, C2 > 0 such that sup

Cn |∂̄∂ϕ| < C1 and Hϕ(ξ, ξ)(z) ≥
C2|ξ|2 for ξ ∈ R2n and z ∈ Cn, where Hϕ(ξ, ξ)(z) is the real Hessian of ϕ at
z. We prove Lp,ϕ estimates for ∂̄ on Cn for all p ∈ [1,∞]. Moreover, by using
the estimates for ∂̄, we characterize boundedness and compactness of Hankel
operators with anti-holomorphic symbols on generalized Fock spaces on Cn.

1. INTRODUCTION

Let ϕ : C
n → R be a plurisubharmonic function on C

n. For any 0 < p ≤ ∞ we
define the generalized Fock spaces Fp,ϕ as follows:

Fp,ϕ =
{
f ∈ H(Cn) : ‖f‖p,ϕ = ‖fe−ϕ‖Lp(dV ) < ∞}

,

where dV denotes the volume measure in Cn. Then it is known that F 2,ϕ is a closed
linear subspace of L2,ϕ with the inner product

〈f, g〉ϕ =
∫

Cn

fḡe−2ϕ dV

where f, g ∈ L2,ϕ. In fact, F 2,ϕ is a Hilbert space and the corresponding reproducing
kernel B(ζ, z) induces the orthogonal projection B : L2,ϕ → F 2,ϕ which has the
following integral representation

Bf(z) =
∫

Cn

B(ζ, z)f(ζ)e−2ϕ(ζ) dV (ζ), z ∈ C
n.
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Let f =
∑′

|J|=q fJ dz̄J , where the prime denotes summation over strictly increasing
q-tuples J , and dz̄J = dz̄j1 ∧ · · · ∧ dz̄jq . Let L

p,ϕ
q be the space of (0, q)-forms with

coefficients in Lp,ϕ. That is,

Lp,ϕ
q =

⎧⎨
⎩f =

∑
|J|=q

′
fJ dz̄J : ‖f‖p,ϕ =

∑
|J|=q

′‖fJ‖p,ϕ < ∞
⎫⎬
⎭ .

If ϕ(z) = 1
2 |z|2, F 2,ϕ is the classical Fock space. In [4], Boo constructed a solution

operator K for the ∂̄-equation in C
n that is canonical with respect to the space L2,ϕ

q

with ϕ(z) = 1
2 |z|2.

The quadratic form

Hϕ(ξ, ξ)(z) =
2n∑

j,k=1

∂2ϕ

∂xj∂xk
(z)ξjξk,

defined for all ξ ∈ R2n is called the real Hessian of ϕ at z, where zj = x2j−1+
√−1x2j .

We prove the Lp,ϕ boundedness of a solution operator K for ∂̄ in L
p,ϕ
q .

Theorem 1.1. Let ϕ : Cn → R be a C2 plurisubharmonic function on Cn. Suppose
that there exist C1, C2 > 0 such that supCn |∂̄∂ϕ| < C1 and Hϕ(ξ, ξ)(z) ≥ C2|ξ|2
for ξ ∈ R2n and z ∈ Cn. Let 1 ≤ p ≤ ∞, and q ≥ 0. Let f ∈ Lp,ϕ

q+1 ∩ C1(Cn) be ∂̄

closed. Then there exists a solution operator Kq for ∂̄ on L
p,ϕ
q such that

∂̄(Kqf) = f

and

‖Kqf‖p,ϕ ≤ C‖f‖p,ϕ.

In [11], Ortega-Schuster-Varolin gave a series of sufficient geometric conditions
that would guarantee that a smooth hypersurface in Cn is an interpolation or sampling
hypersurface in Lp,ϕ(Cn) spaces under the condition such that C−1 < supCn |∂̄∂ϕ| <
C for some C > 0. However, strictly speaking, they proved the results only for the
cases 2 ≤ p ≤ ∞ and omitted the range 1 ≤ p < 2 because of the absence of a
suitable reference for Lp,ϕ estimates for solutions of ∂̄ in this range. Theorem 1.1 in
this paper can recover the gap for the range 1 ≤ p < 2 as it provides such estimates in
the case where ϕ is a plurisubharmonic function that satisfies supCn |∂̄∂ϕ| < C1 and
Hϕ(ξ, ξ)(z) ≥ C2|ξ|2 for ξ ∈ R

2n and z ∈ C
n.

However, in one dimensional case Lp,ϕ estimates for ∂̄ have been proved in even
greater generality such that ϕ is a subharmonic function with Δϕ a doubling measure
(see [5], [9], and [10]).
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Given g ∈ C1(Cn) so that there exists a dense subset A of F 2,ϕ with gf ∈ L2,ϕ

for f ∈ A, the big Hankel operator Hg with symbol g is densely defined by

Hgf = gf − B(gf), f ∈ A,

where B is the orthogonal projection of L2,ϕ onto F 2,ϕ.
We subsequently use the weighted Lp,ϕ estimates for ∂̄ (with the same restrictions

on ϕ as above) to characterize boundedness and compactness of Hankel operators with
anti-holomorphic symbols.

Theorem 1.2. Let ϕ : C
n → R be a C2 plurisubharmonic function on C

n. Suppose
that there exist C1, C2 > 0 such that supCn |∂̄∂ϕ| < C1 and Hϕ(ξ, ξ)(z) ≥ C2|ξ|2
for ξ ∈ R

2n and z ∈ C
n. Let 1 ≤ p ≤ ∞. Let g be an entire function in C

n. Then
Hḡ extends to a bounded linear operator on Fp,ϕ if and only if g is a polynomial of
degree less than or equal to one.

Theorem 1.3. Let ϕ : C
n → R be a C2 plurisubharmonic function on C

n. Suppose
that there exist C1, C2 > 0 such that supCn |∂̄∂ϕ| < C1 and Hϕ(ξ, ξ)(z) ≥ C2|ξ|2 for
ξ ∈ R2n and z ∈ Cn. Let 1 ≤ p ≤ ∞. Let g be an entire function in Cn. Then Hḡ

extends to a compact linear operator on Fp,ϕ if and only if g is constant.

In dimension 1, Constantin and Ortega-Cerdà [6] characterized boundedness and
compactness of Hankel operators for F 2,ϕ, where ϕ is a subharmonic function with
Δϕ a doubling measure.
In [3], Bommier-Hato and Youssfi characterized when the Hankel operator with

anti-holomorphic symbol is in the Schatten class on some weighted Fock spaces. How-
ever, in our Fp,ϕ spaces, the Schatten class characterization is the same as Theorem
1.3 since Hḡ ≡ 0 when g is constant.

Example 1.4. Let α ∈ R and T > 0 with |α| < T . Then

ϕ(z) = |z|2 + α log(T + |z|2)
is a C∞ strictly convex function on Cn. Moreover, we know that there exist C1, C2 > 0
such that C1|ξ|2 ≤ Hϕ(ξ, ξ)(z) ≤ C2|ξ|2 for ξ ∈ R

2n and z ∈ C
n.

2. SOLUTION OPERATORS FOR ∂̄

In this section, we construct a solution operator for ∂̄ on Cn. The operator is well
known, see for instance ([2], [4]).
Let η = ζ − z. Let Q = (Q1, . . . , Qn) and S = (S1, . . . , Sn) be mappings from

C
n ×C

n to C
n. Define forms q and s by q =

∑
Qj dηj and s =

∑
Sj dηj. For t ≥ 0

we let

Pt(ζ, z) = Cne(Q+tS)·η(d(q + ts))n,
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where C−1
n = (−1)nn!

(
2π

√−1
)n, and S · η is defined by

S · η(ζ, z) =
∑

Sj(ζ, z)ηj(ζ, z),

and so on. Define the kernel K by

K(ζ, z) =
∫ ∞

0
Pt(ζ, z).

Note that d(q+ ts) = dq+ tds−s∧dt, so (d(q+ ts))n = A−n(dq+ tds)n−1 ∧s∧dt,
where A contains no differentials with respect to t. Hence

K(ζ, z) = −Cnn

∫ ∞

0
e(Q+tS)·ηs ∧ (dq + tds)n−1 dt.

Now

(dq + tds)n−1 =
n−1∑
k=0

(
n − 1

k

)
(dq)k ∧ (ds)n−1−ktn−k−1.

Thus

K(ζ, z) = Cn eQ·η
n−1∑
k=0

n!
k!

s ∧ (dq)k ∧ (ds)n−1−k

(S · η)n−k
.(2.1)

Before continuing let us note that since we are only interested in components of bidegree
= n in dζ and dz together we can replace d by ∂̄ everywhere in (2.1).
Let ϕ be a C2 strictly convex function on C

n such that the real HessianHϕ(ξ, ξ)(z)
of ϕ satisfies

Hϕ(ξ, ξ)(z) ≥ C|ξ|2, ξ ∈ R
2n, z ∈ C

n.(2.2)

By the Taylor’s theorem, we have

ϕ(z) =ϕ(ζ) + 2 Re [∂ϕ(ζ) · (z − ζ)]

+
1
2

2n∑
j,k=1

∂2ϕ

∂xj∂xk
(ζ + θ(z − ζ))(xj − ξj)(xk − ξk)

for some θ ∈ (0, 1), where zj = x2j−1 +
√−1x2j and ζj = ξ2j−1 +

√−1ξ2j . By (2.2),
it follows that

1
2

2n∑
j,k=1

∂2ϕ

∂xj∂xk
(ζ + θ(z − ζ))(xj − ξj)(xk − ξk) ≥ C|z − ζ|2, z, ζ ∈ C

n.
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Hence we get the following inequality:

2 Re [∂ϕ(ζ) · (ζ − z)] ≥ ϕ(ζ) − ϕ(z) + C|z − ζ|2, z, ζ ∈ C
n.(2.3)

To let the operator fit into our situation, choose Q(ζ, z) = −2 ∂ϕ(ζ) and S(ζ, z) =
η̄. Then

K(ζ, z)

= Cne−2∂ϕ(ζ)·(ζ−z)
n−1∑
k=0

n!
k!

∂|ζ−z|2 ∧ (−2 ∂̄∂ϕ(ζ))k ∧ (∂̄∂|ζ− z|2)n−1−k

|ζ − z|2n−2k
.

(2.4)

The kernel K is of total bidegree (n, n − 1). Denote by Kq the component of K

which is of bidegree (0, q) in z, and hence (n, n − q − 1) in ζ. Then we have

K(ζ, z) =
n−1∑
q=0

Kq(ζ, z).

Let K and P denote the operators associated to the kernels K(ζ, z) and P0(ζ, z);
Kf(z) =

∫
K(ζ, z) ∧ f(ζ) and similarily for P . Also note that

P0(ζ, z) = Cne−2∂ϕ(ζ)·(ζ−z)(−2 ∂̄∂ϕ(ζ))n.

Then we have the homotopy formula (see [4])

∂̄K + K∂̄ = I − P,(2.5)

that a priori is valid only for, say, C1-forms with compact support. Moreover, complete-
ness of the metric and L2,ϕ-boundedness of K (we will see in Theorem 3.1) guarantee
that the homotopy formula holds not just for C1-forms with compact support but also
for forms in L2,ϕ (see Remark 2 in [4]). Let f be a (0, q + 1)-form. Then

Kf(z) =
∫

Cn

K(ζ, z) ∧ f(ζ)

=
∫

Cn
Kq(ζ, z) ∧ f(ζ) = Kqf(z).

Thus we have the following Koppelman’s formula.

Theorem 2.1. Let q ≥ 0. Let f ∈ L2,ϕ
q+1 ∩ C1(Cn) be ∂̄-closed, then we have

f = ∂̄(Kqf).
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We are interested in addressing what happens when f is a function, since it gives
a motivation to construct a peak function for F 2,ϕ in Section 4.
We choose a function X ∈ C∞

0 (Cn) such that X ≡ 1 for |ζ| < 1 and X ≡ 0 when
|ζ| > 2. Put XR(ζ) = X ( ζ

R

)
. Let f ∈ C1(Cn). By using Andersson-Berndtsson’s

formula (for functions) for the 2R-ball, we have

XRf = −
∫
|ζ|=2R

(XRf)K0 +
∫
|ζ|<2R

∂̄(XRf) ∧ K0 +
∫
|ζ|<2R

(XRf)P0

=
∫
|ζ|<2R

(∂̄XR)f ∧ K0 +
∫
|ζ|<2R

XR(∂̄f) ∧ K0 +
∫
|ζ|<2R

(XRf)P0.

(2.6)

By (2.3), (2.4) and the fact that sup |∂̄∂ϕ| ≤ C, we have

|K0(ζ, z)| � e−2 Re [∂ϕ(ζ)·(ζ−z)]

|ζ − z|2n−1

� e−ϕ(ζ)+ϕ(z)−C|z−ζ|2

|ζ − z|2n−1
.

(2.7)

Since |∂̄XR| � 1/R, if we suppose that f, ∂̄f ∈ L2,ϕ(Cn), by the estimate (2.7), we
know that XRf and the first two integrals in (2.6) converge uniformly to f , 0, and∫

Cn ∂̄f ∧K0, respectively when z belongs to a compact set. Hence, in the distribution
sense, we have

f(z) =
∫

Cn

∂̄f(ζ) ∧ K0(ζ, z) +
∫

Cn

f(ζ)P0(ζ, z).(2.8)

3. Lp,ϕ ESTIMATES FOR ∂̄

We will prove that the operator K is Lp,ϕ -bounded for 1 ≤ p ≤ ∞.
Since

|K(ζ, z)| � e−ϕ(ζ)+ϕ(z)−C|z−ζ|2

|ζ − z|2n−1
,

we have

|Kf(z)| ≤
∫

Cn

|f(ζ)||k(ζ, z)|e−2ϕ(ζ) dV (ζ),

where k(ζ, z) has the estimate

|k(ζ, z)| � eϕ(z)+ϕ(ζ)−C|z−ζ|2

|ζ − z|2n−1
.(3.1)
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Theorem 3.1. Let 1 ≤ p ≤ ∞. Then
‖Kf‖p,ϕ ≤ C‖f‖p,ϕ.

Proof. First we consider the case p = ∞. We have

|Kf(z)| ≤
∫

Cn

|f(ζ)||k(ζ, z)|e−2ϕ(ζ) dV (ζ)

� sup
[
|f(ζ)|e−ϕ(ζ)

] ∫
Cn

|k(ζ, z)|e−ϕ(ζ) dV (ζ).

Note that ∫
Cn

|k(ζ, z)|e−ϕ(ζ) dV (ζ) � eϕ(z)

∫
Cn

e−C|z−ζ|2

|z − ζ|2n−1
dV (ζ)

� eϕ(z),

where we use the inequality∫
Cn

e−C|z−ζ|2

|z − ζ|2n−1
dV (ζ) =

∫
Cn

e−C|ζ|2

|ζ|2n−1
dV (ζ)

�
∫
|ζ|≤1

1
|ζ|2n−1

dV (ζ) +
∫
|ζ|≥1

e−C|ζ|2

|ζ|2n−1
dV (ζ) � 1.

Thus we have

sup
[
|Kf(z)|e−ϕ(z)

]
� sup

[
|f(ζ)|e−ϕ(ζ)

]
.

Now we consider the case p = 1. By Fubini’s theorem, we have

‖Kf‖1,ϕ �
∫

Cn

(∫
Cn

|f(ζ)||k(ζ, z)|e−2ϕ(ζ)dV (ζ)
)

e−ϕ(z) dV (z)

�
∫

Cn

(∫
Cn

|k(ζ, z)|e−ϕ(z) dV (z)
)
|f(ζ)|e−2ϕ(ζ) dV (ζ).

Now ∫
Cn

|k(ζ, z)|e−ϕ(z) dV (z) � eϕ(ζ)

∫
Cn

e−C|z−ζ|2

|z − ζ|2n−1
dV (z)

� eϕ(ζ).

Thus we have

‖Kf‖1,ϕ �
∫

Cn
eϕ(ζ)|f(ζ)|e−2ϕ(ζ) dV (ζ) = ‖f‖1,ϕ.
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We define

Tϕ(g)(z) = e−ϕ(z)K[geϕ].

Clearly if we denote g(z) = f(z)e−ϕ(z), then ‖g‖Lp(dV ) = ‖f‖p,ϕ and the estimate
‖K(f)‖p,ϕ ≤ C‖f‖p,ϕ is equivalent to ‖Tϕ(g)‖Lp(dV ) ≤ C‖g‖Lp(dV ). Since the cases
p = 1,∞ of this estimate are proved, the others follow by the Riesz-Thorin interpolation
theorem because Tϕ is linear.

4. STIMATES FOR THE REPRODUCING KERNEL

We need the following Cauchy-type estimates for functions in Fp,ϕ.

Lemma 4.1. ([8]). Let p > 0. For any r > 0 there exists C = C(r) > 0 such
that for any f ∈ H(Cn) and z ∈ C

n

(a) |f(z)e−ϕ(z)|p ≤ C

∫
B(z,r)

|f(w)e−ϕ(w)|p dV (w),

(b) |∇(|f |e−ϕ)(z)|p ≤ C

∫
B(z,r)

|f(w)e−ϕ(w)|p dV (w).

We note that

P0(ζ, z) = Cne−2∂ϕ(ζ)·(ζ−z)(−2 ∂̄∂ϕ(ζ))n

= N (ζ)e−2∂ϕ(ζ)·(ζ−z)dV (ζ)

for some function N ∈ C(Cn). By assumption of ϕ, there exist C1, C2 > 0 such that
C1 < |N (ζ)| < C2 for ζ ∈ Cn. Since ∗ζP (ζ, z) = N (ζ)e−2ϕ(ζ)·(ζ−z), by (2.8), for
f ∈ F 2,ϕ we get

f(z) =
∫

Cn

∗ζP0(ζ, z)f(ζ) dV (ζ),

where ∗ is the Hodge ∗-operator (see [12]). Let P̃z(ζ) = 1
N(z) ∗ζ P0(ζ, z). Then we

have P̃z(z) = 1 and

|P̃z(ζ)| � e−ϕ(ζ)+ϕ(z)−C|z−ζ|2 , z, ζ ∈ C
n.

However, P̃z is not an entire function. Thus we take

Pz(ζ) = e−2∂ϕ(z)·(z−ζ).

Then Pz is an entire function such that Pz(z) = 1 and

|Pz(ζ)| ≤ eϕ(ζ)−ϕ(z)−C|z−ζ|2 , z, ζ ∈ C
n.

Hence Pz is a peak function for F 2,ϕ. By using a peak function, we can derive some
lower estimates for the reproducing kernel on the diagonal.
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Proposition 4.2. There exists C > 0 such that

C−1e2ϕ(z) ≤ B(z, z) ≤ Ce2ϕ(z).

Proof. By (a) of Lemma 4.1, for f ∈ F 2,ϕ we have

|f(z)|2e−2ϕ(z) � ‖f‖2
2,ϕ.

Hence
B(z, z) ≤ Ce2ϕ(z).

For some c0 > 0 (to be determined) we define the entire function

fz(ζ) = c0e
ϕ(z)Pz(ζ).

Then ∫
Cn

|fz(ζ)|2e−2ϕ(ζ) dV (ζ) ≤ c2
0

∫
Cn

e−2C|z−ζ|2 dV (ζ) ≤ 1

for c0 small enough. For such a fixed c0 we have fz(z) = c0e
ϕ(z) and therefore

B(z, z) = sup{|f(z)|2 : f ∈ F 2,ϕ, ‖f‖2,ϕ ≤ 1} � e2ϕ(z).

Proposition 4.3. There exists C > 0 such that for any ζ, z ∈ Cn

|B(ζ, z)| ≤ Ceϕ(ζ)+ϕ(z).

Moreover there is an r > 0 such that

|B(ζ, z)| � eϕ(ζ)+ϕ(z), ζ ∈ B(z, r).

Proof. Applying (a) in Lemma 4.1 to the reproducing kernel B(ζ, z), we have

|B(ζ, z)|2e−2ϕ(ζ) �
∫

B(ζ,r)

|B(w, z)|2e−2ϕ(w) dV (w)

�
∫

Cn

|B(w, z)|2e−2ϕ(w) dV (w)

= B(z, z) � e2ϕ(z).

Moreover, Lemma 4.1 (b) implies that for all ζ ∈ B(z, r),

∣∣∣|B(ζ, z)|e−ϕ(ζ) − |B(z, z)|e−ϕ(z)
∣∣∣ � |ζ − z|

[∫
Cn

|B(w, z)|2e−2ϕ(w) dV (w)
]1/2

� |ζ − z|B(z, z)1/2 � reϕ(z).
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Thus Proposition 4.2 implies that

|B(ζ, z)|e−ϕ(ζ) � |B(z, z)|e−ϕ(z) − reϕ(z)

� (1− r)eϕ(z).

If we choose r small enough, then we get the required result.
In fact, Delin and Lindholm get the more refined upper estimates for B(ζ, z).

Theorem 4.4. ([7], [8]). Let ϕ be a plurisubharmonic function in C
n such that

C−1
√−1∂∂̄|z|2 ≤ √−1∂∂̄ϕ ≤ C

√−1∂∂̄|z|2

as positive currents, for some constant C > 0. Then

|B(ζ, z)| ≤ Ceϕ(ζ)+ϕ(z)−T |z−ζ|,

where T > 0 is a constant proportional to the lower bound of
√−1∂̄∂ϕ and C depends

on the upper bound.

By using the upper estimates for B(ζ, z) in Theorem 4.4, Lindholm proved that
the orthogonal projection B projects Lp,ϕ boundedly onto Fp,ϕ for 1 ≤ p ≤ ∞.

5. HANKEL OPERATORS ON Fp,ϕ

Let g be an entire function in C
n such that

ḡB(ζ, ·) ∈ L2,ϕ for all ζ ∈ C
n.(5.1)

Let A := Span{B(ζ, ·) : ζ ∈ Cn}. Then A is dense in F 2,ϕ. Thus the big Hankel
operator Hḡ is densely defined if g satisfies the condition (5.1). We know that if g is
polynomial, then it satisfies the condition (5.1) from Theorem 4.4.
Notice that if g is an entire function, then Hḡf is the minimal L2,ϕ-norm solution

of the ∂̄-equation

∂̄u = f∂̄ḡ.(5.2)

Hence, Hḡf = (I − B)u for some solution u of the ∂̄-equation (5.2).

Remark 5.1. If n = 1, the canonical solution operator S to ∂̄ is densely defined
on L2,ϕ by

∂

∂z̄
(Sf) = f and Sf ⊥ F 2,ϕ.
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Let us consider the restriction of S to F 2,ϕ. Notice that if f ∈ A = Span{B(ζ, ·) :
ζ ∈ C}, then z̄f ∈ L2,ϕ and

Sf = (I − B)(z̄f) = Hz̄f.

That is, the canonical solution operator coincides with the big Hankel operator acting
on F 2,ϕ with symbol z̄. Motivated by this fact, we now consider Hankel operators
with anti-holomorphic symbols on Fp,ϕ.

Let g be an entire function in Cn satisfying the condition (5.1). Let

bζ(z) =
B(ζ, z)√
B(ζ, ζ)

, ζ, z ∈ C
n.

By the reproducing formula in F 2,ϕ we get

Hḡbζ(z) = (g(z)− g(ζ))bζ(z), ζ, z ∈ C
n.(5.3)

We consider the boundedness and compactness of Hḡ.

Theorem 5.2. Let 1 ≤ p ≤ ∞. Let g be an entire function in C
n. Then Hḡ extends

to a bounded linear operator on Fp,ϕ if and only if g is a polynomial of degree less
than or equal to one.

Proof. Assume first that g is a polynomial of degree less than or equal to one.
Then sup |∂g| < ∞. Since Hḡf is the minimal L2,ϕ-norm solution of the ∂̄-equation,
we have Hḡf = (I − B)[K0(f∂̄ḡ)], where K0 is the solution operator of the equation
(5.2) constructed in Section 2. In [8], Lindholm proved that the orthogonal projection
B projects Lp,ϕ boundedly onto Fp,ϕ for 1 ≤ p ≤ ∞. By Theorem 1.1, K0 is bounded
on Lp,ϕ. Thus we have

‖Hḡf‖p,ϕ = ‖(I − B)[K0(f∂̄ḡ)]‖p,ϕ

� ‖K0(f∂̄ḡ)‖p,ϕ

� ‖f∂̄ḡ‖p,ϕ

� sup |∂g|‖f‖p,ϕ,

which shows that Hḡ can be extended to a bounded linear operator on Fp,ϕ.
Conversely, assume that Hḡ is bounded on Fp,ϕ. Then we have ‖Hḡbζ‖p,ϕ < M

for ζ ∈ C
n. Using Proposition 4.2 and Proposition 4.3, there exists r > 0 such that

|bζ(z)| =
|B(ζ, z)|√

B(ζ, ζ)

� eϕ(z) on z ∈ B(ζ, r).
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Hence we have

Mp > ‖Hḡbζ‖p
p,ϕ =

∫
Cn

|g(z)− g(ζ)|p|bζ(z)|pe−pϕ(z) dV (z)

≥
∫

B(ζ,r)
|g(z)− g(ζ)|p|bζ(z)|pe−pϕ(z) dV (z)

�
∫

B(ζ,r)
|g(z)− g(ζ)|p dV (z).

Since g is an entire function, by the Cauchy estimates applied to gζ(z) := g(z)− g(ζ),
we can now conclude

|∂g(ζ)|p �
∫

B(ζ,r)
|g(z)− g(ζ)|p dV (ζ) � Mp, ζ ∈ C

n.

Thus g is a polynomial of degree less than or equal to one.

Theorem 5.3. Let 1 ≤ p ≤ ∞. Let g be an entire function in C
n. Then Hḡ

extends to a compact linear operator on Fp,ϕ if and only if g is constant.

Proof. Assume first that g is constant. Then Hḡ ≡ 0 and so it is compact.
Suppose now Hḡ is compact. Since Hḡ is bounded, g is a polynomial of degree

less than or equal to one. By Theorem 4.4, we have

‖bζ‖p
p,ϕ =

∫
Cn

|B(ζ, z)|p
B(ζ, ζ)p/2

e−pϕ(z) dV (z)

�
∫

Cn

e−pT |ζ−z| dV (z) � 1,

uniformly in ζ ∈ C
n. Thus the set {bζ}ζ∈Cn is bounded in Fp,ϕ. By compactness it

follows that the set {Hḡbζ}ζ∈Cn is relatively compact in Lp,ϕ. Then by Riesz-Tamarkin
compactness theorem [1] we have

lim
R→∞

∫
|z|>R

|Hḡbζ(z)|p e−pϕ(z) dV (z) = 0,

uniformly in ζ ∈ C
n. We choose r > 0 so that

|bζ(z)| � eϕ(z) on B(ζ, r).

For |ζ| > R + r, the inclusion B(ζ, r) ⊂ {|z| > R} holds, and
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∫
|z|>R

|Hḡbζ(z)|p e−pϕ(z) dV (z) =
∫
|z|>R

|g(z)− g(ζ)|p|bζ(z)|pe−pϕ(z) dV (z)

�
∫

B(ζ,r)
|g(z)− g(ζ)|p|bζ(z)|pe−pϕ(z) dV (z)

�
∫

B(ζ,r)
|g(z)− g(ζ)|p dV (z)

� |∂g(ζ)|p.
This implies that

lim
|ζ|→∞

|∂g(ζ)| = 0,

which shows that g is constant.
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11. J. Ortega-Cerdà, A. Schuster and D. Varolin, Interpolation and sampling hypersurfaces
for the Bargmann-Fock space in higher dimensions, Math. Ann., 335 (2006), 79-107.

12. M. Range, Holomorphic functions and integral representations in several complex vari-
ables, Springer Verlag, Berlin, 1986.

13. K. Zhu, Analysis on Fock Spaces, Springer-Verlag, 2012.

Hong Rae Cho
Department of Mathematics
Pusan National University
Pusan 609-735
Republic of Korea
E-mail: chohr@pusan.ac.kr


