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DISTANCE THREE LABELINGS FOR DIRECT PRODUCTS OF THREE
COMPLETE GRAPHS

Byeong Moon Kim, Byung Chul Song and Woonjae Hwang*

Abstract. The distance 3 labeling number A (jo, j1, j2) for a graph G = (V, E)
is the smallest integer a such that there is a function f : V' — [0, o, satisfying
|f(u)— f(v)| > js—1 for any pair of vertices u, v of distance § < 3. In this paper,
we determine the distance 3 labeling number Ag(j, k, 1) for the direct product
G =K, x K, x Ky (n >m > 3) of 3 complete graphs under various conditions
on j and k. As a consequence, we have the radio number rn(G) = 2mn — 1.

1. INTRODUCTION

The channel assignment problem introduced by Hale [9] is the motivation for
the various labeling problems in graphs. For a graph G = (V, E) and nonnegative
integers «, jo, j1,"* ,Jd—1, an L(jo, j1," -+, jd—1)-labeling (or distance d-labeling)
is an integer valued function f : V — [0, ] such that for u,v € V with § =
dist(u, v), the labeling condition |f(u) — f(v)| > js—1 is satisfied. The labeling
number A\G(jo, ji,- - ,Ji—1) for G is the smallest integer o such that there is an
L(jo, j1,- -+, ja—1)-labeling f : V' — [0, «]. The distance 2 labeling has been studied
the most. In particular, the labeling number \;(2, 1) is referred to as the A-number for
G, and is denoted by A(G). After the work by Griggs and Yeh [8], special attention
has been paid to the A-number of graphs.

The radio labeling for G is the L(d,d—1,- -+, 1)-labeling f, where d = diam(G).
In this case, the labeling condition between two vertices u and v is |f(u) — f(v)| >
d — 6 + 1, where ¢ = dist(u,v). The radio number for G, denoted by rn(G), is the
minimum span of radio labelings for G. If a graph has diameter 2, then A\(G) = rn(G).

Liu and Zhu [16] completely determined the radio numbers for paths and cycles.
Liu [13] treated the radio number for trees. Liu and Xie [17] determined the radio
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number for the squares of paths and squares of some cycles. Recently Li, Mak and
Zhou [15] found the optimal radio labelings of complete m-ary trees. There are some
results on the distance 3 labelings for graphs. In particular, A¢(1,1,1) and Az(2,1,1)
have been computed when G is a path, cycle, grid, complete binary tree, or cube
[1,2,3,4,7,13, 16, 19]. Recently, Chia et al. [6] gave the upper bound of A\;(3,2,1)
when G is a general graph, and when G is a tree. They also computed \;(3,2, 1) for
some classes of G. In addition, L(h, 1, 1)-labelings of trees and outplanar graphs are
studied recently in [5, 12].

The direct product of n graphs G; = (Vg,, Eg,), (i =1,2,--- ,n) is the graph G =
G1 X Gg x -+ - x Gy, that the vertex set is Vg, X Vg, X - -+ x Vg, and [(u1, ug, -+, up),
(v1,v9,- -+, vy)] belongs to the edge set if (u;, v;) € Eg, for all i. It is easy to see that
G = K, x K, x Kj(n > m >1) is of diameter 2 when [ > 3, and of diameter 3 when
{ = 2 and m > 3. Further, G = K,, x K,,, x K, is disconnected when [ = m = 2,
in which case, G is isomorphic to two copies of K, x Ko. Haque and Jha [10] and
Lam et al. [14] studied the L(j, k)-labeling number for the multiple direct product of
complete graphs.

In this paper, we show that when G = K, X K,, X Ko, n > m > 3, the distance
3 labeling number A (j, k, 1) for G satisfies

2mn — 1 if k=1land1<j7<n+2.
AUk 1) (mn—1)k+1 if k>2andk<j<2k-—1.
G]? ) -

(mn—1)k+m if k>2and j = 2k.

(m—1)j+(mn—2m+1k+1 if k>2and 2k +1<j <nk.

As a consequence, we prove that the radio number rn(G) for G is 2mn — 1.

2. PRELIMINARIES AND SOME LEMMAS

Henceforth, we assume thatn >m > 3,7 >k > 2,G = K, xK,,x Ko = (V, E),
and f : V — [0,a] is an L(j, k, 1)-labeling. The vertices 1, x2,- -, x, are on the
same row, same column, or same floor if they have the same first, second, or third
components, respectively. Two vertices « and v on the same floor are said to be set
oblique if they are on different rows and columns. Since the distance between two
vertices on the same floor is 2, if x1, 22, -, 2, are on the same floor, f(z1) <
f(zg) <-+- < f(xp) and 1 <t < s < p, and then, we have f(xs) — f(z:) > k(t—s).
Let V; = {(ug, u1, ug)|ug = i} for i = 0, 1 be the two floors of V.

Lemma 1. Let x1,x9,x3 € Vg and y1,y2 € V1. If ©1 and x5 are set oblique, then
there exist v € {x1, 2,23} and y € {y1,y2} such that x and y are adjacent.

Proof.  Suppose that no element of x; and x5 is adjacent to any of y; and ys.
Since 1 = (ug,u1,0) and zo = (vo,v1,0) are set oblique, ug # vp and u; # v.
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Since the two non adjacent vertices share some components, we have only two vertices
of Vi—(ugp, v1,1) and (v, u1,1)—that are adjacent to neither x; nor zo. As such,
there exist y; and y that are set oblique. Similarly, x; and x2 are the only vertices of

V0 that are adjacent to neither y; nor yo. Hence, x3 is adjacent to y; or ys. [ |
Lemma 2. If x1, %2, -+ ,Tpq1 € V; for some © = 0,1, then there exists a pair of
vertices that are set oblique among x1, T2, -+ , Tpi1.
Proof.  Suppose there exists no pair of vertices among vertices x1,Z2, - - , Tnt1

that are set oblique. Since x; and x5 are not set oblique, they are on the same row or
the same column. Since n > m, we can assume that they are on the same row. Since
there are n + 1 vertices on one floor, there exists x; that is not on the same row as x7.
Since x1 and z9 are not on the same column, z; is not on the same column as x; or

9. As such either x; and z; or x; and x5 are set oblique. [ |
Lemma 3. For p > 3, let v1,x2, - ,xp € V; for some © = 0,1. If there exists
a pair of vertices among x1, T2, - - , Xy that are set oblique, then there is an integer

s (1 <s<p—2)such that {xs,x511,Ts12} contains a pair of vertices set oblique.

Proof.  Among the pair (r,t), where z, and x; are set oblique, choose (79, ¢o)
such that |t — 7| takes the minimum. We can assume that ry < ¢. It suffices to show
that {yp —ro < 2. On the contrary, assume that ¢y —rg > 3. If z,, and x,,11 are not set
oblique, then they are on the same row or the same column. We can assume that they
are on the same row. Since x,,42 and xy, are not set oblique, they are on the same
row or the same column. If they are on the same row, then x,, and x,,;2 are on the
same column. Since z,, and x,,1 are on the same row, and x,,2 and x;, are on the
same row, ,,+1 and x,,42 are on distinct rows. Since x,, and x, 41 are on distinct
columns, x,,4+1 and z, 42 are on distinct columns. As such, x,,+1 and x,,2 are set
oblique. This is a contradiction. If z,,42 and x, are on the same column, since
and x,,42 are not set oblique, then they are on the same row. Then, z, 11 = @, t2.
This is also a contradiction. Hence, tg — rg < 2. [ |

For S C V and labeling f, we define the span span(f : S) of f on S as the
maximum of |f(u) — f(v)| for u,v € S. The span span(f) of f is span(f : V).
Let |S| =2n+1, SNVy = {z1,22,---,2,} and SNV1 = {y1,y2, -, yq} with
flx1) < flx2) < -+ < f(zp) and f(y1) < f(y2) < --- < f(yq). Without loss of
generality, we can assume that p > ¢, and hence, we have p > n 4+ 1. From Lemmas
2 and 3, there exists s (1 < s < p — 2) such that {z,, x5+1,Ts42} contains a pair
of vertices that are set oblique. Then, p + ¢ = 2n + 1 and we have the following
propositions.

Proposition 1. If {xs, xs11, X512} contains a pair of vertices that are set oblique,
f(y2) < f(zsy2), and f(xs) < f(yg—1), then span(f :S) > j+ (n — 2)k.
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show that span(f : S) > min{j + (p — 3)k,j + (p”Lg_G}k}.
Since f(y2) < f(xst2) and f(zs) < f(yq—1), there exist v, 3 such that « is the
smallest number % such that f(y,) > f(xs) and 3 is the largest number h such that

fyn) < f(zst2). If a > B +2, then f(2s42) < f(Ypt+1) < f(Ya—1) < f(xs). This
is a contradiction. Hence, « < f+ 1. Since (s+q—a+ 1)+ (f+p—s—1) =
p+q—a+ 6 >p+q—1=2n, there are three possible cases:

Case I: s+qg—a+1> [ =n41,

Case 2: B+p—s—1> [ =n+1.

Case3: s+g—a+1=0+p—s—1=n.

Proof. Since p —3 > n — 2 and [2H4=07 > [2n41=67 = 5, — 2 it is enough to

Case 1. s +q—a+1>[24].
From Lemma 1, some = € {4, X541, Zs12} is adjacent to some y € {Yqa, Yat1}. If
F(gas1) > F(Tar2)s then f(yarr) — F(zs) > |f(x) — F(y)| > j. As such,
span(f : S) > f(yq) — f(z1)
= (f(yg) = f(Wat1)) + (f(Yat1) — f(zs)) + (f(2s) — f(21))
>(q—a—-Dk+j+(s—1Dk=j+(s+q—a—-2)k
>

If f(zs42) > f(Yar1), then f(zs12) — f(xs) = [f(x) — f(y)| = j. Thus,

span(f : S) = f(xp) — f(21)
= (fzp) = [(@s12)) + ([(@s12) = [(25)) + (f(25) = [ (1))
>p—s—=2k+j+(s—1k=j+{p—3)k>j+ (n—2)k.

Case2. f+p—s—1> [ =n+1.
From Lemma 1, some = € {z, Zs11, 2542} is adjacent to some y € {ys_1,ys}. If
f(ys—1) < f(xs), then f(zsya) = f(ys—1) = |f(x) = f(y)| = j. Hence,

span(f : S) > f(zp) — f(y1)
= (f(zp) — f(zs42)) + (f(@s12) — f(ys—1)) + (f(ys-1) — f(v1))
>p—s—2k+j+(B-2k=j+(p-—s+B—-4)k

. p+q—6
2J+ [

> j+ (n—2)k.
If F(ys1) > f(zs), then f(zara) — F(a2) > |f(x) — F(3)| > . Therefore,
span(f : ) > f(xp) — f(x1)
= (f(zp) = f(@s42)) + (f (@s42) = [(ws)) + (f(zs) — flz1))
>p—s—-2k+j+(s—1k=j+(p—3)k
> 74 (n—2)k.

1k
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Case 3. s—i—q—a—l—lzﬂ—kp—s—lzl%—l:n_
From Lemma 1, some = € {x;, xs11, Ts42} is adjacent to some y € {yq,yg}. Since

a = B + 1: f(y,@> = f(yoc—1> < f(xs> and f(yoc> = f(y,@—I—l) > f(xs+2>- Ify = Yo
fya) = f(xs) = [f(y) = f(x)] = j. As such,

span(f : §) > f(yq) — f(21)
= (f(Wq) = F(Wa)) + (f(ya) = f(2s)) + (f(2s) — f(21))
>(q—a)k+j+(s—Dk=j+(¢g+s—a—1)k
=j+ (n—2)k.

If y = yp, then f(zs+2) — f(yp) > [f(y) — f(x)] > j. Thus,

span(f : S) = f(zp) — f(y1)
= (f(zp) = f(@s42)) + (f@st2) = f(yp)) + (f(ys) — f(y1))
>(p—s-2k+j+(B-Dk=j+{p+B8-s5-3)k
=j+ (n—2)k. u

Proposition 2. Let |S|=p+qg=2n+1and j > 2k.
(1) If ¢ <2, then span(f : S) > (2n — 2)k.
(2) If ¢ > 3, then span(f : S) > j + (n — 2)k.
(3) If j = 2k, then span(f : S) > nk + 1.

Proof.

(1) In this case, p > 2n — 1, and we have

span(f : ) > f(xp) — f(a1)
>(p—-1Dk>2n—-1-1)k=(2n—2)k.

(2) From Lemmas 2 and 3, there exists s (1 < s < p—2) such that {zg, 511, Ts12}
contains a pair of vertices that are set oblique. Let 57 < so < --- < sp, be all s
such that {z, zs41, sy} contains a pair of vertices that are set oblique. From
Lemmas 2 and 3, s;41 —s; <n—1foralle=1,2,---  h—1.

Case 1. f(y;—1) < f(zs,). If & = sy, from Lemma 2, « < n —1. If y,_; is
adjacent to some q, To+1, and Tq42, since f(za42) — f(yYq—1) > j, we have

span(f : S) > f(xp) — f(y1)
= (f(zp) — f(zat2)) + (f(Tat2) = f(Yg-1)) + (f(yg-1) — f(v1))
p—a—-2)k+j+(q—-2k=j+{p+q—a—-4)k

>
>ji+2n+1—-(n—-1)—4)k=j+ (n—2)k.
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If 41 is adjacent to no &, To+1, and T2, then from Lemma 1, y, is adjacent
to some Ty, Ta+1, and xo42. Moreover, from Lemma 1, y,_» is adjacent to some

Za, Tat1, and zaqo. If fyq) < f(za), since f(zat2)—f(yq) > f(x)—f(yq) >
J, we have
span(f : S) > f(xp) — f(y1)
= (f(zp) = f(za+2)) + (f(@at2) — f(yq)) + (f(yg) — f(11))
>j+P+qg—a=3)k=j+(n-2)k

If f(yq) > f(zq) and a < n — 2, then since y,—2 is adjacent to some Z, Ta1,
and x442, and since f(za12) — f(yg—2) > f(x) — f(yq—2) > j, we have

span(f : S) > f(xp) — f(y1)
= (f(xp) — f(zat2)) + (f(Tat2) — f(Yg—2)) + (f(yg—2) — f(v1))
>j+(P+q—a—=5)k=j+(n—2)k

I £(2) > (). then f(zasa) — F(za) > (@) — F(4) 2 3. 1 () < Fug),
then () — (ra) > £(ss) — F(z) > j. As such,
span(f : ) > max{f(za+2) = f(21), f(yg) = f(21)}
> max{f(zat2) = f(xa), [(yg) = f(@a)} + (f(2a) = f(21))
>j+(a—1k>j+ (n—2)k.

Case 2. f(ys—1) > f(xs,). Let i be the largest ¢ such that f(z,) < f(yq—1)-
If f(zs,42) > f(y2), then from Proposition 1, span(f : S) > j + (n — 2)k.
Therefore, we can assume that f(zs,42) < f(y2).

If i = h, then f(xs,42) < f(y2). As in Case 1, we can prove that span(f :
S)>j+ (n—2)k.

As such, it suffices to prove the case i < h — 1. If « = s; and 8 = s;41,
then f(zay2) < f(y2) < f(yg—1) < f(zp). From Lemma 2, § — o < n — 1.
From Lemma 1, there exist * € {Zq,Zat1,Zat2}, &' € {xg, 2p41, Ta42},
y € {y1,92}, and ¥ € {yy—1,y,} such that = and =’ are adjacent to y and ¥/,
respectively.

Case 2-1. f(y) < f(za+2). Since f(y2) > f(zat2), we have y = y;. If
p — a > n, then
span(f : 5) = f(zp) — f(y1)
= (f(2p) = f(wat2)) + (f(Tar2) = f(y1)) =2 j + (n = 2)k.
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Ifp—a<n-—1,theng+a=(p+q)—(p—a)>2n+1—(n—1)=n+2.
From Lemma 1, some = € {Zq, Ta+1, Tat2} i adjacent to some § € {y2, y3},
and we have £(ys) — f(za) > |f(z) — f(5)| > j. Therefore,

span(f : S) = f(yq) — f(1)
= (f(yg) = f(y3)) + (f(13) = f(@a)) + (f (2a) — f(21))
>(q@=3)k+j+(a—1k=j+(q+a—-4)k>j+ (n—2)k.

Case 2-2. f(y') > f(zg). We can show the case span(f : S) > j+ (n— 2)k
using a method similar to that used in Case 2-1.

Case 2-3. f(za42) < f(y) and f(y') < f(2p). Since f(y')—f(y) = f(yg-1)—
f(y2) > (g — 3)k, we have
span(f : S) = f(zp) — fz1) = (f(zp) — f(2p42))
+ (f(yg—1) = f(2)) + (f (w2) — f(2a)
>(p—B=2)k+j+(a=3)k+j+(
=2j+(p+gq+a—-F—-6k>2j+2n+1—-(n—1)—6)k
=2j+(n—4k>j+ (n—2)k.

(f(zp+2) = f(yg-1))
)+ (f(za) = f(z1))

a—1)k

+
+

If p > n+ 2, then
span(f : S) > f(zp) — f(x1) > (p— 1)k > (n+ 1)k > nk + 1.

If p=n+1, then ¢ = n. From Lemmas 2 and 3, there exists ¢ such that
1 <t <n-1and {x, z, 41, 214+2} contains a pair of vertices that are set oblique.
Then, from Lemma 1, there exist A,/ such that t < h <t+4+2,t <[l <t+1,
and zy, is adjacent to y;. If f(zp) < f(y) and f(z¢12) > f(yi), then
span(f : §) =f(ant1) — f(z1) = (f(2nt1) — f(@e42))
+ (f(@eg2) = f(u) + (F(w) — f@n)) + (f (@n) — f(21))
>n—t—1Dk+1+2k+(h—1Dk>Mn—-t+h)k+1>nk+1.

If f(zn) < f(y) and f(zi42) < f(wi), then
span(f : S) = (f(yn) — f(w1))

+ (f(y) = f(zeg2)) + (f(w42) — f(21))
>n—0Dk+1+(t+2-1k=(n—-14+t+1)k+1>nk+1.
If f(zn) > f(y) and f(z¢) > f(y;), then

span(f : 5) = f(wn+1) = f(y1) = (f (@ns1) = (@) + (f (@) = f(w))

+ (f(w) = F(n))
>n+1—-0k+14+(l-Dk=n—-t+1)k+1>nk+1.
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If f(zn) > f(yi) and f(z:) < f(y1), then
span(f : §) = (f(zn41) — f(zn)) + (f(zn) = f (1))
+ (fly) = f2e) + (f () = fl21))
>n+1-hk+2k+1+(—1)k
=(n—h+t+2)k+1>nk+1. ]

3. MAIN THEOREMS

Theorem 1. If 1 < j < n+ 2, then the distance 3 number A\g(j,1,1) of G =
K, x Ky x Ko (n>m >3)is 2mn — 1.

Proof.  Since the diameter of G is 3 and [V| = 2mn, A\g(j,1,1) > 2mn — 1.
Let f:V — [0, N], and

ug + nuq, if up =0

F(uo, uy, up) = {

2mn —ug —nuy — 1, if ug =1

Let u = (ug,u1,u2) and v = (vg, vy, v2) be distinct vertices of G. If w and v are
adjacent, since ug # vg and uy # vy, ug+ vy < 2n—3 and u; +v; < 2m — 3. We
can assume that ug = 0 and vy = 1. Then,

f(w) = f(u) =2mn — vy —nvy — 1 — ug — nuy
=2mn — (up + vo) — (w1 +v1)n —1
>2mn—(2n—-3)—2m—-3)n—-1=n+2>j.

If dist (u,v) = 2, then ug = vo. If ug = vg = 0, since uy # vy or uy # vy,
()= f(u) = (vo—up)+ (v1 —uy)n # 0. Similarly, f(v) # f(u) when ug = vy = 1.
If dist(u,v) = 3, then ugs # vo. We can assume that us = 0 and vy = 1. Since
fu) =ug+un <mn—1and f(v) = 2mn—u; —vin > mn, f(v) # f(u). Hence,
fis an L(j, 1, 1)-labeling for G. Thus, Ag(j,1,1) = 2mn — 1. |

Table 1 represents the L(j, 1, 1)-labeling for K5 x K4 x Ko when 1 < j < 7. It
shows that Ag(j,1,1) = 2mn — 1 = 39.

Table 1. L(j,1,1)-labelingwhen k =1and 1 <j <7

Ug = 0 Ug = 1

10 15|39 34 29 24
11 16 || 38 33 28 23
12 17 || 37 32 27 22
13 18 || 36 31 26 21
14 19 (|35 30 25 20

WO = O
O 00 3 O W
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In Table 1, the number located in the (ug+1)-th row and (u; + 1)-th column of the box
over which uy is indicated, is the labeling of the vertex (ug, u1, uz) of K5 x K4 x K.
For example, the number 31 is labeled to the vertex (3,1, 2) of K5 x K4 x K. Other
figures remain the same.

Theorem 2. [f'2 < k < j < 2k — 1, then the distance 3 labeling A(j, k, 1) for
G=K,x K, xKy(n>m2>3)is (mn-—1)k+ 1.

Proof. Let f be an L(j, k, 1)-labeling for G, Vo = {z1,29, -+, Zmn}, and
Vi ={y1,92, ", Ymn}. We can assume that f(z;) < f(zi11) and f(y;) < f(yi41)
foralli=1,2,--- ,mn—1, and f(Zmn) < f(Ymn). Then,
AG(7,k, 1) > f(ymn) — f(21) = (f Ymn) = [(@mn)) + (f(@mn) = f(@mn-1))

+ (f(@mn—1) = f(@mn—2)) + -+ (f(z2) — f(z1)) = 1 + (mn — 1)k.

Let f: V — [0, (mn — 1)k + 1], and

- ugk + uink + usg, uy 1S even
f(uo, ur,u2) =

(n—up — 1)k + uink + ug, w; is odd.

Let u = (ug,u1,u2) and v = (vg, v1,v2) be distinct vertices of G. We can assume
that u; < vy. If w and v are adjacent, since ug # vy and uy # v1, ug +vg < 2n — 3
and u; +v1 < 2m — 3. If v1 — u; > 2, since f(u) < unk + (n — 1)k + 1 and
f(v) > vink > (ug +2)nk, f(v)—f(u) > (n+1D)k—1>2k—1>j. fv;—u; =1
and uq 1s even,

f) = f(u) = (n—up — vy — 1)k + (v1 — uy)nk
>n—02n—-3)—1)k+nk—1=2k—1>j.

Similarly, we can get that f(v) — f(u) > j when v1 —u; = 1 and uy is odd.
If dist(u,v) = 2, then u # v and uy = vy. We can assume that u; < vy. If
u1 < v, then

f(v) = f(u) = vink 4+ uy — (uink 4+ (n — 1)k + ug)
> (v —up)nk — (n — 1)k > k.

If w1 = v1, then B B

[f(v) = f(u)] = [vo — uolk = k.

If dist(u,v) = 3, since uy # vy, f(v) = va # uy = f(u) (mod k). As such,
(v) # f(u). Thus, f is an L(j, k, 1)-labeling for G. Hence, Ag(j, k,1) < (mn —
)k + 1. [

f
1
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Table 2 represents the L(j, k, 1)-labeling for K5 x K4 x Ky when 2 < k < j <
2k — 1. We can see that A\g(j, k,1) = (mn — 1)k +1 =19k + 1.

Table 2. L(j, k, 1)-labeling when 2 < k < j < 2k — 1
ug =0 ug =1

0 9% 10k 19k 1 9k+1 10k+1 19k+1

k 8k 11k 18k k+1  8k+1 11k+1 18k+1

2k Tk 12k 17k 2k+1  Tk+1  12k+1  17k+1

3k 6k 13k 16k 3k+1  6k+1 13k+1 16k+1

4k Sk 14k 15k 4k+1  Sk+1  14k+1  15k+1

Corollary 1. The radio number rn(G) = \g(3,2, 1) for G = K, x K x Ko (n >
m > 3) is 2mn — 1.

Table 3 represents the radio number for K5 x K4 x K5. We can see that rn(G) = 39.

Table 3. Radio labeling

Ug = 0 U9 = 1
0 18 20 38 I 19 21 39
2 16 22 36 3 17 23 37
4 14 24 34 5 15 25 35
6 12 26 32 7 13 27 33
8 10 28 30 9 11 29 31

Theorem 3. If k > 2 and j = 2k, then the distance 3 labeling \c(j, k, 1) for
G=K,x KyuxKy(n>m2>3)is (mn—1)k+m.
Proof.  Let f be an L(j, k,1)-labeling for G. If S = {1,292, ,Zomn} and
f(z1) < f(x2) < -+ < f(xomn), from Proposition 2 (3),
span(f) =f(z2mn) — f(z1)
=(f(@2mn) — f(z2mn-1)) + (f (T2mn-1) — f(22mn-3))
+ (f(@2mn—3) — f(@2mn—s5)) + -+ (f(T2amn—2n+3) — f(T2mn—2n+1))
+ (f(@2mn—2n+1) — f(T2mn—an+1))
+ (f(®2mn—an+1) = f(T2mn—6n+1)) + - + (f(2011) — f(71))
>1+(n—1Dk+nk+1)(m—1)=(mn—1k+m.

Let f: V — [0, (mn — 1)k + m), and

f(ug, u1, ug) = uok + (nk + L)uy + us, uy is even
I (n—wo — Dk + (nk 4 1)us +ua, uy s odd.
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Then, using a method similar to that used in Theorems 1 and 2, we get that f is an
L(j, k, 1)-labeling for G. Hence, Ag(j, k,1) = (mn — 1)k + m. |

Table 4 represents an L(j, k, 1)-labeling for K5 x K4 x K5 when k > 2 and j = 2k.
We can see that A\g(j, k, 1) = (mn — 1)k +m = 19k + 4.

Table 4. L(j, k, 1)-labeling when k£ > 2 and j = 2k
ug =0 ug =1
0 9k+1 10k+2 19k+3 1 9k+2 10k+3 19k+4
k 8k+1 11k+2 18k+3 k+1  8k+2 11k+3 18k+4
2k Tk+1  12k+2  17k+3 2k+1  Tk+2  12k+3  17k+4
3k 6k+1 13k+2 16k+3 3k+1 6k+2 13k+3 16k+4
4k Sk+1  14k+2  15k+3 4k+1  Sk+2 14k+3  15k+4

Theorem 4. If k > 2 and 2k + 1 < j < nk, then for G = K,, x K, x Ky(n >
m > 3) we have \g(j,k,1) = (m —1)j + (mn—2m+ 1)k + 1.

Proof.  Let f be an L(j, k, 1)-labeling for G and aq, a9, - - - , agmy, be the rear-
rangement of all elements of V' such that f(a;1) < f(a2) < -+ < f(agmn). Since
j < nk, j+ (n—2)k < (2n — 2)k. Hence, from Proposition 1, f(agn(i+1)41) —
flagnit1) > j+ (n—2)k foralli =0,1,---,m — 1. Thus,

span(f) = f(azmn) — f(a1) = (f(azmn) — f(a2mn-1))
+ (f(azmn-1) = f(azmn-3)) + (f(a2mn-3) = f(a2mn—5)) + - -
+ (f(azmn—2n+3) — flazmn—2n+1)) + (f(a2mn—2n+1) — f(a2mn—an+1))
+ (f(a2mn—an+1) — f(a2mn—6n+1)) + - -+ (f(azn+1) — f(a1))
>1+(n—1Dk+(m-1)(G+ (n—2)k)
=(m-1)j+(n—14+mn—-2m—-n+2)k+1
=(m—1)j+ (mn—2m+1)k+ 1.

Let f: V — [0, N], and

= | uok+ (j + (n = 2)k)ur + ua, uy is even
Fluo,wr, u2) = { (n—up—1k+(j+ (n—2)k)us + ug, wuy is odd,

where N = (m —1)j + (mn — 2m + 1)k + 1. Then, as in the previous theorems, we
can show that f is an L(j, k, 1)-labeling for G. As such, A\g(j, k,1) < (m —1)j +
(mn —2m+ 1)k + 1. [

Table 5 represents an L(j, k, 1)-labeling for K5 x K4 x Ky when & < 2 and
2k+1 < j < nk. We can show that \g(j, k,1) = (m—1)j+(mn—-2m+1)k+1 =
37+ 13k + 1.
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Table 5. L(j, k, 1)-labeling when k& > 2 and 2k + 1 < j < nk

ug =0 ug =1

2k j+5k+1 25+ 8k  3j+11k+1 2k+1  j+5k 25+ 8k+1 3j+11k
3k j+4k+1 25+ 9k 35+10k+1 3k+1  j+4k 25+ 9k+1  35+10k
4k  j+3k+1  25+10k 35+ 9k+1 4k+1  j+3k  25+10k+1 35+ 9k

(e

J+7k+1 25+ 6k 3j+13k+1 1 J+7k 25+ 6k+1  3j+13k
k j+6k+1 25+ 7k  3j+12k+1 k+1  j+6k 25+ Tk+1  3j5+12k
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