TAIWANESE JOURNAL OF MATHEMATICS

Vol. 17, No. 1, pp. 207-219, February 2013

DOI: 10.11650/tjm.17.2013.1909

This paper is available online at http://journal.taiwanmathsoc.org.tw

DISTANCE THREE LABELINGS FOR DIRECT PRODUCTS OF THREE COMPLETE GRAPHS

Byeong Moon Kim, Byung Chul Song and Woonjae Hwang*

Abstract. The distance 3 labeling number $\lambda_G(j_0, j_1, j_2)$ for a graph G = (V, E) is the smallest integer α such that there is a function $f: V \to [0, \alpha]$, satisfying $|f(u) - f(v)| \ge j_{\delta-1}$ for any pair of vertices u, v of distance $\delta \le 3$. In this paper, we determine the distance 3 labeling number $\lambda_G(j, k, 1)$ for the direct product $G = K_n \times K_m \times K_2 \ (n \ge m \ge 3)$ of 3 complete graphs under various conditions on j and k. As a consequence, we have the radio number $\operatorname{rn}(G) = 2mn - 1$.

1. Introduction

The channel assignment problem introduced by Hale [9] is the motivation for the various labeling problems in graphs. For a graph G=(V,E) and nonnegative integers $\alpha,j_0,j_1,\cdots,j_{d-1}$, an $L(j_0,j_1,\cdots,j_{d-1})$ -labeling (or distance d-labeling) is an integer valued function $f:V\to [0,\alpha]$ such that for $u,v\in V$ with $\delta=\mathrm{dist}(u,v)$, the labeling condition $|f(u)-f(v)|\geq j_{\delta-1}$ is satisfied. The labeling number $\lambda_G(j_0,j_1,\cdots,j_{d-1})$ for G is the smallest integer α such that there is an $L(j_0,j_1,\cdots,j_{d-1})$ -labeling $f:V\to [0,\alpha]$. The distance 2 labeling has been studied the most. In particular, the labeling number $\lambda_G(2,1)$ is referred to as the λ -number for G, and is denoted by $\lambda(G)$. After the work by Griggs and Yeh [8], special attention has been paid to the λ -number of graphs.

The *radio labeling* for G is the $L(d, d-1, \cdots, 1)$ -labeling f, where $d = \operatorname{diam}(G)$. In this case, the labeling condition between two vertices u and v is $|f(u) - f(v)| \ge d - \delta + 1$, where $\delta = \operatorname{dist}(u, v)$. The *radio number* for G, denoted by $\operatorname{rn}(G)$, is the minimum span of radio labelings for G. If a graph has diameter 2, then $\lambda(G) = \operatorname{rn}(G)$.

Liu and Zhu [16] completely determined the radio numbers for paths and cycles. Liu [13] treated the radio number for trees. Liu and Xie [17] determined the radio

Received April 12, 2012, accepted June 27, 2012.

Communicated by Gerard Jennhwa Chang.

2010 Mathematics Subject Classification: 05C78, 05C12, 05C76.

Key words and phrases: Distance three labeling, Radio number, Direct products, Complete graphs.

This work was supported by Korea University grant.

*Corresponding author.

number for the squares of paths and squares of some cycles. Recently Li, Mak and Zhou [15] found the optimal radio labelings of complete m-ary trees. There are some results on the distance 3 labelings for graphs. In particular, $\lambda_G(1,1,1)$ and $\lambda_G(2,1,1)$ have been computed when G is a path, cycle, grid, complete binary tree, or cube [1,2,3,4,7,13,16,19]. Recently, Chia et al. [6] gave the upper bound of $\lambda_G(3,2,1)$ when G is a general graph, and when G is a tree. They also computed $\lambda_G(3,2,1)$ for some classes of G. In addition, L(h,1,1)-labelings of trees and outplanar graphs are studied recently in [5,12].

The direct product of n graphs $G_i = (V_{G_i}, E_{G_i}), (i=1,2,\cdots,n)$ is the graph $G = G_1 \times G_2 \times \cdots \times G_n$ that the vertex set is $V_{G_1} \times V_{G_2} \times \cdots \times V_{G_n}$ and $[(u_1,u_2,\cdots,u_n),(v_1,v_2,\cdots,v_n)]$ belongs to the edge set if $(u_i,v_i) \in E_{G_i}$ for all i. It is easy to see that $G = K_n \times K_m \times K_l (n \ge m \ge l)$ is of diameter 2 when $l \ge 3$, and of diameter 3 when l = 2 and $m \ge 3$. Further, $G = K_n \times K_m \times K_l$ is disconnected when l = m = 2, in which case, G is isomorphic to two copies of $K_n \times K_2$. Haque and Jha [10] and Lam et al. [14] studied the L(j,k)-labeling number for the multiple direct product of complete graphs.

In this paper, we show that when $G = K_n \times K_m \times K_2$, $n \ge m \ge 3$, the distance 3 labeling number $\lambda_G(j, k, 1)$ for G satisfies

$$\lambda_G(j,k,1) = \begin{cases} 2mn-1 & \text{if} \quad k=1 \text{ and } 1 \leq j \leq n+2. \\ (mn-1)k+1 & \text{if} \quad k \geq 2 \text{ and } k \leq j \leq 2k-1. \\ (mn-1)k+m & \text{if} \quad k \geq 2 \text{ and } j=2k. \\ (m-1)j+(mn-2m+1)k+1 & \text{if} \quad k \geq 2 \text{ and } 2k+1 \leq j \leq nk. \end{cases}$$

As a consequence, we prove that the radio number rn(G) for G is 2mn - 1.

2. Preliminaries and Some Lemmas

Henceforth, we assume that $n \geq m \geq 3$, $j \geq k \geq 2$, $G = K_n \times K_m \times K_2 = (V, E)$, and $f: V \to [0, \alpha]$ is an L(j, k, 1)-labeling. The vertices x_1, x_2, \cdots, x_p are on the same row, same column, or same floor if they have the same first, second, or third components, respectively. Two vertices u and v on the same floor are said to be set oblique if they are on different rows and columns. Since the distance between two vertices on the same floor is 2, if x_1, x_2, \cdots, x_p are on the same floor, $f(x_1) < f(x_2) < \cdots < f(x_p)$ and $1 \leq t < s \leq p$, and then, we have $f(x_s) - f(x_t) \geq k(t-s)$. Let $V_i = \{(u_0, u_1, u_2) | u_2 = i\}$ for i = 0, 1 be the two floors of V.

Lemma 1. Let $x_1, x_2, x_3 \in V_0$ and $y_1, y_2 \in V_1$. If x_1 and x_2 are set oblique, then there exist $x \in \{x_1, x_2, x_3\}$ and $y \in \{y_1, y_2\}$ such that x and y are adjacent.

Proof. Suppose that no element of x_1 and x_2 is adjacent to any of y_1 and y_2 . Since $x_1 = (u_0, u_1, 0)$ and $x_2 = (v_0, v_1, 0)$ are set oblique, $u_0 \neq v_0$ and $u_1 \neq v_1$.

Since the two non adjacent vertices share some components, we have only two vertices of V_1 — $(u_0, v_1, 1)$ and $(v_0, u_1, 1)$ —that are adjacent to neither x_1 nor x_2 . As such, there exist y_1 and y_2 that are set oblique. Similarly, x_1 and x_2 are the only vertices of V_0 that are adjacent to neither y_1 nor y_2 . Hence, x_3 is adjacent to y_1 or y_2 .

Lemma 2. If $x_1, x_2, \dots, x_{n+1} \in V_i$ for some i = 0, 1, then there exists a pair of vertices that are set oblique among x_1, x_2, \dots, x_{n+1} .

Proof. Suppose there exists no pair of vertices among vertices x_1, x_2, \dots, x_{n+1} that are set oblique. Since x_1 and x_2 are not set oblique, they are on the same row or the same column. Since $n \geq m$, we can assume that they are on the same row. Since there are n+1 vertices on one floor, there exists x_i that is not on the same row as x_1 . Since x_1 and x_2 are not on the same column, x_i is not on the same column as x_1 or x_2 . As such either x_i and x_1 or x_2 are set oblique.

Lemma 3. For $p \ge 3$, let $x_1, x_2, \dots, x_p \in V_i$ for some i = 0, 1. If there exists a pair of vertices among x_1, x_2, \dots, x_p that are set oblique, then there is an integer s $(1 \le s \le p - 2)$ such that $\{x_s, x_{s+1}, x_{s+2}\}$ contains a pair of vertices set oblique.

Proof. Among the pair (r,t), where x_r and x_t are set oblique, choose (r_0,t_0) such that |t-r| takes the minimum. We can assume that $r_0 < t_0$. It suffices to show that $t_0 - r_0 \le 2$. On the contrary, assume that $t_0 - r_0 \ge 3$. If x_{r_0} and x_{r_0+1} are not set oblique, then they are on the same row or the same column. We can assume that they are on the same row. Since x_{r_0+2} and x_{t_0} are not set oblique, they are on the same row or the same column. If they are on the same row, then x_{r_0} and x_{r_0+2} are on the same column. Since x_{r_0} and x_{r_0+1} are on the same row, and x_{r_0+2} and x_{t_0} are on the same row, x_{r_0+1} and x_{r_0+2} are on distinct rows. Since x_{r_0} and x_{r_0+1} are on distinct columns, x_{r_0+1} and x_{r_0+2} are on distinct columns. As such, x_{r_0+1} and x_{r_0+2} are set oblique. This is a contradiction. If x_{r_0+2} and x_{t_0} are on the same column, since x_{r_0} and x_{r_0+2} are not set oblique, then they are on the same row. Then, $x_{r_0+1} = x_{r_0+2}$. This is also a contradiction. Hence, $t_0 - r_0 \le 2$.

For $S\subset V$ and labeling f, we define the span $\mathrm{span}(f:S)$ of f on S as the maximum of |f(u)-f(v)| for $u,v\in S$. The span $\mathrm{span}(f)$ of f is $\mathrm{span}(f:V)$. Let $|S|=2n+1,\ S\cap V_0=\{x_1,x_2,\cdots,x_p\}$ and $S\cap V_1=\{y_1,y_2,\cdots,y_q\}$ with $f(x_1)< f(x_2)<\cdots< f(x_p)$ and $f(y_1)< f(y_2)<\cdots< f(y_q)$. Without loss of generality, we can assume that $p\geq q$, and hence, we have $p\geq n+1$. From Lemmas 2 and 3, there exists s $(1\leq s\leq p-2)$ such that $\{x_s,x_{s+1},x_{s+2}\}$ contains a pair of vertices that are set oblique. Then, p+q=2n+1 and we have the following propositions.

Proposition 1. If $\{x_s, x_{s+1}, x_{s+2}\}$ contains a pair of vertices that are set oblique, $f(y_2) < f(x_{s+2})$, and $f(x_s) < f(y_{q-1})$, then $\operatorname{span}(f:S) \ge j + (n-2)k$.

Proof. Since $p-3 \geq n-2$ and $\lceil \frac{p+q-6}{2} \rceil \geq \lceil \frac{2n+1-6}{2} \rceil = n-2$, it is enough to show that $\operatorname{span}(f:S) \geq \min\{j+(p-3)k,j+\lceil \frac{p+q-6}{2} \rceil k\}$.

Since $f(y_2) < f(x_{s+2})$ and $f(x_s) < f(y_{q-1})$, there exist α, β such that α is the smallest number h such that $f(y_h) > f(x_s)$ and β is the largest number h such that $f(y_h) < f(x_{s+2})$. If $\alpha \ge \beta + 2$, then $f(x_{s+2}) < f(y_{\beta+1}) \le f(y_{\alpha-1}) < f(x_s)$. This is a contradiction. Hence, $\alpha \le \beta + 1$. Since $(s+q-\alpha+1)+(\beta+p-s-1)=p+q-\alpha+\beta \ge p+q-1=2n$, there are three possible cases:

Case 1: $s+q-\alpha+1 \ge \lceil \frac{p+q}{2} \rceil = n+1$.

Case 2: $\beta + p - s - 1 \ge \lceil \frac{p+q}{2} \rceil = n+1$.

Case 3: $s + q - \alpha + 1 = \beta + p - s - 1 = n$.

Case 1. $s+q-\alpha+1 \ge \lceil \frac{p+q}{2} \rceil$.

From Lemma 1, some $x \in \{x_s, x_{s+1}, x_{s+2}\}$ is adjacent to some $y \in \{y_\alpha, y_{\alpha+1}\}$. If $f(y_{\alpha+1}) > f(x_{s+2})$, then $f(y_{\alpha+1}) - f(x_s) \ge |f(x) - f(y)| \ge j$. As such,

$$\operatorname{span}(f:S) \ge f(y_q) - f(x_1)$$

$$= (f(y_q) - f(y_{\alpha+1})) + (f(y_{\alpha+1}) - f(x_s)) + (f(x_s) - f(x_1))$$

$$\ge (q - \alpha - 1)k + j + (s - 1)k = j + (s + q - \alpha - 2)k$$

$$\ge j + (n - 2)k.$$

If
$$f(x_{s+2}) > f(y_{\alpha+1})$$
, then $f(x_{s+2}) - f(x_s) \ge |f(x) - f(y)| \ge j$. Thus,

$$\operatorname{span}(f:S) \ge f(x_p) - f(x_1)$$

$$= (f(x_p) - f(x_{s+2})) + (f(x_{s+2}) - f(x_s)) + (f(x_s) - f(x_1))$$

$$\ge (p - s - 2)k + j + (s - 1)k = j + (p - 3)k \ge j + (n - 2)k.$$

Case 2. $\beta + p - s - 1 \ge \lceil \frac{p+q}{2} \rceil = n+1$.

From Lemma 1, some $x \in \{x_s, x_{s+1}, x_{s+2}\}$ is adjacent to some $y \in \{y_{\beta-1}, y_{\beta}\}$. If $f(y_{\beta-1}) < f(x_s)$, then $f(x_{s+2}) - f(y_{\beta-1}) \ge |f(x) - f(y)| \ge j$. Hence,

$$\operatorname{span}(f:S) \ge f(x_p) - f(y_1)$$

$$= (f(x_p) - f(x_{s+2})) + (f(x_{s+2}) - f(y_{\beta-1})) + (f(y_{\beta-1}) - f(y_1))$$

$$\ge (p - s - 2)k + j + (\beta - 2)k = j + (p - s + \beta - 4)k$$

$$\ge j + \lceil \frac{p + q - 6}{2} \rceil k$$

$$\ge j + (n - 2)k.$$

If
$$f(y_{\beta-1}) > f(x_s)$$
, then $f(x_{s+2}) - f(x_s) \ge |f(x) - f(y)| \ge j$. Therefore, span $(f:S) \ge f(x_p) - f(x_1)$

$$= (f(x_p) - f(x_{s+2})) + (f(x_{s+2}) - f(x_s)) + (f(x_s) - f(x_1))$$

$$\ge (p - s - 2)k + j + (s - 1)k = j + (p - 3)k$$

$$\ge j + (n - 2)k.$$

Case 3. $s+q-\alpha+1=\beta+p-s-1=\frac{p+q-1}{2}=n.$ From Lemma 1, some $x\in\{x_s,x_{s+1},x_{s+2}\}$ is adjacent to some $y\in\{y_\alpha,y_\beta\}$. Since $\alpha=\beta+1,\ f(y_\beta)=f(y_{\alpha-1})< f(x_s)\ \text{and}\ f(y_\alpha)=f(y_{\beta+1})>f(x_{s+2}).$ If $y=y_\alpha,\ f(y_\alpha)-f(x_s)\geq |f(y)-f(x)|\geq j.$ As such,

$$span(f:S) \ge f(y_q) - f(x_1)$$

$$= (f(y_q) - f(y_\alpha)) + (f(y_\alpha) - f(x_s)) + (f(x_s) - f(x_1))$$

$$\ge (q - \alpha)k + j + (s - 1)k = j + (q + s - \alpha - 1)k$$

$$= j + (n - 2)k.$$

If $y = y_{\beta}$, then $f(x_{s+2}) - f(y_{\beta}) \ge |f(y) - f(x)| \ge j$. Thus,

$$\operatorname{span}(f:S) \ge f(x_p) - f(y_1)$$

$$= (f(x_p) - f(x_{s+2})) + (f(x_{s+2}) - f(y_\beta)) + (f(y_\beta) - f(y_1))$$

$$\ge (p - s - 2)k + j + (\beta - 1)k = j + (p + \beta - s - 3)k$$

$$= j + (n - 2)k.$$

Proposition 2. Let |S| = p + q = 2n + 1 and $j \ge 2k$.

- (1) If $q \le 2$, then span $(f:S) \ge (2n-2)k$.
- (2) If $q \ge 3$, then span $(f:S) \ge j + (n-2)k$.
- (3) If j = 2k, then span $(f : S) \ge nk + 1$.

Proof.

(1) In this case, $p \ge 2n - 1$, and we have

$$span(f:S) \ge f(x_p) - f(x_1)$$

$$\ge (p-1)k \ge (2n-1-1)k = (2n-2)k.$$

(2) From Lemmas 2 and 3, there exists s $(1 \le s \le p-2)$ such that $\{x_s, x_{s+1}, x_{s+2}\}$ contains a pair of vertices that are set oblique. Let $s_1 < s_2 < \cdots < s_h$ be all s such that $\{x_s, x_{s+1}, x_{s+2}\}$ contains a pair of vertices that are set oblique. From Lemmas 2 and 3, $s_{i+1} - s_i \le n-1$ for all $i=1,2,\cdots,h-1$.

Case 1. $f(y_{q-1}) < f(x_{s_1})$. If $\alpha = s_1$, from Lemma 2, $\alpha \le n-1$. If y_{q-1} is adjacent to some x_{α} , $x_{\alpha+1}$, and $x_{\alpha+2}$, since $f(x_{\alpha+2}) - f(y_{q-1}) \ge j$, we have

$$\operatorname{span}(f:S) \ge f(x_p) - f(y_1)$$

$$= (f(x_p) - f(x_{\alpha+2})) + (f(x_{\alpha+2}) - f(y_{q-1})) + (f(y_{q-1}) - f(y_1))$$

$$\ge (p - \alpha - 2)k + j + (q - 2)k = j + (p + q - \alpha - 4)k$$

$$\ge j + (2n + 1 - (n - 1) - 4)k = j + (n - 2)k.$$

If y_{q-1} is adjacent to no x_{α} , $x_{\alpha+1}$, and $x_{\alpha+2}$, then from Lemma 1, y_q is adjacent to some x_{α} , $x_{\alpha+1}$, and $x_{\alpha+2}$. Moreover, from Lemma 1, y_{q-2} is adjacent to some x_{α} , $x_{\alpha+1}$, and $x_{\alpha+2}$. If $f(y_q) < f(x_{\alpha})$, since $f(x_{\alpha+2}) - f(y_q) \ge f(x) - f(y_q) \ge j$, we have

$$\operatorname{span}(f:S) \ge f(x_p) - f(y_1)$$

$$= (f(x_p) - f(x_{\alpha+2})) + (f(x_{\alpha+2}) - f(y_q)) + (f(y_q) - f(y_1))$$

$$\ge j + (p + q - \alpha - 3)k \ge j + (n - 2)k.$$

If $f(y_q) > f(x_\alpha)$ and $\alpha \le n-2$, then since y_{q-2} is adjacent to some x_α , $x_{\alpha+1}$, and $x_{\alpha+2}$, and since $f(x_{\alpha+2}) - f(y_{q-2}) \ge f(x) - f(y_{q-2}) \ge j$, we have

$$\operatorname{span}(f:S) \ge f(x_p) - f(y_1)$$

$$= (f(x_p) - f(x_{\alpha+2})) + (f(x_{\alpha+2}) - f(y_{q-2})) + (f(y_{q-2}) - f(y_1))$$

$$\ge j + (p + q - \alpha - 5)k \ge j + (n - 2)k.$$

If $f(y_q) > f(x_\alpha)$ and $\alpha = n-1$, since x is adjacent to y_q , $|f(x) - f(y_q)| \ge j$. If $f(x) > f(y_q)$, then $f(x_{\alpha+2}) - f(x_\alpha) \ge f(x) - f(y) \ge j$. If $f(x) < f(y_q)$, then $f(y_q) - f(x_\alpha) \ge f(y_q) - f(x) \ge j$. As such,

$$span(f:S) \ge \max\{f(x_{\alpha+2}) - f(x_1), f(y_q) - f(x_1)\}$$

$$\ge \max\{f(x_{\alpha+2}) - f(x_\alpha), f(y_q) - f(x_\alpha)\} + (f(x_\alpha) - f(x_1))$$

$$\ge j + (\alpha - 1)k \ge j + (n - 2)k.$$

Case 2. $f(y_{q-1}) > f(x_{s_1})$. Let i be the largest t such that $f(x_{s_t}) < f(y_{q-1})$. If $f(x_{s_{i+2}}) > f(y_2)$, then from Proposition 1, $\operatorname{span}(f:S) \ge j + (n-2)k$. Therefore, we can assume that $f(x_{s_{i+2}}) < f(y_2)$.

If i = h, then $f(x_{s_h+2}) < f(y_2)$. As in Case 1, we can prove that span $(f: S) \ge j + (n-2)k$.

As such, it suffices to prove the case $i \leq h-1$. If $\alpha = s_i$ and $\beta = s_{i+1}$, then $f(x_{\alpha+2}) < f(y_2) \leq f(y_{q-1}) < f(x_{\beta})$. From Lemma 2, $\beta - \alpha \leq n-1$. From Lemma 1, there exist $x \in \{x_{\alpha}, x_{\alpha+1}, x_{\alpha+2}\}, \ x' \in \{x_{\beta}, x_{\beta+1}, x_{\beta+2}\}, \ y \in \{y_1, y_2\}$, and $y' \in \{y_{q-1}, y_q\}$ such that x and x' are adjacent to y and y', respectively.

Case 2-1. $f(y) < f(x_{\alpha+2})$. Since $f(y_2) > f(x_{\alpha+2})$, we have $y = y_1$. If $p - \alpha \ge n$, then

$$\operatorname{span}(f:S) \ge f(x_p) - f(y_1)$$

$$= (f(x_p) - f(x_{\alpha+2})) + (f(x_{\alpha+2}) - f(y_1)) \ge j + (n-2)k.$$

If $p-\alpha \leq n-1$, then $q+\alpha = (p+q)-(p-\alpha) \geq 2n+1-(n-1)=n+2$. From Lemma 1, some $x \in \{x_{\alpha}, x_{\alpha+1}, x_{\alpha+2}\}$ is adjacent to some $\tilde{y} \in \{y_2, y_3\}$, and we have $f(y_3)-f(x_{\alpha}) \geq |f(x)-f(\tilde{y})| \geq j$. Therefore,

$$span(f:S) \ge f(y_q) - f(x_1)$$

$$= (f(y_q) - f(y_3)) + (f(y_3) - f(x_\alpha)) + (f(x_\alpha) - f(x_1))$$

$$\ge (q-3)k + j + (\alpha - 1)k = j + (q + \alpha - 4)k \ge j + (n-2)k.$$

Case 2-2. $f(y') > f(x_{\beta})$. We can show the case span $(f:S) \ge j + (n-2)k$ using a method similar to that used in Case 2-1.

Case 2-3. $f(x_{\alpha+2}) < f(y)$ and $f(y') < f(x_{\beta})$. Since $f(y') - f(y) \ge f(y_{q-1}) - f(y_2) \ge (q-3)k$, we have

$$\operatorname{span}(f:S) \ge f(x_p) - f(x_1) = (f(x_p) - f(x_{\beta+2})) + (f(x_{\beta+2}) - f(y_{q-1})) + (f(y_{q-1}) - f(y_2)) + (f(y_2) - f(x_\alpha)) + (f(x_\alpha) - f(x_1)) \\ \ge (p - \beta - 2)k + j + (q - 3)k + j + (\alpha - 1)k \\ = 2j + (p + q + \alpha - \beta - 6)k \ge 2j + (2n + 1 - (n - 1) - 6)k \\ = 2j + (n - 4)k \ge j + (n - 2)k.$$

(3) If $p \ge n + 2$, then

$$span(f:S) \ge f(x_p) - f(x_1) \ge (p-1)k \ge (n+1)k \ge nk + 1.$$

If p=n+1, then q=n. From Lemmas 2 and 3, there exists t such that $1 \leq t \leq n-1$ and $\{x_t, x_{t+1}, x_{t+2}\}$ contains a pair of vertices that are set oblique. Then, from Lemma 1, there exist h, l such that $t \leq h \leq t+2$, $t \leq l \leq t+1$, and x_h is adjacent to y_l . If $f(x_h) < f(y_l)$ and $f(x_{t+2}) > f(y_l)$, then

$$\operatorname{span}(f:S) = f(x_{n+1}) - f(x_1) = (f(x_{n+1}) - f(x_{t+2})) + (f(x_{t+2}) - f(y_l)) + (f(y_l) - f(x_h)) + (f(x_h) - f(x_1)) + (n-t-1)k + 1 + 2k + (h-1)k \ge (n-t+h)k + 1 \ge nk + 1.$$

If $f(x_h) < f(y_l)$ and $f(x_{t+2}) < f(y_l)$, then

$$\operatorname{span}(f:S) = (f(y_n) - f(y_l)) + (f(y_l) - f(x_{t+2})) + (f(x_{t+2}) - f(x_1)) + (n-l)k + 1 + (t+2-1)k = (n-l+t+1)k + 1 \ge nk + 1.$$

If $f(x_h) > f(y_l)$ and $f(x_t) > f(y_l)$, then $\operatorname{span}(f:S) = f(x_{n+1}) - f(y_1) = (f(x_{n+1}) - f(x_t)) + (f(x_t) - f(y_l))$

$$+ (f(y_l) - f(y_1))$$

> $(n+1-t)k+1+(l-1)k = (n-t+l)k+1 > nk+1.$

If
$$f(x_h) > f(y_l)$$
 and $f(x_t) < f(y_l)$, then
$$\operatorname{span}(f:S) = (f(x_{n+1}) - f(x_h)) + (f(x_h) - f(y_l)) + (f(y_l) - f(x_t)) + (f(x_t) - f(x_1))$$
$$\geq (n+1-h)k + 2k + 1 + (t-1)k$$
$$= (n-h+t+2)k + 1 \geq nk + 1.$$

3. Main Theorems

Theorem 1. If $1 \le j \le n+2$, then the distance 3 number $\lambda_G(j,1,1)$ of $G = K_n \times K_m \times K_2$ $(n \ge m \ge 3)$ is 2mn-1.

Proof. Since the diameter of G is 3 and |V|=2mn, $\lambda_G(j,1,1)\geq 2mn-1$. Let $\tilde{f}:V\to [0,N]$, and

$$\tilde{f}(u_0, u_1, u_2) = \begin{cases} u_0 + nu_1, & \text{if } u_2 = 0\\ 2mn - u_0 - nu_1 - 1, & \text{if } u_2 = 1 \end{cases}$$

Let $u=(u_0,u_1,u_2)$ and $v=(v_0,v_1,v_2)$ be distinct vertices of G. If u and v are adjacent, since $u_0 \neq v_0$ and $u_1 \neq v_1$, $u_0 + v_0 \leq 2n - 3$ and $u_1 + v_1 \leq 2m - 3$. We can assume that $u_2 = 0$ and $v_2 = 1$. Then,

$$\tilde{f}(v) - \tilde{f}(u) = 2mn - v_0 - nv_1 - 1 - u_0 - nu_1$$

$$= 2mn - (u_0 + v_0) - (u_1 + v_1)n - 1$$

$$\geq 2mn - (2n - 3) - (2m - 3)n - 1 = n + 2 \geq j.$$

If dist (u,v)=2, then $u_2=v_2$. If $u_2=v_2=0$, since $u_0\neq v_0$ or $u_1\neq v_1$, $\tilde{f}(v)-\tilde{f}(u)=(v_0-u_0)+(v_1-u_1)n\neq 0$. Similarly, $\tilde{f}(v)\neq \tilde{f}(u)$ when $u_2=v_2=1$. If dist(u,v)=3, then $u_2\neq v_2$. We can assume that $u_2=0$ and $v_2=1$. Since $\tilde{f}(u)=u_0+u_1n\leq mn-1$ and $\tilde{f}(v)=2mn-u_1-v_1n\geq mn$, $\tilde{f}(v)\neq \tilde{f}(u)$. Hence, \tilde{f} is an L(j,1,1)-labeling for G. Thus, $\lambda_G(j,1,1)=2mn-1$.

Table 1 represents the L(j,1,1)-labeling for $K_5 \times K_4 \times K_2$ when $1 \le j \le 7$. It shows that $\lambda_G(j,1,1) = 2mn - 1 = 39$.

Table 1. L(j, 1, 1)-labeling when k = 1 and $1 \le j \le 7$

	$u_2 = 0$				$u_2 =$	1	
0	5	10	15	39	34	29	24
1	6	11	16	38	33	28	23
2	7	12	17	37	32	27	22
3	8	13	18	36	31	26	21
4	9	14	15 16 17 18 19	35	30	25	20

In Table 1, the number located in the (u_0+1) -th row and (u_1+1) -th column of the box over which u_2 is indicated, is the labeling of the vertex (u_0,u_1,u_2) of $K_5\times K_4\times K_2$. For example, the number 31 is labeled to the vertex (3,1,2) of $K_5\times K_4\times K_2$. Other figures remain the same.

Theorem 2. If $2 \le k \le j \le 2k-1$, then the distance 3 labeling $\lambda_G(j,k,1)$ for $G = K_n \times K_m \times K_2$ $(n \ge m \ge 3)$ is (mn-1)k+1.

Proof. Let f be an L(j,k,1)-labeling for G, $V_0 = \{x_1,x_2,\cdots,x_{mn}\}$, and $V_1 = \{y_1,y_2,\cdots,y_{mn}\}$. We can assume that $f(x_i) < f(x_{i+1})$ and $f(y_i) < f(y_{i+1})$ for all $i=1,2,\cdots,mn-1$, and $f(x_{mn}) < f(y_{mn})$. Then,

$$\lambda_G(j, k, 1) \ge f(y_{mn}) - f(x_1) = (f(y_{mn}) - f(x_{mn})) + (f(x_{mn}) - f(x_{mn-1})) + (f(x_{mn-1}) - f(x_{mn-2})) + \dots + (f(x_2) - f(x_1)) \ge 1 + (mn - 1)k.$$

Let $\tilde{f}: V \rightarrow [0, (mn-1)k+1]$, and

$$\tilde{f}(u_0, u_1, u_2) = \begin{cases} u_0 k + u_1 n k + u_2, & u_1 \text{ is even} \\ (n - u_0 - 1) k + u_1 n k + u_2, & u_1 \text{ is odd.} \end{cases}$$

Let $u=(u_0,u_1,u_2)$ and $v=(v_0,v_1,v_2)$ be distinct vertices of G. We can assume that $u_1\leq v_1$. If u and v are adjacent, since $u_0\neq v_0$ and $u_1\neq v_1,\,u_0+v_0\leq 2n-3$ and $u_1+v_1\leq 2m-3$. If $v_1-u_1\geq 2$, since $\tilde{f}(u)\leq u_1nk+(n-1)k+1$ and $\tilde{f}(v)\geq v_1nk\geq (u_1+2)nk,\,\tilde{f}(v)-\tilde{f}(u)\geq (n+1)k-1\geq 2k-1\geq j.$ If $v_1-u_1=1$ and u_1 is even,

$$\tilde{f}(v) - \tilde{f}(u) = (n - u_0 - v_0 - 1)k + (v_1 - u_1)nk$$

 $\geq (n - (2n - 3) - 1)k + nk - 1 = 2k - 1 \geq j.$

Similarly, we can get that $\tilde{f}(v) - \tilde{f}(u) \ge j$ when $v_1 - u_1 = 1$ and u_1 is odd.

If $\operatorname{dist}(u,v)=2$, then $u\neq v$ and $u_2=v_2$. We can assume that $u_1\leq v_1$. If $u_1< v_1$, then

$$\tilde{f}(v) - \tilde{f}(u) = v_1 n k + u_2 - (u_1 n k + (n-1)k + u_2)$$

 $\geq (v_1 - u_1) n k - (n-1)k \geq k.$

If $u_1 = v_1$, then

$$|\tilde{f}(v) - \tilde{f}(u)| = |v_0 - u_0|k \ge k.$$

If $\operatorname{dist}(u,v)=3$, since $u_2\neq v_2$, $\tilde{f}(v)\equiv v_2\not\equiv u_2\equiv \tilde{f}(u)\pmod k$. As such, $\tilde{f}(v)\neq \tilde{f}(u)$. Thus, \tilde{f} is an L(j,k,1)-labeling for G. Hence, $\lambda_G(j,k,1)\leq (mn-1)k+1$.

Table 2 represents the L(j,k,1)-labeling for $K_5 \times K_4 \times K_2$ when $2 \le k \le j \le 2k-1$. We can see that $\lambda_G(j,k,1) = (mn-1)k+1 = 19k+1$.

Table 2. L(j, k, 1)-labeling when $2 \le k \le j \le 2k - 1$

	$u_2 = 0$				$u_2 = 1$				
0	9k	10k	19 <i>k</i>		1	9 <i>k</i> +1	10 <i>k</i> +1	19 <i>k</i> +1	
k	8k	11k	18k		k+1	8k+1	11k+1	18k+1	
2k	7k	12k	17k		2 <i>k</i> +1	7k+1	12k+1	17k+1	
3k	6k	13k	16 <i>k</i>		3 <i>k</i> +1	6k+1	13k+1	16k+1	
4 <i>k</i>	5k	14 <i>k</i>	15 <i>k</i>		4 <i>k</i> +1	5 <i>k</i> +1	14 <i>k</i> +1	15 <i>k</i> +1	

Corollary 1. The radio number $\operatorname{rn}(G) = \lambda_G(3,2,1)$ for $G = K_n \times K_m \times K_2$ $(n \ge m \ge 3)$ is 2mn - 1.

Table 3 represents the radio number for $K_5 \times K_4 \times K_2$. We can see that rn(G) = 39.

Table 3. Radio labeling

	$u_2 = 0$					$u_2 = 1$		
0	18	20	38		1	19	21	39
2	16	22	36		3	17	23	37
4	14	24	34		5	15	25	35
6	12	26	32		7	13	27	33
8	10	28	30		9	11	29	31

Theorem 3. If $k \geq 2$ and j = 2k, then the distance 3 labeling $\lambda_G(j, k, 1)$ for $G = K_n \times K_m \times K_2$ $(n \geq m \geq 3)$ is (mn - 1)k + m.

Proof. Let f be an L(j, k, 1)-labeling for G. If $S = \{x_1, x_2, \dots, x_{2mn}\}$ and $f(x_1) < f(x_2) < \dots < f(x_{2mn})$, from Proposition 2 (3),

$$\operatorname{span}(f) = f(x_{2mn}) - f(x_1)$$

$$= (f(x_{2mn}) - f(x_{2mn-1})) + (f(x_{2mn-1}) - f(x_{2mn-3}))$$

$$+ (f(x_{2mn-3}) - f(x_{2mn-5})) + \dots + (f(x_{2mn-2n+3}) - f(x_{2mn-2n+1}))$$

$$+ (f(x_{2mn-2n+1}) - f(x_{2mn-4n+1}))$$

$$+ (f(x_{2mn-4n+1}) - f(x_{2mn-6n+1})) + \dots + (f(x_{2n+1}) - f(x_1))$$

$$\geq 1 + (n-1)k + (nk+1)(m-1) = (mn-1)k + m.$$

Let
$$f: V \to [0, (mn-1)k + m]$$
, and

$$\tilde{f}(u_0, u_1, u_2) = \begin{cases} u_0 k + (nk+1)u_1 + u_2, & u_1 \text{ is even} \\ (n - u_0 - 1)k + (nk+1)u_1 + u_2, & u_1 \text{ is odd.} \end{cases}$$

Then, using a method similar to that used in Theorems 1 and 2, we get that \tilde{f} is an L(j, k, 1)-labeling for G. Hence, $\lambda_G(j, k, 1) = (mn - 1)k + m$.

Table 4 represents an L(j, k, 1)-labeling for $K_5 \times K_4 \times K_2$ when $k \ge 2$ and j = 2k. We can see that $\lambda_G(j, k, 1) = (mn - 1)k + m = 19k + 4$.

Table 4. L(j, k, 1)-labeling when $k \ge 2$ and j = 2k

$u_2 = 0$				$u_2 = 1$			
0	9 <i>k</i> +1	10 <i>k</i> +2	19 <i>k</i> +3	1	9 <i>k</i> +2	10k+3	19 <i>k</i> +4
k	8k+1	11k+2	18 <i>k</i> +3	k+1	8k+2	11 <i>k</i> +3	18 <i>k</i> +4
2k	7k+1	12 <i>k</i> +2	17 <i>k</i> +3	2k+1	7k+2	12k+3	17 <i>k</i> +4
3k	6k+1	13k+2	16 <i>k</i> +3	3k+1	6k+2	13k+3	16 <i>k</i> +4
4 <i>k</i>	5 <i>k</i> +1	14 <i>k</i> +2	15 <i>k</i> +3	4 <i>k</i> +1	5 <i>k</i> +2	14 <i>k</i> +3	15 <i>k</i> +4

Theorem 4. If $k \ge 2$ and $2k + 1 \le j \le nk$, then for $G = K_n \times K_m \times K_2 (n \ge m \ge 3)$ we have $\lambda_G(j, k, 1) = (m - 1)j + (mn - 2m + 1)k + 1$.

Proof. Let f be an L(j,k,1)-labeling for G and a_1,a_2,\cdots,a_{2mn} be the rearrangement of all elements of V such that $f(a_1) < f(a_2) < \cdots < f(a_{2mn})$. Since $j \leq nk, \ j+(n-2)k \leq (2n-2)k$. Hence, from Proposition 1, $f(a_{2n(i+1)+1}) - f(a_{2ni+1}) \geq j+(n-2)k$ for all $i=0,1,\cdots,m-1$. Thus,

$$\operatorname{span}(f) = f(a_{2mn}) - f(a_1) = (f(a_{2mn}) - f(a_{2mn-1})) + (f(a_{2mn-1}) - f(a_{2mn-3})) + (f(a_{2mn-3}) - f(a_{2mn-5})) + \cdots + (f(a_{2mn-2n+3}) - f(a_{2mn-2n+1})) + (f(a_{2mn-2n+1}) - f(a_{2mn-4n+1})) + (f(a_{2mn-4n+1}) - f(a_{2mn-6n+1})) + \cdots + (f(a_{2n+1}) - f(a_1)) + (f(a_{2mn-4n+1}) - f(a_{2mn-6n+1})) + \cdots + (f(a_{2n+1}) - f(a_1)) + (f(a_{2mn-4n+1}) - f(a_1)) + (f(a_{2mn-2n+1}) - f(a_1)) + (f(a_1) -$$

Let $\tilde{f}: V \to [0, N]$, and

$$\tilde{f}(u_0, u_1, u_2) = \begin{cases} u_0 k + (j + (n-2)k)u_1 + u_2, & u_1 \text{ is even} \\ (n - u_0 - 1)k + (j + (n-2)k)u_1 + u_2, & u_1 \text{ is odd,} \end{cases}$$

where N=(m-1)j+(mn-2m+1)k+1. Then, as in the previous theorems, we can show that \tilde{f} is an L(j,k,1)-labeling for G. As such, $\lambda_G(j,k,1) \leq (m-1)j+(mn-2m+1)k+1$.

Table 5 represents an L(j,k,1)-labeling for $K_5 \times K_4 \times K_2$ when $k \leq 2$ and $2k+1 \leq j \leq nk$. We can show that $\lambda_G(j,k,1) = (m-1)j + (mn-2m+1)k + 1 = 3j+13k+1$.

Table 5. L(j, k, 1)-labeling when $k \ge 2$ and $2k + 1 \le j \le nk$

	$u_2 = 0$					
0	j+7k+1	2j+6k	3j+13k+1			
k	j+6k+1	2j+7k	3j+12k+1			
2k	j+5k+1	2j+8k	3j+11k+1			
3k	j+4k+1	2j+9k	3j+10k+1			
4k	j+3k+1	2j+10k	3 <i>j</i> + 9 <i>k</i> +1			

	$u_2 = 1$		
1	j+7 k	2j+6k+1	3j+13k
k+1	j+6 k	2j+7k+1	3j+12k
2k+1	j+5 k	2j+8k+1	3j+11k
3k+1	j+4 k	2j+9k+1	3j+10k
4k+1	j+3 k	2j+10k+1	3j+9k

ACKNOWLEDGMENTS

We would like to thank anonymous referee for valuable comments and corrections.

REFERENCES

- 1. A. A. Bertossi and M. C. Pinotti, Mappings for conflict-free access of paths in bidimensional arrays, circular lists and complete trees, *J. Parallel and Distributed Computing*, **62** (2002), 1314-1333.
- 2. A. A. Bertossi and M. C. Pinotti, Channel assignment with separation for interference avoidance in wireless networks, *IEEE Trans. Parallel Distrib. Syst.*, **14** (2003), 222-235.
- 3. A. A. Bertossi and M. C. Pinotti, Approximate $L(\delta_1, \delta_2, \dots, \delta_t)$ -coloring of trees and interval graphs, *Networks*, **49** (2007), 204-216.
- 4. A. A. Bertossi, M. C. Pinotti and R. Tan, Efficient use of radio spectrum in weireless networks with channel separation between close stations, *DIAL-M 2000 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Computations*, 2000.
- 5. T. Calamoneri, E. G. Fusco, R. B. Tan and P. Vocca, L(h, 1, 1)-labeling of outerplanar graphs, *Math. Methods Oper. Res.*, **69** (2009), 307-321.
- 6. M. L. Chia, D. Kuo, H. Liao, C. H. Yang and R. K. Yeh, L(3,2,1) labeling of graphs, *Taiwanese J. Math.*, **15** (2011), 2439-2457.
- 7. J. Fiala, P. Golovach, J. Kratochvil, B. Lidický and D. Paulusma, Distance three labelings of trees, *Discrete Applied Math.*, **160(6)** (2012), 764-779.
- 8. J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance two, *SIAM J. Disc. Math.*, **5** (1992), 586-595.
- 9. W. K. Hale, Frequency assignment: theory and application, *Proc. IEEE*, **68** (1980), 1497-1514.
- 10. E. Haque and P. K. Jha, L(j,k)-labelings of Kronecker products of complete graphs, *IEEE Trans. on Cir. & Sys. II*, **55** (2008), 70-73.
- 11. D. S. Kim, D. Z. Du and P. M. Pardalos, A coloring problem on the *n*-cable, *Discrete Applied Math.*, **103** (2000), 307-311.

- 12. D. King, C. J. Ras and S. Zhou, The L(h, 1, 1)-labeling problem for trees, *European J. Combinatorics*, **31** (2010), 1295-1306.
- 13. D. D. Liu, Radio number for trees, *Discrete Math.*, **308** (2008), 1153-1164.
- 14. P. Lam, W. Lin and J. Wu, L(j,k)-labelings for the products of complete graphs, *J. Comb. Optimm.*, **14** (2007), 219-227.
- 15. X. Li, V. Mak and S. Zhou, Optimal radio labelings of complete m-ary trees, *Discrete Applied Math.*, **158** (2010), 507-515.
- 16. D. D. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, *SIAM J. Disc. Math.*, **19** (2005), 610-621.
- 17. D. D. Liu and M. Xie, Radio number for square paths, *Ars. Combinatoria*, **90** (2009), 307-319.
- 18. A. Sen, T. Roxbrorough and S. Medidi, Upper and lower bounds of a class of channel assignment problems in circular networks, *Proc. of IEEE INFOCOM '98*, **3** (1998), 1284-1291.
- 19. S. Zhou, A distance-labelling problem for hypercubes, *Discrete Applied Math.*, **156** (2008), 2846-2854.

Byeong Moon Kim and Byung Chul Song Department of Mathematics Gangneung-Wonju National University Gangneung 210-702 Korea

E-mail: kbm@gwnu.ac.kr bcsong@gwnu.ac.kr

Woonjae Hwang Department of Information and Mathematics Korea University Jochiwon 339-700 Korea

E-mail: woonjae@korea.ac.kr