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On the Unicity and the Ambiguity of Lusztig Parametrizations for Finite

Classical Groups

Shu-Yen Pan

Abstract. The Lusztig correspondence is a bijective mapping between the Lusztig
series indexed by the conjugacy class of a semisimple element s in the connected
component (G*)? of the dual group of G and the set of irreducible unipotent characters
of the centralizer of s in G*. In this article we discuss the unicity and ambiguity of such
a bijective correspondence. In particular, we show that the Lusztig correspondence
for a classical group can be made to be unique if we require it to be compatible with

the parabolic induction and the finite theta correspondence.

1. Introduction

1.1.

Let G be a classical group defined over a finite field F; of odd characteristic, and let F' be
the corresponding Frobenius endomorphism. Let G = G denote the finite subgroup of
rational points, and let &(G) denote the set of irreducible characters (i.e., the characters
of irreducible representations) of G.

Let R%7 s denote the Deligne—Lusztig virtual characters (cf. [3,7]) indexed by conjugacy
class of pair (T*, s) where T* is an F-stable maximal torus in the dual group G* and s is a
rational semisimple element contained in T*. Let ¥ (G) be the space of (complex valued)
class functions on G, and let 7 (G)* denote the subspace spanned by Deligne Lusztig

virtual characters. Note that #(G) is an inner product space with the inner product
(-, )a given by

(fi.fo)a = |é’ > hilg) falg)
geG

for fi,fo € ¥(G), and f2(g) denotes the complex conjugate of the value fa(g). For
f € 7(G) the orthogonal projection of f onto #(G) is denoted by f* and called the
uniform projection. A class function f € ¥ (G) is called uniform if f* = f.

A natural question is how much an irreducible character p of G can be determined by

its uniform projection pt?
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If G is a general linear group GL, or a unitary group U,, then every irreducible
character is uniform (i.e., p = pﬁ) and the above question is trivial. However, if G is
a symplectic group or an orthogonal group, the question is more subtle. Recall that
p € &(G) is called unipotent if (p, R%*J)G # 0 for some T*. If p is unipotent and G
is connected, it is known that p is uniquely determined by its uniform projection, i.e.,
p* = pb if and only if p = p (cf. [5, Proposition 6.3] and [7, Theorem 4.4.23]). If p is
unipotent and G = 05,,, it is also known that p* = p* if and only if p' = p or p' = p-sgn
(cf. [18, Proposition 3.6]).

In this paper, the above question will be answered completely (cf. Corollaries
and for classical groups:

Theorem 1.1. Let G be a symplectic group or an orthogonal group, and let p,p’ € &(Q).
Then p'* = p* if and only of

p if G = 80541,
(11) p, = papc Zf G = Sp2n7
PP, p-sgn, p¢-sgn  if G = 05,
Here “sgn” denotes the sign character of an orthogonal group, and “p®” denotes the
character obtained from p by conjugating an element in the corresponding similitude group

(cf. [23), §4.3, §4.10]). Note that if p is unipotent then p¢ = p, and then ([1.1)) is reduced to

the above known result.

1.2.

In fact, the above theorem is a consequence of a more precise result on the ambiguity
of the Lusztig parametrization of irreducible characters of finite classical groups. From
now on, we assume that G is a symplectic group or an orthogonal group. It is known by

Lusztig that there is a partition

&(G) =|J&(G,s),
(s)

where the union U(S) runs over G*-conjugacy classes of semisimple elements in the con-
nected component of the dual group G* and &(G, s) is called a (rational) Lusztig series
which is defined by

E(G,s)={pe&(G)] (p, Rr_GF’*7S>G # 0 for some T* containing s}.

In particular, the subset &(G, 1) consists of irreducible unipotent characters.
Now we first focus on the set of unipotent characters. Let ¥ (G, 1) denote the sub-

space spanned by elements in &(G,1), and let #(G,1)* denote the uniform projection
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of 7(G,1). Following from Lusztig (cf. [13,{14]) we can define a set fé (cf. (3-)) and
class functions RS (cf. (3.4)) for £ € Y(ﬁ; such that the set {RS | © € Yé} forms an
orthonormal basis for ¥ (G, 1)!. Lusztig constructs a set .g of similar classes of symbols
(cf. ) and a bijective mapping Z¢: Yg — &(G, 1) denoted by A — pp such that the
value (pa, RS)q is specified (cf. Proposition . Such a mapping .2 is called a Lusztig
parametrization of unipotent characters of G. Because the uniform projection pi can be
obtained by the values (px, RS )G, the problem of the uniqueness of .flG is equivalent to
the problem whether a unipotent character py can be uniquely determined by its uniform
projection pg\.

As described in Subsection ZE is known to be unique if G = SOg,+1 or Spy,,.
However, due to the disconnectedness of O%,,, the mapping .,2”105" is not uniquely deter-
mined. By using the result of “cells” by Lusztig, we determine how ambiguous a Lusztig
parametrization ,,2”105" could be and we show in Proposition that ,2”105” can be chosen

to be unique if we require it to be
e compatible with parabolic induction and

e compatible with theta correspondence on cuspidal characters or 103, Sgho -

In particular, ,,2”105” (and ,,‘lepz”’) can be given so that (pa, p)y/) € ©g g if and only if
(A AN) € Bo for (G,G') = (04, Spy,y) where Bg @ is a relation between .Y and
Yq defined in Subsection [5.2

1.3.

For a general Lusztig series & (G, s), Lusztig shows (cf. [15]) that there exists a bijection
Ls: E(G,s) = E(Cax(s),1)
satisfying

Cax*(s
(1.2) (p,ecRE- e = (L:(p). cogn (9 BTSN 0gn (9)1

where eq = (—1)"%)| k(G) denotes the rational rank of G, and Cg«(s) denotes the
centralizer of s in G*. Such a bijection £, will be called a Lusztig correspondence in this
article (it is called a Jordan decomposition in [6,7]).

Now the question is to understand whether the Lusztig correspondence £ is uniquely
determined by . If the answer is negative, then we want to know what kind of
conditions need to be enforced to make £4 unique. Some discussion on this problem can
be founded in [7, Appendix A.5]. If G is a connected group with connected center, it is
shown in [5, Theorem 7.1] that £, can be uniquely determined by (1.2).
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For s € G*, we have a decomposition s = 50 x s(1) x s(2) where s(!) (resp. s(?)) is the
part whose eigenvalues are all equal to —1 (resp. 1), and s is the part whose eigenvalues
do not contain 1 or —1. Then we can define groups G(9)(s), G(7)(s) and G(+)(s) (cf. (6.6))

so that there is a bijective mapping
E(Cg-(s),1) = &(GO(s) x G(s) x GH(s),1).

Combining Lusztig parametrization .%; of unipotent characters for G0, G(-)(s), G(+)(s),
and above bijection and the inverse £ ! of a Lusztig correspondence, we obtain a bijective
mapping

Lo Lqore) X Fas) X Lams) — (G, s)

denoted by (x, A1, A2) — pz.a,.A, Which is called a modified Lusztig correspondence. Then
we prove the following results on the unicity and ambiguity of %5 (or equivalently, the

unicity and ambiguity of £) for classical groups:

(1) Suppose that G = SOg;,+1. There is a unique modified Lusztig correspondence %,
(cf. Theorem [7.1). Note that SOg,41 is a connected group with connected center,

so this case is covered by [5, Theorem 7.1].

(2) Suppose that G = O, where e = + or —. There exists a unique modified Lusztig
correspondence .%s which is compatible with the parabolic induction and some other

conditions (on basic characters) (cf. Theorem [8.8]).

(3) Suppose that G = Sp,,. Here we provide two choices of the modified Lusztig

correspondence .Z:

(a) There exists a unique modified Lusztig correspondence %5 which is compatible
with the parabolic induction and compatible with the theta correspondence for
the dual pair (G, G) = (Spay,, SO2p/41), i-€., we show that (pz,a1,455 Par Af A;) €
Gé,G’ if and only if

o 50 =_¢0 and 2 = o/,
e Ay =A), and
o (A1, 0%) € Ba(e),at(s)
where p,/, Ay A S given by the unique modified Lusztig correspondence in (1)

(cf. Theorems and [9.8).

(b) There exists a unique modified Lusztig correspondence %5 which is compatible
with the parabolic induction and compatible with the theta correspondence for
the dual pair (G, G’) = (Spas, 05,); L€, (Pz,A1005 Par A7 0y) € @Qé’G, if and
only if
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o 50 =g and x = o/,
) Al = /1, and
o (A2,A}) € Bain(s),ath(s)

where p,r ar a7 1s given by the unique modified Lusztig correspondence in (2)

(cf. Theorems and [9.10)).

It seems that two choices in (a) and (b) of the modified Lusztig correspondence .Z
for Sp,,, should be the same. However, we do not know how to obtain the conclusion

yet.

1.4.

The contents of this article are as follows. In Section[2] we recall the notion and some basic
result of “symbols” and “special symbols” by Lusztig from [11]. In Section we first recall
the notion of “almost characters” by Lusztig from [13}/14]. Then we record some results
of cells from [17]. In Section |4{ we show the uniqueness of .Z for G = Sp,,, and SOg;, 11
by using the results in the previous section. Moreover, we also discuss the ambiguity of
ZE for G = 05,,. In Section |5| we discuss the relation between the theta correspondence
@éG/ on unipotent characters for (G, G’) = (Spy,, O5,,) and Lusztig parametrizations
ZLE: So — &(G,1) for G = Sp,,, 0F,. In Section |§| we discuss the relation between
the theta correspondence @qé’G, on certain Lusztig series for (G, G’') = (Spa,, SO2p/41)
or (Spy,, 05,,/) and the Lusztig correspondence £,: &(G,s) = &(Cg+(s),1). In Section
we show that the Lusztig correspondence £5: &(G,s) — &(Cg+(s),1) is unique for G =
SO2,+1. In Sectionwe show that £4 can be chosen to be unique for G = O%,, if we require
£s to be compatible with the parabolic induction and some other conditions on “basic
characters”. In the final section we discuss the uniqueness of the Lusztig correspondence £
for G = Spy,,. In particular, we show that a unique £, can be chosen to be compatible with

the theta correspondence for the dual pair (Spy,,, SO2,+1) or for the dual pair (Spy,, O5,,)-

2. Symbols and special symbols

2.1. Irreducible characters of Weyl groups

For a finite group G, let &(G) denote the set of irreducible (complex) characters of G.
It is known that the set of irreducible characters &(S,) of the symmetric group S, is
parametrized by the set Z2(n) of partitions of n. For A € #(n), we write |A\| = n, and the
corresponding irreducible character of S, is denoted by ).

Let W,, denote the Coxeter group of type B, i.e., W, consists of all permutations on
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{1,2,...,n,n* (n—1)*...,1"} which commutes with the involution
(1,1%)(2,2%)--- (n,n")
where (7, j) denote the transposition of 4, j. For i =1,...,n — 1, let
si= i+ 1)(E* G+ 1)) and o, = (n,n").

It is known that W, is generated by {s1,...,Sn—1,0,}. Each element of W,, induces a
permutation of {1,2,...,n}. So we have a surjective homomorphism W,, — S,, with kernel
isomorphic to (Z/2Z)". Therefore, ) can be regarded as an irreducible character of W,,.

An ordered pair [’V‘] of two partitions is called a bi-partitions. Let &P2(n) denote the

2o = { 2] |l + w1 =}

For a bi-partition [/, we define its transpose by [’V‘]t = [Z |. A bi-partition [*] is called
degenerate if = v, and it is called non-degenerate otherwise. For [’V‘] € P5(n) such that
we P(k)and v € () with k41 = n, we define

set of bipartitions of n, i.e.,

(2.1) P = Ind{}” . (9 @ (21p0))

where ¢;: W; — {£1} is given by s; — 1 for each i and oy — —1. It is known that an is
an irreducible character of W,,, and the mapping P5(n) — &(W,,) by [’Iﬂ a0 gives a
parametrization of & (W),) such that

* ¢ =1wa,

® P En =P in particular Pl =¢n
v mn n
(cf. [8, Theorem 5.5.6]).
The kernel W,I of g, is a subgroup of index two generated by {s1,...,Sn—1,0n8n—10n}
Let W,; = W, \W,I. It is well-known that if [¥] is non-degenerate, then an I+ = an v+
v n “ n
which is an irreducible character of W,; if [*] is degenerate, then a0 |+ is a sum of two

irreducible characters of W,.

2.2. Lusztig’s symbols

In this subsection, we recall some basic notations of “symbols” from [11]. A symbol A is

<a1,a2,...,aml>
b1,b2,. .., bm,

an ordered pair

a2 ()
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of two finite sets A, B (possibly empty) of nonnegative integers. The sets A, B are also
denoted by A*, A, and called the first row, the second row of A respectively. A symbol
A is called reduced if 0 ¢ ANB. If A = (g), then we define its transpose by At = (f).
We denote A; C Ag and call A a subsymbol of Ag if both AT C A} and (A1), C (Ag).. If
A1 C Ag, their difference is defined by Az \ A1 = ([, A2\ | ). Tf both Af N A3 = 0 and

(A1)s 1 (Az) = 0, we define Ay UAg = (50N ).

For a symbol A given in (2.2)), its rank and defect are defined by

o 2 Al +|B]—1\?
rk(A) :Zai+zbj— KW) J and def(A) = |A| — |B|.
i=1 j=1

From the definition, it is not difficult to check that

(2.3) rk(A) > KCEZW)QJ .

A symbol A is called degenerate if A* = A. If A is degenerate, then rk(A) is even and
def(A) = 0.

We define an equivalence relation “~” generated by

a1,02,...,0m, a1+ l,as+1,...,am,, +1,0
bi,b2,...,bm, b1 +1,00+1,...,bp, +1,0

on the set of symbols. If Ay ~ Ay, two symbols Ay, Ay are called similar. It is not difficult
to see that two symbols in the same similarity class have the same rank and the same
defect, and each similarity class contains a unique reduced symbol. Let . denote the set
of similarity classes of symbols, and let ./, s C . denote the subset of similarity classes
of symbols of rank n and defect 6.

A symbol A is called cuspidal if is an equality. It is not difficult to see that

(k,kfil,.“,()) or

a symbol is cuspidal if and only if it is similar to a symbol of the forms
(k Bl 0) for some nonnegative integer k. Note that (‘:‘) means that the second row of
the symbol is the empty set.

A mapping T from symbols to bi-partitions is defined by

T (al,ag,...,am1> n [al—(ml—1),@2—(7711—2),...,aml_1—l,am1
"\ b1, ba, . by by — (mo —1),ba — (M2 —2),...,bmy, — 1,0y

If T(A) = [*], we write Y(A)* =y and T(A). = v to denote the first row and the second

v

row of the bi-partition T(A). We can check that T(A;) = T(Ag) if A} ~ Ay, and then T

gives a bijection

(2.4) Fns = Pa(n—[(3)*)).
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Modified from Lusztig, we define

Zor. ={A € 7 |tk(A) =n, def(A) =0 (mod 4)},

(2.5) FSpy, = AN €S| tk(A) = n, def(A) =1 (mod 4)},
Zo;, ={A € 7 |tk(A) =n, def(A) =2 (mod 4)},

F300mp = A € | 1k(A) = n, def(A) =3  (mod 4)}.

Note that A € o if and only if At e 05, where € = + or —. Then we define
505, = {A € Fog, | A#ANY/{AATU{AL AT [A € S0y , A= A",

Le., in S50y, a non-degenerate symbol is identified with its transpose, and a degenerated
symbol A occurs with multiplicity 2 and the two copies are denoted by Al, Al respectively.
Note that yo; does not contain any degenerate symbols and so 5”802_ = 5”05 J{A, A}

2.3. Special symbols

Let G = Spy,,, SO2,+1, 05,, or SO5,, where e = + or —. A symbol Z = (albl‘liQaZ;jl) of
defect 1 is called special if a1 > by > ag > ba > -+ > amy > by > 15 similarly, a symbol
7 = (Céi‘ij?;f) of defect 0 is called special if a1 > by > ag > by > -+ > a,, > by,. Define

1 ifG= szn or SOQn+1,
0 if G =805, or 05,.

5o =

For a special symbol Z of defect &g, we define

Sr={Ae S |NUN=Z"UZ, N NN, =7Z"NZ,},
750 ={A € Sz | def(A) = dp},
Sg=S70Sa,

i.e., %7 is the subset of . consisting of the symbols of the exactly same entries of Z.
Note that in the above definition of fZG’ , the special symbol Z is not required to be in
Y. It is clear that

(2.6) So=J7%
Z

where | J, runs over

e special symbols of rank n and defect 1 if G = Sp,,, or SOg,,41;

+ .
2n)

e special symbols of rank n and defect 0 if G = SO;n or O
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e non-degenerate special symbols of rank n and defect 0 if G = SO,,, or O,,,.

Example 2.1. (1) Suppose that Z = (é) € S1,0- Then we have

A0 {0 ()
(2) Suppose that Z = (*°) € .#3,1. Then we have
o {(2,1())7 (261)’ (1,20)7 (21 0) } 7
i {<210> (2(,)1>’ (1?0>’ (2i 0) } |

For a special symbol Z, let Z1 denote the subsymbol consisting of “singles”, i.e.,

7N 7,
ZI:Z\(Z*mZ)’

and we define the degree of Z by
1
deg(Z) = 5(|1Z1] - def(2))

where |Zj| denotes the number of entries in 7y, i.e., |Zi| = [(Z1)*| + |(Z1)«|. Note that
deg(Z) is always a nonnegative integer. For a subsymbol M C Zi, we define a symbol
Ay € S by

Ay = (Z\ M)uM".

It is not difficult to see that
{Ap | M C Zy,|M| even} if G = Spy,, and def(Z) = 1,
{Ay | M C Z1,|M| odd} if G =SO02,41 and def(Z) =1,

S =
{Ap | M C Zy,|M| even} if G = O3, and def(Z) = 0,
{Apm | M C Zy,|M| odd}  if G = O, and def(Z) = 0.
Note that
505, AN if Z is degenerate (and € = +),
Z =

yZOS"/{A, A'} if Z is non-degenerate,

where Z!, ZI are both equal to Z but are regarded as two elements. Then we have

(92de2(2)  if G = Sp,, or SOgns1,
22deg(Z)=1 if G = 0O, and deg(Z) > 0,
.75 = 22des(Z)=2 if G = SO, and deg(Z) > 0,
1 if G = 05, and deg(Z) = 0,
2 if G =S03, and deg(Z) = 0.
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Note that the family .7 is empty if G = O, SO,,, and deg(Z) = 0.

2n?

Finally we define a pairing (-,-): /& x Sz5, — Fa by
(27) <AM1,AM2> = ‘Ml N Mg‘ (mod 2)

Lemma 2.2. Let Z be a special symbol of defect 6g. Then for any A € YZG and ¥ € L7,

we have

(A,S) = (AL and (A, D){ (A, ) z:fG = so%tl, 05},
# (A, if G =805, 0,,.

Proof. Suppose that A = Ay, and ¥ = Ay, for some My, My C Zy. It is clear that
A* = Agzpa,- The assumption ¥ € . 5, implies that [My] is even. Then

|M1 N M2| + |(ZI \ Ml) N M2| = |M2| =0 (HlOd 2)

Hence the first equality is obtained.
Now suppose that G = SO5,, or O5,,. Note that |M;] is even if € = +, and |M;]| is odd

if e = —. Then the remaining assertion is obtained by the analogous argument. O

3. Lusztig parametrization of unipotent characters

3.1. Unipotent characters of GL,, or U,

In this subsection, let G be a general linear group GL, or a unitary group U,. It is
well-known that the Weyl group Wg = S, and &(S,,) is parametrized by Z(n). For
A € Z(n), we define

|571n| ZwESn (P/\(W)R%w’l if G = GLn7

R$ =
ﬁ 2 wes, <P/\(wwo)l'%%h1 if G =0U,,

where @) denotes the irreducible character of S, corresponding to A, wq is the longest
element in S,,. It is known that R/(\; is up to sign an irreducible unipotent character of G
(cf. [6, §11.7)). Let Sar, = U, = £(n), and let py be R$ or —R$ so that py is an

irreducible character. Then the mapping
2 Sa — E(G,1) given by A — py

is a bijection.

It is known that the parametrization %, above is compatible with the parabolic in-
duction on unipotent characters. More precisely, let G,, = GL,, Us, or Us,+1. For
p € &(Gp, 1), define
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where RS"HGLT is the standard parabolic induction, GLJ{ = GL; defined over F if G,, =

n X 1
GL,; and GLJ{ is the restriction to F; of GL; defined over a quadratic extension of F if
G, = Uy, or Ug,y;. For A € g, we define Q()\) to be a subset of L
partitions of the following types:

.41 consisting of

o If G, = GL,, and \ € Y, then Q()) consists of all partitions X' € /g, ., whose

Young diagrams are obtained by adding a box to the Young diagram of A.

e If G, = Uy, or Ugy,+1 and A € ./, , then Q(A) consists of all partitions N € .Sg

whose Young diagrams are obtained by adding two boxes in the same row or in the

nt1
same column to the Young diagram of A.
Example 3.1. (1) Suppose that A = [3,1,1] € .#gr,. Then
Q) ={[4,1,1],[3,2,1],[3,1,1,1]} C SGaLs-
(2) Suppose that A = [3,1,1] € #y,. Then
QN ={[5,1,1],[3,3,1],[3,2,2],[3,1,1,1, 1]} C H,.

Now the parametrization 7 : .Y — &(G, 1) by A — p, is said to be compatible with

parabolic induction if the following diagram

LG
(32) ffll lffl
& (G, 1) —2> E(Gpyr, 1)

commutes, i.e., Q(pn) = {px | N € Q(\)} for any X € Sg,,.

3.2. Uniform almost characters

First suppose G is a connected classical group SO2,41, Spy,, or SO5,,. For a rational
maximal torus T* in the dual group G* and a rational element s € T, the Deligne—
Lusztig virtual characters RG*7 s is defined in [4] (see also [3]). For the disconnected group

5y We define

05 _ 4% RSO%
(3.3) Ry, =Tndgdr Ry,

For rational maximal tori in G, the following is well known (cf. |21} §3]):

o If G = Spy,, or SO2,,41, it is known that any rational maximal torus in G is conjugate
(under G) to T, for some w € W,,. Moreover, T,, and T, are conjugate if and

only if w, w’ are conjugate under W,,.
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o If G = SO5, or O5,,, it is known that any rational maximal torus is conjugate to
T, for some w € WS (cf. Subsection [2.1)). Moreover, T, and T,, are conjugate in
5o (resp. SOS,) if and only if w, w’ are conjugate under W, (resp. W,").

We recall some definitions from [12, §3.17 and §3.19] (see also [18, §2.3]). For ¥ € ., 5,
(cf. Subsection , we define a uniform unipotent class function RS € 7 (G, 1)* by

)
W ZweWJ oY () (w)R%U,l if G = SOj5, and ¥ degenerate,

qu D wews PI(D) (w)R%’m1 if G = SO5,, and ¥ non-degenerate,
(3.4) Wlnl 2 wew, PI(E) (w)R%U,l if G = Spy,,
(W Zwew, Pren(@)RE, ; if G =S0241,

0¢ 1 0 SO
™ =5 Indgéy (Ry™")-

Note that ¢y (x) is the irreducible character of W, given in (2.1) and T is the bijection
Fnse — Pa(n) given in (2.4)). The class function RS is called an almost character of G.

Lemma 3.2. Suppose that G = OS5, where ¢ = + or —. Then Rgt = eRS for any
DINS yn,O'

Proof. From (3.4), we know that

€
O2n

0% m > wew: Prs(w) R, if e = + and ¥ degenerate,

t = " €

> W I (pT(Et)(w)Rginl if ¥ non-degenerate.

Moreover, from Subsection we have ¢y sty (w) = ey (w) for w € W. O

Now we define 5’% by

y’n,l if G = Sp2n7 SOQn-‘rlu
(3.5) =1 S /(5,50 if G = S0}, OF |
(S €.F0o| D #£2/{D, 5 if G =805, 0.

Here ., 0/{%, X'} means that we choose a representative for each subset {3, 3"} in .7, 0.

Example 3.3. We know that .%5 ¢ = {(3), (g), (f(l)), (5(1)), (i) } The following are all four
possible choices of ysﬁ o- (or yoﬁ_):
4 4

o) (o)} 16) G0)) G) Gy 1))}

we see that .75\ Ysﬂ is a choice of #* _ (or

Moreover, for each above choice of .7, ! _ n
0; SO}

S0y’
ygz).
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Similar to (2.6]), we have the decomposition
Gt
& =75
z
where the union J, is as in (2.6) and

L7 NS it G = Spy,,, SO2,+1,

yGﬁ _
7 =
(L2 N Fn0)/{%, 2} if G =805, 05,.

Lemma 3.4. Let G = Sp,,,, SO2,,+1, SOS,, or 05,,. Then the set {RS | ¥ € Ycﬁ_;} forms
an orthonormal basis for ¥ (G, 1)t

Proof. If G is connected, this is [15, Corollary 4.25]. Now we assume that G = O%,,. From

(3.4), we know that
V2R *(g) if g € SO5,(q),

for any ¥ € Yug . Because |05,,(q)| = 2|S05,,(¢)|, we have

OS
Rz% (9) =

0s L Oc SO5. SO
(R, Ry )og, = (Ry ", Ry )30,

i.e., the set {Rggn | e Yﬁg } is orthonormal. On the other hand, for w € W, it is not
difficult to see that

O¢ —_— O o€
>, V2erm@Rym + Y prm(w)Ry = Ryl

e et
O%n O%n
3. non-degenerate 3. degenerate
Hence the lemma is proved. ]

3.3. Lusztig’s parametrization of unipotent characters

Proposition 3.5 (Lusztig). Let G = Spy,,, SO2p+1, SOS,,, or O, where € = + or —.
There exists a bijection L = LEF: Sa — &(G, 1) denoted by A — py satisfying

1 (—1)<A7E> ifAe S8, Y e YZGﬁ for some special Z,

(36) (RS =1~
0 otherwise,
where
2deg(Z) ZfG = Sp2n7 SO2TL+17
deg(2) if G = O;rn and Z degenerate,
Cy =

2deg(2)+1/2 i1 G = SO;Z and Z degenerate,

odeg(2)-1/2 i1 G = S05,,, 05, and Z non-degenerate.
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Proof. If G = Spy,,, SO2,4+1 or SOS,,, the result is from [13, Theorem 5.8] and |14, The-
orem 3.15]. If G = O5,,, a proof can be found in [19, Proposition 3.6]. Note that the
definition of RS here is slightly different from that in [19, §3.4]. O

A bijective mapping Yo — &(G, 1) satisfying (3.6) is called a Lusztig parametrization

of unipotent characters for G.

Remark 3.6. For G = Sps,,, our definition .#g in is slightly different from the original
definition by Lusztig in |11, p. 134]. Lusztig considers the set ®,, of similarity classes of
unordered pairs (A4, B) of rank n and odd defects. It is easy to see that the mapping
SSp,,, — Pn by (g) — (A, B) is a bijection (cf. [19, (3.5)]). Our definition here is more

convenient for the description of the theta correspondence on unipotent characters.

Lemma 3.7. Suppose that G = Spsy,,, SO2n41, SOS,,, or OS5, where ¢ = + or —. Let
A, 4 o — E(G,1) be two Lusztig parametrizations of unipotent characters for G.
Then Z1(A)F = Z(N)E.

Proof. The lemma follows directly from the definition of the Lusztig parametrizations. [J
Suppose that G = Hle G; where each Gj is a classical group. It is clear that

k k
(G, 1) =¥ (Gi,1) and ¥(G, 1) =) ¥ (Gi, 1)".
=1

i=1
Then we define i i
Jo =], Z&=]]7,
i=1 i=1

and then any Lusztig parametrization £ : .Yg — &(G, 1) is of the form

L T, e, — éa(HleGi,l)
(A1, Ak) = pa, ® - @ pa,

where A; — pp, is given by a Lusztig parametrization .Yg, — &(Gy, 1).

The parametrization .£] given by Lusztig in Proposition[3.5]is compatible with parabolic
induction as follows. Let G, = Spy,, SO2,+1, SO5, or O5,. For p € &(Gy,1), let
Q(p) C (Gn1,1) be defined similarly as in (8.1)). For A € #,,, then Q(A) consists of
all symbols A’ € Sg_ ., such that

n’

n+1

e def(A’) = def(A), and

e T(A') is obtained from Y(A) by adding a box to the Young diagram of T(A)* or the
Young diagram of T(A).,.
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Example 3.8. Suppose that G,, = Sp, and A = (Qio), then YT(A) = [ﬂ, and so T(A') is
equal to [ﬂ, [Iil], B], or [1 1] Therefore

370 271 270 37170
ww={ (1) (0)(3) (o) =7
For ¥ € Yén, it is known that (cf. [8, §6.1.9])

Wit
Indy" s (prz) ®1) E SDT(E’
SreQ(s

By direct computation (cf. [13, (4.6.3)]), we have

n Gn _ n
RG™ o (RS = > Ry
>eQ(s)
We say that the parametrization .2): Yo — &(G,1) is compatible with parabolic
induction if the diagram analogous to (3.2)) commutes, i.e.,

Q(pa) = {pa | A € QA)}.

Note that def(A’) = def(A) for any A" € Q(A). This means that under the parametriza-
tion by Lusztig the defects of symbols are preserved by parabolic induction on unipotent
characters. Therefore, if def(A’) # 0 and A’ € Q(A), then A’ ¢ Q(A).

Lemma 3.9. Let A € 5”0; such that def(A) = 0 and A # A*. Suppose that n > 2. Then
there exists Ay € S+ such that A € Q(A1) and A* ¢ Q(Aq).

2(n—1)

Proof. Write A = (abi’:::’g’") where a,,, by, are not both zero. Let i be the largest index
such that a; # b;. Such an index i exists because we assume that A # A'. Now we consider

the following cases:

e Suppose that i = m = 1. We know that A # ((1]), ((1)) because ((1]), ((1)) € 5’0; which

contradicts to the assumption n > 2.

— If either a; > 2 and by = 0; or by > a; > 1, let Ay = (albzl)
— If either a; =0 and by > 2;0r a1 > by > 1, let Ay = (blail).

e Suppose that i = m > 1.

- If a,, > b, and b1 > am_1, then we have b,,_1 > by, + 1 and let A1 =

(b1 b 71,bm) .

— If ay, > by, and a1 > b1, let Aq = (al,‘..iﬁizim_l).

— If by, > am and am_1 > b1, let Aj = (al"“’am‘Q’“m‘l_l’“m).

blv“’bm
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— If by, > am, and by—1 > ayu_1, let Ay = (bh_fg;;’fjgm_l).

e Suppose that i < m.

o If a; > bi, then a; > bl > lerl — aiJrl and let Al — (al,..-,&i—laai—lyai-i—l,...,llm)‘

1yees0m
— If b; > a;, then b; > a; > Qi1 = bi—l—l and let Ay = (b1,...,bi7f,1b;.:ﬁzli+1,...,bm)'

For all cases, it is not difficult to check that Ay € #p+ A€ Q(A1) and A* ¢ Q(A;). O

2(n—1)

Remark 3.10. It is obvious that the statement in above lemma is not true without the
. 1 t _
> = =
assumption n > 2. Note that A = () € ‘70;” A # A'. However, yoar {()} and

() ={G)- (D}

3.4. Cells in a family of unipotent characters

In this subsection, we recall some result on cells by Lusztig (cf. [13}/14]). Some details and
examples can be found in [17, §4]. Let Z be a special symbol of rank n. An arrangement
® of Z is defined as follows:

e if def(Z) =1, ® is a partition of Z7 into deg(Z) pairs and one isolated element such

that each pair contains one element in (Z1)* and one element in (Z7)s;

e if def(Z) = 0, ® is a partition of Z; into deg(Z) pairs such that each pair contains

one element in (Z1)* and one element in (Z7)..

A subset of pairs ¥ in an arrangement ® is denoted by ¥ < ®. For such an arrangement

® and a subset of pairs ¥, we define a subset C’g v = CUs.w of g as follows:
e if def(Z) = 1, we define
Cow ={Ay | M C Zy, M| even, |IMN¥'| = |(®\¥)NT"™*| (mod 2) for all ¥’ < &};
e if def(Z) = 0, we define

Cow={Ay | M CZ, [ MNV|=|(®\ V)N T¥ (mod 2) for all ¥’ < &}.

It is not difficult to see that

ZEP i def(2)
+
Cow C Q.77 if def(Z)

F2if def(Z)

L,
0 and #(® \ V) even,
0 and #(® \ ¥) odd.
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Here #(® \ ¥) denotes the number of pairs in ¢ \ U. For G = O§,,, a special symbol Z of
rank n and defect 0, and an arrangement ® of Z, a subset of pairs ¥ is called admissible
if #(®\ ¥) is even when € = +; and #(® \ V) is odd when € = —.

The following lemmas are from [17, Lemma 4.17, Proposition 4.18, Lemma 4.34 and

Proposition 4.35].

Lemma 3.11. Let G = Sp,,,, and let A — pp be a Lusztig parametrization of unipotent
characters. Let Z be a special symbol of rank n and defect 1, ® an arrangement of Z, ¥

a subset of pairs of ©.
(i) The class function ZAqu),q, pA is uniform.

ii) For any two distinct symbols A1, Ao € SG, there exists an arrangement ® of Z with
Z
two subsets of pairs Uy, Uy such that A; € Coy, fori=1,2 and Cpy, NCop,y, = 0.

Lemma 3.12. Let G = O5,, where e = + or —, and let A — pp be a Lusztig parametriza-
tion of unipotent characters. Let Z be a special symbol of rank n and defect 0, ® an

arrangement of Z, W an admissible subset of pairs of ®.
(i) The class function ZAEC@\I’ pA 1S uniform.
(ii) A € Cow if and only if A* € Cy p.

(iii) For any two symbols A1, As € YZG such that Ay # AQ,AE, there exists an arrange-
ment ® of Z with subsets of pairs Wi, Wy such that A; € Cp w, for i = 1,2 and
Cq),gll N Cq>,\p2 = 0.

4. Uniqueness of the Lusztig parametrizations

4.1. Unipotent characters of Spsy,

In this subsection, let G = Sp,,,. The following lemma is [18, Proposition 3.3].
Lemma 4.1. Suppose that G = Spy,,, and let p1,p2 € &(G,1). If pg = pﬁg, then p1 = pa.

Proposition 4.2. Let G be Spy,. Then there is a unique bijection £1: Yo — &(G,1)
satisfying (3.6]).

Proof. Suppose that we have two parametrizations A — py and A — p/, from g to
&(G, 1) satisfying (3.6]). From Lemma we see that condition (3.6]) implies that (pp)* =
(pj\)ﬁ. Then by Lemma we conclude that py = p/y, i.e., two parametrizations coincide.

O



18 Shu-Yen Pan

Corollary 4.3. Let G, = Spy,. Then the bijection Z1: Sq, — &(Gn,1) given in

Proposition 1s compatible with the parabolic induction, i.e., the diagram analogous to

(13-2) commutes.

Proof. The original construction of the bijection .Y, — &(Gy,, 1) by Lusztig is compatible
with the parabolic induction (cf. |[11]). By Proposition Lusztig’s original construction
is the only bijection satisfying (3.6) and hence the corollary is obtained. O

For a nonnegative integer k, we define the symbol

(gkgk:l,---vo) if k is even,

(Qk; U1 0) if k£ is odd.

The following are easy to check:
o tk(AP) = k(k +1) and def(AP) =1 (mod 4), ie., AP € Fp, i)
o if A€ Hp, withn < k(k+ 1), then |def(A)| < | def(ATP)],
o if A€ Hsp .,y and A # AP, then |def(A)] < | def(AYP)].

Because the defects are preserved by the parabolic induction, we have the following corol-

lary.

Corollary 4.4. Let £1: sy, — &(Spay, 1), A= pa, be the parametrization in Proposi-
tion . Then the unique cuspidal unipotent character C]?p of Ska(kJrl)(q) s parametrized
Sp Sp _
by the symbol A;", i.e., (7 = p,sp.
k

Lemma 4.5. Let £1: Ss,, — &(Spay,, 1), A+ pp, be the parametrization in Proposi-
tion L2l Then

(1) Lsp,, = p(n),

n,nfl,...,l,O)
nn—1,.,1 /"

(ii) Stsp,, = pa where A = (

Proof. From [3, Corollary 7.6.5], we know that RSPQ" = 1gp, . Because now (f) is a

(%)

special symbol of degree 0, we have Y(Sp”‘ = {( )} P ?pjn by (3.6)), and so (i) is

proved.
Write A = ("7~ L- ’1’0) From [3, Corollary 7.6.6], we see that R Spon Stsp,, - Again,

n—1,...,1

now A is a special symbol of degree 0, we have py = R Ap 2 and (ii) is proved. O
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Example 4.6. Let G = Sp,. We know that
o)A A G () () o)
A G ACT N AG) () ()

The character values of irreducible characters in & (W3) = {gpm | [1] € 2,(2)} are given
by the following table:

(w) | {1} Ao2,s102s1} {s102s102} {s1,028102} {si102,0251}

o |1 1 1 1 1
[0]

(,0[161] 1 1 1 -1 —1

o | 2 0 —2 0 0
H

oo | 1 ~1 1 1 -1
[2]

pro)| 1 ~1 1 -1 1
1,1

Tw T1 T2 T3 T4 T5

where s1, o2 are defined in Subsection We can check that

Ry, 1 =209 + 6011 + 012 + 613 + 0,
Ry, 1 =011 — 612 — 013 + o,

Ro, 1 = —2010 — 011 — 012 + 013 + 0o,
Ry 1= —011 + 012 — 013 + 0o,

Ry, 1= —0y + 610 + 613 + Oo,

where the 6;’s are the notions from [20]. Therefore by (3.4), we have
1
Ry = g[Bria+ 2Ry + Ry + 2Rm, 1 + 2R, 1] = fo,

1 1
R(GQ,O) =1 [Rr,1 — Rry1] = 5(99 + 610 + 011 + 012),

1

1 1
sz’,l) =3 [Rr,1 +2R1,1 4+ Rr,1 — 2R7,1 — 2R151] = 5(99 — 010 + 011 — b12),

0

1 1
RS,O) =3 [Rr,1 — 2R1,1 + Ry, 1 + 2R1, 1 — 2R, 1] = 5(99 — 010 — 011 + b12),

2

1
R?2,1,0) =3 [Rr,1 — 2R7,1 + Rry1 — 2R, 1 + 2R, 1] = 613

2,1
It is known that 6y = 1gp, = P(2) and 013 = Stgp, = P(310) by Lemma Let Z = (210).
_ 2,1
The table for (—1)&4 for T € #z;1 and A € S is
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) &) &) (o)
=] 1 1 1 1
H 1 1 -1 -1
)] 1 -1 1 -1
Then we have
1 1
peny’ =5 [Beoy T Reny + Bog | pent =5 [Beoy + Ry — Bog)|
1 1
oy =5 [Beoy — Ry + Bog | oz =5 [Besy — Ry — Bog)|

We know that

S S
ngg x GLy (p(i) ®1) = 1sp, + 011 + by, Rsﬁg x GLy (P(liO) ® 1) = 09 + 612 + Stsp,,

ol (V) 2 L02) (20 (20N o ((MO0)) = £(20) (10 (21.0\).
— — 0 1 1 1 2 2,1
Then by Corollary we conclude that 0y = POy, 019 = P75 0) 0 = PEY and
1 0

2,1,0

912 = p(1é0) .

4.2. Unipotent characters of SOoy,11

The following lemma is an analogue of Lemma [4.1

Lemma 4.7. Suppose that G = SOgp41, and let p1,p2 € &(G,1). If pg = pg, then
P1 = p2.

Proposition 4.8. Suppose that G = SOan41. Then there is a unique bijection Sg —
& (G, 1) satisfying (3.6)).

Proof. The proof is similar to that of Proposition 4.2 O

Corollary 4.9. Let £1: ./50,,,, —+ 6(SO2,41,1) be the parametrization given in Propo-
sition .8, Then

(i) 1505,41 = p(;);

77/771—1,...71 ).
n,n—1,...,1,0/’

(ii) Stsosn., = pa where A = (

(iii) if n = k(k + 1) for some nonnegative integer k, then the unique cuspidal unipotent

character C,EOOdd of SO2,,+1(q) is parametrized by the symbol

AiOOdd _ (Qk,%:l,...,o) if k is even,
(2F2RL0) i ks odd.
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Proof. For (i) and (ii), the proofs are analogous to that of Corollary [4.4] for (iii) the proof

is analogous to that of Lemma 4.5 O

4.3. Unipotent characters of O,

From (3.3]), we know that Rr(l)ﬁf -sghos = R,(l)ﬁf and then

€

0 Os
{p, RT,Qf>O§n =(p- Sghos Rﬁf)o;n
for any p € £(05,,,1). Therefore,
(4.2) pF = (p-sgnpg )Y,

i.e., two irreducible characters p, p - SgNg — are not distinguishable by their uniform pro-

jections. The following lemma is |18 Proposition 3.5].

Lemma 4.10. Let £1: Yoy — &(05,,1) by A — pa be a Lusztig parametrization of
unipotent characters. Then (pa,)* = (pa,)* if and only if Ay = Ay or Ay = A,

Corollary 4.11. Let £: Yoy — &(05,,1) by A = pa be a Lusztig parametrization of

untpotent characters. Then pat = pa - sgnog -

Proof. 1f A is degenerate, then clearly pye = pa = Rgg” = Rf\)g" "Sghog = PA - SNQg - If
A is non-degenerate, from (4.2) we know that (pa - sgnog )% = (pa)?, and by Lemma [4.10
we conclude that py - SENQos = PAL- O

Corollary 4.12. Let p1, p2 € &(05,,1). prﬁ = pg, then either p1 = py or p1 = p2-sgnoe .

Corollary 4.13. Let G = O5,,, and let A — pp be a Lusztig parametrization of unipotent

characters. Then any bijective mapping G +— &(G, 1) such that {A,A*} — {pp, pat} is

also a Lusztig parametrization of unipotent characters.

Proof. Suppose that .G + &(G,1) given by A — p/y is a bijection such that {A, A"} —

{oa,pac}s Le, {p), P} = {pa, pac}. This implies that (p))* = (p))* = (pa)* = (par)’
and hence the mapping A — p/, satisfies (3.6]), i.e., A — p/y is also a Lusztig parametriza-

tion of unipotent characters for OS,, . O

Corollary 4.14. Let £1: Y05 — &(05,,1) be a Lusztig parametrization of unipotent

characters.
(i) If e =+, then

() Zi: {(5). ()} = {1y -sen0s 1.
(b) £ maps {( nn—1,...1 ), ("71’"72"“’0)} to the two Steinberg characters of Oy, .

n—1n—2...,0 nn—1,..,1
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(ii) If e = —, then

(@) Z: {(0)s (")} = {10,, 5800, }:

(b) A1 maps {(;;711_”1:'2".1“’01), (7;@_;7—711_..2.”1"61)} to the two Steinberg characters of O, .

So3,
=1
(©)

Proof. First suppose that e = +. From [3, Corollary 7.6.5], we know that R S0 -

Therefore,
03, _ pOs,

1
() =) T vattos T ¥or)

and (i.a) is proved from (3.6). Write A = (”;27_7210) From [3| Corollary 7.6.6], we see
S0z, 03, 03, - :

that R, = S‘LSO;r . Then \/iRA =2 AL 1S the sum of two Steinberg characters of

07 and (i.b) is proved.

The proof of (ii) is similar. O

R

It is known that O3, where k > 1 and ¢, = (—1)* has two cuspidal unipotent char-

acters, denoted by C,I€ and C,Igl. Then from above we see that any Lusztig parametrization
A 5’0222 — &(05;,, 1) maps

2% — 1,2k —2,...,1,0 B o
{< - >7<WV—L2k—2P.wL0>}‘*{QHQ}

bijectively.

Example 4.15. Let T; for ¢ = 1,...,5 be parametrized as in Example It is know
that Ty, T3, T4 are maximal tori in OI, and Ty, T are maximal tori in Oy . It is know
that

O+
Ryppy = 1o+ +senoy +2x3, + X} + X;B “Sgho+,

R’%:J =1g; +sgng+ —2X§rq + X;; + X;Q S8+,
R%{l = 1o+ + 5800+ —Xg2 — X2 - 5800t
Ry, = 1o, +8806- X2 + Xp - S800-,
R’(J)?g,l = 1o, +8800; X2 — Xg2 "S8o

where X;q, th, are irreducible characters of Oj{(q) of degrees 2q, ¢* respectively; similarly

X2 18 an irreducible character of O; (q) of degree ¢*. And so we have

5(02—7 1) = {1oiasgnoiaX;—an;_27X;_2 ' Sgnoi }?

5(027 1) = {1OZ,SgHQZan_27Xq_2 'SgnOZ }
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=100 ) (o) () ()}
%4—{(‘0) () Lana) O

2
Suppose we choose yé_jﬁ = {( ),( (1)) ( )} and yﬁ {( ),( :[1))} Then we have

We know that

of 1 of of of
R 34) 3 [Rp 1+ Rpjq +2Rp ] = \7[ of +sgngt |,
of 1. oF of n
R f = E[RT?J — Ry, 1] = Xog
of 1 of of I, 4 i
R({f{l)) = 4\/§ [RT1 1 + RT3 2RT§,1:| = ﬁ [Xq2 + Xq2 ’ Sgnoj{ ]’
o; 1 o; o; 1
Rt =—[—RM —RM J=—[-1, —sgng- |,
©) 2\/5[ Ty, 1 Ts,l] \@[ o, — %8 04]
o5 1 o; _
R(;(l]) - 2\/5[ RT271 + RT 1} = Xg2 580 - ]

From (2.7)), we know that ﬁ[_x‘;_
(o)) =(() )= {Go) (o)) = () ()
oo ()= () ()= () ()

By (3.6), we have

I
S
7N\

o
— =

(am)
N~
O
vl\.') =
L)
~_

1
R = 5

o+

(loj{)jj (Sgn()+)Ii 101 + Sgnoz),

1

\f

1

(p)F = (x> -sengr )t = \f (i = 506 X - s8uop):
O
B

)
1 o; 1
(1o*>ti = (SgnoZ)ﬁ = _ER(O) = 5(

4 2

102 + sgnoz)7

_ _ 1 o; 1, _ -
(qu)ﬂ = (Xq2 : Sgno;)ti = _ER(I%O) = §(Xq2 + qu : sgnoz).

2,1

Therefore any bijection 5’01 — &(05, 1) such that

{0 G torsmo v ()i {(20) (1)} = o)

is a Lusztig parametrization of unipotent characters for O, and any bijection So- =
4

&(0y, 1) such that

{<2,_0>’ (27—0)} ~ {lop-seno; {(2 10) <2’ 1’())} = {Xg X2 - s8n0;
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is a Lusztig parametrization of unipotent characters for O, . In particular, the parametriza-

tions for OI or Oy are not unique.

5. Finite theta correspondence of unipotent characters

In this section we want to purpose several conditions to enforce the parametrization .Yq —
(G, 1) for G = 05, to be unique.

5.1. Finite theta correspondence on unipotent characters

For a nontrivial additive character ¢ of F, let w Sp(W) denote the (character of the) Weil
representation of the finite symplectic group Sp(W) with respect to ¢ (cf. [9]).

Let (G, G’) be a reductive dual pair of the form (Sp,,,, SO2,/41) or (05, Spy,) where
€ = + or — (cf. [2,/10]). The restriction wéG, of the Weil character to G x G’ gives a

decomposition

(5.1) wGG,: Z My p @ p'

peéa(G
peC(G)

where the multiplicity m,,  is either 1 or 0. Then we have a relation

Ot =1{(p.0)) € E(G) x E(G) | my,y # 0}

between &(G) and &(G’) called the finite theta correspondence (or Howe duality) for the
dual pair (G, G’). We say that an irreducible character p € &(G) occurs in @é o if there
exists p' € &(G') such that (p, o)) € OF o

For a symplectic space V' over F,, we have the symplectic similitude group
GSp(V) = {g € GL(V) | (gv, gw) = ky(v,w) for some k, € F and any v,w € V'}.

Note that GSp(V) normalizes the symplectic group Sp(V). Choose an element h €
GSpo,,(q) such that kj is a non-square element in F. For p € &(Spy,), we define the
conjugate character p° € &(Spy,) by p°(g) = p(hgh™1) for any g € Sp,,,(q).

Lemma 5.1. Suppose that (G, G') = (Spay,SO2ur41). If (p, ) € OF . then (7,4 €
@lé“’G, where 1, is another additive character of Fy given by ¢, (z) := ¢(az) and a is a

non-square element in F;.

Proof. Suppose that G = Sp(V) and G’ = SO(V’) for a 2n-dimensional symplectic space
V and a (2n + 1)-dimensional orthogonal space V', and write wé o as in (5.1)). Choose
h € GSp(V') such that kj, is a non-square element in F¢, and let h=u(h,1) € GSp(VRV’)
where

t: GSp(V) x SO(V") — GSp(V @ V).
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Now clearly k5 = kj, and then by [22, Proposition 11] we have wgp(v®v,)oAd éb;(V®V’)
Therefore,
wéa(;': Z My (po Adp) ® Z M p @ p.
pES(G) pes(G)
p'eE(G’) p'eS(G)
Thus the lemma is proved. O

For a quadratic space V over F,, we have the orthogonal similitude group
GO(V) = {g € GL(V) | (gv, gw) = ky(v,w) for some k, € F; and any v,w € V'}.

For p € £(04,,), we can define the conjugate character p¢ € &(05,) as we did for a

symplectic group above.

Lemma 5.2. Suppose that (G,G’) = (OS,,,Spay)- If (p,p) € @é o then (p° p'¢) €
@qé’G,, and (p¢, '), (p,p') € @éﬁG, where Y, is given as in Lemma .

Proof. Suppose that G = O(V) and G’ = Sp(V’) for a 2n-dimensional orthogonal space
V and a 2n’-dimensional symplectic space V', and write wéG, as in (5.1). Choose h €
GO(V) and A" € GSp(V') such that both ky, ks are non-square elements in F and let
h = (h,h') € GSp(V @ V') where

t: GO(V) x GSp(V') — GSp(V & V).
Now k; = kpkps becomes a square element in F* and therefore

WéG’ = wéG, oAd; = Z m, »(poAdy) ® (p' o Adyy) = Z my,yp° @ p'°.
pES(G) pES(G)
p'es(G) p'es(G)
So we have shown that (p, p/) € GéG, implies that (p¢, p’¢) € @é,G" The other assertions

can be proved by an analogous argument in the proof of Lemma O
Let G/, denote SOg,41, Spa,, or O, ,. For p € &(G), it is well-known that if p occurs
in O c.q, then it also occurs in 91(@ o, for any n” > n' (cf. |16, Chapter 3]). We say

that p first occurs in @G G, if it occurs in @G a, and does not occur in GG al,

5.2. Finite theta correspondence on unipotent characters

If (G,G") = (05, Spy,), then the unipotent characters are preserved by @é,G’ (cf. |1,

Theorem 3.5]), i.e., we can write

Whai= D Mugp®p, Of g, =0k N(E(G,1)xEG 1)),
peé(G,1)
p'eS(G' 1)
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where wéG,J denotes the unipotent part of wéG,. Recall that O}, (q) where ¢; = (—1)*

and k > 1 has two irreducible cuspidal unipotent characters. It is well-known that (cf. |1}
Theorem 5.2]) there is a unique labelling C,IC, C,ICI of these two cuspidal unipotent characters

such that ¢} (resp. ¢}) first occurs in the correspondence for the pair (052, SPok(k—1))

(resp. (OZZQa szk(kﬂ)))-
Now we recall some results on @é o1 from [17]. For two partitions A = [A1, A, .. ]

(with Ay > Ao > --+), = [p1, pa, - .| (With gg > pa > --+), we denote
Ap ifpur > >pe>X>pu3 > A3 >0

And then we define a relation #g @/ between .Y and S for (G, G’') = (05,,, Spy,,/) as

follows:
o If e =+, let B @ be the set consisting of pairs (A, A’) € Sg x S such that

(1) T(A), < T(A)* and T(A), < T(A)*,
(2) def(A') = — def(A) + 1;

o if e = —, let B g be the set consisting of pairs (A, A’) € g X g such that

(1) T(A) < T(A). and T(N)* < T(A)..
(2) def(A') = —def(A) — 1.

We say that a symbol A € Fg occurs in Bg g if there is A’ € Fg such that
(A, N') € Bg,ar- For A € Ag, it is not difficult to see that if A occurs in Bg g/, then it
also occurs in B g, for any n" > n'. We say that A first occurs in Bg g, if it occurs

in '@G’G;ﬁ and does not occur in %g g

n’fl'
Example 5.3. (1) We have ((1)),((1)) € 5”02+, (E) € Ssp,, and (i) € Ssp,- Now
T((o) = [l () = []: T((2) = [o], and T((2)) = [5]. and so () first
occurs in f%’o;spo and ((1]) first occurs in %)O;SpQ'
(2) Suppose that k is even, and let Al = (2]“_1’25_2"“’0). Then Al € So+ , def(A}) = 2k
2k
and T(AL) = [8]. Therefore, if A} occurs in B+

2k2 ’Sp2n/ ’

symbol of defect —2k + 1. By (2.3), we have n’ > k(k — 1), i.e., A} first occurs in

then 75, , contains a

0;,2:SPak(k—-1)"

(3) Suppose that k is odd, and let A}€ = (%_1’22_2’”0). Then A}C S YO;kz, def(A}C) =
—2k and T(A}C) = [O]. This means that if A}€ occurs in %, - , then g, ,

0 2k2 ’Sp2n’

contains a symbol of defect 2k — 1. By (2.3)), we have n’ > k(k — 1), i.e., A}C first

occurs in A - .
O,,2:SPak (k1)
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The following proposition is from |17, Corollary 5.36].

Proposition 5.4. Let (G,G’) = (05,,, Spy,/) where e =+ or —. Let £: Yo — (G, 1)
by A — pp and L So — E(G',1) by N — pp be any Lusztig parametrizations for
G, G’ respectively. Then (pa,par) or (pae, par) occurs in @é,cu if and only if (A,A\") or
(A%, A') occurs in Bg -

Remark 5.5. Note that the parametrization ./ is unique by Corollary but £} is not.
So we want to enforce more conditions on % so that % is unique and eliminate the

ambiguity in the above proposition.

5.3. On the uniqueness of Lusztig parametrization for even orthogonal groups

Now we want to enforce extra conditions on the Lusztig parametrization £1: o5 —

&(05,,,1) to make it be uniquely determined.

2n)

(I) We require that .27 by A — pp is compatible with the parabolic induction on
unipotent characters, i.e., we require that Q(pa) = {pa | A’ € Q(A)} where Q(pa)
and Q(A) are defined as in Subsection

(IT) We require that

o for k> 1, L (AL) = ¢ and A (A}) =L e, (L = PAL and (i = Pl where

2%k—1,2k—2,...,1,0\ ¢ 7.
’ il if k£ is even,
(5.2) Ap = ( - ) A = (AL

(2k—1,2k:2,...,1,0) if £ is odd,

€k

and C,i, C,Iﬁl the two cuspidal unipotent characters of O,

given in the previous

subsection;

° .,2”1(((1))) = lo;f and .,2”1(((1))) = Sgho, ie., (L) = 102+ and P(0) = S8ho-

1

0
Note that in addition to the specification of £} on cuspidal symbols, due to Remark
we also need to assign the image of £ at ((1)) or ((1))

Proposition 5.6. There is a unique bijective parametrization Sos — &(05,,,1) where
e = + or — satisfying (3.6)), and (I), (II) above.

Proof. By Corollary the existence of such a bijection £ is obvious, so now we
consider the uniqueness. Let .2, .%]: Fos, — £(05,,1) be two Lusztig parametrizations
of unipotent characters for O§,,. Moreover, suppose that .27, %/ both satisfy (I) and (II)
above. For A € S0y , we know that 2 (A = Z/(A)f by Lemma, and hence by

Corollary either
LN = ZlA) o Z(A) = L) sano, = LAY,
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ie., if Z(A) = Z/(A), then either A" = A or A’ = A*. Now we suppose that £ (A) =
Z{(A") and consider the following three cases:

(1) Suppose that A is degenerate, i.e., A = A'. Then % (A) = Z/(A) implies that
Z(A) = Z{(A) immediately.

(2) Suppose that def(A) # 0. Suppose that the unipotent character .21 (A) = £ (A)
where A’ = A or A' is in the Harish-Chandra series initiated by some unipotent cuspidal
character (. Because def(A) # 0, we have ¢ # ( - sgn. By the requirement in (IT), we have
L(No) = ¢ = Z{(Ap) for some cuspidal symbol Ay such that def(Ag) # 0. By (I), we
must have def(A) = def(A’), and then we conclude that A’ = A, i.e., Z1(A) = Z{(A).

(3) Suppose that A is non-degenerate and def(A) =0, i.e., A € 5’0;” for some n. Now
we are going to prove this case by induction on n. For n = 1, the equality £ (A) = Z{(A)
is enforced by (IT) above. Now suppose that n > 2. Because now A' # A, by Lemma
there exists A1 € S+ such that A € (A1) and A* ¢ Q(A;). By (I) and the induction

2(n—1)
hypothesis, we have

Z1(N) € QL (M) = QL (M) ZZ(A).

Now Z/(A") # £ (A) implies that Z/(A) = Z1(A).

Hence the proposition is proved. ]

Corollary 5.7. Let G = O5,,, and let A — pp be the Lusztig parametrization in Proposi-
tion 5.6l Then

(i) 105n =P(=) and S8loy, = P(0)i
(ii) Loy = () and S8l = P(0)-
Proof. Let A — pp be the parametrization for Of,, satisfying (3.6) and (I), (II) above.

We know that 102_ (resp. sgnOQ_) first occurs in the correspondence for the pair (O3, Spy)
(resp. (O5,Spy)). Therefore by the requirement in (II) above, we have 1o, = (= ()
1,0

(resp. sgho> = al = p(l,O)). Write 105 = pp for some A € 5’05 . By Corollary 4.14

we know that A is either (nfo) or (";0). Because 102— is an irreducible constituent of

RSanGL" (p () ® 1). By (I) above, we must have def(A) = def ((1?0)) = —2, and so we
conclude that 10_ = p( ) and hence SgNg = P(mo)-
Now we are going to prove case (ii) by 1nduct10n on n. By (II) above, we have p(Ly =

10* and P(e) = s8N0} Now by the induction hypothesis, for n > 2, we assume that
]_O;-(n b = p(n 1) and Sgnog-(n Y

Then we know that either A = (8) or A = (2) by Corollary 4.141 Because 102+n €
Q(]_O;_(n—l))’ by (II) we see that A € Q((";")) and therefore A must be (}), ie., we
conclude that 1O2+n =Py and s8Nt = P(0)- O

=P(0): Suppose that 102+n = pp for some A € YO;L.




Lusztig Parametrizations for Classical Groups 29

Example 5.8. Keep the notations in Example Suppose that p1, p2 € &(0,,1) are
the two irreducible characters of degree ¢? satisfying

Oy

RO; XGLl

o
(lo; @1) =1op +p1 Bl g, (Seno; @1) = seng; +02-

Because 102_ =p o) and 88loy = P(19); the parametrization YOZ — &(0y, 1) satisfying
(I), (II) above must be

P() = Loy PE0)=8S8or, P11 )= P10 P(2L0) = P2

2,0 2,1,0

The following proposition which justifies our choice of .£7 in Proposition is from [17,
Theorem 1.8].

Proposition 5.9. Let (G,G’) = (05,,,,Spy,,) where e = + or —. Let £1: Sg — &(G, 1)
and &L : So — E(G', 1) be the unique Lusztig parametrizations given in Propositions
and [£2] respectively. Then the diagram

Be.ar

yG 5/(;/

2 lf{
@’l’

&(G,1) — 2 L g6 1)

commutes, i.e., (pa, par) occurs in @é a1 if and only if (A, A') € Bg .

When both A, A’ are cuspidal, the commutativity of the above diagram can be seen
by the requirement (IT) (cf. Example [5.3)). For general A, A’, the commutativity follows
from the fact that both the correspondence @é o and the parametrizations %1, .Z] are

compatible with the parabolic induction. Details of the proof can be found in [17].

Example 5.10. Let £: o5 — £(05,,1) by A = pj be the parametrization in Propo-
sition Then by Corollary the two Steinberg characters of Of,, are parametrized
by the symbols

( n,n—1,...,1 )7 (n—l,n—?,.,.,()) if € = +,

n—1,n-2,...,0 nn—1,...,1
Gl ), (e 2ty ite=—

(1) If € = +, then one of the Steinberg characters of O3, first occurs in the correspon-

dence © and is paired with Stspz)(n and this Steinberg character is

O;LrsPQ(nfl)vl
parametrized by the symbol (

_1)7

n,n—1,...,1 )
n—1,n—-2,..,0/"

(2) If € = —, then one of the Steinberg characters of O, first occurs in the correspon-

dence ©% and is paired with Stgp2<n and this Steinberg character is

O;n7sp2(n—1)y1
parametrized by the symbol (

,1)7
nfl,nf2,...,1)
nn—1,..,0 /°
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6. Lusztig correspondence and finite theta correspondence

6.1. Lusztig correspondences

Let G be a classical group, and let s be a semisimple element in the connected component
(G*)? of G*. A rational maximal torus T* in G* contains s if and only if it is a rational

maximal torus in Cg+(s). From [3, Theorem 7.3.4], it is known that
Cax* Cax*
<R%*,s7 R%’*,S>G = <RT9,1(S)7 RTﬁ,l(S)>CG* (s)

for any rational maximal tori T*, T'* of G* containing s. Then the mapping

G Cax(s)
Ec,RT*’s = €ECqx (S)RT*,I

can be extended uniquely to an isometry from # (G, s)f onto ¥ (Cg-(s), 1)!. Now a Lusztig
correspondence £5: (G, s) — &(Cg+(s),1), i.e., a bijective mapping satisfying (|1.2)), can

be extended linearly to be an isometry, still denoted by £, of inner product spaces
Ls: V(G,s) = V(Cg+(s),1)

whose restriction to ¥ (G, s)* is uniquely determined.

Suppose that G = Hle Gg. Then G* = Hle G} where G} is the dual group of
G; for each i. For a semisimple element s € G*, we write s = (s1,..., ;) where each
si € G¥ is semisimple, and then Cg+(s) = Hle Cag:(s;). Now a rational maximal torus
T* containing s can be written as T* = Hle T where T is a rational maximal torus in
G;. Therefore, we have Rr_lcf*’é, = ®f:1 R%Sl

Corollary 6.1. Then a bijection £5: &(G,s) = &(Cag=(s),1) is a Lusztig correspondence
if and only if £, = Hle £, where each L5,: &(Gy,si) — &(Ca:(si),1) is a Lusatig

correspondence.
Proof. This is obvious. O

For a semisimple element s € (G*)? with eigenvalues A1, ..., \,, we define
11 Gy (s),

AYC{AL o An ), AL

G = G (s) = G_y(s),

G = GO)(s) = Gy (s),

Q
—
e
Il

Q
—
&

—

»

~—

Il

where Gy (s) is given in [2, Subsection 1.B] (see also [18, Subsection 2.2]). We know that

Cg+(s) ~ GO x GM x GO?),
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and G is a product of general linear groups or unitary group, and
(SPa, 1), SPap)  if G = SO02p41,
(G(l)’ G(2)) = (Og(;()l) 7 SOQn(2)+1) Q= Spgn,
(05,,06%,)  if G =0,

2n(1)7 ~on(2)

for some nonnegative integers nM, n@ depending on s, and some e, €@, Note that if
G = 05,,, then e, €? also depend on s (and €), if G = Sp,,,, then €1) can be + or —

for each s such that n(1) > 1. The element s can be written as
s = 50 » (1) 5 (2
where s() (resp. 3(2)) is the part whose eigenvalues are all equal to —1 (resp. 1), and s

is the part whose eigenvalues do not contain 1 or —1. In particular, s\ is in the center of

GU). Then a Lusztig correspondence

(6.1) £,: &(G,s) = (GO x G x G?) 1)
can be written as

(6.2) Ls(p) = p ¥ @ pV @ p?

where p¥) € £(GW, 1) for j = 0,1,2. It is known that p is cuspidal if and only if G is
a product of unitary groups (i.e., no general linear groups) and each p\9) is cuspidal.
i _ i §
Now YCG* () = YG@ X 5’G(1) X YG(Q) and
R = REY @ RE\) © RYa) € #/(Ca(s), 1)

for ¥ = (2,2, £) ¢ YgG* . We define

(s)
(6.3) RS = g7 1(REe" 9y c v(G, s).

Because {Rgc* (&) | ¥ e Ycﬁ,c*(s)} is an orthonormal basis for #(Cg«(s),1)* and
Ls: V(G,s) = ¥ (Cg=(s),1)

is an isometry which maps 7 (G, s)* onto ¥ (Cg-+(s), 1)?, we see that {RS | ¥ € Yge* (8)}
forms an orthonormal basis for the space ¥ (G, s)f. For p € &(G, s), we have

64) F= 3 (0BESGRE. L= D (20) B )g B,

f o
BE€ELC i (s) €S G ()

Therefore we have £,(p*) = £4(p)* for any p € &(G, s).
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Lemma 6.2. Let £5,£,: &(G,s) — &(Cg~(s),1) be two Lusztig correspondences, and
write £4(p) = p» @ pM @ p?, £ (p) = O @ PV @ @, Then

PO =0 (pM)E= (I (pP)F = ()
Proof. Because £4(pf) = £4(p)*, we have
£,(0) = () @ (P @ (0P, (") = (V) @ (VD) @ ()

Because the restrictions of £ and £ to "//(G 5)* are the same, i.e., £(p%) = £.(p"), we
have (p(O)t = (/O (pW)E = (PO (p2))E = (P)E. Now G is a product of general
linear groups or unitary groups, so we have p(0) = (p(0)t = (p/(0)f = p(0), O

6.2. Lusztig correspondence and parabolic induction

Let G,, = SO2y,+1, Spy,, or O5,, where € = + or —. The group G,, x GL; is the Levi factor
of a parabolic subgroup of G,,;;. Let ¢ be an irreducible cuspidal character of GL;, and so
o € &(GLy, t) for some semisimple element ¢ € GL;(g). For p € &(Gy, s), an irreducible
constituent of RG’”XZGLZ (p@0o)isin &(Gypay, s') where s’ = (s,t) is regarded as an element

in (G7,,)°. Then we define a relation Q;: &(Gn, s) = (G, §') by

() = {# € 8(Gui1.) | (0. RE e (09 ), , 70}

Because we assume that o is cuspidal, one can see that Cgx (s) x GLI is a Levi subgroup
of Car (s") where GLI denotes the restriction to F; of GL; defined over a finite extension
(depending ont) of Fy. Suppose that p’ € Q(p), it is clear that p'® € Q. (p°) for G,, = Sp,,,,
5o (cf. [23, §4.4]), and p' - sgng, ., € u(p - sgng, ) for G, = O3,
We define the relation Q: &(Cq: (s),1) — @@(CGZH(S,)’ 1) as in (3.1)), i.e.,

Cax (5)
o) = {pl © g(CGZH(S/)’ 1 } <p,’RCG;§J(rSl)><GLI(p® 1)>CGZ+Z(S’) 7 O}

for p € &£(Cq:x(s),1). Then we say that a Lusztig correspondence
£s: 8(G,s) = &(Ca=(s),1)

is compatible with the parabolic induction if the following diagram

Q

£(Go, 5) £(Gois, )
(6.5) £J/ lﬁs/

£(Cay(s),1) == &(Ca: ,(s),1)
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commutes for any s and s’ = (s,t) given as above, i.e., for any p € &(G,,s), the two
subsets £ (2 (p)) and Q(Ls(p)) of (?(CGZH(S/)’ 1) are equal (cf. (3.2)).

Now write
Ca(s) = GO(s) x GW(s) x GP(s), Car (s) = GO(s) x GI(s) x GP(s)

and £4(p) = p© @ p) ® p? as in (6.2). Then the diagram (6.5) can be described more
precisely according to the following three cases:
(1) If t =1 and so [ = 1, then GO (s) = G(V(s’) and G (s) = G()(s'), and then the

relation €2 is given by
Q(p(ﬂ) ® oM ® p(2)) =p9 gV Q(p(Q))

where Q(p(?)) is defined as in (3.1)).
(2) If t = —1 and so [ = 1, then G(V(s5) = G(O(s') and GP)(s) = GP)(s), and then

where Q(p)) is defined as in (3.1)).
(3) If t # %1, then GV (s5) = GM(¢') and G?)(s) = GP)(s'), and then

Q20 © o & p®) = 0P @ pV) @ p@

where Q(p(©)) is defined as in (3.1)).

6.3. Modified Lusztig correspondence
For a semisimple element s € G*, we define

G@® if G = SOgp,4+1 or 05,,,

(6.6) GH =gl G =
(G@)* if G = Sp,,.

Combining % in Proposition (for G x G(-) x G()) and the inverse of £ in (6.1)),
we obtain a bijection
cg/ﬂs: ‘SﬂG(O)(S) X yG(f)(s) X yG(H(S) — éo(G',S)

(CL’, Al’ A2) = p1'7A1»A2 = pgAl,Ag'
Note that from Proposition [£.2] Lemmas [£.10] and [6.2] we have

SPon SPon . .
(1) (pg:)ﬁl’/b)ji = (pz?i’l,Ag)ﬁ if and only if

e i/ =1z,



34 Shu-Yen Pan

o Al =Aq, AL,
o Ay =Ay;
(2) (ppxta)t = (pf,?;;,l ) if and only if
o 7/ =1,
o Al =Aq, AL,
o A=Ay AL

Moreover, diagram (6.5)) becomes

Q
yG(O)(s) X YG(7>(S) X YGH)(S) e yG(O)(s’) X ,YG@)(S/) X yG<+)(s’)

(6.7) xsi J{fsr
&(G, ) o &(Gpis, )

where the relation 2 is given as in Subsections [3.1] or

Remark 6.3. If s is a semisimple element in (G*)? such that G(©)(s) is trivial, then an
irreducible character p € &(G, s) is called quadratic unipotent. A Lusztig correspondence
Zs: (A1, A2) = pa, a, of quadratic unipotent characters for G = Spy,,, SOg2,41 or O5,, is
given in [23, §4.11, §4.8, §4.4] respectively.

6.4. Theta correspondence and modified Lusztig correspondence

First suppose that (G, G’) = (Spg,,SO2n/41), and s € G*, s € G’ semisimple. Then
G = OZ(TL_(),), G =Sp,, +), G') =Sp, .y, and G') = Sp, 4, for some () and

some (=), n+) n/(=) n/(+) The following proposition is from [18, Proposition 8.3].
Proposition 6.4. Let (G, G’) = (Spy,,; SO211), and s € G*, s’ € G™* semisimple. Let
.ZS; yG(o)(s) X ‘SﬂG(_)(s) X yGH')(s) — éo(G, S),

Lo yG’(O)(s’) X yG’(_)(s’) X yG’("")(s’) — g(G/7 3/)

be any modified Lusztig correspondences for G and G’ respectively. Then one of

(pI7A1 A2 Px! A A )7 (p:p,Aﬁ,sz px’,A’l,A’Q)
occurs in @é}G, if and only if
o 50 = 5O (up to conjugation) and x = ',

o Ay =A), and
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o (A1, AL) or (A, A)) is in B (5),6/ 0 ()

Remark 6.5. We shall see in Theorem that the modified Lusztig correspondence £y
for SO9y,41 is unique.

Next suppose that (G, G’) = (Spa,, 05,/) where ¢ = + or —, and s € G*, ' € (G™)°
semisimple. Then G- = 05 ' and G = Sp,, 1), G’ =05 [, G =05,
for some (=), ¢(5), () and some n(7), nH), (&) /() The following proposition is

from |18, Proposition 8.1].

Proposition 6.6. Let (G,G’) = (Spy,, 05,,) where € =+ or —, and s € G*, s' € (G*)°

semisimple. Let

.ZS; yG(O)(s) X yG(_)(s) X yGH')(s) — éa(G, S),
Lo yG’(O)(s’) X yG’(_)(s’) X yG’("")(s’) — g(G/73/)

be any modified Lusztig correspondences for G and G’ respectively. Then one of

(P, A1 A5 Par A L) (PoAr ey Peranany)s (PaArAes Porar Az )s  (Po,Ar,Ags Par A A
occuTs in @ég, if and only if

o 500 =3O (up to conjugation) and x = 2/,

o Ay = A}, A}, and

o (AQ,A%) or (AQ,AIQt) 15 1N ‘@G(“')(s),(}’(“')(s’)‘

7. Lusztig correspondences for SOg, 41

7.1. Lusztig correspondence for SOg), 41
Let G = SOg,,11. For a semisimple element s € G*, recall that (cf. (6.1]), (6.2])) we have
£o: E(G,s) — &GO (s) x GW(s) x GA(s),1)
P s 0 & pM) & p?),
Now we know that G (s) = Spy,,(1) and G®@(s) = SPay,(2) for some nonnegative integers

nM, n® depending on s. The group SOg,41 is connected with connected center, so the

following result is considered in [5, Theorem 7.1].

Theorem 7.1. Let G = SOgy,+1 and s € G*. There exists a unique bijection £4: & (G, s)
— &(Ca~(s),1) satisfying (1.2)), i.e., the Lusztig correspondence is unique.
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Remark 7.2. The Lusztig correspondence £ given in the theorem satisfies the commuta-
tivity of the diagram in (6.5). This is a special case of |7, Theorem 4.7.5].

Corollary 7.3. Let G = SOgp+1 and s € G*. Then there is a unique modified Lusztig
correspondence Ly : YG(O)(S) X YGH(S) X LS”GH)(S) — &(G,s).

Corollary 7.4. For p,p € &(SOa,11), then p'* = pt if and only if p' = p.

Corollary 7.5. The bijection £1: &(SO2p+1,1) — &(Spay, 1) is given by pa +— ppe for
A € S50, i-€., the diagram

tysp2n

ffll lffl

£
éa(SO?nJrl’ 1) — g(sp2na 1)
commutes where the mapping on the top is given by A — Ab.

Proof. Recall that W,, = Wso,,,, = Wsp,, and £;: R?f?"’;“ — R,SFEQ”I for w € W,,. From
(3.4), we see that the isometry £1: #(SO2p,41,1) = ¥ (Spay,, 1) maps R;OQ"“ — R;E)Q" for
Ye ygo%ﬂ. Then we see that £1(pa)* = (pae)? for any A € F%o0,,,,. By Theorem
we conclude that £1(pa) = pat. O

Lemma 7.6. Let G = SOqy,11, and let £ be the Lusztig correspondence given in Corol-

lary [T.3} Then
(7.1) XGPz,A1,Ay = Pz, Ao, Ay
where xa denotes the character (of order two) derived from the spinor norm of G.

Proof. 1t is known that XGR%*,S = R%rs for each pair (T*,s), and G (—s) = G0 (s),
G (=s) = GH)(s) and GH)(—s) = G(7)(s). Then the mapping }{%7S > XGR%*,S in-
duces an isometry ¥ (G, s)f — # (G, —s)f such that R§721722 > Rgzg,zl where (z, %, 39)
€ yé*(s) (cf. (6:3)). This means that (XGpwarAs)" = (Puasn,)* for any o € FGO) ()
A € YGH(S) and Ay € YGH)(S). Then we conclude that xGpz a0 = PzAs,A DY
Corollary [7.4] O

Remark 7.7. For the case that G()(s) is trivial, (7.1]) is also given in [23, Proposition 4.8].
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8. Lusztig correspondence for O,

8.1. Lusztig correspondence for O,

Let G = 0§, where € = + or —. For a semisimple element s € (G*)?, recall that (cf. (6.1]),
(6.2)) we have

L0 E(G,s) — &GO (s) x GW(s) x GA(s),1)

Now we know that G(V(s) = Og(;()l) and GP)(s) = Og(:(g) for some nonnegative integers

nW, n? and some e, 2 depending on s such that eWe = ¢

Lemma 8.1. Let G = O, where ¢ = + or —, and let s € (G*)° be semisimple. Let
£s: (G, s) = &(Cq+(s),1) be a Lusztig correspondence and write £4(p) = p© @ p) @
p?). Moreover, let £,: &(G,s) — &(Ca=(s),1) be a bijective mapping and write £.(p) =
PO @ p W @ o', Then £, is a Lusztig correspondence if and only if

o O = ,0).
Y pl(l) — p(l)’p(l) . Sgn}'
o /@ =@ ,@ . gon.

Proof. First suppose that £/ is a Lusztig correspondence. By Lemma we know that
(o) = Sk, i pO = PO, (W) = (VY (p@) = (YD), Now GO is a
product of general linear groups or unitary groups; G and G® are even orthogonal
groups. Then by Corollary we have p/(©) = p(O and p/@ = p® or p/) = p() . ggn
fori=1,2.

Next suppose that p/(9) = p© and p/) = p® or p/® = p . sgn for i = 1,2. Then
we have (p(0)E = (oMY (p2)E = (¢ e, £,(p)F = LL(p)t for any p € &(G,s). This
means that £, also satisfies , i.e., £, is also a Lusztig correspondence. ]

0)

Recall that for p € &(G) the character p© is defined in Subsection

Lemma 8.2. Let G = 05,,, s € (G*)° semisimple, and let £5: &(G,s) — &(Ca~(s),1)
be a Lusztig correspondence. Suppose that p € (G, s) and write £5(p) = P& pM @ p3.
Then we have p° € &(G, s) and

L.(p°) = p D @ (pV) - sgn) @ p1?).

Proof. When GO is trivial, i.e., when p is quadratic unipotent, the result is proved

in [23| §4.4]. The same argument still works here. O
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Corollary 8.3. Let G = 05, s € (G*)° semisimple. Suppose that p € &(G,s) and
P = pPz,Ai,Ao under a modified Lusztig correspondence Zs. Then p¢ = P A Ay -

Proof. This follows from Lemma [8.2] and Corollary immediately. O
Corollary 8.4. For p,p' € £(05,,), then p'* = p* if and only if p' = p, p°, p-sgn, p¢-sgn.

Proof. Let G = O5,,, and let p,p’ € &£(G). By Lemmas and (4.2), we have
(p°)* = p*. Moreover, because of ([3.3)), we have Rgé*fs -sgn = R,(I)é’fs and then (p-sgn)f = pf.
Therefore, if p' = p, p¢, p - sgn, or p - sgn, we have pf = pt.

Next we suppose that pf = p* and p is in &(G, s) for some semisimple s € (G*)°. As
in the proof of Corollary we also have p' € &(G,s). Write £,(p) = p\¥ @ pV) @ p?
and £,(p') = o0 @ p'M @ p'?). By (6.4), we have

(PO @ (M) @ (o) = £4(p") = £,(0") = (P O) @ (V) @ (),

ie., pO =pO@ y@) =M 50 . sen and p'?) = pP, p? .sgn. Now two sets {p, p°,
p - sgn, p¢ - sgn} and

(19 @ s @ p®, o0 & (oD . sgm) & ),
PO @ pM @ (p® - sgn), p @ (pV - sgn) @ (p® - sgn) }

have the same cardinality. We see that if p# = pf, then p’ must be one of p, p, p - sgn, or
p

C

- sgn. O

8.2. Basic characters of O5,,

Let G = Of,. For a semisimple element s € (G*)?, let p € &(G, s) and write £5(p) =
P9 @ pM @ p? for some Lusztig correspondence £,. Assume that both G()(s), G(2)(s)
are not trivial, by Lemma [8.1]and Corollary we know that any Lusztig correspondence
gives a bijection between {p, p, p - sgn, p¢ - sgn} and

PV @ pM @ (p® - sgn), p© @ (p - sgn) @ (p - sgn)}.

Now we consider the situation where

° G(O)(s) is a product of unitary groups, and p(o) is cuspidal; and

2)

e cach of p(, p() is either cuspidal (i.e., is C,IC, C,ICI for some k), or is 103, Seho-
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An irreducible character p satisfying the above conditions is called a basic character. Note

that the class of basic characters is slightly larger than the class of cuspidal characters.

Now we denote the set {p, p°, p-sgn, p¢ - sgn} by {p1, p2, p3, pa}. From Proposition [6.6]
and the result in Subsection we know that exactly two elements (says pi, p2) in
{p1, p2, p3, pa} first occur in the correspondence for the pair (G, G’) = (05, Spa(—k))

where

e (2) 1 A0
(8.1) wo JF =G G
1 if p@ = 103, REURSS

Then we know that {ps, pa} = {p1 - sgn, p2 - sgn} and p2 = pf.
We know that p;xg € &(G, —s) for i = 1,2, 3,4 where yg denotes the spinor character
(cf. Lemma , and any Lusztig correspondence

£y &(G,—5) = E(Cg-(—5),1) = &(GO(s) x GP(s) x GW(s),1)
gives a bijection between {pixa, p2XG, P3XG, PaXc} and

PV @ p? @ (pV) - sgn), p O @ (p? - sgn) @ (p) - sgn)}.

Again, we know that there are exactly two elements in {p1xG, P2XG,P3XG,PaXG} first

occur in the correspondence for the pair (0%, Spy(,,—p/)) where

e (1) _ A I
(8.2) D L
1 if p) = 102+, REURSS

Lemma 8.5. Keep the above settings. There exists a unique character p in {p1, p2, p3, pa}

above such that
e p first occurs in the correspondence for (O5,,, Sp2(n_k/)), and
e pxa first occurs in the correspondence for (05, SpQ(n_h/))
where k', W' are given as in and (8.2).
Proof. We know that there exists p/, p” in {p1, p2, p3, p4} such that
* ', p'° first occurs in the correspondence for (O%,, Spy(,—k), and

e p'xa, (p"xc)° first occurs in the correspondence for (O5,,, SpQ(n,h,)).



40

Shu-Yen Pan

Moreover, we have

{p1,p2.p3, pa} = {p', %, ' - sgn, p'° - sgn},
{p1xa; p2xa. p3xa, paxc} = {0"xa, (p"xc)" P xa - sgn, (p"xc)® - sgn}.

By (23, (1) in §4.3], we know that (p"xa)¢ = p"“xa - sgn, and so the intersection {p’, p°}

N{p”, p"e - sgn} clearly contains exactly one element. O

Remark 8.6. Let p be the character given in Lemma Then

p¢ first occurs in the correspondence for (O5,,, Spag,—i/))s

p°xa first occurs in the correspondence for (O%,,, Spa(n4a)),

p° - sgn first occurs in the correspondence for (05, Spy(n1i)),

(p° - sgn)xg first occurs in the correspondence for (O5,,, Spay(,—p)),
p - sgn first occurs in the correspondence for (O3, Spagn i)

(p-sgn)xg first occurs in the correspondence for (05, Spa4n7))s

where £/, b’ are given in (8.1)) and (8.2) respectively.

Remark 8.7. If GM(s) or G2 (5s) is trivial, the situation is easier as follows.

(1)

If G (s) is trivial and G®)(s) is not, then p = p¢, and p, p - sgn are the only two
irreducible characters whose uniform projection is equal to pf. And it is clear that

exactly one of them first occurs in the correspondence for the pair (O5,,, Spa(,—k/)-

If G?)(s) is trivial and G (s) is not, then p° = p - sgn, and p, p° are the only two
irreducible characters whose uniform projection is equal to pf. Moreover, there is a

unique element p; in {p, p°} such that p;xq first occurs in the correspondence for

the pair (O5,,, SPagn—n))-

If both G (s), GP?)(s) are trivial, then p = p¢ = p - sgn, and so p is uniquely

determined by its uniform projection.

8.3. A uniqueness choice of .Z;

To make a modified Lusztig correspondence

fsi ‘5/(}(0)(5) X yG(—)(s) X yG('H(s) — @ﬁ(G,S)

uniquely determined for G = Of,,, we follow the same idea used in Subsection and

consider the following requirements:
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(I) Z, is compatible with the parabolic induction as in (6.7)).

(IT) Suppose p € &(G,s) is the unique basic character given in Lemma (or in Re-
mark , then .%Z; is required that

— Cc __ C — —
(83)  pP=paAihes P°=Peat ny POSEN= Py AL, P SBN = Pyt AL
where

e 1 € 5’(;(0)(3) is determined by p(©) (cf. Subsection ,
e A € 5”(;(7)(5) is given by

AL if (1) — I7 II’
Ay = 1h . P(l) Ch ¢
(o) if M) = Los seios

* Ay € FG(s) Is given by

N R
2 =

((1)) if p?) = 103, SglG -

Theorem 8.8. Let G = OS5, where ¢ = + or —, and let s € (G*)° be semisimple. There

exists a unique bijection £5: (G, s) = &(Ca+(s),1) satisfying (1.2) and (1), (II) above.

Proof. For s € (G*)°, let £, £.: &(G,s) — &(Cg+(s),1) be two Lusztig correspondences

satisfying (I) and (II) above. Let

fs,.,gsl: yG(O)(S) X yG(_)(S) X yGH')(S) — g(G,S)

be the corresponding modified Lusztig correspondences. Suppose that Z5(z, A1, A2) =
(@', A7, Ay) for some z,2" € g5, My A] € Fgo)(s), A2, Ay € S (s)- Then by
Lemma[8.1] we know that = = 2/, Ay = A}, A}, and Ay = A), A%¥. So we need to show that
A1 = All and A2 = A/2

For Ay, we consider the following two situations:
(1) Suppose that A is degenerate, i.e., Ay = At. This implies that A; = A} immediately.

(2) Next we consider the case that A; is non-degenerate. Suppose that p is an irreducible
constituent of the parabolic induced character Rggn «1.((®0) where ( is a cuspidal

70
character of O5,, (q) for some ng < n, L is a product of general linear groups, and o

is a cuspidal character of L. Suppose that ¢ € £(05,, ,s0) and write
¢ = Zao(x0, Mo,1, No2) = L5 (20, Mg 1. Ap o)

for some 0,7y € FGo) (50 No1: A1 € FGo)(se) a0d o2, Moo € S (sy)- BY
condition (II) above, we know that zo = x4, Ao = Aj 1, and Ag2 = Ag .
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(a) Suppose that def(A;) # 0. By condition (I), we have
def(A1) = def(Ag1) = def (A ;) = def(A]) # def(AY).

This means that A; = A.
(b) Suppose that Ay is non-degenerate and def(A;) = 0, i.e., Ay, A} € S+ for

2n<7)
some n{~). Note that for this case, Ao = A671 = (:) Now we are going to

prove this case by induction on n(=). For n(~) = 1, the equality A, = Al is
enforced by (II) above. Next suppose that n(=) > 2. Because now A £ A,

by Lemma there exists Ay € YOJr( . such that Ay € Q(A;;1) and
2(n\7/—1

A% ¢ Q(A11). By the induction hypothesis and condition (I) above, we have
Lo, A1, Ag) € QL (@, M1,1,A2)) = QL (@, A11,A2)) Z Zi(x, AL, Ag).
Now Z!(x, AY, A) # Ls(x, A1, A2) implies that Ay = A].

By the same argument we can also show that Ay = A}. And then we conclude that
Zs (and hence £;) is uniquely determined by (1.2) and (I), (II). O

Corollary 8.9. Let G = O, where € = + or —, and let Zs be the modified Lusztig
correspondence given in Theorem . Then pz Ay A, - SED = P A AL -

Proof. From (8.3) we see that the assertion is true if p is basic, i.e., if
e GO is a product of unitary groups, and x is cuspidal; and
e cach of Ay, Ay is either cuspidal, or is ((1)), ((1))

In general, suppose that p’ € Q(p) for some ¢ corresponding a cuspidal character of a
general linear group (cf. Subsection [6.2). Then we have p’ - sgn € Qi(p - sgn). Then the
corollary can be proved by induction on the rank of G via the similar argument in the
proof of Theorem O

Corollary 8.10. Let G = O5,, where € = + or —, and let Z; be the modified Lusztig
correspondence given in Theorem . Then XGpz,A1,As = Prz,Ar,A; Where XG denotes the

spinor character.

Proof. Suppose that p; A, A, € &(G, s). By the same argument in the proof of Lemma
we know that xgpea, A, € (G, —s) and (XGpra,As) = (PrAsA, )¢ From Lemma
Remark and , we see that the assertion is true if p is basic. Then the remaining
proof is similar to that of Corollary O
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9. Lusztig Correspondences for Sp,,,

9.1. Lusztig correspondence for Sp,,,

Let G = Spy,,. For a semisimple element s € G* = SOg,,41(q), recall that (cf. (6.1)), (6.2])
we have

£o: E(G,s) — &GO (s) x GW(s) x GA(s),1)

Now we know that G(V)(s) = Og(;()l) and G (s) = SO,,,2) 4 for some e = 4 or —, and

some nonnegative integers n®, n? depending on s.

Lemma 9.1. Let G = Spy,, and s € G* semisimple. Let £5: &(G,s) = &(Cg+(s),1) be
a Lusztig correspondence and write £5(p) = p® @ p() @ p?). Moreover, let £.: £(G,s) —
&(Cg+(s),1) be a bijective mapping and write £(p) = p'© @ p'V @ @), Then £, is a

Lusztig correspondence if and only if
o 0 = p0).
o oV =pM) HM) . gon:
o P& =p®),
Proof. The proof is similar to that of Lemma 8.1 O

Lemma 9.2. Let G = Sp,,,, s € G* semisimple, and let £5: &(G,s) = &(Ca=(s),1) be
a Lusztig correspondence. Suppose that p € &(G, s) and write £5(p) = PO @ pH) @ pA.
Then we have p° € &(G, s) and

L.(p°) = p D @ (pV) - sgn) @ p1?).

Proof. When GO ig trivial, i.e., when p is quadratic unipotent, the result is proved

in [23, §4.11]. The same argument still works here. O

Corollary 9.3. Let G = Sp,,, s € G* semisimple. Suppose that p € &(G,s) and
P = Pz,Ai,Ao under a modified Lusztig correspondence Zs. Then p¢ = P A Ay -

Proof. The proof is similar to that of Corollary [8.3] O
Corollary 9.4. For p,p' € &(Spy,), then p'* = p* if and only if o' = p, p°.

Proof. Let G = Sp,,,, and let p,p’ € &(G). By Lemma p' = p, p¢ implies that
0% = p?. Then remaining proof is similar to that of Corollary O

Example 9.5. Let G = Sp;. Now we follow the notations in [20].
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(1) Let s1 € SO5(g) such that Cso,(s1) ~ Of . Then we can check that
&(Spy, 1) = {01,02, P9, 03,04},  &( O {p 1) ,0(2,1), ,0(1,0)}

where PRy = Lot P(9) = S8Uot- Now £, : &(Spy,s1) — &(0F,1) is a bijection
such that

{93,94} — {p(g),p(g)}, {(I)g} — {p(})}, {91,92} — {p 21 (1 0)}.

2,1
(2) Let sy € SO5(q) such that Cso,(s2) ~ O, . Then we can check that
(5’(8134782) = {95,96797708}, g 04, {p (210>,p(2,1,0)}

where Pl) = 1oos p(0) = S8ho - Now £4,: &(Spy, s2) = &(0y, 1) is a bijection
such that’

{97,98} — {,0 (2 0)}, {95,96} — {,O 1 ,,0(2,1,0)}.

10

9.2. Basic characters of Sp,,,

Let G = Spy,. For a semisimple element s in G*, let p € &(G,s) and write £,(p) =
PO @ pM) @ p® for a Lusztig correspondence £,. Assume that G (s) is not trivial, we

know that any Lusztig correspondence gives a bijection between {p, p°} and
{p(O) ® p(l) ® p(2), p(O) ® (p(l) -sgn) ® p(2)}.
Now we consider the situation where
e GO is a product of unitary groups, and ,0(0) is cuspidal; and
e pW is either cuspidal (i.e., is (,E,, (,{,I for some k), or is 103, SENo 5 and
e p®? is cuspidal.

An irreducible character p satisfies the above conditions is called a basic character. From
Proposition and the result in Subsection we know that exactly one element in
{p, p°} first occurs in the correspondence for the pair (Spy,,, SOg(,—k/)4+1) Where

k lfp 1) = <k7 7
1 if pM) = 103, Sgho -

K =
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9.3. The choice of .Z; with respect to (Spy,,, SO2,/41)

To make a unique modified Lusztig correspondence
gs: yG(O)(S) X yG(f)(s) X yG(Jr)(S) — g(G’,S)

for Sp,,, with respect to the dual pair (Spy,, SO2,/41) we consider the following require-

ments:
(I) We require that %5 is compatible with the parabolic induction as in (6.7)).

(IT) Suppose p € &(G, s) is the unique irreducible basic character which first occurs in

the correspondence for (Sps,,, SOg(,—py+1). Then Z; is required that

(91) P = Px,A1,A2> PC = pw,Atl,Az
where

e € YG(())( s) is uniquely determined by p(®) (cf. Subsection ,
e A€ YGH(S) given by

AL i)Y =G G

1=
((1)) if p) = 10;» SelotH
e Ay € yG(+)(s) is uniquely determined by p?, ie., p@ = PAY (cf. and
Corollary .

Theorem 9.6. Let G = Sp,,, and s € G* semisimple. There exists a unique bijection
Ls: E(G,s) = &(Ca+(s),1) satisfying (1.2) and (1), (II) above.

Proof. The proof is similar to that of Proposition For s € G*, let £,,£.: &(G,s) —
&(Cag+(s),1) be two Lusztig correspondence satisfying (I) and (II) above. Let

gg,cgsl: yG(O)(S) X YG(f)(S) X yG(Jr)(S) — g(G’,S)

be the corresponding modified Lusztig correspondences. Let p € &(G,s) and suppose
that
P = Dg/ﬂs(x7A17A2) == Dg/ps/(x/’ A/7A/2)

for some z,2’ € FGO) () AL A € LG () Ao, A, € G (s)- Then by Lemma H we
know that z = 2/, Ay = A}, and A; = A}, AT. So our goal is to prove that Ay = A}. Now
we consider the following situations:

(1) Suppose that Ay is degenerate, i.e., A; = AY. This of course implies that A; = Af.
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(2) Next suppose that A; is non-degenerate. Suppose that p is an irreducible con-

Pan
p2n0

of Spy,,,(q) for some ng < n, L is a product of general linear groups, and o is a cuspidal

stituent of the parabolic induced character Rg 1.((®0) where ( is a cuspidal character

character of L. Suppose that ¢ € &(Spy,,,,s0) for some so and write
¢ = Lo (0, Mot No2) = Ly, (20, Mg 15 Ap2)

for some 70,2 € FGo)(s9)r Do, Ay € Fao)(sy) and Aoz, Ajo € L) By (1)
above, we know that Ao = A671. By the same argument as in the proof of Theorem
we conclude that A; = A].

Therefore the theorem is proved. O

Remark 9.7. Note that the modified Lusztig correspondence % in the theorem depends
on the theta correspondence Gé,va in particular, it depends on the choice of ¥. Let £/
be the corresponding modified Lusztig correspondence with respect to another character
' =), where a € F/ is a non-square element. Then by Lemmas and we see that

fs({ﬂ, Al,Ag) = fs’(x, Ag,Ag)

for x € yG((J)(s)? A€ yG(*)(s)v As € yG(Jr)(s)'

To justify the choice of .Z; in the above theorem, we have the following result which
refines Proposition [6.4]

Theorem 9.8. Let (G, G’) = (Spy,,, SO2n/41), and s € G*, s’ € G™* semisimple. Let
ZS: yG(O)(s) X yG(f)(s) X yGH)(s) — éo(G, S),
Lo yG’(U)(s’) X yG’(_)(s’) X yG’("")(s’) — g(G’7 3/)

be the modified Lusztig correspondence for G given in Theorem and the Lusztig cor-
respondence for G’ given by Theorem respectively. Then (Pm,Al,Asz/,A’l,Ag) € @é Y
if and only if

o 50 = _gO) (up to conjugation) and x = ',
e Ao = A, and
o (A1, AY) € B, (s)-
Proof. Suppose that (pm’Al7A2,px/7A/17A/2) € @éG,. Then by Proposition we have
o 50 =_¢0 and 2 = o/,

e Ay =Al, and
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° (Al,A/Q) or (A?“A/Q) is in ‘@G(l)(s),G’@)(s’)'

Now we want to show that in fact (A1, A) € Bga)(s) g2 (s)- Note that (GW(s),G"A)(s"))
= (OESZwSan'(?)) for some €M), and some n), n/@. Now we consider the following

situations:
(1) Suppose that def(A1) # 0. First we consider the case that both A, A} are cuspidal.

(a) Suppose that (pz a;,Azs Pur, A Ag) first occurs in the correspondence for the pair
(SP2n> SOg(n—ky41) for some k, i.e., (GW(s),G'A (")) = (032, SPag(k—1))-
From our choice of .%; (cf. (9.1)) and %y, we know that Ay = A} (cf. (5.2))
and A, = Aiil (cf. (1.1)), and it is clearly that (Ay,Ab) € B (s),G2) (51

(b) Suppose that (pz,A,,A5: Per,A7,,) first occurs in the correspondence for the pair

(SP2n> SO2(n4k)+1), i€ (G(l)(s),G’(2)(s’)) = (O;ZQ,Ska,(k,H)). Now we have

A = Al and A = Agp, and again (A1, A}) € B (), (s

Now if Ay or A} is not cuspidal, by the same argument in the proof of |17, Proposi-
tion 6.4] we still conclude that (A1,A)) € B () @ (s)-

(2) Suppose that def(A;) = 0. Then def(A)) = 1.

(a) Suppose that Ay = (7), ie., (G (s), G'D(s")) = (Of, Spy, ). This case is

obvious.

(b) Suppose that A = ((1)) or ((1)) If (po,Ar,Azs Par,a7,Ay) first occurs in the corre-
spondence for the pair (Spy,, SO2,-1), then Ay = ((1)), (GM(s),G'A(s)) =
(0F,Spy), and Ay = (2) If (pz,A1 A0 Par A7 Ay) first occurs in the correspon-
dence for (Spy,,, SO2p,+1), then Ay = ((1)), (GW(s),G"?)(s")) = (OF,Sp,), and
AL, = (i) We have (A1, A)) € PBc)(s),62) (s for both situations.

Now for general A; and Af, we can use the same argument in |17, §6] (in particular

the proof of Proposition 6.20) and conclude that (A1, A}) € B (s),6/) (s1)-

Therefore the theorem is proved. O
9.4. The choice of %, with respect to (Sps,, O%,,)
Keep the settings in Subsection Now any Lusztig correspondence gives a bijection
{00} = {0V @ pM & p@, p0 @ (pV) - sgn) @ p?}

where p € &(G, s) is a basic character. Now p? is a cuspidal character of SO,,,2) 41, SO
we assume that p(?) = CSOO‘“ for some k. By Proposition we know that both p, p© first
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occur in the correspondence for the pair (G, G’) = (Spay,, Og(n_k)) for some e. Suppose
that (p,p') € @é}G, for some unique p' € &(G’,s") and write p’ = p, p; a, Where Ly is
given in Theorem Note that (p°, p/©) also occurs in @é o by Lemma

Now besides the condition (I) given in Subsection we also consider the following

requirement:

(ITI) Suppose p € &(G, s) is a basic character given above. Then .%; is required that

(92) P = Px,A1,A2> pc = pl’,A'i,AQ
where

e rC YG(O)(S) is uniquely determined by p(o),

o A1 € G- (s given by Ay = A} where A is determined by p’ as above,

e Ay € YG(+)(S) is uniquely determined by p?, ie., p@ = PAL (cf. and
Corollary .

Theorem 9.9. Let G = Sp,,, and s € G* semusimple. There exists a unique bijection

Ls: E(G,s) = E(Ca+(s),1) satisfying (1.2)), (I) in Subsection and (III) above.
Proof. The proof is analogous to that of Theorem O
Now we have the following result which refines Proposition

Theorem 9.10. Let (G,G’) = (Spy,, 05,/) where e = + or —, and s € G*, s' € (G™)°

semisimple. Let

fsi yG(‘))(s) X yG(*)(s) X yG(H(s) — (o(d(G,S),
gs/: yG(O)(S/) X yg@)(y) X yGH»)(S/) — g(GI731)

be the modified Lusztig correspondence for G given in Theorem and the modified
Lusztig correspondence for G’ given by Theorem respectively. Then (Px,Al,A2,,0x/,A’1,A/2)
€ @é o if and only if

e 500 =3O (up to conjugation) and x = 2,
e Ay =A), and
o (A2, 05) € Bas),a(s)
Proof. Suppose that (pz,a;,A2; P2 A AL) € @éG,. Then by Proposition we have

o 50 =g and 2z = o/,
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[ Al = A/lellt’ and
[ (AQ,A%) or (AE,A/Q) is in ‘%G(+)(s),G’(+)(s/)‘

Note that (G(H)(s), G'H)(s)) = (Sp2n(+),O;:;(>+)) for some n(*), (), n/+). By the same
argument in the proof of Theorem we can conclude that (Ag, A)) € B+ (s),GH) ()

Next we want to show that Ay = A}. If A; is cuspidal or is equal to (é), ((1)), and As is
cuspidal, we have A1 = A by the requirement of .Z; in . Then by the same argument
in the proof of Proposition we can conclude that Ay = A for general A;. O
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