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On the Limiting Spectral Distributions of Stochastic Block Models

May-Ru Chen and Giap Van Su*

Abstract. Erdős–Rényi graph is a random graph in which the probability of a connec-

tion between two nodes follows a Bernoulli distribution independently. The stochastic

block models (SBM) are an extension of the Erdős–Rényi graph by dividing nodes

into K subsets, known as blocks or communities. Let ÃN = (Ã
(N)
ij ) be an N × N

normalized adjacency matrix of the SBM with K blocks of any sizes, and let µÃN
be

the empirical spectral density of ÃN .

In this paper, we first showed that if the connecting probabilities between nodes

of different blocks are zero, then limN→∞ µÃN
= µ exists almost surely, and we gave

the explicit formulas for µ and its Stieltjes transform, respectively. Second, we showed

under a suitable condition on the maximum of connecting probability between nodes

in different blocks, say by ζ0, µÃN
converges both in probability and expectation as

first N → ∞ and then ζ0 → 0.

1. Introduction

Random matrix theory (RMT) plays an important role in many fields, such as physics,

chemistry, economics, statistics, data science, and social science (see, e.g., [5, 15, 25]). An

interesting problem in RMT is to determine the limiting distribution of the empirical

spectral distribution (ESD) of a random matrix as its size goes to infinity. In the 1950s,

Wigner [26,27] derived the semicircle law for a particular class of real symmetric random

matrices, called Wigner matrices. Later, numerous results were published on the spectrum

of Wigner matrices (see, e.g., [4, 11,12,17,22]).

Random graph theory is an interesting branch of RMT, which can be viewed as the

intersection between graph theory, probability theory, and computer science (see, e.g.,

[5, 7, 13, 15, 20, 28]). In 1959, Erdős–Rényi [13] considered a random graph with N nodes,

in which the associated adjacency matrix AER = (AER
ij )Ni,j=1 has entries that represent

the connection between two nodes that independently follows a Bernoulli distribution

with a probability of success p ∈ (0, 1) that depends on N . Ding and Jiang [10] showed

that if sup1≤i<j≤N E|AER
ij − p|t/

√
p(1− p) < ∞ for some t > 0 and Np(1 − p) → ∞,
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then the ESD of the scaled matrix AER/
√
Np(1− p) weakly converges to the semicircle

law almost surely. Tran et al. [24] derived that when Np → ∞, the ESD of the matrix

AER/
√
Np(1− p) converges in distribution to the semicircle distribution as N → ∞.

Holland et al. [14] introduced stochastic block models (SBM), which generalize the

Erdős–Rényi graph. A stochastic block model is an undirected random graph with N

nodes divided into K blocks, denoted by {C1, C2, . . . , CK}. Without loss of generality, we

label the nodes by 1, 2, . . . , N satisfying

C1 = {1, 2, . . . , N1}, C2 = {N1+1, . . . , N1+N2}, . . . , CK =

{
K−1∑
m=1

Nm + 1, . . . ,

K∑
m=1

Nm = N

}
,

where
∑K−1

m=1 Nm = 0 ifK = 1. Let αm = Nm/N fixed, m = 1, 2, . . . ,K. ThenNm = αmN

and
∑K

m=1 αm = 1. For m,n = 1, . . . ,K, the connection between nodes i and j exists

with probability pm = pm(N) if i, j ∈ Cm and with probability pmn = pmn(N) if i ∈ Cm,

j ∈ Cn and m ̸= n. All edges are distributed independently. Without loss of generality,

assume hereafter that p1 ≥ p2 ≥ · · · ≥ pK .

Let AN = (A
(N)
ij )Ni,j=1 be N ×N adjacency matrix of GN with

A
(N)
ij = A

(N)
ji ∼

B(pm) if i, j ∈ Cm, m = 1, . . . ,K,

B(pmn) if i ∈ Cm, j ∈ Cn, m ̸= n,

where A
(N)
ij ∼ B(p) means that A

(N)
ij follows the Bernoulli distribution with mean p. Let

also ÃN = γ(N)[AN − E(AN )] be the normalized matrix of AN , where γ = γ(N) =

1/
√
Np1(N)(1− p1(N)) and E[AN ] =

(
E[A

(N)
ij ]

)N
i,j=1

. Thus, the entries of ÃN satisfy

that

(1.1) Ã
(N)
ij = Ã

(N)
ji ∼

C(pm, γ) if i, j ∈ Cm, m = 1, . . . ,K,

C(pmn, γ) if i ∈ Cm, j ∈ Cn, m ̸= n, m,n = 1, . . . ,K.

Here, the random variables C(p, γ) with 0 ≤ p ≤ 1 are distributed as follows:

C(p, γ) =

γ(1− p) with probability p,

−γp with probability 1− p.

The stochastic block models have been widely studied in the statistical analysis of

graphs and networks (see, e.g., [1, 8, 19]). Athreya et al. [2] derived the weak convergence

of the joint limiting distribution of the largest eigenvalues of the SBM’s adjacency matrix.

Avrachenkov et al. [3] analyzed the asymptotic ESD of the normalized adjacency matrix of

the SBM with each community having the same size. Recently, there has been significant

interest in community detection in SBM (see, e.g., [1,6]). The aim of community detection

is to partition nodes into groups with a higher probability of connection within the same
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group than between different groups. Therefore, in this paper, we consider the SBM with

the assumption pm ≥ pmn, m,n = 1, . . . ,K and m ̸= n. Throughout this paper, we mainly

employ tools developed in RMT to study the asymptotic ESD of the adjacency matrix of

the SBM in which communities can be of different sizes.

The organization of this paper is as follows. First, in Theorem 1.5, we show that if the

connecting probabilities between the nodes of different blocks are zero, then the limiting

ESD of the stochastic block models exist almost surely. We provide explicit formulas for

the limiting ESD and its Stieltjes transform. In particular, the semicircle law for the

limiting ESD of the Erdős–Rényi graph is a special case of our results. In Corollary 1.6,

we give all the moments of limiting ESD. Finally, in Theorem 1.7, we derive that under

a suitable condition on the probabilities of connection between nodes in different blocks,

the limiting ESD converges in both probability and expectation. All proofs are presented

in Section 2.

Before presenting the main results, we review some definitions.

Definition 1.1. [21, 22] Let MN = (ξij) be an N × N symmetric random matrix with

independent random entries ξij = ξji. Define the empirical spectral distribution (ESD) of

MN by

µMN
(x) =

1

N

N∑
i=1

δλi
(x)

and the empirical cumulative distribution function (abbreviated to ECDF) of MN by

FMN
(x) =

1

N

N∑
i=1

χ{λi ≤ x} =

∫ x

−∞
dµMN

(t),

where λi = λi(MN ), λ1 ≥ λ2 ≥ · · · ≥ λN are the eigenvalues of MN , χ is the indicator

function and δp is the Dirac’s delta function at the point p.

Let Cc(R) be the set of continuous functions with compact support. Next, we will

examine three distinct notions of weak convergence for µMN
. For brevity, we will use the

symbol “
w−→” to denote weak convergence from this point forward.

Definition 1.2. [21–23] Let µMN
be the ESD of a random matrix MN which are random

probability measures, and let µ be a deterministic probability measure.

(i) µMN

w−→ µ in the almost sure sense (a.s.) if Pr
(
limN→∞

∫
R φdµMN

=
∫
R φdµ

)
= 1

for all φ ∈ Cc(R).

(ii) µMN

w−→ µ in probability (in p) if for any ϵ > 0, limN→∞ Pr
(∣∣ ∫

R φdµMN
−
∫
R φdµ

∣∣ >
ϵ
)
= 0 for all φ ∈ Cc(R).
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(iii) µMN

w−→ µ in expectation if limN→∞E
[ ∫

R φdµMN

]
=
∫
R φdµ for all φ ∈ Cc(R).

Remark 1.3. From Definition 1.2 and probability theory, it is not hard to see that if

µMN

w−→ µ a.s., then µMN

w−→ µ in p.

Next, we review the Stieltjes transform, which is a useful tool in random matrix theory.

Definition 1.4. [22] The Stieltjes transform of a given cumulative distribution function

F (or a probability measure µ, respectively) is defined by

sF (z) =

∫
R

1

x− z
dF (x)

(
or by sµ(z) =

∫
R

1

x− z
µ(dx), resp.

)
for z ∈ C+ = {x+ iy : x ∈ R, y > 0}.

Notice that the density µ can be recovered from the Stieltjes inversion formula:

(1.2) µ(x) = lim
y↓0+

1

π
ℑ(s(z)), z = x+ iy ∈ C+, x, y ∈ R,

where ℑ(z) is the imaginary part of the complex number z.

To simplify the notation, throughout this paper, let

ζm(N) =
pm(N)(1− pm(N))

p1(N)(1− p1(N))
, ζ0(N) = max

m,n=1,...,K
m̸=n

pmn(N)(1− pmn(N))

p1(N)(1− p1(N))

for m,n = 1, 2, . . . ,K and m ̸= n, and let

ζm = lim
N→∞

ζm(N), m = 0, 1, 2, . . . ,K.

Note that ζm(N) and ζm are deterministic for all m. The main contribution of this

paper is the derivation of Theorems 1.5 and 1.7. All proofs are in Section 2.

Let B̃N = (B̃
(N)
ij )Ni,j=1 be the normalized matrix of the SBM given by (1.1) with

pmn = 0 for all m ̸= n. Then we have the following theorem. Moreover, in the proof of

Theorem 1.7, the matrix B̃N will depend on the matrix ÃN given in Theorem 1.7.

Theorem 1.5. Let B̃N be the normalized matrix of the SBM given by (1.1) with pmn = 0

for all m ̸= n, and let µ
B̃N

be the ESD of B̃N . If limN→∞ γ = 0 and 0 < ζm < ∞ for

m = 1, 2, . . . ,K, then there exists a deterministic probability measure µ such that for all

x,

µ
B̃N

w−→ µ almost surely as N → ∞,

where

µ(x) =
K∑

m=1

√
4αmζm − x2

2πζm
χ
{
|x| <

√
4αmζm

}
and the Stieltjes transform of µ is given by

(1.3) sµ(z) =
K∑

m=1

−z +
√

z2 − 4αmζm
2ζm

.
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Corollary 1.6. Assume µ is as defined in Theorem 1.5. Then the k-th moment of µ is

∫
R
xk dµ(x) =

0 if k is odd,

1
j+1

(
2j
j

)∑K
m=1 α

j+1
m ζjm if k = 2j is even,

where
(
m
n

)
= m!

n!(m−n)! .

In Theorem 1.7, we consider the adjacency matrix determined by (1.1) with assuming

pm ≥ pmn, m,n = 1, . . . ,K and m ̸= n.

Theorem 1.7. Let ÃN be the normalized matrix of the SBM given by (1.1). Assume

pm ≥ pmn, m,n = 1, . . . ,K and m ̸= n. If limN→∞ γ = 0 and 0 < ζm < ∞ for

m = 0, 1, 2, . . . ,K, then, for almost all x ∈ R, limζ0→0 limN→∞ µ
ÃN

w−→ µ in p and in

expectation, where µ(x) is as defined in Theorem 1.5.

2. Proofs

2.1. Proof of Theorem 1.5

In our model, the distributions of all Aij depend on N , so for any fixed i and j in the

same block and for different values ofN , the distributions of {A(N)
ij }{N∈N} are not identical.

Therefore, to prove Theorem 1.5, we will use Theorem 2.9 in [4], which is stated as follows:

Theorem 2.1. [4, Theorem 2.9] Suppose that MN = (M
(N)
ij )i,j≥1 is an N × N Wigner

matrix whose entries above or on the diagonal are independent (not necessarily identically

distributed) random variables with mean zero and unit variance. If, for any constant τ > 0,

lim
N→∞

1

N2

∑
ij

E
[
|M (N)

ij |2χ
{
|M (N)

ij | ≥ τ
√
N
}]

= 0,

then the ESD of M
(N)
N /

√
N converges weakly to the semicircle distribution µsc a.s. as

N → ∞, where

µsc(x) =

√
4− x2

2π
χ{|x| ≤ 2}.

We also need the following lemma for the proof of Theorem 1.5. Recall that γ =

γ(N) = 1/
√
Np1(1− p1), C+ = {x + iy : x ∈ R, y > 0} and {ζm}Km=1 are defined in

Section 1.

Lemma 2.2. [22, pages 171–172] Let {µN} be a sequence of random probability measures

on the real line, µ be a deterministic probability measure, and sµN (z) (or sµ(z)) be the

Stieltjes transform of µN (or µ, respectively).

(i) µN
w−→ µ a.s. if and only if sµN (z) converges to sµ a.s. for every z ∈ C+.
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(ii) µN
w−→ µ in p if and only if sµN (z) converges to sµ in p for every z ∈ C+.

(iii) µN
w−→ µ in expectation if and only if EsµN (z) converges to sµ for every z ∈ C+.

Proof of Theorem 1.5. From the definition of B̃N , denote

(2.1) B̃N =


W1 0 · · · 0

0 W2 · · · 0
...

...
. . .

...

0 0 · · · WK

 ,

where Wm is an Nm×Nm symmetric matrix whose entries follow the distribution C(pm, γ)

with mean zero and variance ζm(N)/N , m = 1, . . . ,K. Since 0 < ζm = limN→∞ ζm(N) <

∞ for all m = 1, 2, . . . ,K, it follows that for any ϵ > 0, there exists N0 ∈ N such that

ϵ < ζm(N) < ∞ for all m = 1, 2, . . . ,K and all N ≥ N0. Thus, for any m = 1, . . . ,K and

all N ≥ N0, all entries of the matrix X
(Nm)
m = Wm

√
N/ζm(N) are mean zero and unit

variance. Moreover,

lim
N→∞

1

N2
m

∑
i,j∈Cm

E
[
|(X(Nm)

m )ij |2χ
{
|(X(Nm)

m )ij | ≥ τ
√

Nm

}]

= lim
N→∞

1

N2
m

∑
i,j∈Cm

[
(1− pm)2

pm(1− pm)
pmχ

(
1− pm√

pm(1− pm)
> τ

√
Nm

)

+
p2m

pm(1− pm)
(1− pm)χ

(
pm√

pm(1− pm)
> τ

√
Nm

)]

= lim
N→∞

1

N2
m

∑
i,j∈Cm

[
(1− pm)χ

(
1− pm√
p1(1− p1)

> τ

√
αmNpm(1− pm)

p1(1− p1)

)

+ pmχ

(
pm√

p1(1− p1)
> τ

√
αmNpm(1− pm)

p1(1− p1)

)]
= lim

N→∞

[
(1− pm)χ

(
γ(1− pm) > τ

√
αmζm(N)

)
+ pmχ

(
γpm > τ

√
αmζm(N)

)]
≤ lim

N→∞

[
χ
(
γ(1− pm) > τ

√
αmζm(N)

)
+ χ

(
γpm > τ

√
αmζm(N)

)]
.

Since limN→∞ γ = 0 and 0 < ζm = limN→∞ ζm(N) < ∞ for all m = 1, . . . ,K, it follows

that for any m = 1, . . . ,K and τ > 0,

lim
N→∞

γ(1− pm) = lim
N→∞

γpm = 0 < τ
√
αmζm = lim

N→∞
τ
√

αmζm(N),

which implies that

lim
N→∞

χ
(
γ(1− pm) > τ

√
αmζm(N)

)
= 0 = lim

N→∞
χ
(
γpm > τ

√
αmζm(N)

)
.
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Therefore,

lim
N→∞

1

N2
m

∑
i,j∈Cm

E
[
|(X(Nm)

m )ij |2χ
{
|(X(Nm)

m )ij | ≥ τ
√
Nm

}]
= 0.

Next, from Theorem 2.1, for each m and all x, as N → ∞, the ESD µm of X
(Nm)
m /

√
Nm

= Wm/
√
αmζm(N) converges weakly to the semicircle law µsc a.s. That is, for each m

and all x, as N → ∞,

µm(x)
w−→ µsc(x) a.s.

Let sµ
B̃N

and sµm be the Stieltjes transforms of µ
B̃N

and µm, respectively, where m =

1, . . . ,K. According to Lemma 2.2, we see that for all z ∈ C+,

(2.2) sµm(z) → ssc(z) a.s. as N → ∞.

Refer to [22, page 172], the Stieltjes transform for the ESD µM of an N × N symmetric

matrix M is defined as

sµM =
1

N
tr(M − zIN )−1,

where IN is the N ×N identity matrix. Consequently, this implies that for every z ∈ C+,

sµ
B̃N

(z) =
1

N
tr[(B̃N − zIN )−1]

=
1

N

K∑
m=1

tr[(Wm − zINm)
−1]

=
K∑

m=1

Nm

N

1

Nm

√
1

αmζm(N)
tr

( Wm√
αmζm(N)

− z√
αmζm(N)

INm

)−1


=
K∑

m=1

√
αm

ζm(N)

1

Nm
tr

( Wm√
αmζm(N)

− z√
αmζm(N)

INm

)−1


=
K∑

m=1

√
αm

ζm(N)
sµm

(
z√

αmζm(N)

)
,

which combining with (2.2) implies that

(2.3) sµ
B̃N

(z) =

K∑
m=1

√
αm

ζm(N)
sµm

(
z√

αmζm(N)

)
a.s.−−→

K∑
m=1

√
αm

ζm
sµsc

(
z√

αmζm

)
as N → ∞.

Further, since the Stieltjes transform of µsc is

ssc(z) =
−z +

√
z2 − 4

2
, z ∈ C+,



1218 May-Ru Chen and Giap Van Su

it follows that by (2.3), for every z ∈ C+, as N → ∞,

sµ
B̃N

(z) →
K∑

m=1

√
αm

ζm
sµsc

(
z√

αmζm

)
=

K∑
m=1

√
αm

ζm

(
−z/

√
αmζm +

√
z2/αmζm − 4

2

)

=

K∑
m=1

−z +
√

z2 − 4αmζm
2ζm

=
K∑

m=1

cm(z),

where cm(z) = (−z +
√
z2 − 4αmζm)/(2ζm), m = 1, . . . ,K.

Using the formula on the square root of a complex number (see [9, page 72]), it follows

that for each m = 1, 2, . . . ,K and any z = x+ iy ∈ C+, the imaginary part of cm(z) is

ℑ(cm(z)) =
1

2ζm

√√(x2 − y2 − 4αmζm)2 + 4x2y2 − (x2 − y2 − 4αmζm)

2
− y

 ,

and then

lim
y↓0+

1

π
ℑ

(
K∑

m=1

cm(z)

)
=

1

π

K∑
m=1

lim
y↓0+

ℑ(cm(z))

=

K∑
m=1

1

2πζm

√
|x2 − 4αmζm| − (x2 − 4αmζm)

2

=

K∑
m=1

√
4αmζm − x2

2πζm
χ
{
|x| <

√
4αmζm

}
.

(2.4)

Since
∑K

m=1

√
4αmζm−x2

2πζm
χ
{
|x| <

√
4αmζm

}
is a deterministic probability measure, denote

µ(x) =

K∑
m=1

√
4αmζm − x2

2πζm
χ
{
|x| <

√
4αmζm

}
.

Then from the Stieltjes inversion formula (1.2) and (2.4),

(2.5) sµ(z) =
K∑

m=1

cm(z) =
K∑

m=1

−z +
√

z2 − 4αmζm
2ζm

.

By (2.3) and (2.5), as N → ∞, sµ
B̃N

(z) → sµ(z) a.s. for every z ∈ C+. Therefore, using

Lemma 2.2, as N → ∞, µ
B̃N

w−→ µ a.s. Hence the proof is completed.

Remark 2.3. The deterministic probability measure µ can also be obtained from (1.3) and

we show it as follows:
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From the definition of the Stieltjes transform and by µsc(x) =
√
4−x2

2π χ{|x| ≤ 2}, it
follows that for every z ∈ C+,

K∑
m=1

√
αm

ζm
sµsc

(
z√

αmζm

)
=

1

2π

K∑
m=1

√
αm

ζm

∫
R

µsc(dx)

x− (z/
√
αmζm)

=
1

2π

K∑
m=1

√
αm

ζm

∫
{|x|≤2}

√
4− x2

x− (z/
√
αmζm)

dx

=
K∑

m=1

1

2πζm

∫
{|x|≤2}

√
4αmζm − (

√
αmζmx)2√

αmζmx− z
d
√
αmζmx

=

∫
R

1

y − z

(
K∑

m=1

√
4αmζm − y2

2πζm
χ
{
|y| ≤

√
4αmζm

})
dy

=

∫
R

1

y − z
µ(dy)

= sµ(z).

(2.6)

Then by (2.3) and (2.6), as N → ∞, sµ
B̃N

(z) → sµ(z) a.s. for every z ∈ C+, so by

Lemma 2.2, as N → ∞, µ
B̃N

w−→ µ a.s.

2.2. Proof of Corollary 1.6

Proof of Corollary 1.6. Notice that

∫
R
xk dµ(x) =

K∑
m=1

∫
R
xk
√
4αmζm − x2

2πζm
χ
{
|x| <

√
4αmζm

}
dx

=

K∑
m=1

∫ √
4αmζm

−
√
4αmζm

xk
√

4αmζm − x2

2πζm
dx.

If k is odd, then
xk
√

4αmζm−x2

2πζm
is an odd function for all m = 1, . . . ,K and so

∫
R
xk dµ(x) =

K∑
m=1

∫ √
4αmζm

−
√
4αmζm

xk
√

4αmζm − x2

2πζm
dx = 0.

If k = 2j is even, where j is a positive integer, then

∫
R
xk dµ(x) =

∫
R
x2j dµ(x) =

K∑
m=1

∫ √
4αmζm

−
√
4αmζm

x2j
√
4αmζm − x2

2πζm
dx.
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Let x =
(√

4αmζm
)
sin θ, −π/2 ≤ θ ≤ π/2, and so∫

R
xk dµ(x) =

K∑
m=1

(4αmζm)j+1

2ζm

1

π

∫ π/2

−π/2
sin2j θ cos2 θ dθ

=
K∑

m=1

22j+2αj+1
m ζjm

[
1

π

∫ π/2

0
(sin2j θ − sin2j+2 θ) dθ

]

=

K∑
m=1

22j+2αj+1
m ζjm

[(
2j

j

)
1

22j+1
−
(
2j + 2

j + 1

)
1

22j+3

]

=
1

j + 1

(
2j

j

) K∑
m=1

αj+1
m ζjm.

The third identity holds by using Wallis’s formula for the integrals of the powers of the

sine function:
∫ π/2
0 sin2i θ dθ = π

(
2i
i

)
/22i+1, see [18, page 540].

2.3. Proof of Theorem 1.7

Recall the Frobenius norm of an N ×N matrix M is ∥M∥2F =
∑N

i,j=1M
2
ij = tr(M2). To

prove Theorem 1.7, we need the following lemmas and for the convenience of the reader,

we quote them.

Lemma 2.4. [16, page 30] For any z ∈ C+, the respective Stieltjes transforms of the

spectral density functions of two matrices A and B satisfy that

|sµA(z)− sµB (z)| ≤
1√

Nℑ(z)2
∥A−B∥F .

Lemma 2.5. [22, Theorem 2.3.16] Let M be an N × N real-valued symmetric random

matrix, with the upper triangular elements ξij, i ≤ j jointly independent with mean zero

and variance one, and bounded in magnitude by o(
√
N). Then for any positive integer k,

E[tr(M2k)] =

(
1

k + 1

(
2k

k

)
+ ok(1)

)
Nk+1.

Proof of Theorem 1.7. To prove µ
ÃN

w−→ µ in p and in expectation as first N → ∞ and

then ζ0 → 0, we only need to prove for z ∈ C+,

lim
ζ0→0

lim
N→∞

|sµ
ÃN

(z)− sµ(z)| = 0 in p and in expectation,

according to Lemma 2.2.

Recall that B̃N is as defined in Theorem 1.5 with B̃ij = Ãij if i and j belong to the

same block, and B̃ij = 0 otherwise. Since

lim
ζ0→0

lim
N→∞

|sµ
ÃN

(z)− sµ(z)|

≤ lim
ζ0→0

lim
N→∞

(
|sµ

ÃN
(z)− sµ

B̃N
(z)|+ |sµ

B̃N
(z)− sµ(z)|

)
in p and in expectation.
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Our goal is to prove that for z ∈ C+,

(2.7) lim
ζ0→0

lim
N→∞

|sµ
ÃN

(z)− sµ
B̃N

(z)| = 0 in p and in expectation

and

(2.8) lim
ζ0→0

lim
N→∞

|sµ
B̃N

(z)− sµ(z)| = 0 in p and in expectation.

To establish (2.7), observe that for each N ∈ N,

∥ÃN − B̃N∥2F =
N∑
i=1

N∑
j=1

(
Ã

(N)
ij − B̃

(N)
ij

)2
=

K∑
m=1

K∑
n=1
n̸=m

∑
i∈Cm
j∈Cn

(
Ã

(N)
ij

)2
and for all i ∈ Cm, j ∈ Cn, Ã

(N)
ij independently and identically follow the distribution

C2(pmn, γ). Then

E

[
1

N
∥ÃN − B̃N∥2F

]
=

1

N

K∑
m=1

K∑
n=1
n̸=m

∑
i∈Cm
j∈Cn

E
[(
Ã

(N)
ij

)2]

=
1

N

K∑
m=1

K∑
n=1
n̸=m

NmNnE[C2(pmn, γ)]

= N

K∑
m=1

K∑
n=1
n̸=m

αmαn

[
γ2(1− pmn)

2pmn + γ2p2mn(1− pmn)
]

=

K∑
m=1

K∑
n=1
n̸=m

αmαn
pmn(1− pmn)

p1(1− p1)

(
since γ =

1√
Np1(1− p1)

)

≤ K2ζ0(N).

(
since αm, αn ≤ 1 and

pmn(1− pmn)

p1(1− p1)
≤ ζ0(N)

)
Thus limN→∞E

[
1
N ∥ÃN − B̃N∥2F

]
≤ limN→∞K2ζ0(N) = K2ζ0 and so

lim
ζ0→0

lim
N→∞

E

[
1

N
∥ÃN − B̃N∥2F

]
= 0.

By Lemma 2.4, we see that for z ∈ C+,

lim
ζ0→0

lim
N→∞

E|sµ
ÃN

(z)− sµ
B̃N

(z)|2 = 0,

which implies that for z ∈ C+, (2.7) holds.

Next, we would prove (2.8) in p, that is, for z ∈ C+,

lim
ζ0→0

lim
N→∞

|sµ
B̃N

(z)− sµ(z)| = 0 in p.
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By Theorem 1.5 and Remark 1.3, µ
B̃N

w−→ µ a.s. implies µ
B̃N

w−→ µ in p. Again, using

Lemma 2.2, (2.8) holds in p.

Next, we aim to establish (2.8) in expectation, that is, for z ∈ C+, E
[
sµ

B̃N
(z) −

sµ(z)
]
→ 0. According to [22, page 166], we need to demonstrate the following to prove

that E
[
sµ

B̃N
(z)− sµ(z)

]
→ 0, that is,

(2.9) lim
N→∞

1

N
E
[
tr(B̃k

N )
]
=

∫
R
xk dµ(x), k = 1, 2, . . . .

From the definition of B̃N , the expression of B̃N is as (2.1). Since Wm/
√

ζm(N) is

a Wigner matrix (see [4, page 20]), we can conclude from [4, page 24], for any positive

integer k,

(2.10) lim
N→∞

1

N
E

tr( Wm√
ζm(N)

)2k−1
 = 0.

Applying Lemma 2.5 and Nm = αmN , for any positive integer k,

1

N
E
[
tr(W 2k

m )
]
=

1

N

(
ζm(N)

N

)k

E

tr(√ N

ζm(N)
Wm

)2k


=
1

N

(
ζm(N)

N

)k ( 1

k + 1

(
2k

k

)
+ ok(1)

)
Nk+1

m

=

(
1

k + 1

(
2k

k

)
+ ok(1)

)
αk+1
m ζkm(N).

(2.11)

Since 1
NE

[
tr(B̃k

N )
]
= 1

N

(
E
[
tr(W k

1 )
]
+ · · ·+E

[
tr(W k

K)
])

and limN→∞ ζm(N) = ζm exist,

we obtain by (2.10) and (2.11), for any positive integer k,

lim
N→∞

1

N
E
[
tr(B̃2k−1

N )
]
= lim

N→∞

1

N

K∑
m=1

E

tr( Wm√
ζm(N)

)2k−1
 (ζm(N))k−1/2 = 0,

lim
N→∞

1

N
E
[
tr(B̃2k

N )
]
= lim

N→∞

1

N

K∑
m=1

E
[
tr(W 2k

m )
]
=

1

k + 1

(
2k

k

) K∑
m=1

αk+1
m ζkm.

Applying Corollary 1.6, we can conclude that (2.9) holds, that is, for any positive integer

k,

lim
N→∞

E

[
1

N
tr(B̃k

N )

]
=

∫
R
xk dµ(x).

Hence the proof is completed.
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