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Maximal Estimates for the Bilinear Riesz Means on Heisenberg Groups

Min Wang

Abstract. In this article, we investigate the maximal bilinear Riesz means S¢ as-
sociated to the sublaplacian on the Heisenberg group. We prove that the operator
S¢ is bounded from LP' x LP2 into LP for 2 < py,ps < oo and 1/p = 1/p1 + 1/p2
when « is large than a suitable smoothness index a(pi,p2). For obtaining a lower
index «a(p1,p2), we define two important auxiliary operators and investigate their LP

estimates, which play a key role in our proof.

1. Introduction

A classical problem in Fourier analysis is to make precise the sense in which the Fourier

inversion formula

fl@)y= | f(ee*i=sde
Rn

holds when f is a function on R™. A natural way of formulating this identity is in term of
a summability method. For instance, one may consider the convergence of the Bochner—

Riesz means defined by

Brf(x) = /l5 T (1—’2‘2) e dg

as R — oo for some suitable §. The almost everywhere convergence of the Bochner—Riesz
is related to the maximal operator B! = supp-, ‘B}%‘. When n = 1, Hunt showed that
ifd=0and f € LP(R), 1 < p < o0, B}S%f converges to f almost everywhere as R — oo.
When n > 2 and p > 2, Carbery, Rubio de Francia and Vega [1] showed that for all
f e LP(R") with 2 < p < 2n/(n — 1 — 2J), B%f converges to f almost everywhere as
R — 0o by using the weighted L2-estimates of the maximal operator B} = sup R>0 ‘B?z‘-
When n =2 and 1 < p < 2, Tao [10] proved that if § > max {3/(4p) —3/8,7/(6p) — 2/3},
B? is bounded from LP into LP®, i.e., Bjs% f converges to f almost everywhere as R — oc.

The bilinear Bochner—Riesz means is defined by

Bara@) = [ T (1- 5 ) e dcay
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Its almost everywhere convergence is depended on the LP! x LP2 — LP boundedness of
the maximal operator By = supg~ ‘B?z‘~ Grafakos, He and Honzik [3] showed that B is
bounded from L?(R™) x L?(R") into L'(R") if a > (2n + 3)/4. Jeong and Lee [4] gave a
comprehensive study on this problem when n > 2 and 2 < p1,p2 < 00, 1/p = 1/p1 +1/po.
Jotsaroop and Shrivastava [5] proved improved bounds for maximal bilinear Bochner—Riesz
means. Inspired by their work, we shall investigated the LP' x P2 — LP boundedness of
the maximal bilinear Riesz means on the Heisenberg group.

Strichartz [8|9] developed the harmonic analysis on the Heisenberg group as the spec-
tral theory of the sublaplacian. One may define the Riesz means in terms of the spectral

decomposition of the sublaplacian. Let

cf = /0 TP du(M)

be the spectral decomposition of the sublaplacian £. The Riesz means associated to the

sublaplacian £ is defined by
Sif = [ -rVLRFdu()
0

Gorges and Miiller 2] investigate the almost everywhere convergence of the Riesz means
and obtained a similar result to that in [1]. They showed that SOf — fasr — 0 for§ >0
and f € LP(H") provided that 9~ 1(5 - 5e) <1 5 L <2

The bilinear Riesz means assomated to the sublaplacian £ on the Heisenberg is defined

by
Sa f, / / 1 — T’(/\l + )\2)) P)\lfP)\Qg d/i()\l) du(/\g)

The corresponding maximal operator is denoted by S¢ = sup,- ‘Sﬁ“ As same as the
Euclidean case, we hope to obtain the smooth indices a(p1,p2) as low as possible so that
S¢ is bounded from LP'(H") x LP2(H") into LP(H") when o > a(p1, p2).

2. Preliminaries

First we recall some basic facts about the Heisenberg group. These facts are familiar and
easy to find in many references. Let H"™ denote the Heisenberg group whose underlying

manifold is C™ x R and the group law is given by

(2, 1)(w, 5) = <z+w,t+s+;lm(z-w)>.

The Haar measure on H” coincides with the Lebesgue measure on C" x R. A homogeneous

structure on H" is given by the non-isotropic dilations 6,.(z,t) = (rz,r%*t). We define a



Maximal Estimates for the Bilinear Riesz Means on Heisenberg Groups 1171

homogeneous norm on H"” by

1 1/4
|z| = <16’Z|4 +t2> , x=(zt)eH".

This norm satisfies the triangle inequality and leads to a left-invariant distance d(z,y) =

|z~ 1y|. The ball of radius 7 centered at z is
B(z,r)={y c H" : [z 'y| < r}.

The Haar measure dz satisfies dé,(z) = r%dz where Q = 2n + 2 is the homogeneous
dimension of H". If f and g are functions on H", their convolution is defined by
(fr9)@) = | flay Ngly)dy, z.ycH".

For each A € R* and f € .(H"), the inverse Fourier transform of f in variable ¢ is defined
by

00 .

= | e
—00

An easy calculation shows that
(f x9)z) = s Az — w)gA(w)e%)‘Im(Z'm dw, z,weC"
Thus, we are led to the convolution of the form
fong= [ 1z =wlg)etmCD do,

which are called the A-twisted convolution.
The sublaplacian £ is defined by

n

L=-)(X+Y})

=1

where
0 1 0 0 1 0

X':i — ) — d Yzi—fi ) =1,2,...
j + 2y]at an j 8yj 2x]6t, J y 45 ) 1,

Ox;
are left invariant vector fields on H"™. Up to a constant multiple, £ is the unique left invari-
ant, rotation invariant differential operator that is homogeneous of degree two. Therefore,
it is regarded as the counterpart of the Laplacian on R™. The sublaplacian £ is a positive
and essentially self-adjoint operator. In the following, we state the spectral decomposition
of L (cf. [11]).

Let ¢, be the Laguerre functions on C” given by

1
SOk(Z) _ Lz—l <2|Z’2> e—i‘z|27
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where LZ_l are the Laguerre polynomials of type n — 1 defined on R by

1 /d\"
n—1 —t n— 1 Il —t k+n—1
Define functions
ep(z,t) = e NN (z) = efi)‘tgok( |Alz), AeR*.

For f € L?(H"), we have the expansion
(21) fet) =Y [ Freblatduty
k=07

where du(\) = (2m) " !|A|"d\ is the Plancherel measure for H". Each f * e} is the

eigenfunction of £ with eigenvalue (2k 4+ n)|A|. We also have the Plancherel formula

= a3 [ [ 17 s i

Defining
ez t) = e P

)

we can rewrite the decomposition (2.1]) as

f(z,t) / Z2/~c+n L f s @ (2, 1) du(N).

© k=0

Let

o0

Paf(z,t) =Y (2k+n)"""1f % (@ +8,)(2,1).
k=0

Then (2.1)) can be written as

f(ert) = /0 P () dulN).

It is clear that Pj f is an eigenfunction of the £ with eigenvalue A and we have the spectral

decomposition
£f = [ AP du(y),
0
Define the bilinear Riesz means associated to the sublaplacian £ for f, g € . (H") by
SER) = [ 0O+ TP TP ) du()
The corresponding maximal operator is defined by

S2(f.9)(x) = sup |S2(f,9)(@)].
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3. LP-estimate for auxiliary multiplier operator

In this section, we shall define two auxiliary operators and investigate their LP(I°°) esti-

gl}.
> (R)
F

Pl (@) = /Ooow (p _5M> Pyfdu(X), fe @Y,

mates, which play a key role in the proof of our main Theorem

Let I = [—1,1] and consider a class of smooth function

cN(I) = {90 rsupp @ C 1 [lollonm) = oin <N H dtn”

For ¢ € CN(I) and p,d,r > 0, we define the multiplier operator

and define its corresponding operator for k € Z by
1/2
D(?kf ( Z / |F 6,2k f ‘ d?") , f€ y(Hn)
pESZN|0,2]

Write Flfé = F/f&l for simplicity. Since Py is a convolution operator, we have

Fronf@ = | flaw™ K7y (@) dw

where the kernel K;i 5., is given by

- —n—1 T’/\|
K25, @) =@kt m [ o (25 @) duy,
k=0
Notice that for any t > 0,
K5, (W) = 92K (0 w).
It is easy to verify that
(31) Ftﬁ,té,rf(x) = F,;p,é,r/tf(l‘) p,5 rfl/\/ (5\[56)

where f; = f(ds-) for any s € R, s # 0. Especially, if r =1 and ¢ = 1/r, we have

® 1) 92 @ ® ®
(3.2) K5, (w) = <T) Kp,5(51/ﬁw) and  FYs f(x) = Ffsf m(014m7)-
Proposition 3.1. Let 2 < p < oo and 0 < 6 < 1/4. Suppose that b > %(D — 1) where
D =2n+1 is the topological dimension of H". Then, we have that

1 1/2
s (L

< C6™CVD| £l Lo iy
Lp(Hm)
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It follows that for any € > 0,

sup | D7 f|
keZ

L (H") Lp(H)

1/2
sup( / | 5.2k f‘ dr)
REZ N peszn(0,2]

< C5™ D7 £l o cainy-

(3.4)

Proof. Tt is easy to prove ({3.3). By Corollary 2.6 in |7], we know that the kernel K;i s of

multiplier operator F;’jé satisfies

/Hn K7 5(w)] dw < H@ <p;>

for any b > 1(D — 1), where the Sobolev norm is defined by

N 1/2
1 fllzz = ( / \Ix!af(:v)\de> |

By Young’s inequality, we get that for any 1 < p < oo,

<Cst
L2

b+1/2

1F5 5 | oy < 15| o oy 1l my < CO7 N f o aamy.-

Then, using Minkowski’s inequality for p > 2, it follows that
1 ) 1/2 1 0. 2/p 1/2
(Lt e) o L )0
12" LP(Hn) n ’

< O3 PN EZs | oy < €O~ 721 f Lo gamy.
To obtain (3.4), we decompose interval [0, 2] into dyadic subintervals as follows:

Jo
0,2] = [0,46] U [46,2], [46,2] = U L= J[“62n27-" 277],
j=—1 j=—1

where jo is the smallest integer satisfying 2770~! < 4§. Then, by the triangle inequality,
we have that

‘sup‘Dakf )|
L (Hn)
1/2
= sup< /| flx ’dr)
kez peéZZﬂ[OQ o Lp(H")
1/2
< (sup Z /|Fp§2,€f |dr+Zsup Z /|Fp52kf )
k€L e 57n[0,46] j=—1K€Z (esmng, Lp(H")
1/2
< d
|(f > imsmsera)”|,

PESZN[0,44]
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(o) 5, mrwrors)”

Lo(En)

j=—1 WNKELJL o esznr,
Setting
1/2
H(iup > / |E25 o, f ()] dr) for —1 < j < jo
€7 pesuni; L (HP)

and

i

Lp(H™)

i 2 [ sore)”

ke e 57[0,46]

it follows that

Jo
<> L+II

Lp(H™)  j=—1

(3.5)

sup ’D:;kf(:v)‘
keZ

By the first equality relation in (3.1)), we notice that for any —1 < j < jo, j # 0,

1/2
(s > [ 1r s ar)

pESZNI,; Lp(H")
1/2
o v [ sora)]
€% 95 pe2i pszNIy Lp(H™)

and 277 > 2790 > 4§ such that 27§ < 1/4 for any 0 < § < 1/4. These imply that once
IO S 6_(1)_1/2)”,_)0”[1;0(]]{71), then I] S (2j5)_(b_1/2) and

Jo

(3.6) Z < S0 (@8) 0D < 60D f]

j=—1 j=—1
for any € > 0 since jo = O(log(1/9)). Thus, to obtain (3.4), it suffices to show that
max{ly, [T} < §=1/2),
To estimate Iy, we consider the Littlewood—Paley projection operator F,,, m € Z, defined
by
o0
Puf= [ B3NP du(N,
0

where 8 € C§°[1/2,2] satisfying 0 < f < 1and ), ., B(27™t) = 1 for each ¢ > 0. Then,

we have that

=3 [P = 3 P

meZ meZ

/= / Pyt (>
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Since supp ¢ C [—1,1], p € [1/2,1], r € [1,2] and 0 < § < 1/4, we see that
p—2kr) —m
© — B(27™A) =0 expect =3 <k+m <2.

Using this, we can get that for any k € Z,

(3.7)
k
FZsend = Flson, <Z me> > / (” = ”) B2 N)PAS du(N)
meZ meZ
k
- ¥ / <p 2 M) BTN Py f du(X) = F?; o (Pnf).
MEZL MEZL
—3<ktm<2 —3<ktm<2

Since p > 2, applying (3.7)), (3.2) and Mikowski’s inequality, it follows that

(3.8)
Z ‘ ‘ p/2 1/p
Iy < </ <sup / 5.2k f(z dr) d:c)
H keZpGéZﬂI
(/ ( Z 2 p/2 1/p
_ aw Y[ Fsar (P ) do)
™ \k€Z ,esmniy /1 mez 7
—3<k+m<2
2 2 p/2 1/p
B \k€Z s sz, /1 meZ
—3<k+m<2
p/2 2/p-1/2
<X Y (L[ S menem6umola) w)
keZ  meZ pESZNIy
—3<k+m<2
2 2 2 1/2
< ([ oz S e m| )
k€Z  mel 1 pESZNIy Lp/2(H")
—3<k+m<2
2 ) N\ 212 1/2
-5 2 ([ (S el ar)
k€Z  mcZ 1 pESZNI Lp(H™)
—3<k+m<2

Notice that the LP-boundedness properties of the square function in (3.3)) and the discretize

square function in the above are essentially equivalent. Hence, we have that

I( S imranst)”

pESZNIy

< 05 N(Ponf) g | o
Lr(Hm)

< Co~ D (V) TP B f
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Inserting this into (3.8]) and using the Littlewood—Paley theorem, we can obtain that

2 1/2
dr)
Lp(H")

(3.9)

IES Y </2(\/ﬁ)2@/p

k€Z  meZ 1
—3<ktm<2

1/2
<os (T T WPl

keZ mEZ
—3<k+m<2

(= !me|2)1/2

meZ

(> Imnsl)

pESZNIp

< o012 < OO £l o gy

Lp(H")

Next, we consider the estimate of I1. Notice that

Fest@) = [0 (P52 Pt dn) = [l g den

Hn
Setting R.(w) to be the kernel of the Riesz means fg(l — M) Py f du(N), we see that
t— RY(w)

is a function of bounded variation. Then, the kernel K;f 5 can be written as

Kosw) = [ (252) i@ dul.

Integration by parts and using the identity

8 m pm m— m—
R (@) = mtm T R w),

where m is a positive integer, we get that

K,5(w)=rcm /OOO (8/2\m+2g0 <p;)\)> AZPHLRIMHL () du(N).
It is known that (see Theorem 2.5.3 in |11])
(3.10) |R2M Y (w)] < CAQ2(1+ A2 |w]) =2,
We let m = Q/2+ 1 and ¢ € CN(I) with N = 2m + 2. Then, we have that

aim—i—?w <P ; A)‘ < 5*(2m+2)_

This together with (3.10]) yields that for any p € 6Z N [0, 44],

56
|Kp,5(W>} < Cm(l + ’w‘)2m5(2m+2)/ )\2m+17m+Q/2+n d\
0

< MR (1 4 W) T2 < (1 + |w]) T2
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Using (3.2) and Young’s inequality, it follows that for any r € [1,2], k € Z and p €
07N [0,40],

1 2 F ey = WE 55 | oy < emlFllioany /H (w7 dw < Ol llzoan)-

Hence, by Minkowski’s inequality, we can get that

1/2
IIzH(sup Z / ’ 55,25 flx ’ dr>

e \es7n(0,46) Lp(H")
(3.11) Ssup( /2 > |F T dr)m
REZ NI eszr0a8) Lp/2(H)
, 1/2
<o ([ gt dr) <l
kez pESZN[0,49)

Applying (3.5), (3.6)) and the above estimates (3.9)), (3.11]), we can conclude that for any
e >0,

< GO £ Lo ey
Lo (E")

The proof of (3.4]) is complete. O

sup ‘Df;kf(x)‘
keZ

In [6], we proved that for any function m € L*°(R) and 0 < a < b, the multiplier
operator T, f = f APy f dp()) is bounded from LP(H™) into L?(H") for any 1 < p < 2,
Le.,

Tt 2 < Cllmlloo (0 — a)8™) P72 £

Using this estimate, it is easy to check that

1 ) 1/2
([ Irzsser )
1/2

By the same argument of Proposition we have that

< C51/2HfHL2(H")-
L2(H")

(3.12)

sup ‘D?;kf‘
kEZ

< 051/2_€||f||L2(H")
L2(H")

for any € > 0. Then, by interpolation between the estimates in (3.12)) and ([3.4)) for p = oo,

we can get the following result.

Corollary 3.2. Let 2 < p < 0o and 0 < § < 1/4. Suppose that b > %(D — 1) where
D =2n+ 1 is the topological dimension of H". Then,

< 05—[(b—1/2)(1—2/p)—1/p}—5HfHLp(Hn).
Lp(H")

sup ‘D:;kf‘
kEZ
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4. Boundedness of the maximal operator S

Theorem 4.1. Let 2 < pj,ps <ocand 1/p=1/p1+1/ps. If « > D(1—1/p)+1/p, then
S& is bounded from LP'(H™) x LP2(H"™) into LP(H").
Proof. Fix o > 0. Let us choose ¢ € C§°([1/2,2]) and ¢y € C§°([—3/4,3/4]) such that
1-t¢
1-0)% = 0 —_— t 0<t<1
-0t =3 o(551) + w0, o<t

where D = {2F : k € Z and k < —2}. Using this, we can decompose

=) 6% + 8¢
oeD
where ) \ \
—Tr T
S (f,9) / / ( L= 2) o fPryg du(h) du(o)
and

%1, ) / / Po(rAs +1A2) Poy f Pryg dn(hn) d(a).
It follows that
S¢(f,9)(x Zaasup\safg )| + sup |SY(f, 9)(z)|.
seD r>0

Since ¥y € C°(|—3/4,3/4]), using Holder’s inequality, it is easy to see that for any
2 §p17p2 < oo and l/p = l/pl + 1/p27

HSS(f,g)HLp(Hn) = < I fgllerny < 1 fllLer @y 9l Loz -

sup |57 (f, 9)]
r>0

Lp(H")
Therefore, to obtain Theorem [4.1] we have to focus on obtaining estimates for the maximal

operator

SI(f.9)(x) = sup|S)(f. g)(x)| for 0 <§<1/4.
r>0

By the fundamental theorem of calculus, we see that |F(t)| < |F(s)| + fl |F'(7)| dr for
any t,s € [1,2]. This implies that
S2(f.9)(x) = sup sup |Sh.(f,9)()|

keZ 1<r<2

2
<sup/ |S2k (f,9) )‘dr—i—zlég/l

kEZ

0
Esgkr(f, g)(z)| dr

Since

0 -2k 1—26r(\ + A
=85 - / / (A1 + Ao < rh 2)>P>\1fP>\29du()\1)du()\2),

or J
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we can conclude that %Sgkr(f, g) satisfies the same quantitative properties as %Sgkr(f, 9)

when 1 < r < 2. Hence, to estimate S%(f, g), it suffices to consider the operator

2
(f,9) = sup / 1S5, (. 9)(@)] dr-
keZ J1

To estimate this operator, we choose ¢ € Cg°([) satisfying D ,., o(t+1) = 1 for all t € R.
Fix 0 < § < 1/4 and set § = 8% with some > 0. Then, for any r > 0, we can write

w(1—m1 mz) Ty <p—gm1>¢<a—pg—m2>w<1—m;—m2>_

0€8Z pedzn[0,2]

Since supp ¢ C [—1,1] and supp C [1/2,2], then

_ 1— _
<p<p gr)\1>¢( T)\:S T)\2>:0 except 1 =30 <rha+p<1+6.

It follows that

_ o, 1— _
go(p ~7”/\1>90<0 P T/\2>¢< 7’)\(15 rAz):O except o € [1 — 46,1+ 24].

0 )
Thus,
— T>\ oc—p—rA
SIS 3 / / ( 1>¢<ﬂg2>
(4.1) 0 €6ZN[1—48,1+25] pedZN[0,2]
1—rX—7rA
XY (32) Py, [Py, g dp(A1) du(A2).

At the same time, by the Fourier inversion formula, we have

¥ (1 . M:S - MZ) N / 12(7)62”7(17%7”2) dr
(4.2) R

[e%S) N
ezmT(i"*”%*T&) _ Z 1 <7’(o — Tl — r)a))
N=

(4.3)
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Putting (4.3) into the right-hand side of (4.2)), it follows that

1—?”)\1—7“)\2
‘”( )

_ i a+b 27727'( ) p— TA1 “fo— p— T2 k
B Z:: N 0<c§b:<zvcab </ v dT 0 0

1 1—0 M\ o —p—ri\’
_ - (a+b) 4 1 P 2

2N D cant <5>(5>( 5 )

N=0 0<a+b<N

Insert this into (&1) and let pg(t) = t°¢(t). Notice that pz € C§°(I) for any 3 € N.

Then, we can obtain that

sua- ¥ X L))

o€8ZN[1—48,1+26] pedZN(0,2]

1—rX —7r)
<o (FEEI) By g du(n) dula)

L s L))

UEJZﬂ[l —45,14-26] pedZN[0,2]

Z Z Cos platD) l1—0o p—rM\" (o —p—rr\’
“ 0 J J
0<a+b<N
X Py, [Py g dp(A1) dp(Az)

L k(a-+b) (atb) (L0
I Y ()

" 0<a+b<N o E6ZN[1—45,1426)
o0 —TA
PG Sy AT
pESZN[0,2] 0

> o—p—TA\
X/O ©b ('052> Py, g du(Az).

Set r = 2Fr for k € Z, r € [1,2]. Applying the triangle inequality, Cauchy-Schwartz’
inequality and Holder’s inequality, we get that

2
sup [ |5, (f,9)| dr

kez Lp(H™)
sup/ Z Z e bén (a+b) Z ‘1/}(“+b) <1;U>’
keZ J1 Q<a+b<N cESZN[1—48,1426]

(44) X Z | p§2k fH o— P62k g‘ dr LP(H")

pESZNI[0,2]
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IA
M2
%\H

Z G0 Z

(atb) (L= 0
oo (57)

N=0""" 0<a+b<N o€5ZN[1—46,1+26]
sup / Yo |F FlIFY gl dr
p62k o— p(52k n
FEEIL sz, L)
1 1-0
L k(a+b) (at+b) [ 2 Z
S E S awen 3 e (159))
N=0"" 0<a+b<N o€8ZN[1—45,1+26]
2 1/2
o (X [ ea)
€ peSZN[0,2] ! Lo )
9 ) 1/2
x i‘”é( > /1 FY 52,9 dr) '
€ peSZN[0,2] Le2 ()

Notice that o — p € 6Z N [—46 — 1,1+ 20) for any o € 6Z N [L — 48,1+ 28], p € 6Z.N[0,2]

andF“"f 52kg—01f0—p€5Zﬁ[ 40 —1,0]. So,

1/2

2
(3 [t —mlog

keZ -
pESZN[0,2]

and

2 ) 1/2 2 ) 1/2
sup( Z /I‘Fffp,g72kg| dr) Ssup( Z /1}F[fip75~72kg‘ dr>

kEZ ~ keZ =
pESZN[0,2] o—pedz(0,2]
©b
= sup |D g|
keZ

Using (4.4) and Corollary we see that

sup/ }SQk (f, g |d7‘

Lr(H™)
1—0
x(a+b) (a+b)
SY g T e T e (5]
0<a+b<N o €6ZN[1—46,1+2)
X sup‘D ‘ sup‘D(Sk ‘
kEZ Lr1(H) [Ik€Z ’ LP2 (Hn)

< 0§~ (0=1/2)A=2/p1)=1/p1]=[(b-1/2)(1~2/p2)~1/p2]

a||f||Lp1(1H1n)HQHLm(Hn)
k(a+b)
x Z D capd >

1—0
(a+b) [ 1 — Y
0<a+b<N 0 €8ZN[1—46,1+26]

< Com COmNADITP=E | oy gy || g | Loy 61 ”Z D apstT )
N= 0 O<a+b<N
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< 05~ DOVPIHp=2=2 | £ gl oo gy

holds for kK = 1 + € with any € > 0 and b > %(D — 1) with D = 2n + 1 is the topological

dimension of H". It follows that
Hsf(fa g)HLP(Hn)

2
Sup/1 |85, (f. g)| dr

kEZ

< +

2
sup /
Lp(Hn) keZ J1 Lp (Hn)

< C(5—(2b—1)(1—1/p)+1/p—2—a + 6—(2b—1)(1—1/p)+1/p—2—5—1)HfHLpl(

0
asgkr(ﬁ 9)‘ dr

Hn) 9]l L2 (H™)

< 0o~ BNVt P22 £ gl o ey

Therefore, whenever a > a(p1,p2) = D(1 — 1/p) + 1/p, we can choose b > 1(D — 1) and
e > 0 such that « > (20— 1)(1—1/p) —1/p+ 2+ ¢e. Then

H‘S’f(fa g)HLp(Hn)

< D SIE D pogany + 152 D o gany
éeD

< 3 5 GO 1| oy gy |9 Loy + CLF Lo ey 19 o ey
0eD

< C|fllzer ) |9l Loz ()

The proof of Theorem is complete. O
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