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A Three-term Conjugate Gradient Method with a Random Parameter for

Large-scale Unconstrained Optimization and its Application in Regression

Model

Yueting Yang, Xue Zhang, Guoling Zhou and Mingyuan Cao*

Abstract. In this paper, a new three-term conjugate gradient algorithm is proposed

to solve unconstrained optimization including regression problems. We minimize the

distance between the search direction matrix and the self-scaling memoryless BFGS

direction matrix in the Frobenius norm to determine the search direction, which has

the same advantages as the quasi-Newton method. At the same time, random pa-

rameter is used so that the search direction satisfies sufficient descent condition. For

uniformly convex functions and general nonlinear functions, we all establish the global

convergence of the new method. Numerical experiments show that our method has

nice numerical performance for solving large-scale unconstrained optimization. In ad-

dition, the application of the new method to the regression model proves that our

method is effective.

1. Introduction

Unconstrained optimization widely exist in compressing sensing [1], portfolio selection [13]

and image restoration [18,19] and many other fields. Consider the following unconstrained

optimization

min f(x), x ∈ Rn,

where f : Rn → R is continuous differentiable and bounded from below. Starting from an

initial point x0 ∈ Rn, the iterative form of conjugate gradient method is given by

(1.1) xk+1 = xk + αkdk, k ≥ 0

in which αk > 0 is a stepsize, and dk is a search direction defined by

d0 = −g0, dk = −gk + βk−1dk−1, k ≥ 1,

where gk = ∇f(xk) is the gradient of f(x) at iterate point xk and βk−1 ∈ R is a conjugate

gradient parameter.
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Due to its simplicity and low memory requirement, conjugate gradient methods are

the most popular class of algorithm for solving large-scale unconstrained optimization

in industry and engineering field [7, 24, 25]. Recently, based on the classical conjugate

gradient methods, such as DY, HS, PRP and FR, etc., many modified conjugate gradient

methods are proposed [8, 20, 22, 23]. Especially, three-term conjugate gradient methods

have been paid attention [2, 3, 9, 27].

Perry [21] presented the following search direction based on Dai–Liao (DL) conjugate

gradient method [11]

dk+1 = −Qk+1gk+1,

where Qk+1 is the search direction matrix, i.e.,

(1.2) Qk+1 = I −
sky

T
k

sTk yk
+ t

sks
T
k

sTk yk
,

sk = xk+1−xk = αkdk and yk = gk+1−gk. It is clear that Perry method and DL conjugate

gradient method are equivalent. There are some different choices of parameter t [6,26,30].

Note that Qk+1 in (1.2) is nonsymmetric and does not satisfy the secant condition,

Babaie-Kafaki and Ghanbari [5] presented the following new symmetric matrix

(1.3) Ak+1 = I − 1

2

sky
T
k + yks

T
k

sTk yk
+ t

sks
T
k

sTk yk
.

They derived tp,qk = p∥yk∥
2

sTk yk
− q

sTk yk
∥sk∥2 (p > 1/4, q ≤ 1/4) by finding the eigenvalues of Ak+1.

Their method can be regarded as a general form of methods proposed by Dai and Kou [10]

and Hager and Zhang [17]. Moreover, Zhang, Liu and Liu [29] gave tk = ∥yk∥2
sTk yk

− 1
4
sTk yk
∥sk∥2

by minimizing the upper bound of spectral condition number of Qk+1.

In this paper, we design a new three-term conjugate gradient method with random pa-

rameter by using quasi-Newton method to derive another representation of the parameter

t in (1.3). Our innovations mainly include the following:

⋄ The parameter t in Ak+1 is determined by minimizing the distance between Ak+1

and self-scaling memoryless Broyden–Fletcher–Goldfarb–Shanno (BFGS) matrix in the

Frobenius norm.

⋄ The significant difference from previous algorithms is that random parameter is

introduced to simplify the derived parameter. Our method with random parameter is

more relaxed and elastic.

⋄ Our method has global convergence for uniformly convex functions and general non-

linear functions, and the method has been successfully applied to regression models.

The rest of this paper is organized as follows. In the next section, a new random

parameter is given to present a three-term conjugate gradient method. In Section 3,

global convergence of our method is proved under appropriate conditions. In Section 4,
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some numerical experiments are implemented. In Section 5, the application of the new

method in regression model is presented. Conclusions are made in the last section.

2. Three-term conjugate gradient method with a random parameter

In this section, our main aim is to propose a new three-term conjugate gradient method.

The search direction is derived by minimizing the Frobenius norm of difference between

the search direction matrix and quasi-Newton updating, in conjunction with choices of

random parameter. Inspired by Yao and Ning [27], we consider the following model

(2.1) min ∥Dk+1∥2F ,

where ∥ · ∥F is the Frobenius norm, Dk+1 = Ak+1 − B−1
k+1, Ak+1 is determined by (1.3),

B−1
k+1 is a self-scaling memoryless BFGS matrix

(2.2) B−1
k+1 =

1

θk
I − 1

θk

sky
T
k + yks

T
k

sTk yk
+

(
1 +

1

θk

∥yk∥2

sTk yk

)
sks

T
k

sTk yk
,

and θk is a scaling parameter. From (1.3) and (2.2), we have

∥Dk+1∥2F = tr(DT
k+1Dk+1) =

∥sk∥4

(sTk yk)
2
t2 + 2

[
∥sk∥2

θks
T
k yk

− ∥sk∥4

(sTk yk)
2
− ∥yk∥2∥sk∥4

θk(s
T
k yk)

3

]
t+ ξ,

where ξ is a constant independent of t. This is a second-degree polynomial of variable t

and the coefficient of t2 is positive. Therefore, the minimum of problem (2.1) is

(2.3) tk = argmin
{
tr(DT

k+1Dk+1)
}
= 1 +

mk

θk

∥yk∥2

sTk yk
,

where mk = sin2 ηk, ηk = ⟨sk, yk⟩ is the angle between sk and yk. Instead of the mean

value to cos2 ηk = 1/2 in [28], we set mk is a random number in the interval [c, c], where

0 < c < c < 1. There are many possible ways to choose θk, we prefer to use

(2.4) θk = min

{
2c,

sTk yk
∥sk∥2

}
or θk = min

{
2c,

∥yk∥2

sTk yk

}
.

Thus, tk in (2.3) can be regarded as a random parameter.

Substitute (2.3) into (1.3), let dk+1 = −Ak+1gk+1, then

(2.5) dk+1 = −
(
I − 1

2

sky
T
k + yks

T
k

sTk yk
+ tk

sks
T
k

sTk yk

)
gk+1 ≜ −gk+1 + aksk + bkyk,

where

ak =
1

2

yTk gk+1

sTk yk
−
(
1 +

mk

θk

∥yk∥2

sTk yk

)
sTk gk+1

sTk yk
, bk =

1

2

sTk gk+1

sTk yk
.

Based on the above analysis, a new three-term conjugate gradient algorithm with

random parameter can be presented as follows.
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Algorithm 2.1.

Step 0. Given x0 ∈ Rn, ε > 0, 0 < c < c < 1 and 0 < ρ < σ < 1. Let f0 = f(x0),

g0 = ∇f(x0), d0 := −g0 and k := 0.

Step 1. If ∥gk∥ ≤ ε, stop, else go to Step 2.

Step 2. Compute a steplength αk satisfying strong Wolfe line search conditions

f(xk + αdk)− f(xk) ≤ ραgTk dk,(2.6)

|gTk+1dk| ≤ −σgTk dk.(2.7)

Step 3. Set xk+1 = xk + αkdk, and compute fk+1, gk+1, sk and yk.

Step 4. Compute tk by (2.3) and search direction dk+1 by (2.5). Set k := k + 1 and go

to Step 1.

The following lemma show the sufficient descent property of search direction.

Lemma 2.2. Let the sequence {dk+1} be generated by Algorithm 2.1, then there exists a

positive constant c, such that

(2.8) gTk+1dk+1 ≤ −c∥gk+1∥2.

Proof. From (2.5), it can be deduced that

gTk+1dk+1 = −∥gk+1∥2 +
yTk gk+1g

T
k+1sks

T
k yk

(sTk yk)
2

−
(
1 +

mk

θk

∥yk∥2

sTk yk

)
(sTk gk+1)

2

sTk yk

≤ −∥gk+1∥2 +
1

2

(gTk+1sk)
2∥yk∥2 + (sTk yk)

2∥gk+1∥2

(sTk yk)
2

−
(
1 +

mk

θk

∥yk∥2

sTk yk

)
(sTk gk+1)

2

sTk yk

= −1

2
∥gk+1∥2 −

(sTk gk+1)
2

sTk yk

[
1 +

∥yk∥2

sTk yk

(
mk

θk
− 1

2

)]
≤ −1

2
∥gk+1∥2 −

(sTk gk+1)
2

sTk yk

[
1 +

∥yk∥2

sTk yk

(
2c− θk
2θk

)]
≤ −1

2
∥gk+1∥2.

The second of above inequality is from the fact uT v ≤ 1
2(∥u∥

2+∥v∥2) in which u = gTk+1skyk

and v = sTk ykgk+1. It is well known that sTk yk > 0 can be ensured by Wolfe line search.

Combining (2.4), let c = 1/2, the proof is completed.
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3. Convergence analysis

In this section, to prove the global convergence of Algorithm 2.1, we give the following

assumptions.

Assumption 3.1. The level set Ω = {x ∈ Rn : f(x) ≤ f(x0)} is bounded, namely, there

exists a positive constant δ such that ∥x∥ ≤ δ, ∀x ∈ Ω.

Assumption 3.2. The gradient of function f is Lipschitz continuous in some neighbor-

hood N of Ω, namely, there exists L > 0 satisfying

(3.1) ∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ N.

Based on the above assumptions, we can easily see that g(x) is bounded, namely, there

exists a positive constant M such that

(3.2) ∥g(x)∥ ≤M, ∀x ∈ Ω.

Lemma 3.3. Let the sequence {dk} be generated by Algorithm 2.1. If Assumption 3.2

holds, then

αk ≥
(1− σ)|gTk dk|

L∥dk∥2
.

Proof. The proof of Lemma 3.3 is similar to that of Proposition 4.1 in [2], so we omit it

here.

Lemma 3.4. Let the sequence {dk} be generated by Algorithm 2.1. If Assumption 3.2

holds, we have

(3.3)
∞∑
k=0

(gTk dk)
2

∥dk∥2
< +∞.

Proof. From the first inequality (2.6) of strong Wolfe conditions, Assumption 3.2 and

Lemma 3.3, we have

fk − fk+1 ≥ −ραkg
T
k dk ≥ −ρ

(1− σ)(gTk dk)
2

L∥dk∥2
.

Since f(x) is bounded from below, (3.3) is obtained.

Theorem 3.5. Suppose that Assumptions 3.1 and 3.2 hold. The sequence {xk} is gener-

ated by Algorithm 2.1. If f is a uniformly convex function on Ω, namely, there exists a

positive constant µ such that

(3.4) (∇f(x)−∇f(y))T (x− y) ≥ µ∥x− y∥2, ∀x, y ∈ N,

then we have

lim
k→∞

∥gk∥ = 0.
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Proof. From the Lipschitz condition (3.1), we have

(3.5) ∥yk∥ = ∥gk+1 − gk∥ ≤ L∥sk∥.

It follows from (3.4) that

(3.6) yTk sk ≥ µ∥sk∥2.

Using Cauchy inequality and (3.6), we obtain µ∥sk∥2 ≤ yTk sk ≤ ∥yk∥∥sk∥, namely,

(3.7) µ∥sk∥ ≤ ∥yk∥.

Then, from (3.5), (3.6) and (3.7), we have

µ =
µ∥sk∥2

∥sk∥2
≤

sTk yk
∥sk∥2

≤ ∥yk∥∥sk∥
∥sk∥2

≤ L,

µ ≤ ∥yk∥2

∥yk∥∥sk∥
≤ ∥yk∥2

sTk yk
≤ ∥yk∥2

µ∥sk∥2
≤ L2

µ
.(3.8)

Let θmin = min{2c, µ}, we get θk ≥ θmin. From (3.8), we obtain

(3.9) tk = 1 +
mk

θk

∥yk∥2

sTk yk
≤ 1 +

c

θmin

L2

µ
.

Therefore, by the definition of dk, triangle inequality, Cauchy inequality, (3.5), (3.6) and

(3.9), we have

∥dk+1∥ = ∥ − gk+1 + aksk + bkyk∥

≤ ∥gk+1∥+
1

2

∣∣∣∣sTk gk+1

sTk yk

∣∣∣∣ ∥yk∥+ 1

2

∣∣∣∣yTk gk+1

sTk yk

∣∣∣∣ ∥sk∥+ |tk|
∣∣∣∣sTk gk+1

sTk yk

∣∣∣∣ ∥sk∥
≤ ∥gk+1∥+

1

2

∥gk+1∥∥yk∥
µ∥sk∥

+
1

2

∥gk+1∥∥yk∥
µ∥sk∥

+

(
1 +

c

θmin

L2

µ

)
∥gk+1∥
µ

≤
(
1 +

L+ 1

µ
+

c

θmin

L2

µ2

)
∥gk+1∥ ≜M1∥gk+1∥.

(3.10)

From Lemma 2.2 and (3.10), we know

(gTk+1dk+1)
2

∥dk+1∥2
≥ c2∥gk+1∥2

M2
1

.

Combine with Lemma 3.4, then
∞∑
k=0

∥gk∥2 <∞.

The proof is completed.
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For general nonlinear functions, we can establish a weaker convergence result

(3.11) lim inf
k→∞

∥gk∥ = 0.

Lemma 3.6. Suppose that Assumptions 3.1 and 3.2 hold. Let the sequence {xk} be

generated by Algorithm 2.1, then we have dk ̸= 0 and

(3.12)
∞∑
k=0

∥uk+1 − uk∥2 <∞,

whenever inf{∥gk∥ : k ≥ 0} > 0 in which uk = dk/∥dk∥.

Proof. Define γ = inf{∥gk∥ : k ≥ 0}, then ∥gk∥ ≥ γ > 0. From the sufficient descent

condition (2.8), we know dk ̸= 0 for each k, so uk is well defined. To prove global

convergence, we define a+k = max{a′k, 0}, where a′k = 1
2
yTk gk+1

dTk yk
−

(
1 + mk

θk

∥yk∥2
sTk yk

) sTk gk+1

dTk yk
. By

(2.5), we have

dk+1

∥dk+1∥
=

−gk+1

∥dk+1∥
+ a+k

dk
∥dk+1∥

+ bk
yk

∥dk+1∥
=

−gk+1 + bkyk
∥dk+1∥

+ a+k
∥dk∥
∥dk+1∥

dk
∥dk∥

,

namely,

uk+1 = ωk + δkuk,

where

ωk =
−gk+1 + bkyk

∥dk+1∥
, δk = a+k

∥dk∥
∥dk+1∥

≥ 0.

Using the identity ∥uk+1∥ = ∥uk∥ = 1,

∥ωk∥ = ∥uk+1 − δkuk∥ = ∥δkuk+1 − uk∥.

Since δk ≥ 0, it follows that

∥uk+1 − uk∥ ≤ ∥(1 + δk)uk+1 − (1 + δk)uk∥ ≤ ∥uk+1 − δkuk∥+ ∥δkuk+1 − uk∥ = 2∥ωk∥.

From (2.7), we have

(3.13)

∣∣∣∣sTk gk+1

sTk yk

∣∣∣∣ = ∣∣∣∣dTk gk+1

dTk yk

∣∣∣∣ ≤ σ

1− σ
, ∥yk∥ ≤ ∥gk+1∥+

∥gk∥
∥gk+1∥

∥gk+1∥ ≤ 1+
M

γ
∥gk+1∥.

By the definition of ωk, bk and (3.13), we get

∥ωk∥ =
∥ − gk+1 + bkyk∥

∥dk+1∥

≤
∥gk+1∥+ 1

2

∣∣ sTk gk+1

sTk yk

∣∣ · ∥yk∥
∥dk+1∥

≤
[
1 +

σ

2(1− σ)

(
1 +

M

γ

)]
∥gk+1∥
∥dk+1∥

.
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If ∥gk+1∥ > γ, from Lemmas 2.2 and 3.4, we have

∞∑
k=0

c2γ2∥gk+1∥2

∥dk+1∥2
≤

∞∑
k=0

c2∥gk+1∥4

∥dk+1∥2
≤

∞∑
k=0

(gTk+1dk+1)
2

∥dk+1∥2
< +∞,

therefore, (3.12) holds.

Definition 3.7. Consider a method of the form (1.1) and (2.5), and suppose

(3.14) 0 < γ ≤ ∥gk∥ ≤ γ, k ≥ 0.

We call that a method has Property (*) if there exist constants b > 1 and λ > 0 such that

|a′k| < b and ∥sk∥ ≤ λ, then |a′k| ≤
1
2b .

Lemma 3.8. Suppose that Assumptions 3.1 and 3.2 hold. Let the sequence {dk} be

generated by Algorithm 2.1, then Algorithm 2.1 has Property (*).

Proof. By (2.7) and (2.8), we obtain

(3.15) dTk yk ≥ (σ − 1)gTk dk ≥ c(1− σ)∥gk∥2.

Using (3.2), (3.14), Assumption 3.1 and (3.15), we obtain

|a′k| =
∣∣∣∣12 yTk gk+1

dTk yk
−
(
1 +

mk

θk

∥yk∥2

sTk yk

)
sTk gk+1

dTk yk

∣∣∣∣
≤ 1

2

∥yk∥∥gk+1∥
c(1− σ)∥gk∥2

+

(
1 +

mk

θk

∥yk∥2

sTk yk

)
∥sk∥∥gk+1∥
c(1− σ)∥gk∥2

≤ 1

2

∥gk+1 − gk∥∥gk+1∥
c(1− σ)∥gk∥2

+

(
1 +

1

θmin

∥gk+1 − gk∥2

c(1− σ)∥gk∥2

)
∥sk∥∥gk+1∥
c(1− σ)∥gk∥2

≤ γ2

c(1− σ)γ2
+

(
1 +

2

θmin

2γ2

c(1− σ)γ2

)
2δγ

c(1− σ)γ2
:= b.

(3.16)

Define

(3.17) λ :=
c2(1− σ)2γ4

2γ2
[
γ +

(
1 + 4δ

θmin

2γ2

c(1−σ)γ2

)][
L
2 +

(
1 + 2

θmin

2γ2

c(1−σ)γ2

)] ,
if ∥sk∥ ≤ λ, from (3.16) and (3.17), we obtain

|a′k| ≤
1

2

L∥sk∥∥gk+1∥
c(1− σ)γ2

+

(
1 +

1

θmin

L2∥sk∥2

c(1− σ)γ2

)
∥sk∥∥gk+1∥
c(1− σ)γ2

≤
[
1

2

Lγ

c(1− σ)γ2
+

(
1 +

2

θmin

2γ2

c(1− σ)γ2

)
γ

c(1− σ)γ2

]
∥sk∥

≤
[
1

2

Lγ

c(1− σ)γ2
+

(
1 +

2

θmin

2γ2

c(1− σ)γ2

)
γ

c(1− σ)γ2

]
λ =

1

2b
.
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We will show that if the gradient sequence is bounded away from zero, then a fraction

of the steps cannot be too small in the next lemma. Let N be the set of positive integers.

Let Kλ := {i ∈ N : i ≥ 1, ∥si∥ > λ} for λ > 0, namely, the set of integers corresponding

to steps greater than λ. Now, we need to discuss groups of △ consecutive iterates, we let

Kλ
k,∆ := {i ∈ N : k ≤ i ≤ k +∆− 1, ∥si∥ > λ}. Let |Kλ

k,∆| denote the number of elements

of Kλ
k,∆.

Lemma 3.9. Suppose that Assumptions 3.1 and 3.2 hold. Let the sequences {xk} and

{dk} be generated by Algorithm 2.1. When (3.14) holds, there exists λ > 0 such that∣∣Kλ
k,∆

∣∣ > ∆

2
for ∆ ∈ N,

where k ≥ k0 with k0 being the any index.

Proof. We proceed by contradiction. Suppose that

for any λ > 0, there exist ∆ ∈ N and k0 such that,

for any k ≥ k0, we have
∣∣Kλ

k,∆

∣∣ ≤ ∆/2.
(3.18)

By (3.13), we have

∥bkyk∥ =
1

2

∣∣∣∣sTk gk+1

sTk yk

∣∣∣∣ ∥yk∥ ≤ σ

2(1− σ)
(
1 + γ

γ

)
∥gk+1∥ ≜M2∥gk+1∥

.

According to the definition of (2.5), we have

∥dk+1∥2 ≤
(
a′k∥dk∥+ ∥ − gk+1 + bkyk∥

)2 ≤ 2a
′2
k ∥dk∥2 + 2∥ − gk+1 + bkyk∥2

≤ 2a
′2
k ∥dk∥2 + 2

(
2∥gk+1∥2 + 2∥bkyk∥2

)
≤ 2a

′2
k ∥dk∥2 + 4(1 +M2

2 )∥gk+1∥2,

the above inequalities are established based on 2ab ≤ a2 + b2 for any scalars a and b, so

(a+ b)2 ≤ 2a2 + 2b2. By induction, we have

(3.19) ∥dl∥2 ≤ c1
(
1 + 2a

′2
l−1 + 2a

′2
l−12a

′2
l−2 + · · ·+ 2a

′2
l−12a

′2
l−2 · · · 2a

′2
k0

)
for any given index l ≥ k0 + 1, where c1 depends on ∥dk0−1∥, not depends on l. Next, we
consider 2a

′2
l−12a

′2
l−2 · · · 2a

′2
k , where k0 ≤ k ≤ l−1. We divide 2(l−k) factors of (3.19) into

groups of each 2∆ elements, namely, if Λ := (l − k)/∆, then (3.19) can be divided into Λ

or Λ + 1 groups

(3.20) (2a
′2
l1 · · · 2a

′2
k1), . . . , (2a

′2
lΛ
· · · 2a′2

kΛ
),

and a possible group

(3.21) (2a
′2
lΛ+1 · · · 2a

′2
k ),
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where li = l − 1− (i− 1)∆ for i = 1, 2, . . . ,Λ + 1, and ki = li+1 + 1 for i = 1, 2, . . . ,Λ. It

is clear that ki ≥ k0 for i = 1, 2, . . . ,Λ, from (3.18), we get pi :=
∣∣Kλ

ki,∆

∣∣ ≤ ∆/2. Thus,

there are pi indices j such that ∥sj∥ > λ and (∆ − pi) indices j such that ∥sj∥ ≤ λ on

[ki, ki +∆− 1].

From (3.16), we have b > γ2

c(1−σ)γ2 > 1, i.e., 2b2 > 1. In conjunction with 2pi −∆ ≤ 0,

we have 2a
′2
li
· · · 2a′2

ki
≤ 2∆b2pi

(
1
2b

)2(∆−pi) = (2b2)2pi−∆ ≤ 1. So every item in (3.20) is less

than or equal to 1, and so is their product. In (3.21), we have 2a
′2
lΛ+1

· · · 2a′2
k ≤ (2b2)∆.

Then, we get

∥dl∥2 ≤ c2(l − k0 + 2),

where c2 > 0 and independent of l. Furthermore,
∑

k≥0
1

∥dk∥2 = ∞. But from sufficient

condition (2.8), Zoutendijk condition (3.3) and (3.14), we have

c2γ4
∑
k≥0

1

∥dk∥2
≤ c2

∑
k≥0

∥gk∥4

∥dk∥2
≤

∑
k≥0

(gTk dk)
2

∥dk∥2
<∞.

This leads to a contradiction. The proof is completed.

Theorem 3.10. Suppose that Assumptions 3.1 and 3.2 hold. Let the sequence {xk} be

generated by Algorithm 2.1, then (3.11) holds.

Proof. Suppose on the contrary that we can get a contradiction similarly to Theorem 4.3

in [15].

4. Numerical results

In this section, we show the numerical performance of Algorithm 2.1. All codes are written

on Matlab R2015b and run on PC with 1.80 GHz CPU processor, 8.00 GB RAM memory.

Two classes of test problems were selected here which are listed in Table 4.1. One class was

drawn from the CUTEr library [16], and the other class came from Andrei [4]. Table 4.1

lists 28 test functions for 80 problems with dimensions from 2 to 50000.

Table 4.1: List of the test functions and dimensions.

Functions Functions Functions Functions

1 Freudenstein and Roth 2 Chebyquad 3 Powell badly scaled 4 Beale

5 Helical valley 6 Broyden banded 7 Wood 8 Biggs EXP6

9 Extended Rosenbrock 10 Trigonometric 11 Extended Powell singular 12 Boundary value

13 Penalty function I 14 Integral equation 15 Penalty function II 16 Broyden tridiagonal

17 Gaussian-1 18 Gaussian-2 19 Box-1 20 Box-2

21 Separable cubic 22 Variable dimension 23 Nearly separable 24 Watson

25 Yang tridiagonal 26 Brown and Dennis-1 27 Brown and Dennis-2 28 Allgower
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Table 4.2: Partial numerical results of mk with random parameter and 1/2.

P. RTT1(r) RTT1(12) RTT2(r) RTT2(12)

(k/nf/CPU) (k/nf/CPU) (k/nf/CPU) (k/nf/CPU)

2 12/28/0.0469 55/85/0.0313 12/28/0.0469 64/95/0.0313

4 15/26/0.0156 15/26/0.0156 15/25/0.0313 15/25/0.0313

5 54/80/0.0469 72/102/0.0469 66/90/0.0781 72/102/0.0469

6 117/156/0.0313 145/197/0.0625 87/122/0.0156 145/197/0.0781

7 92/127/0.0156 284/363/0.0625 104/136/0.0313 131/177/0.1094

8 94/129/0.0313 102/145/0.0781 115/166/0.0313 102/145/0.0313

12 77/104/0.1250 85/116/0.0469 81/110/0.0625 133/185/0.0781

13 57/72/0.5938 121/160/0.7188 101/134/1.1094 117/153/0.6875

14 88/123/1.1750 104/144/1.3438 97/136/1.2188 131/180/1.6719

15 90/125/7.1875 157/214/8.4219 120/166/11.8906 122/167/6.1250

22 16/22/0.0010 19/26/0.0156 15/21/0.0156 24/30/0.0156

23 11/21/0.0156 13/25/0.0275 12/22/0.0010 16/24/0.0156

24 7/24/0.0012 8/24/0.0313 6/17/0.0010 8/24/0.0565

26 16/53/0.0013 16/53/0.0156 16/54/0.0015 16/53/0.0156

41 14/21/1.0313 50/66/3.7344 32/46/2.5469 50/66/3.6406

53 46/57/0.0075 52/62/0.0156 32/42/0.0156 53/66/0.0156

54 41/51/0.1250 41/51/0.1250 45/59/0.1250 63/75/0.1250

55 30/38/0.1788 42/52/0.2031 37/46/0.2813 37/46/0.2813

56 22/29/0.4219 31/40/0.5469 34/44/0.5938 52/61/0.9219

61 41/55/0.0313 41/55/0.0313 41/55/0.0156 41/55/0.0156

62 42/60/0.1406 42/60/0.1406 35/47/0.1250 42/60/0.1250

63 39/52/0.8125 46/62/0.8125 40/55/0.3281 40/55/0.3281

64 46/62/0.7813 46/62/0.7813 50/66/0.9063 46/62/0.8438

65 10/15/0.1094 12/15/0.1563 9/13/0.0938 10/14/0.1250

66 9/14/3.6250 15/18/6.0313 9/14/3.7031 11/15/4.3594

67 14/18/18.3906 16/20/22.4375 11/16/11.7500 11/15/13.9688

68 11/16/279.3438 14/18/401.2656 13/18/326.5781 13/18/373.9375

69 44/81/0.5625 44/81/0.5625 117/184/1.8438 44/81/0.5625
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We compare Algorithm 2.1 against TTCG (STT) [9], NTPA [27], CG descent (DDL)

[17] and TCG [5], which have been acclaimed to be powerful for solving unconstrained

optimization problems. When θk = min
{
2c,

sTk yk
∥sk∥2

}
and θk = min

{
2c, ∥yk∥

2

sTk yk

}
are chosen,

Algorithm 2.1 are denoted by “RTT1” and “RTT2”, respectively.

All test methods are terminated when satisfies condition ∥gk∥ ≤ ε or the number of

iterations exceeds 1000. We set parameters as ε = 10−6; ρ = 0.01, σ = 0.8 in the strong

Wlofe conditions (2.6) and (2.7); p = 0.8, q = −0.1 in CG descent method and η = 0.1 in

TCG method.

Table 4.3: Partial numerical results of several methods.

P. RTT1 STT NTPA DDL TCG

(k/nf/CPU) (k/nf/CPU) (k/nf/CPU) (k/nf/CPU) (k/nf/CPU)

11 12/28/0.0469 25/54/0.0156 9/25/0.0625 14/32/0.0625 30/60/0.0156

14 15/26/0.0156 15/31/0.0250 48/61/0.0781 12/21/0.0625 22/37/0.0156

15 54/80/0.0469 42/98/0.0156 −/− /− 57/88/0.0156 38/63/0.0469

18 117/156/0.0313 95/218/0.0156 170/189/0.0313 43/63/0.0469 25/47/0.0156

21 16/22/0.0010 11/22/0.0250 32/42/0.0781 7/11/0.0156 16/23/0.0250

28 11/21/0.0156 7/18/0.0781 31/43/0.0313 21/28/0.0156 16/25/0.0156

29 7/24/0.0010 4/11/0.0313 11/28/0.0378 8/26/0.0250 5/19/0.0010

32 16/53/0.0010 14/57/0.0250 16/53/0.0378 16/53/0.0313 16/55/0.0156

33 14/21/1.0313 23/47/2.2500 26/33/0.7188 57/84/1.7656 29/39/2.2969

43 46/57/0.0313 19/40/0.0781 63/79/0.0313 40/50/0.0625 52/64/0.0156

44 41/51/0.1250 24/48/0.0625 72/90/0.2344 33/41/0.1406 51/63/0.2500

47 30/38/0.2188 28/55/0.1875 78/91/0.3438 49/61/0.3594 53/70/0.3906

48 22/29/0.4219 29/56/0.5625 42/57/0.4531 62/76/0.7188 39/50/0.8906

51 41/55/0.0313 28/59/0.0781 38/56/0.0313 51/68/0.0313 65/86/0.0156

52 42/60/0.1406 27/55/0.0625 107/126/0.2656 38/50/0.1406 52/69/0.1250

56 39/52/1.4078 17/44/0.0625 73/89/0.3594 48/64/0.3594 45/61/0.2813

57 46/62/0.7813 88/177/2.0781 87/108/0.9688 38/60/0.3906 45/67/0.8906

63 10/15/0.1094 11/15/0.2188 12/14/0.0625 13/15/0.0781 10/14/0.1094

64 9/14/3.6250 11/15/2.0313 13/15/2.5625 18/20/3.2656 11/18/4.2031

68 14/18/18.3906 11/15/5.8438 13/15/7.7813 20/22/11.4219 16/20/20.5469

72 11/16/279.3438 13/18/177.3750 15/17/491.2188 22/24/339.5000 12/17/301.5469

Some numerical results of mk with random parameter and 1/2 for problems (in Ta-
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ble 4.1) are listed in Table 4.2. And some experimental results compared with several

methods are listed in Table 4.3.

As can be seen from Table 4.2, RTT1 and RTT2 with mk taking random parameter

performs better than that with mk taking 1/2 with respect to k, nf and CPU. There-

fore, RTT1 and RTT2 with random parameters are more competitive. Moreover, the

performance of RTT1 is superior to that of RTT2.

From Table 4.3, if program runs failure, or the number of iterations reaches more

than 500, regarded as failed (−). We can see that RTT1 algorithm is effective than other

methods in most cases.
12 Yueting Yang1,2 · Xue Zhang1 · Guoling Zhou1 · Mingyuan Cao∗1

Fig.1 The number of iterations (k). Fig.2 The number of function evaluations (nf).

Fig.3 The number of gradient evaluations (ng). Fig.4 CPU time.

Figs. 1-4 plot the performance profiles for the number of iterations, the number of function1

evaluations, the number of gradient evaluations, and the CPU time, respectively. They show that2

RTT1 and RTT2 are superior to other algorithms when τ < 2.5; and when τ > 2.5. RTT1 and RTT23

are comparable to the best-performing DDL and TCG algorithms.4

5 The application of Algorithm 2.1 in regression model5

In this section, it is considered that using conjugate gradient method to solve regression problems6

can improve the solving efficiency and accuracy, process large-scale data sets, and is also widely7

used in other fields. We apply Algorithm 2.1 to a practical problem of regression analysis in [30] and8

compare our algorithm with [30] to verify the applicability. Regression analysis is one of the most9

commonly tools used data modeling and analysis in economics, finance and other fields. For example,10

it can be used to build predictive models between variables to predict future outcomes; it can help11

determine which factors are most important to the outcome; it can also be used to identify outliers,12

Figure 4.1: The number of iterations (k).

12 Yueting Yang1,2 · Xue Zhang1 · Guoling Zhou1 · Mingyuan Cao∗1

Fig.1 The number of iterations (k). Fig.2 The number of function evaluations (nf).

Fig.3 The number of gradient evaluations (ng). Fig.4 CPU time.

Figs. 1-4 plot the performance profiles for the number of iterations, the number of function1

evaluations, the number of gradient evaluations, and the CPU time, respectively. They show that2

RTT1 and RTT2 are superior to other algorithms when τ < 2.5; and when τ > 2.5. RTT1 and RTT23

are comparable to the best-performing DDL and TCG algorithms.4

5 The application of Algorithm 2.1 in regression model5

In this section, it is considered that using conjugate gradient method to solve regression problems6

can improve the solving efficiency and accuracy, process large-scale data sets, and is also widely7

used in other fields. We apply Algorithm 2.1 to a practical problem of regression analysis in [30] and8

compare our algorithm with [30] to verify the applicability. Regression analysis is one of the most9

commonly tools used data modeling and analysis in economics, finance and other fields. For example,10

it can be used to build predictive models between variables to predict future outcomes; it can help11

determine which factors are most important to the outcome; it can also be used to identify outliers,12

Figure 4.2: The number of function eval-

uations (nf).

12 Yueting Yang1,2 · Xue Zhang1 · Guoling Zhou1 · Mingyuan Cao∗1

Fig.1 The number of iterations (k). Fig.2 The number of function evaluations (nf).

Fig.3 The number of gradient evaluations (ng). Fig.4 CPU time.

Figs. 1-4 plot the performance profiles for the number of iterations, the number of function1

evaluations, the number of gradient evaluations, and the CPU time, respectively. They show that2

RTT1 and RTT2 are superior to other algorithms when τ < 2.5; and when τ > 2.5. RTT1 and RTT23

are comparable to the best-performing DDL and TCG algorithms.4

5 The application of Algorithm 2.1 in regression model5

In this section, it is considered that using conjugate gradient method to solve regression problems6

can improve the solving efficiency and accuracy, process large-scale data sets, and is also widely7

used in other fields. We apply Algorithm 2.1 to a practical problem of regression analysis in [30] and8

compare our algorithm with [30] to verify the applicability. Regression analysis is one of the most9

commonly tools used data modeling and analysis in economics, finance and other fields. For example,10

it can be used to build predictive models between variables to predict future outcomes; it can help11

determine which factors are most important to the outcome; it can also be used to identify outliers,12

Figure 4.3: The number of gradient eval-

uations (ng).
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Fig.1 The number of iterations (k). Fig.2 The number of function evaluations (nf).

Fig.3 The number of gradient evaluations (ng). Fig.4 CPU time.

Figs. 1-4 plot the performance profiles for the number of iterations, the number of function1

evaluations, the number of gradient evaluations, and the CPU time, respectively. They show that2

RTT1 and RTT2 are superior to other algorithms when τ < 2.5; and when τ > 2.5. RTT1 and RTT23

are comparable to the best-performing DDL and TCG algorithms.4

5 The application of Algorithm 2.1 in regression model5

In this section, it is considered that using conjugate gradient method to solve regression problems6

can improve the solving efficiency and accuracy, process large-scale data sets, and is also widely7

used in other fields. We apply Algorithm 2.1 to a practical problem of regression analysis in [30] and8

compare our algorithm with [30] to verify the applicability. Regression analysis is one of the most9

commonly tools used data modeling and analysis in economics, finance and other fields. For example,10

it can be used to build predictive models between variables to predict future outcomes; it can help11

determine which factors are most important to the outcome; it can also be used to identify outliers,12

Figure 4.4: CPU time.

And we present the performance profile including (k, nf , ng and CPU time) introduced
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by Dolan and Moré [14] to clearly show the difference in numerical effects among six

algorithms. Generally, the method whose performance profile plot is on the top right will

represent the best method. Let Y and W be the set of methods and test problems, ny,

nw be the number of methods and test problems, respectively. The performance profile

ψ : R → [0, 1] is for each y ∈ Y and w ∈ W defined that aw,y > 0 is k or nf or ng or

CPU required to solve problems w by method y. Furthermore, the performance profile is

obtained by

rw,y =
aw,y

min{aw,y : y ∈ Y }
, ψy(τ) =

1

nw
size{w ∈W : rw,y ≤ τ},

where τ > 0, size{·} is the number of elements in a set.

Figures 4.1–4.4 plot the performance profiles for the number of iterations, the number

of function evaluations, the number of gradient evaluations, and the CPU time, respec-

tively. They show that RTT1 and RTT2 are superior to other algorithms when τ < 2.5

and when τ > 2.5. RTT1 and RTT2 are comparable to the best-performing DDL and

TCG algorithms.

5. The application of Algorithm 2.1 in regression model

In this section, it is considered that using conjugate gradient method to solve regression

problems can improve the solving efficiency and accuracy, process large-scale data sets,

and is also widely used in other fields. We apply Algorithm 2.1 to a practical problem of

regression analysis in [12] and compare our algorithm with [12] to verify the applicability.

Regression analysis is one of the most commonly tools used data modeling and analysis in

economics, finance and other fields. For example, it can be used to build predictive models

between variables to predict future outcomes; it can help determine which factors are most

important to the outcome; it can also be used to identify outliers, values that adversely

affect results. So the application of Algorithm 2.1 in regression analysis has important

practical significance. In Table 5.1, a summary of the number of female deaths in Irbid

(Jordan) from 2009 to 2018 is given. The data set is retrieved from the Department of

Statistics in Jordan (2018).

Based on the research of Dawahdeh et al. [12], the optimization problem for finding

quadratic regression parameters is defined as follows:

(5.1) min f(a) =
n∑

i=1

[
yi − a(1, xi, x

2
i )

T
]2
, a = (a0, a1, a2) ∈ R3.

According to data 1 to 9 in Table 5.1, (5.1) is transformed into the following problem

min f(x1, x2, x3) = 9x21 + 90x1x2 + 570x1x3 − 33330x1 + 285x22

+ 4050x2x3 − 176342x2 + 15333x23 − 1155094x3 + 31282025.
(5.2)
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Then Algorithm 2.1 is used to calculate the optimization problem (5.2), choose different

initial points, the results are shown in Table 5.2.

Table 5.1: Number of female deaths recorded in Irbid city (Jordan) from 2009 to 2018.

Number of Data (x) Year Number of Female Deaths (y)

1 2009 1563

2 2010 1689

3 2011 1647

4 2012 1679

5 2013 1757

6 2014 1973

7 2015 2071

8 2016 2121

9 2017 2165

10 2018 2117

Table 5.2: Test results for optimization of quadratic model for Algorithm 2.1.

Initial Point Solution Point (a0, a1, a2)

(1,1,1) (1528.889793318067, 36.424065643404, 4.438905767442)

(9,9,9) (1528.733929199936, 36.637097404077, 4.413085031462)

(13,13,13) (1529.214320770277, 36.385744696179, 4.437481293816)

(1000,1000,1000) (1529.571675208395, 36.170828337683, 4.459279814400)

By solving the average values of a0, a1 and a2, we obtained the quadratic function of

regression analysis as

(5.3) ŷ = 1529.102429624169 + 36.404434020335749x+ 4.437187976780001x2.

Now, we use the relative error
∣∣y−ŷ

y

∣∣ to measure the fitting degree of (5.3) with observed

data, and compared with the method proposed in [12]. The smaller the relative error value

is, the better the accuracy is, or the better the fitting with the observed data set is. The

results are shown in Table 5.3.
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Table 5.3: Relative error for quadratic model.

Year (x) Female Deaths (y) ŷ Relative Error

1 1563 1569.944051621285 0.004442771350790

2 1689 1619.660049571961 0.041053848684452

3 1647 1678.250423476196 0.018974149044442

4 1679 1745.715173333992 0.039735064522926

5 1757 1822.054299145348 0.037025782097523

6 1973 1907.267800910263 0.033315863704884

7 2071 2001.355678628739 0.033628354114563

8 2121 2104.317932300775 0.007865189862907

9 2165 2216.154561926371 0.023627973176153

According to Table 5.3, the sum of relative errors is

0.004442771350790 + 0.041053848684452 + 0.018974149044442

+ 0.039735064522926 + 0.037025782097523 + 0.033315863704884

+ 0.033628354114563 + 0.007865189862907 + 0.023627973176153

= 0.239668996558640.

And the average value of relative errors is 0.026629888506516. The sum and average

relative errors of the method proposed [12] are 0.23968163237293 and 0.02663129248588,

respectively. By comparison, it can be found that the sum of relative errors and average

relative errors obtained by using Algorithm 2.1 to solve regression model (5.2) are lower

than the algorithm in reference [12]. Therefore, we can think that the quadratic model

obtained by using Algorithm 2.1 has a good fitting degree and improves the accuracy of

the model.

6. Conclusion

In this paper, a class of three-term conjugate gradient methods with random parameter

are proposed. The Frobenius norm is used to minimize distance between the symmetric

matrix Ak+1 and memoryless BFGS matrix, and calculation format of parameter in Ak+1

is obtained. A random technique is to simplify parameter and a new search direction is de-

rived which has sufficient descent property. Global convergence of new algorithm is proved

under appropriate assumptions. Furthermore, some classical test problems are selected for
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numerical experiments and compared with the other two three-term conjugate gradient

methods to verify the effectiveness of proposed algorithm. Finally, the new algorithm is

applied to a practical problem in regression analysis, and shown that our algorithm is

competitive.
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