A Three-term Conjugate Gradient Method with a Random Parameter for Large-scale Unconstrained Optimization and its Application in Regression Model

Yueting Yang, Xue Zhang, Guoling Zhou and Mingyuan Cao*

Abstract

In this paper, a new three-term conjugate gradient algorithm is proposed to solve unconstrained optimization including regression problems. We minimize the distance between the search direction matrix and the self-scaling memoryless BFGS direction matrix in the Frobenius norm to determine the search direction, which has the same advantages as the quasi-Newton method. At the same time, random parameter is used so that the search direction satisfies sufficient descent condition. For uniformly convex functions and general nonlinear functions, we all establish the global convergence of the new method. Numerical experiments show that our method has nice numerical performance for solving large-scale unconstrained optimization. In addition, the application of the new method to the regression model proves that our method is effective.

1. Introduction

Unconstrained optimization widely exist in compressing sensing [1], portfolio selection 13 and image restoration [18,19] and many other fields. Consider the following unconstrained optimization

$$
\min f(x), \quad x \in \mathbb{R}^{n}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous differentiable and bounded from below. Starting from an initial point $x_{0} \in \mathbb{R}^{n}$, the iterative form of conjugate gradient method is given by

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} d_{k}, \quad k \geq 0 \tag{1.1}
\end{equation*}
$$

in which $\alpha_{k}>0$ is a stepsize, and d_{k} is a search direction defined by

$$
d_{0}=-g_{0}, \quad d_{k}=-g_{k}+\beta_{k-1} d_{k-1}, \quad k \geq 1,
$$

where $g_{k}=\nabla f\left(x_{k}\right)$ is the gradient of $f(x)$ at iterate point x_{k} and $\beta_{k-1} \in \mathbb{R}$ is a conjugate gradient parameter.

[^0]Due to its simplicity and low memory requirement, conjugate gradient methods are the most popular class of algorithm for solving large-scale unconstrained optimization in industry and engineering field $[7,24,25]$. Recently, based on the classical conjugate gradient methods, such as DY, HS, PRP and FR, etc., many modified conjugate gradient methods are proposed $[8,20,22,23]$. Especially, three-term conjugate gradient methods have been paid attention $[2,3,9,27$.

Perry 21] presented the following search direction based on Dai-Liao (DL) conjugate gradient method (11]

$$
d_{k+1}=-Q_{k+1} g_{k+1}
$$

where Q_{k+1} is the search direction matrix, i.e.,

$$
\begin{equation*}
Q_{k+1}=I-\frac{s_{k} y_{k}^{T}}{s_{k}^{T} y_{k}}+t \frac{s_{k} s_{k}^{T}}{s_{k}^{T} y_{k}}, \tag{1.2}
\end{equation*}
$$

$s_{k}=x_{k+1}-x_{k}=\alpha_{k} d_{k}$ and $y_{k}=g_{k+1}-g_{k}$. It is clear that Perry method and DL conjugate gradient method are equivalent. There are some different choices of parameter t [6, 26, 30].

Note that Q_{k+1} in 1.2 is nonsymmetric and does not satisfy the secant condition, Babaie-Kafaki and Ghanbari (5) presented the following new symmetric matrix

$$
\begin{equation*}
A_{k+1}=I-\frac{1}{2} \frac{s_{k} y_{k}^{T}+y_{k} s_{k}^{T}}{s_{k}^{T} y_{k}}+t \frac{s_{k} s_{k}^{T}}{s_{k}^{T} y_{k}} . \tag{1.3}
\end{equation*}
$$

They derived $t_{k}^{p, q}=p \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}-q \frac{s_{k}^{T} y_{k}}{\left\|s_{k}\right\|^{2}}(p>1 / 4, q \leq 1 / 4)$ by finding the eigenvalues of A_{k+1}. Their method can be regarded as a general form of methods proposed by Dai and Kou 10 and Hager and Zhang 17. Moreover, Zhang, Liu and Liu 29 gave $t_{k}=\frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}-\frac{1}{4} \frac{s_{k}^{T} y_{k}}{\left\|s_{k}\right\|^{2}}$ by minimizing the upper bound of spectral condition number of Q_{k+1}.

In this paper, we design a new three-term conjugate gradient method with random parameter by using quasi-Newton method to derive another representation of the parameter t in (1.3). Our innovations mainly include the following:
\diamond The parameter t in A_{k+1} is determined by minimizing the distance between A_{k+1} and self-scaling memoryless Broyden-Fletcher-Goldfarb-Shanno (BFGS) matrix in the Frobenius norm.
\diamond The significant difference from previous algorithms is that random parameter is introduced to simplify the derived parameter. Our method with random parameter is more relaxed and elastic.
\diamond Our method has global convergence for uniformly convex functions and general nonlinear functions, and the method has been successfully applied to regression models.

The rest of this paper is organized as follows. In the next section, a new random parameter is given to present a three-term conjugate gradient method. In Section 3. global convergence of our method is proved under appropriate conditions. In Section 4 ,
some numerical experiments are implemented. In Section 5, the application of the new method in regression model is presented. Conclusions are made in the last section.
2. Three-term conjugate gradient method with a random parameter

In this section, our main aim is to propose a new three-term conjugate gradient method. The search direction is derived by minimizing the Frobenius norm of difference between the search direction matrix and quasi-Newton updating, in conjunction with choices of random parameter. Inspired by Yao and Ning [27, we consider the following model

$$
\begin{equation*}
\min \left\|D_{k+1}\right\|_{F}^{2} \tag{2.1}
\end{equation*}
$$

where $\|\cdot\|_{F}$ is the Frobenius norm, $D_{k+1}=A_{k+1}-B_{k+1}^{-1}, A_{k+1}$ is determined by (1.3), B_{k+1}^{-1} is a self-scaling memoryless BFGS matrix

$$
\begin{equation*}
B_{k+1}^{-1}=\frac{1}{\theta_{k}} I-\frac{1}{\theta_{k}} \frac{s_{k} y_{k}^{T}+y_{k} s_{k}^{T}}{s_{k}^{T} y_{k}}+\left(1+\frac{1}{\theta_{k}} \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\right) \frac{s_{k} s_{k}^{T}}{s_{k}^{T} y_{k}}, \tag{2.2}
\end{equation*}
$$

and θ_{k} is a scaling parameter. From (1.3) and 2.2 , we have

$$
\left\|D_{k+1}\right\|_{F}^{2}=\operatorname{tr}\left(D_{k+1}^{T} D_{k+1}\right)=\frac{\left\|s_{k}\right\|^{4}}{\left(s_{k}^{T} y_{k}\right)^{2}} t^{2}+2\left[\frac{\left\|s_{k}\right\|^{2}}{\theta_{k} s_{k}^{T} y_{k}}-\frac{\left\|s_{k}\right\|^{4}}{\left(s_{k}^{T} y_{k}\right)^{2}}-\frac{\left\|y_{k}\right\|^{2}\left\|s_{k}\right\|^{4}}{\theta_{k}\left(s_{k}^{T} y_{k}\right)^{3}}\right] t+\xi
$$

where ξ is a constant independent of t. This is a second-degree polynomial of variable t and the coefficient of t^{2} is positive. Therefore, the minimum of problem (2.1) is

$$
\begin{equation*}
t_{k}=\arg \min \left\{\operatorname{tr}\left(D_{k+1}^{T} D_{k+1}\right)\right\}=1+\frac{m_{k}}{\theta_{k}} \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}} \tag{2.3}
\end{equation*}
$$

where $m_{k}=\sin ^{2} \eta_{k}, \eta_{k}=\left\langle s_{k}, y_{k}\right\rangle$ is the angle between s_{k} and y_{k}. Instead of the mean value to $\cos ^{2} \eta_{k}=1 / 2$ in 28, we set m_{k} is a random number in the interval $[\underline{c}, \bar{c}]$, where $0<\underline{c}<\bar{c}<1$. There are many possible ways to choose θ_{k}, we prefer to use

$$
\begin{equation*}
\theta_{k}=\min \left\{2 \underline{c}, \frac{s_{k}^{T} y_{k}}{\left\|s_{k}\right\|^{2}}\right\} \quad \text { or } \quad \theta_{k}=\min \left\{2 \underline{c}, \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\right\} \tag{2.4}
\end{equation*}
$$

Thus, t_{k} in 2.3) can be regarded as a random parameter.
Substitute (2.3) into (1.3), let $d_{k+1}=-A_{k+1} g_{k+1}$, then

$$
\begin{equation*}
d_{k+1}=-\left(I-\frac{1}{2} \frac{s_{k} y_{k}^{T}+y_{k} s_{k}^{T}}{s_{k}^{T} y_{k}}+t_{k} \frac{s_{k} s_{k}^{T}}{s_{k}^{T} y_{k}}\right) g_{k+1} \triangleq-g_{k+1}+a_{k} s_{k}+b_{k} y_{k} \tag{2.5}
\end{equation*}
$$

where

$$
a_{k}=\frac{1}{2} \frac{y_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}}-\left(1+\frac{m_{k}}{\theta_{k}} \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\right) \frac{s_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}}, \quad b_{k}=\frac{1}{2} \frac{s_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}} .
$$

Based on the above analysis, a new three-term conjugate gradient algorithm with random parameter can be presented as follows.

Algorithm 2.1.

Step 0. Given $x_{0} \in \mathbb{R}^{n}, \varepsilon>0,0<\underline{c}<\bar{c}<1$ and $0<\rho<\sigma<1$. Let $f_{0}=f\left(x_{0}\right)$, $g_{0}=\nabla f\left(x_{0}\right), d_{0}:=-g_{0}$ and $k:=0$.

Step 1. If $\left\|g_{k}\right\| \leq \varepsilon$, stop, else go to Step 2.
Step 2. Compute a steplength α_{k} satisfying strong Wolfe line search conditions

$$
\begin{gather*}
f\left(x_{k}+\alpha d_{k}\right)-f\left(x_{k}\right) \leq \rho \alpha g_{k}^{T} d_{k}, \tag{2.6}\\
\left|g_{k+1}^{T} d_{k}\right| \leq-\sigma g_{k}^{T} d_{k} . \tag{2.7}
\end{gather*}
$$

Step 3. Set $x_{k+1}=x_{k}+\alpha_{k} d_{k}$, and compute f_{k+1}, g_{k+1}, s_{k} and y_{k}.
Step 4. Compute t_{k} by (2.3) and search direction d_{k+1} by (2.5). Set $k:=k+1$ and go to Step 1.

The following lemma show the sufficient descent property of search direction.
Lemma 2.2. Let the sequence $\left\{d_{k+1}\right\}$ be generated by Algorithm 2.1, then there exists a positive constant c, such that

$$
\begin{equation*}
g_{k+1}^{T} d_{k+1} \leq-c\left\|g_{k+1}\right\|^{2} \tag{2.8}
\end{equation*}
$$

Proof. From (2.5), it can be deduced that

$$
\begin{aligned}
g_{k+1}^{T} d_{k+1}= & -\left\|g_{k+1}\right\|^{2}+\frac{y_{k}^{T} g_{k+1} g_{k+1}^{T} s_{k} s_{k}^{T} y_{k}}{\left(s_{k}^{T} y_{k}\right)^{2}}-\left(1+\frac{m_{k}}{\theta_{k}} \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\right) \frac{\left(s_{k}^{T} g_{k+1}\right)^{2}}{s_{k}^{T} y_{k}} \\
\leq & -\left\|g_{k+1}\right\|^{2}+\frac{1}{2} \frac{\left(g_{k+1}^{T} s_{k}\right)^{2}\left\|y_{k}\right\|^{2}+\left(s_{k}^{T} y_{k}\right)^{2}\left\|g_{k+1}\right\|^{2}}{\left(s_{k}^{T} y_{k}\right)^{2}} \\
& -\left(1+\frac{m_{k}}{\theta_{k}} \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\right) \frac{\left(s_{k}^{T} g_{k+1}\right)^{2}}{s_{k}^{T} y_{k}} \\
= & -\frac{1}{2}\left\|g_{k+1}\right\|^{2}-\frac{\left(s_{k}^{T} g_{k+1}\right)^{2}}{s_{k}^{T} y_{k}}\left[1+\frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\left(\frac{m_{k}}{\theta_{k}}-\frac{1}{2}\right)\right] \\
\leq & -\frac{1}{2}\left\|g_{k+1}\right\|^{2}-\frac{\left(s_{k}^{T} g_{k+1}\right)^{2}}{s_{k}^{T} y_{k}}\left[1+\frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\left(\frac{2 \underline{c}-\theta_{k}}{2 \theta_{k}}\right)\right] \\
\leq & -\frac{1}{2}\left\|g_{k+1}\right\|^{2} .
\end{aligned}
$$

The second of above inequality is from the fact $u^{T} v \leq \frac{1}{2}\left(\|u\|^{2}+\|v\|^{2}\right)$ in which $u=g_{k+1}^{T} s_{k} y_{k}$ and $v=s_{k}^{T} y_{k} g_{k+1}$. It is well known that $s_{k}^{T} y_{k}>0$ can be ensured by Wolfe line search. Combining (2.4), let $c=1 / 2$, the proof is completed.

3. Convergence analysis

In this section, to prove the global convergence of Algorithm 2.1, we give the following assumptions.

Assumption 3.1. The level set $\Omega=\left\{x \in \mathbb{R}^{n}: f(x) \leq f\left(x_{0}\right)\right\}$ is bounded, namely, there exists a positive constant δ such that $\|x\| \leq \delta, \forall x \in \Omega$.

Assumption 3.2. The gradient of function f is Lipschitz continuous in some neighborhood \mathbb{N} of Ω, namely, there exists $L>0$ satisfying

$$
\begin{equation*}
\|g(x)-g(y)\| \leq L\|x-y\|, \quad \forall x, y \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

Based on the above assumptions, we can easily see that $g(x)$ is bounded, namely, there exists a positive constant M such that

$$
\begin{equation*}
\|g(x)\| \leq M, \quad \forall x \in \Omega \tag{3.2}
\end{equation*}
$$

Lemma 3.3. Let the sequence $\left\{d_{k}\right\}$ be generated by Algorithm 2.1. If Assumption 3.2 holds, then

$$
\alpha_{k} \geq \frac{(1-\sigma)\left|g_{k}^{T} d_{k}\right|}{L\left\|d_{k}\right\|^{2}}
$$

Proof. The proof of Lemma 3.3 is similar to that of Proposition 4.1 in [2], so we omit it here.

Lemma 3.4. Let the sequence $\left\{d_{k}\right\}$ be generated by Algorithm 2.1. If Assumption 3.2 holds, we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}<+\infty \tag{3.3}
\end{equation*}
$$

Proof. From the first inequality (2.6) of strong Wolfe conditions, Assumption 3.2 and Lemma 3.3, we have

$$
f_{k}-f_{k+1} \geq-\rho \alpha_{k} g_{k}^{T} d_{k} \geq-\rho \frac{(1-\sigma)\left(g_{k}^{T} d_{k}\right)^{2}}{L\left\|d_{k}\right\|^{2}}
$$

Since $f(x)$ is bounded from below, (3.3) is obtained.
Theorem 3.5. Suppose that Assumptions 3.1 and 3.2 hold. The sequence $\left\{x_{k}\right\}$ is generated by Algorithm 2.1. If f is a uniformly convex function on Ω, namely, there exists a positive constant μ such that

$$
\begin{equation*}
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq \mu\|x-y\|^{2}, \quad \forall x, y \in \mathbb{N} \tag{3.4}
\end{equation*}
$$

then we have

$$
\lim _{k \rightarrow \infty}\left\|g_{k}\right\|=0
$$

Proof. From the Lipschitz condition (3.1), we have

$$
\begin{equation*}
\left\|y_{k}\right\|=\left\|g_{k+1}-g_{k}\right\| \leq L\left\|s_{k}\right\| \tag{3.5}
\end{equation*}
$$

It follows from (3.4) that

$$
\begin{equation*}
y_{k}^{T} s_{k} \geq \mu\left\|s_{k}\right\|^{2} \tag{3.6}
\end{equation*}
$$

Using Cauchy inequality and (3.6), we obtain $\mu\left\|s_{k}\right\|^{2} \leq y_{k}^{T} s_{k} \leq\left\|y_{k}\right\|\left\|s_{k}\right\|$, namely,

$$
\begin{equation*}
\mu\left\|s_{k}\right\| \leq\left\|y_{k}\right\| \tag{3.7}
\end{equation*}
$$

Then, from (3.5), (3.6) and (3.7), we have

$$
\begin{gather*}
\mu=\frac{\mu\left\|s_{k}\right\|^{2}}{\left\|s_{k}\right\|^{2}} \leq \frac{s_{k}^{T} y_{k}}{\left\|s_{k}\right\|^{2}} \leq \frac{\left\|y_{k}\right\|\left\|s_{k}\right\|}{\left\|s_{k}\right\|^{2}} \leq L \\
\mu \leq \frac{\left\|y_{k}\right\|^{2}}{\left\|y_{k}\right\|\left\|s_{k}\right\|} \leq \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}} \leq \frac{\left\|y_{k}\right\|^{2}}{\mu\left\|s_{k}\right\|^{2}} \leq \frac{L^{2}}{\mu} \tag{3.8}
\end{gather*}
$$

Let $\theta_{\text {min }}=\min \{2 \underline{c}, \mu\}$, we get $\theta_{k} \geq \theta_{\text {min }}$. From (3.8), we obtain

$$
\begin{equation*}
t_{k}=1+\frac{m_{k}}{\theta_{k}} \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}} \leq 1+\frac{\bar{c}}{\theta_{\min }} \frac{L^{2}}{\mu} \tag{3.9}
\end{equation*}
$$

Therefore, by the definition of d_{k}, triangle inequality, Cauchy inequality, (3.5), (3.6) and (3.9), we have

$$
\begin{align*}
\left\|d_{k+1}\right\| & =\left\|-g_{k+1}+a_{k} s_{k}+b_{k} y_{k}\right\| \\
& \leq\left\|g_{k+1}\right\|+\frac{1}{2}\left|\frac{s_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}}\right|\left\|y_{k}\right\|+\frac{1}{2}\left|\frac{y_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}}\right|\left\|s_{k}\right\|+\left|t_{k}\right|\left|\frac{s_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}}\right|\left\|s_{k}\right\| \\
& \leq\left\|g_{k+1}\right\|+\frac{1}{2} \frac{\left\|g_{k+1}\right\|\left\|y_{k}\right\|}{\mu\left\|s_{k}\right\|}+\frac{1}{2} \frac{\left\|g_{k+1}\right\|\left\|y_{k}\right\|}{\mu\left\|s_{k}\right\|}+\left(1+\frac{\bar{c}}{\theta_{\min }} \frac{L^{2}}{\mu}\right) \frac{\left\|g_{k+1}\right\|}{\mu} \tag{3.10}\\
& \leq\left(1+\frac{L+1}{\mu}+\frac{\bar{c}}{\theta_{\min }} \frac{L^{2}}{\mu^{2}}\right)\left\|g_{k+1}\right\| \triangleq M_{1}\left\|g_{k+1}\right\| .
\end{align*}
$$

From Lemma 2.2 and (3.10), we know

$$
\frac{\left(g_{k+1}^{T} d_{k+1}\right)^{2}}{\left\|d_{k+1}\right\|^{2}} \geq \frac{c^{2}\left\|g_{k+1}\right\|^{2}}{M_{1}^{2}}
$$

Combine with Lemma 3.4, then

$$
\sum_{k=0}^{\infty}\left\|g_{k}\right\|^{2}<\infty
$$

The proof is completed.

For general nonlinear functions, we can establish a weaker convergence result

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|g_{k}\right\|=0 \tag{3.11}
\end{equation*}
$$

Lemma 3.6. Suppose that Assumptions 3.1 and 3.2 hold. Let the sequence $\left\{x_{k}\right\}$ be generated by Algorithm 2.1, then we have $d_{k} \neq 0$ and

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left\|u_{k+1}-u_{k}\right\|^{2}<\infty \tag{3.12}
\end{equation*}
$$

whenever $\inf \left\{\left\|g_{k}\right\|: k \geq 0\right\}>0$ in which $u_{k}=d_{k} /\left\|d_{k}\right\|$.
Proof. Define $\gamma=\inf \left\{\left\|g_{k}\right\|: k \geq 0\right\}$, then $\left\|g_{k}\right\| \geq \gamma>0$. From the sufficient descent condition (2.8), we know $d_{k} \neq 0$ for each k, so u_{k} is well defined. To prove global convergence, we define $a_{k}^{+}=\max \left\{a_{k}^{\prime}, 0\right\}$, where $a_{k}^{\prime}=\frac{1}{2} \frac{y_{k}^{T} g_{k+1}}{d_{k}^{T} y_{k}}-\left(1+\frac{m_{k}}{\theta_{k}} \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\right) \frac{s_{k}^{T} g_{k+1}}{d_{k}^{T} y_{k}}$. By (2.5), we have

$$
\frac{d_{k+1}}{\left\|d_{k+1}\right\|}=\frac{-g_{k+1}}{\left\|d_{k+1}\right\|}+a_{k}^{+} \frac{d_{k}}{\left\|d_{k+1}\right\|}+b_{k} \frac{y_{k}}{\left\|d_{k+1}\right\|}=\frac{-g_{k+1}+b_{k} y_{k}}{\left\|d_{k+1}\right\|}+a_{k}^{+} \frac{\left\|d_{k}\right\|}{\left\|d_{k+1}\right\|} \frac{d_{k}}{\left\|d_{k}\right\|}
$$

namely,

$$
u_{k+1}=\omega_{k}+\delta_{k} u_{k}
$$

where

$$
\omega_{k}=\frac{-g_{k+1}+b_{k} y_{k}}{\left\|d_{k+1}\right\|}, \quad \delta_{k}=a_{k}^{+} \frac{\left\|d_{k}\right\|}{\left\|d_{k+1}\right\|} \geq 0 .
$$

Using the identity $\left\|u_{k+1}\right\|=\left\|u_{k}\right\|=1$,

$$
\left\|\omega_{k}\right\|=\left\|u_{k+1}-\delta_{k} u_{k}\right\|=\left\|\delta_{k} u_{k+1}-u_{k}\right\| .
$$

Since $\delta_{k} \geq 0$, it follows that

$$
\left\|u_{k+1}-u_{k}\right\| \leq\left\|\left(1+\delta_{k}\right) u_{k+1}-\left(1+\delta_{k}\right) u_{k}\right\| \leq\left\|u_{k+1}-\delta_{k} u_{k}\right\|+\left\|\delta_{k} u_{k+1}-u_{k}\right\|=2\left\|\omega_{k}\right\|
$$

From (2.7), we have

$$
\begin{equation*}
\left|\frac{s_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}}\right|=\left|\frac{d_{k}^{T} g_{k+1}}{d_{k}^{T} y_{k}}\right| \leq \frac{\sigma}{1-\sigma}, \quad\left\|y_{k}\right\| \leq\left\|g_{k+1}\right\|+\frac{\left\|g_{k}\right\|}{\left\|g_{k+1}\right\|}\left\|g_{k+1}\right\| \leq 1+\frac{M}{\gamma}\left\|g_{k+1}\right\| . \tag{3.13}
\end{equation*}
$$

By the definition of ω_{k}, b_{k} and (3.13), we get

$$
\begin{aligned}
\left\|\omega_{k}\right\| & =\frac{\left\|-g_{k+1}+b_{k} y_{k}\right\|}{\left\|d_{k+1}\right\|} \\
& \leq \frac{\left\|g_{k+1}\right\|+\frac{1}{2}\left|\frac{S_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}}\right| \cdot\left\|y_{k}\right\|}{\left\|d_{k+1}\right\|} \leq\left[1+\frac{\sigma}{2(1-\sigma)}\left(1+\frac{M}{\gamma}\right)\right] \frac{\left\|g_{k+1}\right\|}{\left\|d_{k+1}\right\|} .
\end{aligned}
$$

If $\left\|g_{k+1}\right\|>\gamma$, from Lemmas 2.2 and 3.4 , we have

$$
\sum_{k=0}^{\infty} \frac{c^{2} \gamma^{2}\left\|g_{k+1}\right\|^{2}}{\left\|d_{k+1}\right\|^{2}} \leq \sum_{k=0}^{\infty} \frac{c^{2}\left\|g_{k+1}\right\|^{4}}{\left\|d_{k+1}\right\|^{2}} \leq \sum_{k=0}^{\infty} \frac{\left(g_{k+1}^{T} d_{k+1}\right)^{2}}{\left\|d_{k+1}\right\|^{2}}<+\infty
$$

therefore, (3.12) holds.
Definition 3.7. Consider a method of the form (1.1) and (2.5), and suppose

$$
\begin{equation*}
0<\gamma \leq\left\|g_{k}\right\| \leq \bar{\gamma}, \quad k \geq 0 \tag{3.14}
\end{equation*}
$$

We call that a method has Property $\left(^{*}\right)$ if there exist constants $b>1$ and $\lambda>0$ such that $\left|a_{k}^{\prime}\right|<b$ and $\left\|s_{k}\right\| \leq \lambda$, then $\left|a_{k}^{\prime}\right| \leq \frac{1}{2 b}$.

Lemma 3.8. Suppose that Assumptions 3.1 and 3.2 hold. Let the sequence $\left\{d_{k}\right\}$ be generated by Algorithm 2.1, then Algorithm 2.1 has Property (${ }^{*}$).

Proof. By (2.7) and 2.8, we obtain

$$
\begin{equation*}
d_{k}^{T} y_{k} \geq(\sigma-1) g_{k}^{T} d_{k} \geq c(1-\sigma)\left\|g_{k}\right\|^{2} \tag{3.15}
\end{equation*}
$$

Using (3.2), (3.14), Assumption 3.1 and (3.15), we obtain

$$
\begin{align*}
\left|a_{k}^{\prime}\right| & =\left|\frac{1}{2} \frac{y_{k}^{T} g_{k+1}}{d_{k}^{T} y_{k}}-\left(1+\frac{m_{k}}{\theta_{k}} \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\right) \frac{s_{k}^{T} g_{k+1}}{d_{k}^{T} y_{k}}\right| \\
& \leq \frac{1}{2} \frac{\left\|y_{k}\right\|\left\|g_{k+1}\right\|}{c(1-\sigma)\left\|g_{k}\right\|^{2}}+\left(1+\frac{m_{k}}{\theta_{k}} \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\right) \frac{\left\|s_{k}\right\|\left\|g_{k+1}\right\|}{c(1-\sigma)\left\|g_{k}\right\|^{2}} \tag{3.16}\\
& \leq \frac{1}{2} \frac{\left\|g_{k+1}-g_{k}\right\|\left\|g_{k+1}\right\|}{c(1-\sigma)\left\|g_{k}\right\|^{2}}+\left(1+\frac{1}{\theta_{\min }} \frac{\left\|g_{k+1}-g_{k}\right\|^{2}}{c(1-\sigma)\left\|g_{k}\right\|^{2}}\right) \frac{\left\|s_{k}\right\|\left\|g_{k+1}\right\|}{c(1-\sigma)\left\|g_{k}\right\|^{2}} \\
& \leq \frac{\bar{\gamma}^{2}}{c(1-\sigma) \gamma^{2}}+\left(1+\frac{2}{\theta_{\min }} \frac{2 \bar{\gamma}^{2}}{c(1-\sigma) \gamma^{2}}\right) \frac{2 \delta \bar{\gamma}}{c(1-\sigma) \gamma^{2}}:=b .
\end{align*}
$$

Define

$$
\begin{equation*}
\lambda:=\frac{c^{2}(1-\sigma)^{2} \gamma^{4}}{2 \bar{\gamma}^{2}\left[\bar{\gamma}+\left(1+\frac{4 \delta}{\theta_{\text {min }}} \frac{2 \bar{\gamma}^{2}}{c(1-\sigma) \gamma^{2}}\right)\right]\left[\frac{L}{2}+\left(1+\frac{2}{\theta_{\min }} \frac{2 \bar{\gamma}^{2}}{c(1-\sigma) \gamma^{2}}\right)\right]}, \tag{3.17}
\end{equation*}
$$

if $\left\|s_{k}\right\| \leq \lambda$, from (3.16) and (3.17), we obtain

$$
\begin{aligned}
\left|a_{k}^{\prime}\right| & \leq \frac{1}{2} \frac{L\left\|s_{k}\right\|\left\|g_{k+1}\right\|}{c(1-\sigma) \gamma^{2}}+\left(1+\frac{1}{\theta_{\min }} \frac{L^{2}\left\|s_{k}\right\|^{2}}{c(1-\sigma) \gamma^{2}}\right) \frac{\left\|s_{k}\right\|\left\|g_{k+1}\right\|}{c(1-\sigma) \gamma^{2}} \\
& \leq\left[\frac{1}{2} \frac{L \bar{\gamma}}{c(1-\sigma) \gamma^{2}}+\left(1+\frac{2}{\theta_{\min }} \frac{2 \bar{\gamma}^{2}}{c(1-\sigma) \gamma^{2}}\right) \frac{\bar{\gamma}}{c(1-\sigma) \gamma^{2}}\right]\left\|s_{k}\right\| \\
& \leq\left[\frac{1}{2} \frac{L \bar{\gamma}}{c(1-\sigma) \gamma^{2}}+\left(1+\frac{2}{\theta_{\min }} \frac{2 \bar{\gamma}^{2}}{c(1-\sigma) \gamma^{2}}\right) \frac{\bar{\gamma}}{c(1-\sigma) \gamma^{2}}\right] \lambda=\frac{1}{2 b} .
\end{aligned}
$$

We will show that if the gradient sequence is bounded away from zero, then a fraction of the steps cannot be too small in the next lemma. Let \mathbb{N} be the set of positive integers. Let $\mathcal{K}^{\lambda}:=\left\{i \in \mathbb{N}: i \geq 1,\left\|s_{i}\right\|>\lambda\right\}$ for $\lambda>0$, namely, the set of integers corresponding to steps greater than λ. Now, we need to discuss groups of \triangle consecutive iterates, we let $\mathcal{K}_{k, \Delta}^{\lambda}:=\left\{i \in \mathbb{N}: k \leq i \leq k+\Delta-1,\left\|s_{i}\right\|>\lambda\right\}$. Let $\left|\mathcal{K}_{k, \Delta}^{\lambda}\right|$ denote the number of elements of $\mathcal{K}_{k, \Delta}^{\lambda}$.

Lemma 3.9. Suppose that Assumptions 3.1 and 3.2 hold. Let the sequences $\left\{x_{k}\right\}$ and $\left\{d_{k}\right\}$ be generated by Algorithm 2.1. When (3.14) holds, there exists $\lambda>0$ such that

$$
\left|\mathcal{K}_{k, \Delta}^{\lambda}\right|>\frac{\Delta}{2} \quad \text { for } \Delta \in \mathbb{N}
$$

where $k \geq k_{0}$ with k_{0} being the any index.
Proof. We proceed by contradiction. Suppose that

$$
\begin{align*}
& \text { for any } \lambda>0 \text {, there exist } \Delta \in \mathbb{N} \text { and } k_{0} \text { such that, } \\
& \text { for any } k \geq k_{0} \text {, we have }\left|\mathcal{K}_{k, \Delta}^{\lambda}\right| \leq \Delta / 2 \tag{3.18}
\end{align*}
$$

By (3.13), we have

$$
\left\|b_{k} y_{k}\right\|=\frac{1}{2}\left|\frac{s_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}}\right|\left\|y_{k}\right\| \leq \frac{\sigma}{2(1-\sigma)\left(1+\frac{\bar{\gamma}}{\gamma}\right)\left\|g_{k+1}\right\| \triangleq M_{2}\left\|g_{k+1}\right\|}
$$

According to the definition of (2.5), we have

$$
\begin{aligned}
\left\|d_{k+1}\right\|^{2} & \leq\left(a_{k}^{\prime}\left\|d_{k}\right\|+\left\|-g_{k+1}+b_{k} y_{k}\right\|\right)^{2} \leq 2 a_{k}^{\prime 2}\left\|d_{k}\right\|^{2}+2\left\|-g_{k+1}+b_{k} y_{k}\right\|^{2} \\
& \leq 2 a_{k}^{\prime 2}\left\|d_{k}\right\|^{2}+2\left(2\left\|g_{k+1}\right\|^{2}+2\left\|b_{k} y_{k}\right\|^{2}\right) \leq 2 a_{k}^{\prime 2}\left\|d_{k}\right\|^{2}+4\left(1+M_{2}^{2}\right)\left\|g_{k+1}\right\|^{2}
\end{aligned}
$$

the above inequalities are established based on $2 a b \leq a^{2}+b^{2}$ for any scalars a and b, so $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$. By induction, we have

$$
\begin{equation*}
\left\|d_{l}\right\|^{2} \leq c_{1}\left(1+2 a_{l-1}^{\prime 2}+2 a_{l-1}^{\prime 2} 2 a_{l-2}^{\prime 2}+\cdots+2 a_{l-1}^{\prime 2} 2 a_{l-2}^{\prime 2} \cdots 2 a_{k_{0}}^{\prime 2}\right) \tag{3.19}
\end{equation*}
$$

for any given index $l \geq k_{0}+1$, where c_{1} depends on $\left\|d_{k_{0}-1}\right\|$, not depends on l. Next, we consider $2 a_{l-1}^{\prime 2} 2 a_{l-2}^{\prime 2} \cdots 2 a_{k}^{\prime 2}$, where $k_{0} \leq k \leq l-1$. We divide $2(l-k)$ factors of (3.19) into groups of each 2Δ elements, namely, if $\Lambda:=(l-k) / \Delta$, then (3.19) can be divided into Λ or $\Lambda+1$ groups

$$
\begin{equation*}
\left(2 a_{l_{1}}^{\prime 2} \cdots 2 a_{k_{1}}^{\prime 2}\right), \ldots,\left(2 a_{l_{\Lambda}}^{\prime 2} \cdots 2 a_{k_{\Lambda}}^{\prime 2}\right) \tag{3.20}
\end{equation*}
$$

and a possible group

$$
\begin{equation*}
\left(2 a_{l_{\Lambda}+1}^{\prime 2} \cdots 2 a_{k}^{\prime 2}\right) \tag{3.21}
\end{equation*}
$$

where $l_{i}=l-1-(i-1) \Delta$ for $i=1,2, \ldots, \Lambda+1$, and $k_{i}=l_{i+1}+1$ for $i=1,2, \ldots, \Lambda$. It is clear that $k_{i} \geq k_{0}$ for $i=1,2, \ldots, \Lambda$, from (3.18), we get $p_{i}:=\left|\mathcal{K}_{k_{i}, \Delta}^{\lambda}\right| \leq \Delta / 2$. Thus, there are p_{i} indices j such that $\left\|s_{j}\right\|>\lambda$ and $\left(\Delta-p_{i}\right)$ indices j such that $\left\|s_{j}\right\| \leq \lambda$ on $\left[k_{i}, k_{i}+\Delta-1\right]$.

From (3.16), we have $b>\frac{\bar{\gamma}^{2}}{c(1-\sigma) \gamma^{2}}>1$, i.e., $2 b^{2}>1$. In conjunction with $2 p_{i}-\Delta \leq 0$, we have $2 a_{l_{i}}^{\prime 2} \cdots 2 a_{k_{i}}^{\prime 2} \leq 2^{\Delta} b^{2 p_{i}}\left(\frac{1}{2 b}\right)^{2\left(\Delta-p_{i}\right)}=\left(2 b^{2}\right)^{2 p_{i}-\Delta} \leq 1$. So every item in (3.20) is less than or equal to 1 , and so is their product. In (3.21), we have $2 a_{l_{\Lambda+1}^{\prime}}^{\prime 2} \cdots 2 a_{k}^{\prime 2} \leq\left(2 b^{2}\right)^{\Delta}$. Then, we get

$$
\left\|d_{l}\right\|^{2} \leq c_{2}\left(l-k_{0}+2\right)
$$

where $c_{2}>0$ and independent of l. Furthermore, $\sum_{k \geq 0} \frac{1}{\left\|d_{k}\right\|^{2}}=\infty$. But from sufficient condition (2.8), Zoutendijk condition (3.3) and (3.14), we have

$$
c^{2} \gamma^{4} \sum_{k \geq 0} \frac{1}{\left\|d_{k}\right\|^{2}} \leq c^{2} \sum_{k \geq 0} \frac{\left\|g_{k}\right\|^{4}}{\left\|d_{k}\right\|^{2}} \leq \sum_{k \geq 0} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}<\infty
$$

This leads to a contradiction. The proof is completed.
Theorem 3.10. Suppose that Assumptions 3.1 and 3.2 hold. Let the sequence $\left\{x_{k}\right\}$ be generated by Algorithm 2.1, then (3.11) holds.

Proof. Suppose on the contrary that we can get a contradiction similarly to Theorem 4.3 in 15 .

4. Numerical results

In this section, we show the numerical performance of Algorithm 2.1. All codes are written on Matlab R2015b and run on PC with 1.80 GHz CPU processor, 8.00 GB RAM memory. Two classes of test problems were selected here which are listed in Table 4.1. One class was drawn from the CUTEr library [16], and the other class came from Andrei [4]. Table 4.1 lists 28 test functions for 80 problems with dimensions from 2 to 50000 .

Table 4.1: List of the test functions and dimensions.

	Functions		Functions		Functions		Functions
1	Freudenstein and Roth	2	Chebyquad	3	Powell badly scaled	4	Beale
5	Helical valley	6	Broyden banded	7	Wood	8	Biggs EXP6
9	Extended Rosenbrock	10	Trigonometric	11	Extended Powell singular	12	Boundary value
13	Penalty function I	14	Integral equation	15	Penalty function II	16	Broyden tridiagonal
17	Gaussian-1	18	Gaussian-2	19	Box-1	20	Box-2
21	Separable cubic	22	Variable dimension	23	Nearly separable	24	Watson
25	Yang tridiagonal	26	Brown and Dennis-1	27	Brown and Dennis-2	28	Allgower

Table 4.2: Partial numerical results of m_{k} with random parameter and $1 / 2$.

P.	RTT1 (r) $(k / n f / \mathrm{CPU})$	RTT1 $\left(\frac{1}{2}\right)$ $(k / n f / \mathrm{CPU})$	RTT2 (r) $(k / n f / \mathrm{CPU})$	RTT2($\left.\frac{1}{2}\right)$ $(k / n f / \mathrm{CPU})$
2	$12 / 28 / 0.0469$	$55 / 85 / 0.0313$	$12 / 28 / 0.0469$	$64 / 95 / 0.0313$
4	$15 / 26 / 0.0156$	$15 / 26 / 0.0156$	$15 / 25 / 0.0313$	$15 / 25 / 0.0313$
5	$54 / 80 / 0.0469$	$72 / 102 / 0.0469$	$66 / 90 / 0.0781$	$72 / 102 / 0.0469$
6	$117 / 156 / 0.0313$	$145 / 197 / 0.0625$	$87 / 122 / 0.0156$	$145 / 197 / 0.0781$
7	$92 / 127 / 0.0156$	$284 / 363 / 0.0625$	$104 / 136 / 0.0313$	$131 / 177 / 0.1094$
8	$94 / 129 / 0.0313$	$102 / 145 / 0.0781$	$115 / 166 / 0.0313$	$102 / 145 / 0.0313$
12	$77 / 104 / 0.1250$	$85 / 116 / 0.0469$	$81 / 110 / 0.0625$	$133 / 185 / 0.0781$
13	$57 / 72 / 0.5938$	$121 / 160 / 0.7188$	$101 / 134 / 1.1094$	$117 / 153 / 0.6875$
14	$88 / 123 / 1.1750$	$104 / 144 / 1.3438$	$97 / 136 / 1.2188$	$131 / 180 / 1.6719$
15	$90 / 125 / 7.1875$	$157 / 214 / 8.4219$	$120 / 166 / 11.8906$	$122 / 167 / 6.1250$
22	$16 / 22 / 0.0010$	$19 / 26 / 0.0156$	$15 / 21 / 0.0156$	$24 / 30 / 0.0156$
23	$11 / 21 / 0.0156$	$13 / 25 / 0.0275$	$12 / 22 / 0.0010$	$16 / 24 / 0.0156$
24	$7 / 24 / 0.0012$	$8 / 24 / 0.0313$	$6 / 17 / 0.0010$	$8 / 24 / 0.0565$
26	$16 / 53 / 0.0013$	$16 / 53 / 0.0156$	$16 / 54 / 0.0015$	$16 / 53 / 0.0156$
41	$14 / 21 / 1.0313$	$50 / 66 / 3.7344$	$32 / 46 / 2.5469$	$50 / 66 / 3.6406$
53	$46 / 57 / 0.0075$	$52 / 62 / 0.0156$	$32 / 42 / 0.0156$	$53 / 66 / 0.0156$
54	$41 / 51 / 0.1250$	$41 / 51 / 0.1250$	$45 / 59 / 0.1250$	$63 / 75 / 0.1250$
55	$30 / 38 / 0.1788$	$42 / 52 / 0.2031$	$37 / 46 / 0.2813$	$37 / 46 / 0.2813$
56	$22 / 29 / 0.4219$	$31 / 40 / 0.5469$	$34 / 44 / 0.5938$	$52 / 61 / 0.9219$
61	$41 / 55 / 0.0313$	$41 / 55 / 0.0313$	$41 / 55 / 0.0156$	$41 / 55 / 0.0156$
62	$42 / 60 / 0.1406$	$42 / 60 / 0.1406$	$35 / 47 / 0.1250$	$42 / 60 / 0.1250$
63	$39 / 52 / 0.8125$	$46 / 62 / 0.8125$	$40 / 55 / 0.3281$	$40 / 55 / 0.3281$
64	$46 / 62 / 0.7813$	$46 / 62 / 0.7813$	$50 / 66 / 0.9063$	$46 / 62 / 0.8438$
65	$10 / 15 / 0.1094$	$12 / 15 / 0.1563$	$9 / 13 / 0.0938$	$10 / 14 / 0.1250$
66	$9 / 14 / 3.6250$	$15 / 18 / 6.0313$	$9 / 14 / 3.7031$	$11 / 15 / 4.3594$
67	$14 / 18 / 18.3906$	$16 / 20 / 22.4375$	$11 / 16 / 11.7500$	$11 / 15 / 13.9688$
68	$11 / 16 / 279.3438$	$14 / 18 / 401.2656$	$13 / 18 / 326.5781$	$13 / 18 / 373.9375$
69	$44 / 81 / 0.5625$	$44 / 81 / 0.5625$	$117 / 184 / 1.8438$	$44 / 81 / 0.5625$
20				

We compare Algorithm 2.1 against TTCG (STT) [9], NTPA 27], CG_descent (DDL) 17] and TCG [5], which have been acclaimed to be powerful for solving unconstrained optimization problems. When $\theta_{k}=\min \left\{2 \underline{c}, \frac{s_{k}^{T} y_{k}}{\left\|s_{k}\right\|^{2}}\right\}$ and $\theta_{k}=\min \left\{2 \underline{c}, \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}\right\}$ are chosen, Algorithm 2.1 are denoted by "RTT1" and "RTT2", respectively.

All test methods are terminated when satisfies condition $\left\|g_{k}\right\| \leq \varepsilon$ or the number of iterations exceeds 1000 . We set parameters as $\varepsilon=10^{-6} ; \rho=0.01, \sigma=0.8$ in the strong Wlofe conditions (2.6) and (2.7); $p=0.8, q=-0.1$ in CG_descent method and $\eta=0.1$ in TCG method.

Table 4.3: Partial numerical results of several methods.

P.	RTT1 $(k / n f / \mathrm{CPU})$	STT $(k / n f / \mathrm{CPU})$	NTPA $(k / n f / \mathrm{CPU})$	DDL $(k / n f / \mathrm{CPU})$	TCG $(k / n f / \mathrm{CPU})$
11	$12 / 28 / 0.0469$	$25 / 54 / 0.0156$	$9 / 25 / 0.0625$	$14 / 32 / 0.0625$	$30 / 60 / 0.0156$
14	$15 / 26 / 0.0156$	$15 / 31 / 0.0250$	$48 / 61 / 0.0781$	$12 / 21 / 0.0625$	$22 / 37 / 0.0156$
15	$54 / 80 / 0.0469$	$42 / 98 / 0.0156$	$-/-/-$	$57 / 88 / 0.0156$	$38 / 63 / 0.0469$
18	$117 / 156 / 0.0313$	$95 / 218 / 0.0156$	$170 / 189 / 0.0313$	$43 / 63 / 0.0469$	$25 / 47 / 0.0156$
21	$16 / 22 / 0.0010$	$11 / 22 / 0.0250$	$32 / 42 / 0.0781$	$7 / 11 / 0.0156$	$16 / 23 / 0.0250$
28	$11 / 21 / 0.0156$	$7 / 18 / 0.0781$	$31 / 43 / 0.0313$	$21 / 28 / 0.0156$	$16 / 25 / 0.0156$
29	$7 / 24 / 0.0010$	$4 / 11 / 0.0313$	$11 / 28 / 0.0378$	$8 / 26 / 0.0250$	$5 / 19 / 0.0010$
32	$16 / 53 / 0.0010$	$14 / 57 / 0.0250$	$16 / 53 / 0.0378$	$16 / 53 / 0.0313$	$16 / 55 / 0.0156$
33	$14 / 21 / 1.0313$	$23 / 47 / 2.2500$	$26 / 33 / 0.7188$	$57 / 84 / 1.7656$	$29 / 39 / 2.2969$
43	$46 / 57 / 0.0313$	$19 / 40 / 0.0781$	$63 / 79 / 0.0313$	$40 / 50 / 0.0625$	$52 / 64 / 0.0156$
44	$41 / 51 / 0.1250$	$24 / 48 / 0.0625$	$72 / 90 / 0.2344$	$33 / 41 / 0.1406$	$51 / 63 / 0.2500$
47	$30 / 38 / 0.2188$	$28 / 55 / 0.1875$	$78 / 91 / 0.3438$	$49 / 61 / 0.3594$	$53 / 70 / 0.3906$
48	$22 / 29 / 0.4219$	$29 / 56 / 0.5625$	$42 / 57 / 0.4531$	$62 / 76 / 0.7188$	$39 / 50 / 0.8906$
51	$41 / 55 / 0.0313$	$28 / 59 / 0.0781$	$38 / 56 / 0.0313$	$51 / 68 / 0.0313$	$65 / 86 / 0.0156$
52	$42 / 60 / 0.1406$	$27 / 55 / 0.0625$	$107 / 126 / 0.2656$	$38 / 50 / 0.1406$	$52 / 69 / 0.1250$
56	$39 / 52 / 1.4078$	$17 / 44 / 0.0625$	$73 / 89 / 0.3594$	$48 / 64 / 0.3594$	$45 / 61 / 0.2813$
57	$46 / 62 / 0.7813$	$88 / 177 / 2.0781$	$87 / 108 / 0.9688$	$38 / 60 / 0.3906$	$45 / 67 / 0.8906$
63	$10 / 15 / 0.1094$	$11 / 15 / 0.2188$	$12 / 14 / 0.0625$	$13 / 15 / 0.0781$	$10 / 14 / 0.1094$
64	$9 / 14 / 3.6250$	$11 / 15 / 2.0313$	$13 / 15 / 2.5625$	$18 / 20 / 3.2656$	$11 / 18 / 4.2031$
68	$14 / 18 / 18.3906$	$11 / 15 / 5.8438$	$13 / 15 / 7.7813$	$20 / 22 / 11.4219$	$16 / 20 / 20.5469$
72	$11 / 16 / 279.3438$	$13 / 18 / 177.3750$	$15 / 17 / 491.2188$	$22 / 24 / 339.5000$	$12 / 17 / 301.5469$

Some numerical results of m_{k} with random parameter and $1 / 2$ for problems (in Ta-
ble 4.1) are listed in Table 4.2. And some experimental results compared with several methods are listed in Table 4.3.

As can be seen from Table 4.2, RTT1 and RTT2 with m_{k} taking random parameter performs better than that with m_{k} taking $1 / 2$ with respect to $k, n f$ and CPU. Therefore, RTT1 and RTT2 with random parameters are more competitive. Moreover, the performance of RTT1 is superior to that of RTT2.

From Table 4.3, if program runs failure, or the number of iterations reaches more than 500 , regarded as failed (-). We can see that RTT1 algorithm is effective than other methods in most cases.

Figure 4.1: The number of iterations (k).

Figure 4.2: The number of function evaluations ($n f$).

Figure 4.4: CPU time.

Figure 4.3: The number of gradient evaluations ($n g$).

And we present the performance profile including ($k, n f, n g$ and CPU time) introduced
by Dolan and Moré [14 to clearly show the difference in numerical effects among six algorithms. Generally, the method whose performance profile plot is on the top right will represent the best method. Let Y and W be the set of methods and test problems, n_{y}, n_{w} be the number of methods and test problems, respectively. The performance profile $\psi: \mathbb{R} \rightarrow[0,1]$ is for each $y \in Y$ and $w \in W$ defined that $a_{w, y}>0$ is k or $n f$ or $n g$ or CPU required to solve problems w by method y. Furthermore, the performance profile is obtained by

$$
r_{w, y}=\frac{a_{w, y}}{\min \left\{a_{w, y}: y \in Y\right\}}, \quad \psi_{y}(\tau)=\frac{1}{n_{w}} \operatorname{size}\left\{w \in W: r_{w, y} \leq \tau\right\},
$$

where $\tau>0$, $\operatorname{size}\{\cdot\}$ is the number of elements in a set.
Figures 4.1 4.4 plot the performance profiles for the number of iterations, the number of function evaluations, the number of gradient evaluations, and the CPU time, respectively. They show that RTT1 and RTT2 are superior to other algorithms when $\tau<2.5$ and when $\tau>2.5$. RTT1 and RTT2 are comparable to the best-performing DDL and TCG algorithms.
5. The application of Algorithm 2.1 in regression model

In this section, it is considered that using conjugate gradient method to solve regression problems can improve the solving efficiency and accuracy, process large-scale data sets, and is also widely used in other fields. We apply Algorithm 2.1 to a practical problem of regression analysis in [12] and compare our algorithm with [12] to verify the applicability. Regression analysis is one of the most commonly tools used data modeling and analysis in economics, finance and other fields. For example, it can be used to build predictive models between variables to predict future outcomes; it can help determine which factors are most important to the outcome; it can also be used to identify outliers, values that adversely affect results. So the application of Algorithm 2.1 in regression analysis has important practical significance. In Table 5.1, a summary of the number of female deaths in Irbid (Jordan) from 2009 to 2018 is given. The data set is retrieved from the Department of Statistics in Jordan (2018).

Based on the research of Dawahdeh et al. [12], the optimization problem for finding quadratic regression parameters is defined as follows:

$$
\begin{equation*}
\min f(a)=\sum_{i=1}^{n}\left[y_{i}-a\left(1, x_{i}, x_{i}^{2}\right)^{T}\right]^{2}, \quad a=\left(a_{0}, a_{1}, a_{2}\right) \in \mathbb{R}^{3} . \tag{5.1}
\end{equation*}
$$

According to data 1 to 9 in Table 5.1, (5.1) is transformed into the following problem

$$
\begin{align*}
\min f\left(x_{1}, x_{2}, x_{3}\right)= & 9 x_{1}^{2}+90 x_{1} x_{2}+570 x_{1} x_{3}-33330 x_{1}+285 x_{2}^{2} \tag{5.2}\\
& +4050 x_{2} x_{3}-176342 x_{2}+15333 x_{3}^{2}-1155094 x_{3}+31282025 .
\end{align*}
$$

Then Algorithm 2.1 is used to calculate the optimization problem (5.2), choose different initial points, the results are shown in Table 5.2 .

Table 5.1: Number of female deaths recorded in Irbid city (Jordan) from 2009 to 2018.

Number of Data (x)	Year	Number of Female Deaths (y)
1	2009	1563
2	2010	1689
3	2011	1647
4	2012	1679
5	2013	1757
6	2014	1973
7	2015	2071
8	2016	2121
9	2017	2165
10	2018	2117

Table 5.2: Test results for optimization of quadratic model for Algorithm 2.1.

Initial Point	Solution Point $\left(a_{0}, a_{1}, a_{2}\right)$
$(1,1,1)$	$(1528.889793318067,36.424065643404,4.438905767442)$
$(9,9,9)$	$(1528.733929199936,36.637097404077,4.413085031462)$
$(13,13,13)$	$(1529.214320770277,36.385744696179,4.437481293816)$
$(1000,1000,1000)$	$(1529.571675208395,36.170828337683,4.459279814400)$

By solving the average values of a_{0}, a_{1} and a_{2}, we obtained the quadratic function of regression analysis as

$$
\begin{equation*}
\widehat{y}=1529.102429624169+36.404434020335749 x+4.437187976780001 x^{2} . \tag{5.3}
\end{equation*}
$$

Now, we use the relative error $\left|\frac{y-\widehat{y}}{y}\right|$ to measure the fitting degree of (5.3) with observed data, and compared with the method proposed in [12]. The smaller the relative error value is, the better the accuracy is, or the better the fitting with the observed data set is. The results are shown in Table 5.3.

Table 5.3: Relative error for quadratic model.

Year (x)	Female Deaths (y)	\widehat{y}	Relative Error
1	1563	1569.944051621285	0.004442771350790
2	1689	1619.660049571961	0.041053848684452
3	1647	1678.250423476196	0.018974149044442
4	1679	1745.715173333992	0.039735064522926
5	1757	1822.054299145348	0.037025782097523
6	1973	1907.267800910263	0.033315863704884
7	2071	2001.355678628739	0.033628354114563
8	2121	2104.317932300775	0.007865189862907
9	2165	2216.154561926371	0.023627973176153

According to Table 5.3, the sum of relative errors is

$$
\begin{aligned}
& 0.004442771350790+0.041053848684452+0.018974149044442 \\
& +0.039735064522926+0.037025782097523+0.033315863704884 \\
& +0.033628354114563+0.007865189862907+0.023627973176153 \\
= & 0.239668996558640 .
\end{aligned}
$$

And the average value of relative errors is 0.026629888506516 . The sum and average relative errors of the method proposed [12] are 0.23968163237293 and 0.02663129248588 , respectively. By comparison, it can be found that the sum of relative errors and average relative errors obtained by using Algorithm 2.1 to solve regression model (5.2) are lower than the algorithm in reference [12]. Therefore, we can think that the quadratic model obtained by using Algorithm 2.1 has a good fitting degree and improves the accuracy of the model.

6. Conclusion

In this paper, a class of three-term conjugate gradient methods with random parameter are proposed. The Frobenius norm is used to minimize distance between the symmetric matrix A_{k+1} and memoryless BFGS matrix, and calculation format of parameter in A_{k+1} is obtained. A random technique is to simplify parameter and a new search direction is derived which has sufficient descent property. Global convergence of new algorithm is proved under appropriate assumptions. Furthermore, some classical test problems are selected for
numerical experiments and compared with the other two three-term conjugate gradient methods to verify the effectiveness of proposed algorithm. Finally, the new algorithm is applied to a practical problem in regression analysis, and shown that our algorithm is competitive.

Acknowledgments

This work is supported by the project of natural science foundation joint fund of Jilin Province (YDZJ202101ZYTS167, YDZJ202101ZYTS156 and YDZJ202201ZYTS303); the project of education department of Jilin Province (JJKH20210030KJ, JJKH20230054KJ); the Graduate Innovation Project of Beihua University (2019002, 2021002); the youth science and technology innovation team cultivation program of Beihua University. The authors are grateful to the editor and the anonymous reviewers for their valuable comments and suggestions, which have substantially improved this paper.

References

[1] A. B. Abubakar, K. Muangchoo, A. Muhammad and A. H. Ibrahim, A spectral gradient projection method for sparse signal reconstruction in compressive sensing, Mod. Appl. Sci. 14 (2020), no. 5, 86-93.
[2] N. Andrei, A simple three-term conjugate gradient algorithm for unconstrained optimization, J. Comput. Appl. Math. 241 (2013), 19-29.
[3] , A Dai-Liao conjugate gradient algorithm with clustering of eigenvalues, Numer. Algorithms 77 (2018), no. 4, 1273-1282.
[4] _ Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, Springer Optimization and its Applications 158, Springer, Cham, 2020.
[5] S. Babaie-Kafaki and R. Ghanbari, A descent family of Dai-Liao conjugate gradient methods, Optim. Methods Softw. 29 (2014), no. 3, 583-591.
[6] S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri, Two new conjugate gradient methods based on modified secant equations, J. Comput. Appl. Math. 234 (2010), no. 5, 1374-1386.
[7] J. Bai, W. W. Hager and H. Zhang, An inexact accelerated stochastic ADMM for separable convex optimization, Comput. Optim. Appl. 81 (2022), no. 2, 479-518.
[8] Y. Chen, M. Cao and Y. Yang, A new accelerated conjugate gradient method for large-scale unconstrained optimization, J. Inequal. Appl. 2019, Paper No. 300, 13 pp.
[9] Y. Chen and Y. Yang, A three-term conjugate gradient algorithm using subspace for large-scale unconstrained optimization, Commum. Math. Sci. 18 (2020), no. 5, 11791190.
[10] Y.-H. Dai and C.-X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search, SIAM J. Optim. 23 (2013), no. 1, 296320.
[11] Y.-H. Dai and L.-Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods, Appl. Math. Optim. 43 (2001), no. 1, 87-101.
[12] M. Dawahdeh, M. Mamat, M. Rivaie and S. M. Ibrahim, Application of conjugate gradient method for solution of regression models, Int. J. Adv. Sci. Technol. 29 (2020), no. 7, 1754-1763.
[13] S. Devila, M. Malik and W. Giyarti, A new hybrid PRP-MMSIS conjugate gradient method and its application in portofolio selection, J. Ris. Aplikasi Mat. 5 (2021), no. 1, 47-59.
[14] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002), no. 2, Ser. A, 201-213.
[15] J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim. 2 (1992), no. 1, 21-42.
[16] N. I. M. Gould, D. Orban and P. L. Toint, CUTEr and SifDec: A constrained and unconstrained testing environment, revisited, ACM Trans. Math. Softw. 29 (2003), no. 4, 373-394.
[17] W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim. 16 (2005), no. 1, 170-192.
[18] W. Hu, J. Wu and G. Yuan, Some modified Hestenes-Stiefel conjugate gradient algorithms with application in image restoration, Appl. Numer. Math. 158 (2020), 360376.
[19] A. H. Ibrahim, J. Deepho, A. B. Abubakar and A. Adamu, A three-term Polak-Ribière-Polyak derivative-free method and its application to image restoration, Sci. Afr. 13 (2021), e00880, 16 pp.
[20] I. E. Livieris, V. Tampakas and P. Pintelas, A descent hybrid conjugate gradient method based on the memoryless BFGS update, Numer. Algorithms 79 (2018), no. 4, 1169-1185.
[21] A. Perry, A modified conjugate gradient algorithm, Oper. Res. 26 (1978), no. 6, 10731078.
[22] H. Sakai and H. Liduka, Sufficient descent Riemannian conjugate gradient methods, J. Optim. Theory Appl. 190 (2021), no. 1, 130-150.
[23] L. Wang, M. Cao, F. Xing and Y. Yang, The new spectral conjugate gradient method for large-scale unconstrained optimisation, J. Inequal. Appl. 2020, Paper No. 111, 11 pp.
[24] C. Wu, J. Wang, J. H. Alcantara and J.-S. Chen, Smoothing strategy along with conjugate gradient algorithm for signal reconstruction, J. Sci. Comput. 87 (2021), no. 1, Paper No. 21, 18 pp.
[25] C. Wu, J. Zhan, Y. Lu and J.-S. Chen, Signal reconstruction by conjugate gradient algorithm based on smoothing l_{1}-norm, Calcolo 56 (2019), no. 4, Paper No. 42, 26 pp.
[26] H. Yabe and M. Takano, Global convergence properties of nonlinear conjugate gradient methods with modified secant condition, Comput. Optim. Appl. 28 (2004), no. 2, 203225.
[27] S. Yao and L. Ning, An adaptive three-term conjugate gradient method based on selfscaling memoryless BFGS matrix, J. Comput. Appl. Math. 332 (2018), 72-85.
[28] Y.-X. Yuan and J. Stoer, A subspace study on conjugate gradient algorithms, Z. Angew. Math. Mech. 75 (1995), no. 1, 69-77.
[29] K. Zhang, H. Liu and Z. Liu, A new Dai-Liao conjugate gradient method with optimal parameter choice, Numer. Funct. Anal. Optim. 40 (2019), no. 2, 194-215.
[30] W. Zhou and L. Zhang, A nonlinear conjugate gradient method based on the MBFGS secant condition, Optim. Methods Softw. 21 (2006), no. 5, 707-714.

Yueting Yang
School of Mathematics and Statistics, Beihua University, Jilin, Jilin, 132013, China and

School of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
E-mail address: yyt2858@163.com

Xue Zhang, Guoling Zhou and Mingyuan Cao
School of Mathematics and Statistics, Beihua University, Jilin, Jilin, 132013, China E-mail addresses: 17037385@qq.com, zg19612@163.com, cmy0918@beihua.edu.cn

[^0]: Received January 6, 2023; Accepted May 24, 2023.
 Communicated by Jein-Shan Chen.
 2020 Mathematics Subject Classification. 90C30, 65K05.
 Key words and phrases. random parameter, three-term conjugate gradient, global convergence, large-scale unconstrained optimization, regression model.
 *Corresponding author.

