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Filter Regularization Method for Inverse Source Problem of the

Rayleigh—Stokes Equation

Songshu Liu

Abstract. In this paper, we consider a problem of recovering a space-dependent source
term for the Rayleigh—Stokes equation, where the additional data is the observation
at a final moment ¢ = T, which is ill-posed in the sense of Hadamard. Firstly, the
uniqueness, ill-posedness and the conditional stability of inverse source problem is
given. Next, we develop a filter regularization method to overcome the ill-posedness
of the problem. Under reasonable a priori bound assumption about the source func-
tion, a Holder-type error estimate of the regularized solution is proved for a priori
regularization parameter choice rule. Furthermore, a logarithmic-type error estimate
between the exact solution and the regularized solution is established based on a

posteriori regularization parameter choice rule.

1. Introduction

In this paper, we consider the inverse space-dependent source problem of the Rayleigh—

Stokes equation for a generalized second-grade fluid model with time derivative:

(

Ou — (1 +~0)Au = f(x)q(t), (z,t) € Q2 x(0,T),
(1) u(z,t) =0, x €0, te(0,T],

u(z,0) =0, x €€,

u(z,T) = g(x), x €Q,

where Q C R? (d = 1,2,3) is a smooth domain with boundary 9Q, and T > 0 is a
given time. Here, v > 0 is a constant, 0, = 9/0t, and 0f'u(z,t) is the Riemann-Liouville
fractional derivative, which is defined by [10]

_4d
o dt

tafl

oy f(¢) /0 wi—a(t —s)f(s)ds, wq= ()’ a € (0,1).

An inverse source problem based on Problem (1.1]) is to determine the source function

F(z,t) at a previous time from its value at the final time ¢ = 7" as follows:

u(x,T) =g(x), =€
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Assuming that the right-hand side term, i.e., the source term is a function represented in
the form of variable separation, i.e., assuming that the source form F = F(x,t) can be
split into a product of f(x)q(t), where ¢(t) is known in advance. In practice, the function

(g(x), q(t)) are obtained from observation data ¢°(z), ¢°(t), such that

(1.2) 19° (=) = 9(@)ll 20y + 14°(#) = a(D)lleqo,my < 6,
(1.3) 0 < qo <q(t), q(s(t) <q, VYtelo,T].

Here, 0 is a noise level. The space-dependent source term f(z) is also determined from
the observation data of g(x), ¢(t) at the final data ¢ = T. According to the Hadamard
requirements, we know that the inverse source problem mentioned above is ill-posed in
general, i.e., a solution does not always exist, and in the case of existence of a solution,
which does not depend continuously on the given data. In fact, form a small noise of a
physical measurement, the corresponding solutions may have a large error. Hence it is
impossible to solve the problem by using classical method. For stable reconstruction,
we require some regularization techniques.

The Rayleigh—Stokes problem plays an important role in describing the behaviour
of some non-Newtonian fluids [11]. The direct problems of the Rayleigh—-Stokes problem
have been studied in [2,4,5,/11,|13]. Nevertheless, in many practical problems, initial
information, boundary information, coefficient information, source term information might
not be given and then we need to recover them by extra measured information which is
able to yield to some fractional Rayleigh—Stokes inverse problems [1,,3.6,8.(9},12]. To the
best of our knowledge, there are few results on inverse source problem for the Rayleigh—
Stokes problem . Our main purpose is to provide a filter regularization method to
deal with the inverse source problem of Rayleigh—Stokes equation.

The outline of this paper is as follows. In Section [2] we first introduce some pre-
liminaries results on fractional Rayleigh—Stokes equation, and we give the uniqueness,
ill-posedness and conditional stability of the inverse source problem. In Section [3] we
present a filter regularization method and prove the convergence estimate under a priori
regularization parameter choice rule. Next, we show the convergence estimate under a
posteriori regularization parameter choice rule in Section [l Finally, some comments are

given in Section

2. Preliminaries

Throughout this article, we use the following definitions and lemmas.

Definition 2.1. Let {\,, ¢} be the Dirichlet eigenvalues and corresponding eigenvectors
of the Laplacian operator —A in 2. The family of eigenvalues {\,};2; satisfy 0 < A\ <



Inverse Source Problem of the Rayleigh—Stokes Equation 849

A2

IN

<Ay <o+, where A\, — 00 as p — oo:

App(x) = =Npp(z), =€ Q,
op(x) =0, x € 0f.

Definition 2.2. Let (-,-) be an inner product in L?(£2). The notation || - | x stands for
in the norm in the Banach space. For k > 0, we define the Hilbert space

S ONFIf, o) < oo},

k=1

H*(Q) := {f € L*(Q)

equipped with the norm
oo 1/2
1 ey = (Z AU ¢p>\2> :
k=1

2.1. The formula of source term f

In this subsection, we introduce the mild solution of the following initial value problem:

,

Ou — (1 +~v08)Au = F(z,t), (x,t) € Qx(0,7T),
u(z,t) =0, x €0, te (0,T],
u(z,0) = ug(z), z € ),
u(z, T) = g(x), x €.

Here, F(z,t) = f(x)q(t).
According to the eigenfunction expansion, we can obtain the solution of the Rayleigh—

Stokes problem as follows:

0o 0 t
ute.0) = 3Ry (o) + 3 ([ Rofent = 10051 s 1, ) o),
p=1 p=1
where f, = (f, ¢p), and Rp(a,t) satisfies the following equation
IR (o, t) + Ap(1+ 700 Ry(ct) =0, t € (0,7),
Rp(e,0) = 1.
Taking t = T and applying u(z,0) = 0, we have

g(@) =3 ( /0 "Ry T~ $)a(s) ds) Jotpla) = K f(a).

o0
p=1
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Hence the source function f is given by the Fourier series

(gv ¢p)¢p(x)
2.1 pOp(x )
21 Zf ol ;; fo p( —s)q(s)ds

Using [2], we obtain the Laplace transform of R,(a,t) as follows

1

L(Rp(a,t)) = m-

Lemma 2.3. [3] The functions Ry(a,t), p=1,2,..., are equal to

Rp(a,t)—/ e Yy (a, ) dr,
0

where

Apr® sin am
Yy(a,r) = P

SH

(—r + Apyrecosam + A\y)?2 + (A\pyrosinar)?’
Lemma 2.4. [8] Let a € (1/2,1), we have the following estimate for all t € [0,T]:

C(r% «, )\1)

Rp(a7t) Z )\p )

and there exists D such that

T 2 2c—1
DT
/ Ry(a )Pt < 2T
0

/\2 -1’
where
00 e—rT,roz
Cy,a, A1) = fysinom/ ——————dr, 0<a<l.
0 o4 +1
1

Moreover, we present a useful estimate

Lemma 2.5. [3] From Lemma we can get

(2.2) /R (0, T — )d5>/ Cona) , o TCML M)
Ap Ap

Neat, from the above formula by putting inf,cjo 1| 1°(t)| = qo > 0, we have

1 1 1 g A
fOTRp(a,Tf s)q° fO oo, T —s)ds ~ 0TC(v,a, A1)
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2.2. The uniqueness, ill-posedness and conditional stability for the inverse source

problem

From Lemma [2.5] we know

T T
T
(23) / Rp(Oé,T - S)Q(S) ds > qO/ Rp(()é,T — 5) ds > QOC’(;\Y’Q’)\I)
0 0 »

Let f1 and f5 be the source functions corresponding to the final values g; and go respec-

tively, and combining (2.1]) and (2.3)), we get

(91 — 92, bp)Pp(x)

fi(@) = fa(z) :Z ITR (a Tfs)q(s)ds.
o "%

p=1

Suppose that gy = g2, then we can conclude that f; = fo. This yields the uniqueness of
the inverse source problem. Moreover, according to the analysis of Theorem 2.6 in [3],
we know that inverse source problem is ill-posed. Therefore, a regularization method is
needed.

Before solving the inverse source problem by using regularization method, we review

a conditional stability result of the inverse source problem.

Theorem 2.6. [3] Let f € H¥(Q) be such that [ fllr) < E for some E > 0. Then we
have the estimate

k/(k+1
1£llz2) < Blk, E)gll ey,

where
1

F/ (k1)
qg/(k+1)Tk/(k+1)Ck/(k+1) (7, a, A1)

Bk, E) =

3. A priori filter regularization method and convergence estimate

In this section, we propose a filter regularization method to solve the inverse source prob-

lem. To regularize the problem, our aim to replace the term by another

1
fOTRp(a,Tfs)q(s)ds
term. For this purpose, a regularized solution with the measured data {¢°(x),q’(t)} is

defined as follows:

(3.1) fg(ﬂf) _ Z (9°, &p)Pp(z) 7

p=1 P+ foT Rp(a, T — 5)q°(s) ds

where 8 > 0 is a regularization parameter, and a regularization solution with the exact
data {g(x),q(t)} is defined as follows:

(3.2) fﬁ(@ - Z (g, ¢p)¢p(95)

=18+ fOT Rp(a, T — s)q(s) ds
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From (3.1) and (3.2)), we can find two common properties of a new filter term
1
B+Jy Rp(aT—s)a(s)ds

(a) If the palrameter [ is small, the filter term TR (;Tis)q s is close to
fOT Rp(a,T—s)q(s) ds ;
(b) If the parameter § is fixed, the filter term T L is bounded.

B+Jy Rp(a,T—s)q(s)ds

Property (a) indicates that the constructed regularized solution is an approximation

of the exact solution. Property (b) indicates that the constructed regularized solution

is continuously dependent on the data. Both properties (a) and (b) are also the basic

requirement of the general regularization principle [7].

In the following, we prove the convergence estimate for || fg — f|| by using a priori

choice rule for the regularization parameter. We first give the following lemmas.

Lemma 3.1. Let a € (1/2,1), and assume that (1.2) holds, then we have the following

estimate 5 5
- 9 i 2 —_.
1fs — f3ll < qOHfHL @+ 5
Proof. From and ., we have
- ,¢ ¢<> (9, ép)6p(x) )
fs— 15 = (9, 45)0s R 2
’ ’ pz:l <B + fo »( —s)q(s)ds B+ foT Rp(a,T — 5)q°(s) ds
S ( g,% ¢p< 7) ) (9. 80)00(x) )
S\B+J) Rols T = s)a(s)ds B+ [y Ry, T = s)g(s) ds
s ( (9, ¢p>¢p<x> ) (9" 60) o)
(3.3) ' 8+ fo o, T —98)g0(s)ds B+ fOT Rp(a, T — s)g°(s) ds

¢p ¢p fo p a, T — 3)(‘16(3) —q(s))ds

p=1 < B—i‘fo p(a, T — s)q(s) ds) (ﬁ+f0TRp(a,T—s)q5(s) ds)

+Z( (o= 6. 0)0,(@) )
=

B+ [y Rpla, T —5)¢o(s) ds
= Q1+ Q2.

We continue to estimate the error by two steps as follows:
Step 1. We estimate ||@Q1]|z2(q), and by using (1.3)) and (2.1]), we have

||Q1H22 Z ( ga¢p foTRp(aaT_s)(qé(S) —q(s))ds )2
L = (B+ fo »( — s)q(s)ds) (B + foT Rp(a, T — 5)g(s) ds)
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2
_ o= | o Rolon T = 5)(a(s) — as)) ds (9, )
>~ T T
=1 fo Rp(a, T — s)g%(s) ds fo Rp(a, T — s)q(s)ds
g — @I i lg — ||
< L IEDT NN 46,2 = OO g2
90 =1 a
So, we get
lq HC[OT 1)
(3.4) Q12 < —HfHL Q) < %Hf”LQ(Q)-

Step 2. We estimate [|Qz2]|12(q), We obtain

2
19 e 2
(9—9° ¢p) 1 5
‘Q2HL2(Q Z ( ) < *Z(Q g 7¢p) T
=1 \B+ fo »( —8)¢%(s) ds B2 s B
Then, we can have
o
(3.5) 1Q2lz2(0) < —-
p
Combining (3.3)), (3.4 and (3.5)), we obtain
0 )
- < — + —.
1fs — fall < q0||f”L2(Q) 3
The proof of Lemma is completed. O

Lemma 3.2. For o € (1/2,1) and assume that f € H*(Q) with I £l vy < E hold, then

we obtain the following estimate

)\1/2%
BY2E 1 , k>1/2,
quC(’Ya «, )\1)

2
1
BEE +1, 0<k<1/2
2 QOTC(’)’; «, )‘1)

Proof. From (2.1) and (3.2)), using the Parseval identity, we get
2
— (g, ¢p) (g, (bp)
I1f = fallZe) =D ( -
“) = fOT Rp(a, T —s)q(s)ds B+ fOT Rp(a, T — s)q(s)ds

— io: ( ﬁ(g7 ¢p) )2
o f(;f Rp(a, T — s)q(s) ds(ﬁ + f(;f Rp(a, T — s)q(s) ds)

= /82(97 pr)z
3.6 =
. Z foT Rp(a, T — s)q(s) dS)Q(ﬁ + f(;f Rp(a, T — s)q(s) ds)2

1f = fallz) <
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B Z 62)\;216)\12)]9(9’ ¢p)2
R (o, T —s)q(s) d8)2(,8 + fOT Rp(a, T — s)q(s) ds)2
o0 )\2k( ¢p)2
=SNG 7
z} (fo »( —5)q(s) ds)2

where

_ B
B+ J) Ryle, T — s)q(s)ds’

Now, we estimate G(p),
BAE BAE
p) < = :
2\/5f0 Rp(a, T — s)q(s)ds 2\/5(]0 fo »( —s)ds
Hence, combining (2.2)) and ( ., we get

(3.7)

VA

(3.8) Glp) < wTC(y,a, A1)

We divide into the two following cases:
Case 1. If k > 1/2, we note

1 1 1/2—k
(3.9) A2k - NS
)\k 1/2 A]f_l/2

Combining ((3.6[), (3.8]) and , we obtain

fAl/Q k
11l x0y < BY2E :
()TC(")/, Q, /\1) 2 QOTC('% «, >‘1)

Case 2. If 0 < k < 1/2, we choose any 7 € (0,1/2) and rewrite N = A; U A, where

NIES:
1f = ol < !

(3.10) Ar={peN| N2 F<pm Ay ={peN|\N/ZF> g,
Combining (3.6)), (3.8) and (3.10)), we have
1F = fall 20
2
\F)\I/Q k . )
< sup Ao (fs ép)
pEA, <2 qQTC(y, o, A1) p;l P P
2
A ) dhip 2
+ >‘ (fa ¢p)
(3.11) p;i <ﬁ+fOTRpaT— s)q(s)ds ) 7
1
< B2 fl 7wy + sup A, 2k AZE(f, dp)?
<2 quC’(r% «, Al)) Hk 2 pEZAQ b

2
1 1—-2 2 2nk 9
< 1 + Bi2-k .
<2 qOTC'('y,a,Al)) B iy + A7 F S
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Since || f||grqy < E, by choosing n =1/2 —k in (3.11), we have

. 2
+ 1.

2 quC(77 «, )\1)

The proof of Lemma [3.2]is completed. O

If = fsllz2) < B°E (

By modifying the ideas in [3], we are now able to prove the following theorem, which

is the first main result of this paper.

Theorem 3.3. Let o € (1/2,1). Let f be the exact solution ({2.1)) with the exact data g,
and let fg be the reqularized solution (3.1) with the noisy data ¢°. Let the noise assump-

tion (1.2)), (1.3) and a priori condition
(3.12) [flgr@) < E

hold. The error estimate between the exact solution and the regularized solution is as

follows:

(a) If0 <k <1/2, and we choose the parameter

5\ 1/ (k1)
(3.13) 5:(E> ,

we have the following convergence estimate

5L/ (k1) ok (k1) 1
155 = fllze@) < | 1+

2
+1
(3.14) oA} 2\/q0TC(y,a, A1)>

o §k/(k+1) g1/ (k+1)

(b) If k > 1/2, and we choose the parameter
5\2/3
1 - (=
(3.15) i=(3)

we have the following convergence estimate

1/2—k
52/3E1/3 N )\1/ 51/3E2/3'
QoY 21/ qTC (7, A1)

(3.16) ||f§ — flliz2) < (1 +

Proof. (a) If 0 < k < 1/2, using the triangle inequality, and from Lemmas [3.1 and we
get

15— Fllzz < 13— fallrey + I f5 — fllz2()

2
1
+1,
2 QOTC('Y,CM, A1))

5 5o
<2 + 248
< q0||f||L2(Q) 5 6 <
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and we easily know

1 FE
(3.17) [ fllz2) < FHfHHk(Q) < X
1 1

using ([3.13]), we can obtain the convergence estimate (3.14)).
(b) If £ > 1/2, using the triangle inequality, and from Lemmas and we get

15— Fllrz@ < HféS — fsllz2) + 1fs — fllz2)
\L/2—k

L0 + 125 1 ,
HfuLz 5th 0T C(7, 0, M)

using (3.15)) and (3.17)), we can obtain the convergence estimate (3.16|). Hence, the proof
of Theorem [3.3]is completed. O

4. A posteriori filter regularization method and convergence estimate

In this section, we prove the convergence estimate between the exact solution and the
regularized solution by using a posteriori choice rule for a regularization parameter, i.e.,
Morozov’s discrepancy principle.

According to the Morozov’s discrepancy principle [7], we choose the regularization
parameter [ as the solution of the following equation
(1)

5 BT o] <1 (o o (2)))

5""]0 p )qd( )

where 7 > 1 is a constant.

Lemma 4.1. Let

(, T —8)(s)ds 4 R
;B+f0 R )q()ds(g,éf)p)cbp() 9°(z)

Let € (1/2,1). If0 <6+ 7'(log(log(%)))_1 < |I¢°||, then the following results hold:
(a) p(B) is a continuous function;
(b) limg_so p(B) = 0;
(©) Timg+ 00 p(8) = 6P
(d) p(B) is a strictly increasing function over (0,400).

The proof is obvious, and we omit it here.
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Remark 4.2. According to Lemma we know there exists a unique solution for (4.1)) if
0 <+ 7(log(log(§))) " < [lg°ll-

Lemma 4.3. Let o € (1/2,1), and assume that || f| grqy < E holds. If B is the solution
of (4.1), we can obtain the following inequality

@ Lo 92 i (2))

Proof. From (4.1)), there holds

5+ (108 (1o (?))) oS ) (9, 6p)6p()

— B+ [y Rp(o, T —5)g(s) ds

(96 — 9, 9p)dp(2)

ing

B+ [ Ryla, T — 5)¢%(s) ds

—+o0 B
2 TR rm s e

(9, Pp)Pp(x)

= B+ fOT Rp(a, T — s)g°(s) ds

Then, we know

@3 7 <log (log (§>>>1 = g B+ [ Rp(oz,BT — 5)g%(s) ds (9:00)0p(2) -

Since || f||groy < E and (2.1), then

+oo B
2 5 TRyt o as

+Z°:° BT Rp(a, T —s)g(s)ds - A% Me(g, ¢,)p()
6+ fOT Rp(a, T — s)q%(s) ds fOT Rp(a, T — s)q(s)ds

p=1
1/2
(44) *f (5 JE Ry (o, T = 5)q(s) ds - /\pk>2 ( (g, by) )2
TS\ S Rl T = 5)g(s) ds Jo Rp(a, T — 5)q(s) ds
1/2
Aik +oo /\Zk 7¢ 2
< 56_11 1 Z - D (g p) .
qo0 =1 (fo Rp(a, T — s)q(s) ds)
Baq Bq
< WHJfHH’C(Q) < ME'
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Combining (4.3) and (4.4]), we can obtain

7 | log | log L ﬁfh
0 QO)\k
Then, we get the estimate (4.2). Hence, the proof of Lemma is completed. O

Theorem 4.4. Let a € (1/2,1). Suppose a priori conditions (1.2) and (3.12) hold and
taking the solution of (4.1)) as the regularization parameter, then we obtain the following

error estimate

1
Hfg - fHL2(Q) < (q)\k + P(k)) ok

071

E 1\ k/(k+1)
+ M (k) (25 +7 <10g <log (5>>> ) EY/k+D)

Q1 E 1
P(k) = log (log | = M(k) = .
(k) TqoAY ( o ( % < 0 ))) M) g/ D DK (k1) CF/(B+1) (7, 0, Ay)

Proof. Due to the triangle inequality, we have

(4.6) 15 = Fllzz < 13— fallrey + I1f8 — fllzeg) = T + L.

From Lemmas and and using (3.17)), we estimate I,

0 qoE E
L= \f§ = follram) < qT)HfHL%Q) + rqoN] <log <log (5)>> .

Then we can obtain

oF oF E
(4.7) n< 4 0 <1og <log <>)> .
QAT TQoA] 0
In the following, we estimate I, we firstly give the following estimate

[e.9]

2
o2 p A (g, p)?
Mo = Mo z; <B+fpr(a,T—s)q(s) ds) (Jo Role.T = s)q(s) ds)”

— 22K (g, bp)?
= - — 12y < E.
pz:l (foT Rp(a, T — s)q(s) ds) H

and from Theorem we know

k/(k k/(k
(4.8) I < Bk, B)| K (fs — ) 1hen" = Bk, E)|K f5 — Kf[}5005".
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Now, we estimate

B
Kfs—Kf= Z T TR T s as
-y 8 o
=18+ fOT Ry, T — s)q(s) ds (9= 9% ¢p)bp(x)
- Z ﬂ (967¢p)¢p(x).

= B+ fOT Rp(a, T — s)q(s)ds

By using and ., we get

4 et iy <2057 1 (1 (£)))

Combining (4.6, (4.7), (4.8) and (4.9), we can obtain the convergence estimate (4.5)).
Hence, the proof of Theorem [£.4]is completed. O

Remark 4.5. Here, in order to distinguish from the symbols in this paper, we give another

symbols. In [3], we know

= }fOTHp(a T — s)x( cls‘2

Tfe=3

o+ | [T H( aT—s) <(s) ds|2

(9% Pp)p(T).

If one can choose o satisfying

+o0 T 2
€ € T _ }fO Hp(a T*S) 6 ds‘ € ) — € T
ITf5 = g°(x)| = ;ai’Jr\foTHpaT—s) 5) ds[” 5(9% dp)dp(x) — 9°(2)

ool (5)

it can obtain a convergence result for Tikhonov regularization method, which is analogous

to Theorem in our paper. However, the authors in [3] choose o satisfying

= ‘fOTHp (0, T — s)x° ds‘

ITfs =g @)l = >

p:102+|f0 Hp(a, T — s)x€ ds}

5(95 Pp)bp(x) — g°(2)|| = Te,

the result in [3] is not optimal. Obviously, we provide a more optimal convergence result

in this work, and improve the convergence result (see Theorem 3.6 in [3]).

5. Concluding remarks

In this paper, we have studied an inverse source problem for the Rayleigh—Stokes equation.

Due to the ill-posedness of the problem, we introduce a filter regularization method to
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construct an approximate solution. The error estimates are proved under a priori and a

posteriori regularization parameter rules. In the future work, we will try to solve the other

ill-posed problems by using the proposed method.
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