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Well-posedness and Asymptotic Behavior for a Pseudo-parabolic Equation

Involving p-biharmonic Operator and Logarithmic Nonlinearity

Zhiqing Liu and Zhong Bo Fang*

Abstract. This paper deals with the well-posedness and asymptotic behavior for a

pseudo-parabolic equation involving p-biharmonic operator and logarithmic nonlin-

earity under Navior boundary condition. By combining Galerkin approximation, the

method of potential well, the technique of differential inequality and improved loga-

rithmic Sobolev inequality, we establish the local and global solvability, infinite and

finite time blow-up phenomena of weak solutions in different energy levels. Moreover,

we obtain the growth rate of weak solutions, life span in different energy cases and

also give a result of extinction phenomenon.

1. Introduction

We consider a pseudo-parabolic equation involving p-biharmonic operator and logarithmic

nonlinearity

(1.1) ut −∆ut +∆
(
|∆u|p−2∆u

)
= |u|q−2u log |u|, (x, t) ∈ Ω× (0,+∞),

subject to Navior boundary and initial conditions

u(x, t) = ∆u(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞),(1.2)

u(x, 0) = u0(x), x ∈ Ω,(1.3)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω, initial data

u0 ∈ H1
0 (Ω) ∩W

2,p
0 (Ω), parameters p and q satisfy

(1.4) max

{
1,

2N

N + 4

}
< p ≤ q < p

(
1 +

4

N

)
.

Partial differential equations with logarithmic nonlinearities have attracted much at-

tention in recent years, due to their wide applications in physics and other applied sci-

ences, see [3–7, 11, 13, 15, 17, 19, 21] and references therein. Among them, many schol-

ars have been devoted to the topic on the global existence and blow-up phenomena
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of the second-order parabolic or pseudo-parabolic equations with p-Laplacian operator

div
(
|∇u|p−2∇u

)
and there have been fruitful results, one can see [4, 11] (for parabolic

equations) and [3,5, 7, 13,15,19] (for pseudo-parabolic equations).

However, there are fewer studies on higher order equations involving p-biharmonic op-

erator ∆
(
|∆u|p−2∆u

)
which appear in many fields. For example, the parabolic biharmonic

equation (the case of p = 2 in (1.1)) arises in the growth theory of epitaxial thin films,

where u(x, t) denotes the height from the surface of the film in epitaxial growth and ∆2u

represents the capillarity-driven surface diffusion. The authors of [6,17,21] considered the

following p-biharmonic parabolic equation with logarithmic nonlinearity

ut +∆
(
|∆u|p−2∆u

)
= |u|q−2u log |u|, (x, t) ∈ Ω× (0,+∞),

subject to Navior boundary condition (1.2). For the case of p = 2 and 2 < q < 2 + 4
N ,

Li and Liu [17] established the global existence and exponential decay estimate of the

solution by virtue of the method of potential well, and obtained the finite time blow-up

phenomenon with positive initial energy (the subcritical case) by using of the concavity

technique. For 2 < p < q < p
(
1 + 4

N

)
, Wang and Liu [21] established the local and global

well-posedness of solutions, and derived the sufficient conditions of finite time blow-up

for the solution with positive initial energy. Moreover, the results of finite time blow-up

with negative initial energy and extinction phenomenon are deduced in the case of p < q,

q > 2 and p < q < 2, respectively. Liu and Li [17] studied the case of p > q > p
2 + 1 and

p > max
{
N
2 , 2

}
, they established the well-posedness of local weak solution and proved

the long-time behavior and the propagation of perturbations, based on the methods of

difference and variation.

In addition, we refer to [8, 12, 16] for the researches on global bifurcation theory, fi-

nite speed of propagation and extinction phenomenon of elliptic or parabolic equations

involving p-biharmonic operators and local (or non-local) power type nonlinearities, and

refer to [2, 20] for the studies on the long-time behavior, extinction phenomenon and life

span estimation of solutions of Kirchhoff fractional p-Laplacian diffusion equations and

polyharmonic Kirchhoff equations, so on.

In view of the works mentioned above, one can find that problem (1.1)–(1.3) for pseudo-

parabolic equation involving p-biharmonic operator and logarithmic nonlinearity has not

been investigated yet. The main difficulty lies in finding the influence of the interac-

tion among the p-biharmonic operator, the third derivative term ∆ut and the logarithmic

nonlinearity on the asymptotic behavior of the weak solution. Motivated by these obser-

vations, we establish the local and global well-posedness of weak solution by the methods

of multiplier and potential well for the case of max
{
1, 2N

N+4

}
< p ≤ q < p

(
1 + 4

N

)
. By

combining improved logarithmic Sobolev inequality, Gronwall inequality, the techniques

of differential inequalities and concavity, we obtain the phenomena of finite time blow-up
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with various initial energy (including arbitrary initial energy) and infinite blow-up of so-

lutions, and further derived the estimates of blow-up rate and life-span, for the case of

1 < p ≤ q ≤ 2; max
{
1, 2N

N+4

}
< p ≤ q, 2 < q < p

(
1 + 4

N

)
; and 2 < p < q < p

(
1 + 4

N

)
,

respectively. Meantime, for max
{
1, 2N

N+2

}
< p < q < 2, we present the sufficient condi-

tions of extinction in finite time, and obtain the extinction time and decay rate estimate

(for more detailed classification of parameters and summary of main conclusions, see Fig-

ure 1.1).

Figure 1.1: The classification of parameters.

In fact, the third derivative term ∆ut can be regarded as a damping term, which has

inhibitory effect on the qualitative properties as blow-up, extinction and so on. Therefore,

we research the properties of solutions in the sense of new measurements. Meantime,

compared with the works in [6, 17, 21], the analysis and classification of the qualitative

properties are presented more comprehensively and precisely in this paper. For example,

the results on the infinite blow-up, blow-up with arbitrary initial energy, the life-span

estimation of blow-up solution, the extinction rate, etc., haven’t been studied in [6,17,21].

We established the well-poseness and asymptotic behavior of the solution under ap-

propriate conditions by virtue of Galerkin approximation, improved logarithmic Sobolev

inequality, the method of potential well and the technique of differential inequality, etc.

Our detailed results are given below.
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For the convenience of description, we denote the Sobolev spaces and norms as follows:

X := H1
0 (Ω) ∩W

2,p
0 (Ω),

∥u∥p := ∥u∥Lp(Ω), ∥u∥2,p := ∥u∥
W 2,p

0 (Ω)
= ∥∆u∥p, 1 < p < +∞,

and

∥u∥H1
0 (Ω) :=

(
∥u∥22 + ∥∇u∥22

) 1
2 , ∀u ∈ H1

0 (Ω).

Meantime, we denoteW−2,p′(Ω) as the dual space ofW 2,p(Ω) and ⟨ · , · ⟩ as the dual pairing
between W−2,p′(Ω) and W 2,p(Ω), where p′ = p

p−1 is the conjugate exponent of p > 1.

For u ∈ X, we define the energy functional and Nehari functional as

(1.5) J(u) :=
1

p
∥∆u∥pp −

1

q

∫
Ω
|u|q log |u|dx+

1

q2
∥u∥qq,

and

(1.6) I(u) := ⟨J ′(u), u⟩ = ∥∆u∥pp −
∫
Ω
|u|q log |u| dx.

Then it follows from (1.5) and (1.6) that

(1.7) J(u) =
1

q
I(u) +

q − p

pq
∥∆u∥pp +

1

q2
∥u∥qq.

We also need to define the depth of the potential well

(1.8) d := inf
u∈N

J(u),

where N := {u ∈ X \ {0} | I(u) = 0} is the Nehari manifold. Furthermore, we introduce

a constant

(1.9) M :=


q−p
pq r

p
∗ if p ̸= q,

1
p2
Rp if p = q,

where r∗ and R are given in Lemmas 2.7 and 2.9 below, respectively.

Next, the potential well W and its corresponding set V are defined by

W := {u ∈ X | I(u) > 0, J(u) < d} ∪ {0},

V := {u ∈ X | I(u) < 0, J(u) < d}.

Now, we state our main results.

� Local and global solvability (see Theorems 3.1 and 4.1). Let u0 ∈ X and p, q

satisfy (1.4). Then problem (1.1)–(1.3) admits a unique local weak solution. Fur-

thermore, if J(u0) ≤ d and I(u0) ≥ 0, then problem (1.1)–(1.3) admits a unique

global weak solution

u ∈ L∞(0,+∞;X) and ut ∈ L2(0,+∞;H1
0 (Ω)).
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� Blow-up phenomena.

– Infinite blow-up (see Theorem 5.1). Let u0 ∈ X \ {0} and p, q satisfy 1 <

p ≤ q ≤ 2. If J(u0) ≤ d and I(u0) < 0, then the weak solution u(t) of

problem (1.1)–(1.3) blows up in infinite time. Furthermore, if I(u0) < 0 and

J(u0)

≤M if M < d,

< M if M = d,

then for all ρ ∈ (0, 1), there exists a tρ > 0 such that the lower bound of blow-up

rate is given by (5.1).

– Finite time blow-up (see Theorem 5.3, Corollaries 5.4 and 5.6). Let u0 ∈
X \ {0} and p, q satisfy max

{
1, 2N

N+4

}
< p ≤ q, 2 < q < p

(
1 + 4

N

)
.

(1) If J(u0) ≤M and I(u0) < 0, then the weak solution u(t) of problem (1.1)–

(1.3) blows up in finite time and the upper bound of blow-up time is given

by (5.21). Moreover, if q satisfies1 < q < +∞ if N = 1, 2,

1 < q < 2N
N−2 if N ≥ 3

further, then the lower bound of blow-up time and blow-up rate are given

by (5.23) and (5.24), respectively.

(2) If J(u0) < 0, then the weak solution u(t) of problem (1.1)–(1.3) blows up

in finite time. Moreover, the upper bound of blow-up time and blow-up

rate are given by (5.38) and (5.39), respectively.

Furthermore, if J(u(t0)) < 0, ∀ t0 ∈ [0, Tmax), then the weak solution u(t) of

problem (1.1)–(1.3) blows up in finite time.

– Blow-up with arbitrary initial energy (see Theorem 5.7). Let u0 ∈ X \{0}
and p, q satisfy 2 < p < q < p

(
1 + 4

N

)
. If

J(u0) <
q − p

2qκpp
(
1 +B

2)∥u0∥2H1
0 (Ω) −

(p− 2)(q − p)

2pq
|Ω|,

where κp and B are the optimal embedding constants of W 2,p
0 (Ω) ⊂⊂W 1,p

0 (Ω)

and H1
0 (Ω) ⊂⊂ L2(Ω), respectively, then the weak solution u(t) of prob-

lem (1.1)–(1.3) blows up in finite time.

� Extinction phenomenon (see Theorem 6.2). Let p, q satisfy max
{
1, 2N

N+4

}
< p <

q < 2 and 0 < ∥u0∥H1
0 (Ω) < B−p

p |Ω| q+α−2
2 , where Bp is given in (6.4), then the weak

solution u(t) of problem (1.1)–(1.3) becomes extinct in finite time. Moreover, decay

rate and extinction time are given by (6.1) and (6.2), respectively.
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The rest of the paper is organized as follows. In Section 2, we give some preliminaries.

In Section 3, we establish the local solvability by using Galerkin approximation and some

energy estimates. In Sections 4 and 5, we present the detailed proofs of global existence

and blow-up properties. Finally, the extinction and decay estimate are derived in Section 6.

2. Preliminaries

In this section, we introduce some definitions, lemmas and corollaries needed in the proofs

of main results.

To begin with, we present the definitions of weak solution, finite time blow-up and

infinite blow-up of problem (1.1)–(1.3).

Definition 2.1 (Weak solution). Let u0 ∈ X and T > 0. u = u(t) ∈ L∞(0, T ;X) with

ut ∈ L2(0, T ;H1
0 (Ω)) is called a weak solution of problem (1.1)–(1.3), if u(0) = u0 a.e. in

Ω and the following equality

(ut, v) + (∇ut,∇v) +
(
|∆u|p−2∆u,∆v

)
=
(
|u|q−2u log |u|, v

)
, a.e. t ∈ (0, T )

holds for all v ∈ X, where ( · , · ) means the inner product of L2(Ω).

Definition 2.2 (Finite time blow-up). Let u = u(t) be a weak solution of problem (1.1)–

(1.3). We call u finite time blow-up if the maximal existence time Tmax < +∞ and

lim
t→T−

max

∫ t

0
∥u(s)∥2H1

0 (Ω) ds = +∞.

Definition 2.3 (Infinite blow-up). Let u = u(t) be a weak solution of problem (1.1)–(1.3).

We call u infinite blow-up if the maximal existence time Tmax = +∞ and

lim
t→+∞

∥u(t)∥2H1
0 (Ω) = +∞.

Next, we prove some necessary lemmas and corollaries. By applying the Rellich–

Kondrachov Theorem, we improve the classical logarithmic Sobolev inequality.

Lemma 2.4 (Improved logarithmic Sobolev inequality). For all u ∈ W 2,γ
0 (Ω) with γ ∈

(1,+∞) and ∀µ > 0, we have

(2.1) γ

∫
Ω
|u|γ log

(
|u|
∥u∥γ

)
dx+

N

γ
log

(
γµe

NLγ

)
∥u∥γγ ≤ µκγγ∥∆u∥γγ ,

where

Lγ =
γ

N

(
γ − 1

e

)γ−1

π−
γ
2

 Γ
(
N
2 + 1

)
Γ
(N(γ−1)

γ + 1
)


γ
N

,

κγ is the optimal embedding constant of W 2,γ
0 (Ω) ⊂⊂ W 1,γ

0 (Ω) and Γ is the Gamma

function.
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Proof. For all u ∈ W 1,γ
0 (Ω), it follows from the classical logarithmic Sobolev inequality

in [10] that

(2.2) γ

∫
Ω
|u|γ log

(
|u|
∥u∥γ

)
dx+

N

γ
log

(
γµe

NLγ

)
∥u∥γγ ≤ µ∥∇u∥γγ .

On the other hand, from Rellich–Kondrachov Theorem (see [1, p. 168]), we can see

W 2,γ
0 (Ω) ⊂⊂W 1,γ

0 (Ω), ∀ γ > 1,

i.e., there exists a positive constant κγ such that

(2.3) ∥∇u∥γ ≤ κγ∥∆u∥γ , ∀u ∈W 2,γ
0 (Ω).

Therefore, we can derive (2.1) by combining (2.2) with (2.3). Then Lemma 2.4 is proved

completely.

Furthermore, we present some auxiliary results as follows.

Lemma 2.5. Let u ∈ X \ {0} and p, q satisfy

(2.4) max

{
1,

2N

N + 4

}
< p < q < p

(
1 +

4

N

)
.

Then for all α with

(2.5) 0 < α ≤ p

(
1 +

4

N

)
− q,

we have

(1) if 0 < ∥∆u∥p ≤ r(α), then I(u) > 0,

(2) if I(u) ≤ 0, then ∥∆u∥p > r(α),

where

(2.6) r(α) =

(
α

Bq+α
α

) 1
q+α−p

,

and Bα is the optimal embedding constant of W 2,p
0 (Ω) ⊂⊂ Lq+α(Ω), i.e.,

(2.7)
1

Bα
= inf

u∈W 2,p
0 (Ω)\{0}

∥∆u∥p
∥u∥q+α

and ∥u∥q+α ≤ Bα∥∆u∥p, ∀u ∈W 2,p
0 (Ω).
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Proof. By simple calculations, we obtain

(2.8) log |u(x)| < |u(x)|α

α
a.e. x ∈ Ω, ∀α > 0.

Then using the definition of I(u) and the inequality above, we have

I(u) = ∥∆u∥pp −
∫
Ω
|u|q log |u|dx > ∥∆u∥pp −

∥u∥q+α
q+α

α
.

Since α satisfies (2.5), it follows from the embedding inequality (2.7) that

I(u) > ∥∆u∥pp −
Bq+α

α

α
∥∆u∥q+α

p = ∥∆u∥pp

(
1− Bq+α

α

α
∥∆u∥q+α−p

p

)
,

from which we can derive (1) and (2). Then Lemma 2.5 is proved completely.

Remark 2.6. From p > 2N
N+4 we can deduce

p

(
1 +

4

N

)
<


Np

N−2p if N > 2p,

+∞ if N ≤ 2p.

Then by Rellich–Kondrachov Theorem (see [1, p. 168]), we have W 2,p
0 (Ω) ⊂⊂ Lq+α(Ω) for

all p > 1 and all α ≥ 0. Therefore, the constant Bα in Lemma 2.5 is well defined.

Lemma 2.7. Let

(2.9) r∗ := sup
α∈
(
0,p
(
1+ 4

N

)
−q
] r(α) and r∗ := sup

α∈
(
0,p
(
1+ 4

N

)
−q
]σ(α),

where

σ(α) =

(
α

Bq+α
pq

) 1
q+α−p

|Ω|
α

q(q+α−p) ,

and Bpq is the optimal embedding constant of W 2,p
0 (Ω) ⊂⊂ Lq(Ω), i.e.,

(2.10)
1

Bpq
= inf

W 2,p
0 (Ω)\{0}

∥∆u∥p
∥u∥q

and ∥u∥q ≤ Bpq∥∆u∥p, ∀u ∈W 2,p
0 (Ω).

Then r∗ exists and satisfies

0 < r∗ ≤ r∗ < +∞.

Proof. From (2.5), (2.6) and (2.9) we can see that if r∗ exists, then r∗ > 0. Thus, in order

to prove Lemma 2.7, we only need to prove r(α) ≤ σ(α), the existence of r∗ and r∗ < +∞.
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First of all, we prove r(α) ≤ σ(α). For all u ∈ X \ {0}, since (2.4) and (2.5) hold, we

have u ∈ Lq+α(Ω) ∩ Lq(Ω). By Hölder’s inequality, we obtain

(2.11)

∫
Ω
|u|q dx ≤ |Ω|

α
q+α

(∫
Ω
|u|q+α dx

) q
q+α

.

Combining (2.7), (2.10) and (2.11) to derive

1

Bα
= inf

u∈W 2,p
0 (Ω)\{0}

∥∆u∥p
∥u∥q+α

≤ |Ω|
α

q(q+α) inf
u∈W 2,p

0 (Ω)\{0}

∥∆u∥p
∥u∥q

=
1

Bpq
|Ω|

α
q(q+α) .

Therefore,

r(α) =

(
α

Bq+α
α

) 1
q+α−p

≤ σ(α).

On the other hand, it follows from the continuity of σ(α) on
[
0, p
(
1 + 4

N

)
− q
]
that r∗

exists and satisfies

r∗ = sup
α∈
(
0,p
(
1+ 4

N

)
−q
]σ(α) ≤ max

α∈
[
0,p
(
1+ 4

N

)
−q
]σ(α) < +∞.

Then Lemma 2.7 is proved completely.

Corollary 2.8. Let u ∈ X \ {0} and p, q satisfy (2.4).

(1) If 0 < ∥∆u∥p ≤ r∗, then I(u) > 0;

(2) If I(u) ≤ 0, then ∥∆u∥p > r∗,

where r∗ is defined in (2.9).

Proof. We only need to prove (1) since (2) is the direct result of (1). For u ∈ X \ {0},
if 0 < ∥∆u∥p ≤ r∗, then we can derive from the definition of r∗ that there exists a α0

satisfying (2.5) such that 0 < ∥∆u∥p ≤ r(α0). Therefore, (1) can be deduced easily by

Lemma 2.5. Then Corollary 2.8 is proved completely.

Lemma 2.9. Let u ∈ X \ {0} and p, q satisfy

max

{
1,

2N

N + 4

}
< p = q < p

(
1 +

4

N

)
.

(1) If 0 < ∥u∥p < R, then I(u) > 0;

(2) If I(u) < 0, then ∥u∥p > R;

(3) If I(u) = 0, then ∥u∥p ≥ R,
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where

R =

(
p2e

NκppLp

) N
p2

.

Proof. By using (1.6) and (2.1) (taking γ = p = q), we obtain

I(u) = ∥∆u∥pp −
∫
Ω
|u|q log |u|dx

≥
(
1− µκpp

p

)
∥∆u∥pp +

[
N

p2
log

(
pµe

NLp

)
− log ∥u∥p

]
∥u∥pp.

Now, we choose µ = p
κp
p
to get

I(u) ≥
[
N

p2
log

(
p2e

NκppLp

)
− log ∥u∥p

]
∥u∥pp,

from which we can verify the results (1)–(3) directly. Lemma 2.9 is proved completely.

Lemma 2.10. Let u ∈ X \ {0} and p, q satisfy (1.4). Then we have

d ≥M,

where d and M are defined by (1.8) and (1.9), respectively.

Proof. For all u ∈ N , we have u ∈ X \ {0} and I(u) = 0. Then it follows from (1.7) that

J(u) =
1

q
I(u) +

q − p

pq
∥∆u∥pp +

1

q2
∥u∥qq

=
q − p

pq
∥∆u∥pp +

1

q2
∥u∥qq>

q−p
pq ∥∆u∥pp if p ̸= q,

= 1
q2
∥u∥qq if p = q.

Therefore, we can deduce the result by the definition of d (1.8), Corollary 2.8(2) and

Lemma 2.9(3). Then Lemma 2.10 is proved completely.

Lemma 2.11. Let u ∈ X \ {0} satisfy I(u) < 0 and p, q satisfy (1.4). Then there exists

a λ∗ ∈ (0, 1) such that I(λ∗u) = 0.

Proof. For all λ > 0, we have

(2.12) I(u) = λp∥∆u∥pp − λq
∫
Ω
|u|q log |u| dx− λq log λ∥u∥qq = λp

(
∥∆u∥pp − ϕ(λ)

)
,

where

ϕ(λ) = λq−p

∫
Ω
|u|q log |u| dx− λq−p log λ∥u∥qq.
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By combining I(u) < 0, (2.12), Corollary 2.8 and Lemma 2.9, we can see

(2.13) ϕ(1) =

∫
Ω
|u|q log |u| dx > ∥∆u∥pp ≥ rp0 :=

r
p
∗ if p < q,

Bp
ppRp if p = q

> 0,

where we have used the case of p = q in (2.10) to derive the last inequality, and Bpp is the

optimal embedding constant of W 2,p
0 (Ω) ⊂⊂ Lp(Ω).

On the other hand, it follows the condition p ≤ q that

ϕ(λ) = λq−p

∫
Ω
|u|q log |u|dx− λq−p log λ∥u∥qq

→

−∞ if p = q,

0 if p < q,
as λ→ 0+.

Combining (2.12) with (2.13), we obtain there exists a λ∗ ∈ (0, 1) such that ϕ(λ∗) = ∥∆u∥pp
and I(λ∗u) = 0. Then Lemma 2.11 is proved completely.

Lemma 2.12. Let u ∈ X \ {0} satisfy I(u) < 0 and p, q satisfy (1.4). Then we have

I(u) < q(J(u)− d).

Proof. From Lemma 2.11, we can see that there exists a λ∗ ∈ (0, 1) such that I(λ∗u) = 0.

Now, we define

f(λ) := qJ(λu)− I(λu), λ > 0.

Calculating directly, we obtain

f(λ) =
q − p

p
λp∥∆u∥pp +

λq

q
∥u∥qq,

and

f ′(λ) = (q − p)λp−1∥∆u∥pp + λq−1∥u∥qq.

Then it follows from Corollary 2.8 and Lemma 2.9 that f ′(λ) > 0, f is non-deceasing with

respect to λ > 0 and f(1) > f(λ∗). Therefore,

qJ(u)− I(u) > qJ(λ∗u)− I(λ∗u) = qJ(λ∗u) ≥ qd > 0,

where we have used the fact that λ∗u ∈ N and the definition of d (1.8) to derive the last

inequality. Then Lemma 2.12 is proved completely.



498 Zhiqing Liu and Zhong Bo Fang

3. Local solvability

In this section, we present the local solvability of problem (1.1)–(1.3) by virtue of Galerkin

approximation.

Theorem 3.1 (Local solvability). Let u0 ∈ X and p, q satisfy (1.4). Then there exists a

T0 > 0 such that problem (1.1)–(1.3) admits a unique weak solution on [0, T0) and

u ∈ L∞(0, T0;X), ut ∈ L2(0, T0;H
1
0 (Ω)).

Moreover, u satisfies the following energy inequality:

(3.1)

∫ t

0
∥us(s)∥2H1

0 (Ω) ds+ J(u(t)) ≤ J(u0), t ∈ [0, T0).

Proof. We divide the proof into 5 steps.

Step 1: Approximate problem. Let {ωj}+∞
j=1 be a completed orthogonal basis of X. We

define the finite dimensional space Vm := span{ω1, ω2, . . . , ωm}, m ∈ N+, and construct

the approximate solution

um(x, t) :=
m∑
j=1

gjm(t)ωj(x),

where um(x, t) satisfies the following Cauchy problem:

(umt, ωj) + (∇umt,∇ωj) +
(
|∆um|p−2∆um,∆ωj

)
=
(
|um|q−2um log |um|, ωj

)
,(3.2)

u0m =
m∑
j=1

gjm(0)ωj → u0 in X.(3.3)

The standard theory of ODEs yields that Cauchy problem (3.2)–(3.3) possesses local

solutions.

Step 2: Priori estimates. We discuss the following two cases:

Case 1: max
{
1, 2N

N+4

}
< p ≤ q, 2 ≤ q < p

(
1 + 4

N

)
.

Priori estimate I: Multiplying (3.2) by gjm(t), summing on j = 1, 2, . . . ,m and then

integrating on [0, t], we know that

(3.4) Sm(t) = Sm(0) +

∫ t

0

∫
Ω
|um(x, s)|q log |um(x, s)| dxds,

where

(3.5) Sm(t) =
1

2
∥um∥22 +

1

2
∥∇um∥22 +

∫ t

0
∥∆um(s)∥pp ds.

On the other hand, we can see from (2.8) that for all α > 0,

(3.6)

∫
Ω
|um|q log |um| dx ≤ 1

α
∥um∥q+α

q+α,
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where α is chosen to satisfy α < p
(
1 + 4

N

)
− q. Then by the Nirenberg interpolation

inequality and Young’s inequality, we obtain∫
Ω
|um|q log |um| dx ≤ C∥∆um∥θ(q+α)

p ∥um∥(1−θ)(q+α)
2

≤ ε∥∆um∥pp + C(ε)∥um∥
p(1−θ)(q+α)
p−θ(q+α)

2 ,

(3.7)

where ε ∈ (0, 1) and

θ =

(
1

2
− 1

q + α

)(
2

N
− 1

p
+

1

2

)−1

.

Now, we set

β :=
p(1− θ)(q + α)

2[p− θ(q + α)]
=
p(2q + 2α+N)−N(q + α)

p(4 +N)−N(q + α)
,

then β > 1 because max
{
1, 2N

N+4

}
< p ≤ q and 2 ≤ q < p

(
1+ 4

N

)
. Combining (3.4)–(3.7),

we obtain

Sm(t) ≤ C1 + C2

∫ t

0
Sβ
m(s) ds,

where C1 and C2 are positive constants independent ofm. Therefore, by means of Gronwall

inequality (see [9]), there exists a positive constant T0 > 0 such that

(3.8) Sm(t) ≤ CT0 .

Priori estimate II: Multiplying (3.2) by g′jm(t), summing on j = 1, 2, . . . ,m and then

integrating on [0, t], we know that

(3.9) J(um(t)) +

∫ t

0

(
∥ums(s)∥22 + ∥∇ums(s)∥22

)
ds = J(um(0)) = J(u0m).

By the continuity of J and (3.3), we can see there exists a constant C > 0 such that

(3.10) J(u0m) ≤ C, ∀m ∈ N+.

Combining (1.5) with (3.7)–(3.10), we can derive

C ≥ J(um) =
1

p
∥∆um∥pp −

1

q

∫
Ω
|um|q log |um|dx+

1

q2
∥um∥qq

≥
(
1

p
− ε

q

)
∥∆um∥pp −

C(ε)

q
∥um∥2β2 +

1

q2
∥um∥qq

≥
(
1

p
− ε

q

)
∥∆um∥pp −

C(ε)

q
2βSβ

m(t) +
1

q2
∥um∥qq,

i.e.,

(3.11) ∥∆um∥pp + ∥um∥qq ≤ CT0 .
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Case 2: 1 < p ≤ q < 2.

Priori estimate I: Combining (3.4) and (3.6), taking α = 2− q, we obtain

Sm(t) ≤ Sm(0) +
1

2− q

∫ t

0
∥um(s)∥22 ds

≤ Sm(0) +
2

2− q

∫ t

0
Sm(s) ds.

Then by means of Gronwall inequality, there exists a positive constant T0 > 0 such that

(3.12) Sm(t) ≤ CT0 .

Priori estimate II: From (1.5), (3.9), (3.10) and (3.12), we have

1

p
∥∆um∥pp +

1

q2
∥um∥qq +

∫ t

0

(
∥ums(s)∥22 + ∥∇ums(s)∥22

)
ds

≤ C +
1

q

∫
Ω
|um|q log |um| dx ≤ C +

1

q(2− q)
∥um∥22 ≤ CT0 .

(3.13)

Therefore, by combining (3.5), (3.8) and (3.11)–(3.13), we can derive

∥um∥L∞(0,T0;X) ≤ C, ∀m ∈ N+,(3.14)

∥umt∥L2(0,T0;H1
0 (Ω)) ≤ C, ∀m ∈ N+,(3.15) ∥∥|∆um|p−2∆um

∥∥
L∞(0,T0;W

−2,p′
0 (Ω))

≤ C, ∀m ∈ N+.(3.16)

Step 3: Pass to the limit. It follows from (3.14)–(3.16) that there exist functions u

and χ and a subsequence of {um}+∞
m=1, which we still denote by {um}+∞

m=1 for convenience,

such that

um
W ∗
−−→ u in L∞(0, T0;X),(3.17)

umt
W−→ ut in L2(0, T0;H

1
0 (Ω)),(3.18)

|∆um|p−2∆um
W ∗
−−→ χ in L∞(0, T0;W

−2,p′

0 (Ω)).

Using (3.17), (3.18) and Aubin–Lions Theorem (see [18]), we can obtain

(3.19) um → u strongly in C([0, T0];H
1
0 (Ω)).

Therefore, um → u a.e. (x, t) ∈ Ω× (0, T0), which implies

|um|q−2um log |um| → |u|q−2u log |u| a.e. (x, t) ∈ Ω× (0, T0).

On the other hand, by a direct calculation, we have∫
Ω

∣∣|um|q−2um log |um|
∣∣ 2q
2q−1 dx =

∫
{x∈Ω||um|≤1}

∣∣|um|q−2um log |um|
∣∣ 2q
2q−1 dx

+

∫
{x∈Ω||um|>1}

∣∣|um|q−2um log |um|
∣∣ 2q
2q−1 dx

≤
[

1

(q − 1)e

] 2q
2q−1

|Ω|+ 2
2q

2q−1 ∥um∥qq ≤ C,

(3.20)
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where we have used the fact that |xq−1 log x| ≤ 1
(q−1)e for 0 < x < 1 and log x ≤ 2x

1
2 for

x ∈ (0,+∞). Thus, from (3.19) and (3.20) we have

|um|q−2um log |um| W ∗
−−→ |u|q−2u log |u| in L∞(0, T0;L

2q
2q−1 (Ω)),

and we can pass the limit in (3.2) to derive

(ut, ω) + (∇ut,∇ω) + (χ,∆ω) =
(
|u|q−2u log |u|, ω

)
, ∀ω ∈ X.

Finally, by the well known arguments of the theory of monotone operators, we know that

χ = |∆u|p−2∆u,

and

(ut, ω) + (∇ut,∇ω) +
(
|∆u|p−2∆u,∆ω

)
=
(
|u|q−2u log |u|, ω

)
, ∀ω ∈ X.

Step 4: Uniqueness. Assume that there are two solutions u1 and u2 to problem (1.1)–

(1.3) with the same initial condition u1(x, 0) = u2(x, 0) = u0(x) ∈ X. Let v = u1 − u2,

then v satisfies v(0) = 0 and

(3.21) (vt, ω) + (∇vt,∇ω) +
(
|∆v|p−2∆v,∆ω

)
=
(
|v|q−2v log |v|, ω

)
for all ω ∈ X. Now, we choose the test function in (3.21) as

ω(s) :=

u1(s)− u2(s) if s ∈ [0, t],

0 if s ∈ (t, T0),

then it follows from the monotonicity of p-biharmonic operator that

1

2
∥v(t)∥2H1

0 (Ω) ≤
∫ t

0

∫
Ω
[h(u1(s))− h(u2(s))][u1(s)− u2(s)] dxds,

where h(u) = |u|q−2u log |u|. Therefore, the uniqueness of problem (1.1)–(1.3) can be

deduced by the Lipschitz continuity of h : R+ → R+ and Gronwall inequality.

Step 5: Energy inequality. Let ζ ∈ C[0, T0] be a nonnegative function. From (3.9) we

have ∫ T0

0
ζ(t)J(um(t)) dt+

∫ T0

0
ζ(t)

∫ t

0
∥ums(s)∥2H1

0 (Ω) dsdt =

∫ T0

0
ζ(t)J(um(0)) dt.

It is clear that the right side of the inequality above converges to
∫ T0

0 ζ(t)J(u0) dt as

m→ +∞, and the first term on the left side is lower semi-continuous with respect to the

weak topology of L2(0, T0;X), i.e.,∫ T0

0
ζ(t)J(u(t)) dt ≤ lim inf

m→+∞

∫ T0

0
ζ(t)J(um(t)) dt,
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which implies∫ T0

0
ζ(t)J(u(t)) dt+

∫ T0

0
ζ(t)

∫ t

0
∥us(s)∥2H1

0 (Ω) dsdt ≤
∫ T0

0
ζ(t)J(u0) dt.

Then we can obtain the energy inequality (3.1) by the arbitrariness of ζ(t), and Theo-

rem 3.1 is proved completely.

4. Global solvability

In this section, we present the detailed proof of the global existence of solution to prob-

lem (1.1)–(1.3).

Theorem 4.1 (Global solvability). Let u0 ∈ X \ {0} and p, q satisfy (1.4). If J(u0) ≤ d

and I(u0) ≥ 0, then problem (1.1)–(1.3) admits a global weak solution

u ∈ L∞(0,+∞;X) and ut ∈ L2(0,+∞;H1
0 (Ω)).

Proof. We divide the proof into 2 steps.

Step 1: J(u0) < d. Let {um}+∞
m=1, {u0m}+∞

m=1 and {ωj}mj=1 be the same as in Theo-

rem 3.1 and Tm is the maximal existence time of um. Then by the continuity of J(u) and

I(u), we have J(u0m) ≤ d and I(u0m) ≥ 0.

Next, we only need to prove the case of 0 < J(u0m) < d and I(u0m) > 0. In fact,

(i) the case of J(u0m) < 0 and I(u0m) ≥ 0 contradicts with (1.7),

(ii) the case of 0 < J(u0m) < d and I(u0m) = 0 contradicts with the definition of d,

(iii) the case of J(u0m) = 0 and I(u0m) ≥ 0 is trivial.

Multiplying (3.2) by g′jm(t), summing on j = 1, 2, . . . ,m and then integrating on [0, t], we

know that

(4.1) J(um(t)) +

∫ t

0
∥ums(s)∥2H1

0 (Ω) ds ≤ J(u0m) < d, t > 0.

Now, we claim that

(4.2) um(x, t) ∈W, ∀ t > 0.

In fact, if it is false, then there exists a t0 > 0 such that um(t0) ∈ ∂W , i.e., um(t0) ∈ X\{0},
and J(um(t0)) = d or I(um(t0)) = 0. From (4.1), J(um(t0)) = d is not true. Thus

um(t0) ∈ N , and then we have J(um(t0)) ≥ d by the definition of d in (1.8), which

contradicts with (4.1).
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Case 1: p ̸= q. Combining (1.7), (4.1) and (4.2) to derive∫ t

0
∥ums(s)∥2H1

0 (Ω) ds+
q − p

pq
∥∆um(t)∥pp +

1

q2
∥um(t)∥qq < d, t > 0,

which implies ∫ t

0
∥ums(s)∥2H1

0 (Ω) ds < d,(4.3)

∥∆um(t)∥pp <
pqd

q − p
,

and

(4.4) ∥um(t)∥qq < q2d.

Case 2: p = q. Similar to Case 1, we can derive (4.3) and (4.4). Moreover, taking

γ = p and µ = p
2κp

p
in (2.1), we have

∥∆um∥pp = I(um) +

∫
Ω
|um|p log |um|dx

= 2I(um) + 2

∫
Ω
|um|p log |um|dx− ∥∆um∥pp

≤ 2I(um) + 2∥um∥pp log ∥um∥p −
2N

p2
log

(
p2e

2NκppLp

)
∥um∥pp

= 2pJ(um) +

[
2 log ∥um∥p −

2

p
− 2N

p2
log

(
p2e

2NκppLp

)]
∥um∥pp

≤ Cd.

Combining the two cases above, we obtain

(4.5)

∫ t

0
∥ums(s)∥2H1

0 (Ω) ds+ ∥∆um(t)∥pp + ∥um(t)∥qq ≤ Cd, t > 0.

On the other hand, multiplying (3.2) by gjm(t), summing on j = 1, 2, . . . ,m and then

integrating with respect to time variable on [0, t], we know that

1

2

d

dt
∥um(t)∥2H1

0 (Ω) = −I(um(t)) < 0,

which implies

(4.6) ∥um(t)∥2H1
0 (Ω) ≤ ∥u0m∥2H1

0 (Ω) ≤ C.

Clearly, the constants on the right side of (4.5) and (4.6) are independent of Tm, then for

T > 0, we can choose Tm = T and it follows from the arbitrariness of T that u(t) is the

global weak solution of problem (1.1)–(1.3).
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Step 2: J(u0) = d. Let δm := 1 − 1
m and um0 := δmu0, m ∈ N+ and m ≥ 2. We

consider the following problem:
ut −∆ut +∆

(
|∆u|p−2∆u

)
= |u|q−2u log |u|, (x, t) ∈ Ω× (0,+∞),

u(x, t) = ∆u(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞),

u(x, 0) = um0(x), x ∈ Ω.

First of all, we claim that J(u0m) < d and I(u0m) > 0. In fact, from u0 ∈ X, δm ∈ (0, 1)

and I(u0) ≥ 0, we can see

I(u0m) = δpm∥∆u0∥pp − δqm log |δm|∥u0∥qq − δqm

∫
Ω
|u0|q log |u0|dx

> δpm

(
∥∆u0∥pp − δq−p

m

∫
Ω
|u0|q log |u0| dx

)

≥

δ
p
m∥∆u0∥pp ≥ 0 if

∫
Ω |u0|q log |u0| dx ≤ 0,

δpm
(
1− δq−p

m

) ∫
Ω |u0|q log |u0|dx ≥ 0 if

∫
Ω |u0|q log |u0| dx > 0.

On the other hand, by direct calculations, we obtain

d

dδm
J(δmu) =

1

δm

(
δpm∥∆u0∥pp − δqm log |δm|∥u0∥qq − δqm

∫
Ω
|u0|q log |u0|dx

)
=

1

δm
I(δmu).

Therefore, we have

d

dδm
J(δmu0) =

1

δm
I(δmu0) =

1

δm
I(u0m) > 0,

which implies that J(δmu0) is strictly increasing with respect to δm and

J(u0m) = J(δmu0) < J(u0) = d.

Since u0m → u0 as m → +∞, our result can be derived by the same processes as in the

proof of Theorem 3.1 and Step 1. Then Theorem 4.1 is proved completely.

5. Blow-up phenomena

In this section, we present infinite and finite time blow-up phenomena of the solution to

problem (1.1)–(1.3) in different energy levels.
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5.1. Infinite blow-up

This subsection is devoted to infinite blow-up and the lower bound of blow-up rate for

problem (1.1)–(1.3).

Theorem 5.1 (Infinite blow-up). Let u0 ∈ X \ {0} and p, q satisfy 1 < p ≤ q ≤ 2.

(1) If J(u0) ≤ d and I(u0) < 0, then the weak solution u(t) of problem (1.1)–(1.3) blows

up in infinite time.

(2) Furthermore, if I(u0) < 0 and

J(u0)

≤M if M < d,

< M if M = d,

then for all ρ ∈ (0, 1), there exists a tρ > 0 such that the weak solution u(t) of

problem (1.1)–(1.3) satisfies

(5.1) ∥u(t)∥2H1
0 (Ω) ≥ Cρ

(t− tρ)
2

2−qρ

t
, ∀ t ≥ tρ,

where

Cρ =
[(

1− qρ

2

)
G− qρ

2 (tρ)G
′(tρ)

] 2
2−qρ

and G(t) =

∫ t

0
∥u(s)∥2H1

0 (Ω) ds.

Proof. (1) We divide the proof into 2 steps.

Step 1: J(u0) < d. We begin with claiming that u(t) ∈ V , ∀ t ∈ [0, Tmax). In fact,

if it is false, then there exists a t0 ∈ [0, Tmax) such that u(t0) ∈ ∂V , i.e., J(u(t0)) = d or

I(u(t0)) = 0. From J(u(t0)) ≤ J(u0) < d we know that J(u(t0)) = d is not true, then

there exists a t0 ∈ [0, Tmax) such that

I(u(t0)) = 0 and I(u(t)) < 0, t ∈ [0, t0).

Thus, it follows from Corollary 2.8 and Lemma 2.9 that ∥∆u(t)∥p ≥ r∗ > 0, t ∈ [0, t0)

if p < q, while ∥∆u(t)∥p ≥ Bpp∥u(t)∥p > BppR > 0, t ∈ [0, t0) if p = q. Meantime, it

follows from the continuity of ∥∆u(t)∥p with respect to t that ∥∆u(t0)∥p > 0. Therefore,

u(t0) ∈ N , and J(u(t0)) ≥ d by the definition of d in (1.8), which is a contradiction.

Let

G(t) :=

∫ t

0
∥u(s)∥2H1

0 (Ω) ds, t ∈ [0, Tmax).

By direct calculations, we obtain

(5.2) G′(t) = ∥u(t)∥2H1
0 (Ω) = ∥u(t)∥22 + ∥∇u(t)∥22,
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and

(5.3) G′′(t) = 2

∫
Ω
uut dx+ 2

∫
Ω
∇u · ∇ut dx = −2I(u(t)).

By means of Lemma 2.12, I(u) < 0 and J(u(t)) ≤ J(u0) < d, ∀ t ∈ [0, Tmax), we can see

G′′(t) = −2I(u(t)) > 2q(d− J(u(t)))

≥ 2q(d− J(u0)) := C0, t ∈ [0, Tmax).
(5.4)

Combining (5.2), (5.4) and

G′(t) = G′(0) +

∫ t

0
G′′(s) ds,

we can derive

(5.5) ∥u(t)∥2H1
0 (Ω) ≥ ∥u0∥2H1

0 (Ω) + C0t > 0, t ∈ [0, Tmax).

Now, we prove that u cannot blow up in finite time. Arguing by contradiction, we

assume that u blows up in finite time, i.e., Tmax < +∞ and

lim
t→T−

max

G(t) = lim
t→T−

max

∫ t

0
∥u(s)∥2H1

0 (Ω) ds = +∞,

which implies that

(5.6) lim
t→T−

max

∥u(t)∥2H1
0 (Ω) = +∞.

Meantime, by (5.2) and (5.4), we have

(5.7) G′(t) logG′(t)−G′′(t) = ∥u(t)∥2H1
0 (Ω) log ∥u(t)∥

2
H1

0 (Ω) + 2I(u(t)).

Next, we discuss the following two cases:

Case 1: 1 < q < 2. Taking α = 2− q in (2.8), we have

(5.8) I(u(t)) ≥ ∥∆u(t)∥pp −
1

2− q
∥u(t)∥22.

On the other hand, from (5.6) we obtain that there exists a t1 ∈ (0, Tmax) such that

(5.9) ∥u(t1)∥2H1
0 (Ω) = ∥u(t1)∥22 + ∥∇u(t1)∥22 > e

2
2−q , t ∈ (t1, Tmax).

Then by combining (5.7)–(5.9), we can derive

G′(t) logG′(t)−G′′(t) ≥ ∥u(t)∥2H1
0 (Ω) log ∥u(t)∥

2
H1

0 (Ω) + 2∥∆u(t)∥pp −
2

2− q
∥u(t)∥22

≥ ∥u(t)∥2H1
0 (Ω) log ∥u(t)∥

2
H1

0 (Ω) −
2

2− q
∥u(t)∥22

≥ 2

2− q

(
∥u(t)∥2H1

0 (Ω) − ∥u(t)∥22
)
≥ 0.

(5.10)
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Case 2 q = 2. Taking γ = 2 in classical logarithmic Sobolev inequality (2.2) and

choosing µ > 0 such that

(5.11)
N

2
log

(
2µe

NL2

)
≥ 0,

and combining (2.2) and (5.7) to obtain

G′(t) logG′(t)−G′′(t)

≥ 2∥u(t)∥2H1
0 (Ω) log ∥u(t)∥H1

0 (Ω) + 2∥∆u(t)∥pp − 2∥u(t)∥22 log ∥u(t)∥2

+
N

2
log

(
2µe

NL2

)
∥u(t)∥22 − µ∥∇u(t)∥22

≥ 2
(
∥u(t)∥22 + ∥∇u(t)∥22

)
log ∥u(t)∥H1

0 (Ω) − 2∥u(t)∥22 log ∥u(t)∥2

+
N

2
log

(
2µe

NL2

)
∥u(t)∥22 − µ∥∇u(t)∥22

=

[
2
(
log ∥u(t)∥H1

0 (Ω) − log ∥u(t)∥2
)
+
N

2
log

(
2µe

NL2

)]
∥u(t)∥22

+
(
2 log ∥u(t)∥H1

0 (Ω) − µ
)
∥∇u(t)∥22.

(5.12)

On the other hand, it follows from (5.6) that there exists a t2 ∈ (0, Tmax) such that

2 log ∥u(t2)∥H1
0 (Ω) ≥ µ and ∥u(t)∥2H1

0 (Ω) > 0, t ∈ [t2, Tmax).

Meantime, by virtue of (5.3) and I(u(t)) < 0, we know that log ∥u(t)∥H1
0 (Ω) is strictly

increasing on [t2, Tmax) and

(5.13) 2 log ∥u(t)∥H1
0 (Ω) ≥ µ, t ∈ [t2, Tmax).

Combining (5.11)–(5.13) and log ∥u(t)∥H1
0 (Ω) ≥ log ∥u(t)∥2, we obtain

(5.14) G′(t) logG′(t)−G′′(t) ≥ 0, t ∈ [t2, Tmax).

Let t := max{t1, t2}, by (5.10) and (5.14), we have

logG′(t) ≥ G′′(t)

G′(t)
= [logG′(t)]′, t ∈ [t, Tmax).

Then by means of Gronwall’s inequality, we get

logG′(t) ≥ et−t logG′(t), t ∈ [t, Tmax),

i.e.,

∥u(t)∥2H1
0 (Ω) ≤ ∥u(t)∥2et−t

H1
0 (Ω), t ∈ [t, Tmax),
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which contradicts with (5.6). Therefore, Tmax = +∞ and u cannot blow up in finite time

and u blows up in infinite time.

Step 2: J(u0) = d. First of all, we claim that I(u(t)) < 0, ∀ t ∈ [0, Tmax). In fact, if it

is false, then there exists a t0 ∈ (0, Tmax) such that

I(u(t0)) = 0 and I(u(t)) < 0, t ∈ [0, t0).

Thus, it follows from Corollary 2.8 and Lemma 2.9 that ∥∆u(t)∥p ≥ r∗ > 0, t ∈ [0, t0)

if p < q, while ∥∆u(t)∥p ≥ Bpp∥u(t)∥p > BppR > 0, t ∈ [0, t0) if p = q. Meantime, it

follows from the continuity of ∥∆u(t)∥p with respect to t that ∥∆u(t0)∥p > 0. Therefore,

u(t0) ∈ N , and by the definition of d in (1.8), we have

(5.15) J(u(t0)) ≥ d.

On the other hand, from
∫
Ω uut dx+

∫
Ω∇u · ∇ut dx = −I(u(t)) > 0, t ∈ [0, t0), we know

that ut ̸= 0, ∇ut ̸= 0 and
∫ t0
0 ∥us(s)∥2H1

0 (Ω)
ds > 0. Meantime, it follows from energy

inequality (3.1) that

J(u(t0)) ≤ J(u0)−
∫ t0

0
∥us(s)∥2H1

0 (Ω) ds < d,

which contradicts with (5.15).

Therefore, we have
∫ t
0 ∥us(s)∥

2
H1

0 (Ω)
ds > 0, t ∈ (0, Tmax), and we can take t1 ∈ (0, Tmax)

such that

J(u(t1)) ≤ J(u0)−
∫ t1

0
∥us(s)∥2H1

0 (Ω) ds < d.

If we take t1 as the initial time, then similar to Step 1, we can obtain that the weak

solution u(t) of problem (1.1)–(1.3) blows up in infinite time.

(2) By the condition d ≥M and the processes similar to (1), we can derive I(u(t)) < 0,

∀ t ∈ [0,+∞). Therefore, from (1.7), (3.1), (5.2), (5.3), Corollary 2.8 and Lemma 2.9, we

can derive

G′′(t) = −2qJ(u(t)) +
2(q − p)

p
∥∆u(t)∥pp +

2

q
∥u(t)∥qq

≥ −2qJ(u0) + 2q

∫ t

0
∥us(s)∥2H1

0 (Ω) ds+
2(q − p)

p
∥∆u(t)∥pp +

2

q
∥u(t)∥qq

≥

−2qJ(u0) + 2q
∫ t
0 ∥us(s)∥

2
H1

0 (Ω)
ds+ 2(q−p)

p rp∗ if p < q,

−2qJ(u0) + 2q
∫ t
0 ∥us(s)∥

2
H1

0 (Ω)
ds+ 2

qR
q if p = q

≥ 2q[M − J(u0)] + 2q

∫ t

0
∥us(s)∥2H1

0 (Ω) ds.

(5.16)
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On the other hand, it follows from[∫ t

0

∫
Ω
(u(s)us(s) +∇u(s) · ∇us(s)) dxds

]2
=

1

4

(∫ t

0
∥us(s)∥2H1

0 (Ω) ds

)2

=
1

4
[G′(t)−G′(0)]2

=
1

4

[
(G′(t))2 − 2G′(t)G′(0) + (G′(0))2

]
that

(G′(t))2 = 4

[∫ t

0

∫
Ω
(u(s)us(s) +∇u(s) · ∇us(s)) dxds

]2
+ 2
(
∥u0∥22 + ∥∇u0∥22

)
G′(t)−

(
∥u0∥22 + ∥∇u0∥22

)2
.

(5.17)

Combining (5.16), (5.17) and Hölder’s inequality to obtain

G(t)G′′(t)− q

2
(G′(t))2 ≥ 2q

∫ t

0
∥us(s)∥2H1

0 (Ω) ds

∫ t

0
∥u(s)∥2H1

0 (Ω) ds

− 2q

[∫ t

0

∫
Ω
(u(s)us(s) +∇u(s) · ∇us(s)) dxds

]2
≥ 2q[M − J(u0)]G

′(t)− q∥u0∥2H1
0 (Ω)G

′(t) +
q

2

(
∥u0∥22 + ∥∇u0∥22

)2
≥ −q∥u0∥2H1

0 (Ω)G
′(t),

which implies that, for all ρ ∈ (0, 1), we have

(5.18) G(t)G′′(t)− qρ

2
(G′(t))2 ≥ q(1− ρ)

2
(G′(t))2 − q∥u0∥2H1

0 (Ω)G
′(t).

Meantime, from (5.5), we obtain

lim
t→+∞

G′(t) = lim
t→+∞

∥u(t)∥2H1
0 (Ω) = +∞.

Thus (5.18) implies that there exists a tρ > 0 such that

G(t)G′′(t)− qρ

2
(G′(t))2 > 0, ∀ t ≥ tρ,

and [
G1− qρ

2 (t)
]′

=
(
1− qρ

2

)
G− qρ

2 (t)G′(t),[
G1− qρ

2 (t)
]′′

=
(
1− qρ

2

)
G−1− qρ

2 (t)
[
G(t)G′′(t)− qρ

2
(G′(t))2

]
> 0, ∀ t ≥ tρ.
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Then by 2− qρ > 2− q ≥ 0 and G(tρ) ≥ 0, we can see

G(t) =
[
G1− qρ

2 (t)
] 2

2−qρ
=

[
G1− qρ

2 (tρ) +

∫ t

tρ

(
G1− qρ

2 (s)
)′

ds

] 2
2−qρ

≥
[
G1− qρ

2 (tρ) + (t− tρ)
(
G1− qρ

2 (tρ)
)′] 2

2−qρ

=
[
G1− qρ

2 (tρ) + (t− tρ)
(
1− qρ

2

)
G− qρ

2 (tρ)G
′(tρ)

] 2
2−qρ

≥
[
(t− tρ)

(
1− qρ

2

)
G− qρ

2 (tρ)G
′(tρ)

] 2
2−qρ

= Cρ(t− tρ)
2

2−qρ ,

(5.19)

where

Cρ =
[(

1− qρ

2

)
G− qρ

2 (tρ)G
′(tρ)

] 2
2−qρ

.

Moreover, using G′′(t) > 0, ∀ t ≥ 0, we get∫ t

0
G′(s) ds ≤ tG′(t),

i.e.,

t∥u(t)∥2H1
0 (Ω) ≥ G(t).

Therefore, combining the inequality above and (5.19), we have

∥u(t)∥2H1
0 (Ω) ≥

Cρ(t− tρ)
2

2−qρ

t
.

Then Theorem 5.1 is proved completely.

5.2. Finite time blow-up

In this subsection, we give the results of finite time blow-up, life span of blow-up time and

blow-up rate for problem (1.1)–(1.3).

To begin with, we recall Levine’s convexity lemma, which plays a key role in the proof.

Lemma 5.2. [14] Let 0 < T ≤ +∞ and nonnegative function F ∈ C2[0, T ) satisfy

F ′′(t)F (t)− (1 + λ)(F ′(t))2 ≥ 0,

where λ > 0 is a constant. If F (0) > 0 and F ′(0) > 0, then

T ≤ F (0)

λF ′(0)
< +∞ and lim

t→T−
F (t) = +∞.

Now, we describe the result of finite time blow-up as follows:
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Theorem 5.3 (Finite time blow-up). Let u0 ∈ X \ {0} and p, q satisfy

(5.20) max

{
1,

2N

N + 4

}
< p ≤ q, 2 < q < p

(
1 +

4

N

)
.

(1) If J(u0) ≤ M and I(u0) < 0, then the weak solution u(t) of problem (1.1)–(1.3)

blows up in finite time, and if J(u0) < M and I(u0) < 0, the upper bound of blow-up

time is given by

(5.21) Tmax ≤
4∥u0∥2H1

0 (Ω)

(q − 2)2(M − J(u0))
.

(2) Furthermore, if p, q satisfy (5.20) and q satisfies

(5.22)

1 < q < +∞ if N = 1, 2,

1 < q < 2N
N−2 if N ≥ 3,

then the lower bound of blow-up time is given by

(5.23) Tmax ≥ TL :=
α∥u0∥2−(q+α)

H1
0 (Ω)

(q + α− 2)Bq+α
H

,

and

(5.24) ∥u(t)∥H1
0 (Ω) ≥

[
α

(q + α− 2)Bq+α
H

] 1
q+α−2

(Tmax − t)
− 1

q+α−2 ,

where

(5.25) α =


p
2

(
1 + 4

N

)
− q

2 > 0 if N = 1, 2,

1
2 min

{
2N
N−2 , p

(
1 + 4

N

)}
− q

2 > 0 if N ≥ 3,

and BH is the optimal embedding constant of H1
0 (Ω) ⊂⊂ Lq+α(Ω).

Proof. (1) Since M ≤ d, by the similar processes to Theorem 5.1, we obtain I(u(t)) < 0,

∀ t ∈ [0, Tmax). Next, we discuss the following two cases:

Case 1: J(u0) < M . We prove the solution of problem (1.1)–(1.3) blows up in finite

time by contradiction. Assume Tmax = +∞, then by the similar processes to Theorem 5.1

(see (5.5)), we know that there exists a t0 > 0 large enough such that

(5.26) ∥u(t0)∥2H1
0 (Ω) >

2q

q − 2
∥u0∥2H1

0 (Ω).

Now, we define a functional

(5.27) Γ(t) :=

∫ t

0
∥u(s)∥2H1

0 (Ω) ds+ (T̃ − t)∥u0∥2H1
0 (Ω), t ∈ [0, T̃ ],
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where

(5.28) T̃ =
2(q + 2)

q − 2
t0.

It is clear that Γ(t) is a positive continuous function on [0, T̃ ] and there exist two constants

η1, η2 > 0 such that

(5.29) η1 ≥ Γ(t) ≥ η2.

Differentiating directly to obtain

Γ′(t) = ∥u(t)∥2H1
0 (Ω) − ∥u0∥2H1

0 (Ω)

= ∥u(t)∥22 − ∥u0∥22 + ∥∇u(t)∥22 − ∥∇u0∥22

=

∫ t

0

d

ds
∥u(s)∥22 ds+

∫ t

0

d

ds
∥∇u(s)∥22 ds

= 2

∫ t

0

∫
Ω

(
u(s)us(s) +∇u(s) · ∇us(s)

)
dxds,

(5.30)

and

Γ′′(t) = 2

∫
Ω

(
u(t)ut(t) +∇u(t) · ∇ut(t)

)
dx = −2I(u(t)).

Combining (1.7) and energy inequality (3.1) to derive

Γ′′(t) = −2qJ(u(t)) +
2(q − p)

p
∥∆u(t)∥pp +

2

q
∥u(t)∥qq

≥

−2qJ(u0) + 2q
∫ t
0 ∥us(s)∥

2
H1

0 (Ω)
ds+ 2(q−p)

p rp∗ if p < q,

−2qJ(u0) + 2q
∫ t
0 ∥us(s)∥

2
H1

0 (Ω)
ds+ 2

qR
q if p = q

= 2q(M − J(u0)) + 2q

∫ t

0
∥us(s)∥2H1

0 (Ω) ds,

(5.31)

where we have used Corollary 2.8, Lemma 2.9 and the definition of M in (1.9).

By virtue of (5.30), Hölder’s inequality and Schwartz’s inequality, we have

1

4
(Γ′(t))2 =

[∫ t

0

∫
Ω

(
u(s)us(s) +∇u(s) · ∇us(s)

)
dxds

]2
=

[∫ t

0

∫
Ω
uus dxds

]2
+

[∫ t

0

∫
Ω
∇u · ∇us dxds

]2
≤
∫ t

0
∥us∥22 ds

∫ t

0
∥u∥22 ds+

∫ t

0
∥∇us∥22 ds

∫ t

0
∥∇u∥22 ds

+

∫ t

0
∥us∥22 ds

∫ t

0
∥∇u∥22 ds+

∫ t

0
∥u∥22 ds

∫ t

0
∥∇us∥22 ds

=

∫ t

0
∥us∥2H1

0 (Ω) ds

∫ t

0
∥u∥2H1

0 (Ω) ds, t ∈ [0, T̃ ].

(5.32)
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Combining (5.27), (5.31) and (5.32), we can see

Γ(t)Γ′′(t) ≥ q

2
(Γ′(t))2 + 2q(M − J(u0))Γ(t),

i.e.,

Γ(t)Γ′′(t)− q

2
(Γ′(t))2 ≥ 2q(M − J(u0))Γ(t) ≥ 2q(M − J(u0))η2 > 0,

where we have used (5.29) to derive the last inequality.

On the other hand, it follows from Γ′′(t) = −2I(u(t)) > 0 that

Γ′(t0) = ∥u(t0)∥2H1
0 (Ω) − ∥u0∥2H1

0 (Ω) > Γ′(0) = 0.

Then by (5.26), (5.28), Lemma 5.2 and the nonincreasing property of ∥u(t)∥2
H1

0 (Ω)
, we

obtain that the maximal existence time T̂ of Γ(t) satisfies

T̂ ≤

∫ t0
0 ∥u(s)∥2

H1
0 (Ω)

ds+ (T̃ − t0)∥u0∥2H1
0 (Ω)( q

2 − 1
)(
∥u(t0)∥2H1

0 (Ω)
− ∥u0∥2H1

0 (Ω)

) + t0

≤
2t0∥u(t0)∥2H1

0 (Ω)
+ 2(T̃ − t0)∥u0∥2H1

0 (Ω)

(q − 2)
(
∥u(t0)∥2H1

0 (Ω)
− ∥u0∥2H1

0 (Ω)

) + t0

<
4qt0 + 2(q − 2)(T̃ − t0)

(q − 2)(q + 2)
+ t0 < T̃ ,

and

lim
t→T̃−

Γ(t) = +∞,

which contradicts with (5.29). Therefore, Tmax < +∞.

Next, we give an upper bound of Tmax. For all T ∈ (0, Tmax), set

F (t) :=

∫ t

0
∥u(s)∥2H1

0 (Ω) ds+ (T − t)∥u0∥2H1
0 (Ω) + a(t+ b)2, t ∈ [0, T ],

where a and b are positive constants to be determined later. Then by d
dt∥u(t)∥

2
H1

0 (Ω)
=

−2I(u(t)) > 0 and direct calculation, we have

F (0) = T∥u0∥2H1
0 (Ω) + ab2 > 0,

F ′(t) = ∥u(t)∥2H1
0 (Ω) − ∥u0∥2H1

0 (Ω) + 2a(t+ b) > 2a(t+ b) > 0,

and

F ′(0) = 2ab > 0,

which implies that

F (t) > F (0) > 0, t ∈ [0, T ].
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Using the similar processes to obtain (5.31), we have

F ′′(t) ≥ 2q(M − J(u0)) + 2q

∫ t

0
∥us(s)∥2H1

0 (Ω) ds > 0.

On the other hand, similar to (5.32), by Hölder’s inequality and Young’s inequality,

we can verify [∫ t

0
∥u(s)∥2H1

0 (Ω) ds+ a(t+ b)2
] [∫ t

0
∥us(s)∥2H1

0 (Ω) ds+ a

]
≥
[
1

2

(
∥u(t)∥2H1

0 (Ω) − ∥u0∥2H1
0 (Ω)

)
+ a(t+ b)

]2
.

Therefore,

−(F ′(t))2 = −4

[
1

2

(
∥u(t)∥2H1

0 (Ω) − ∥u0∥2H1
0 (Ω)

)
+ a(t+ b)

]2
= 4

[∫ t

0
∥u(s)∥2H1

0 (Ω) ds+ a(t+ b)2
] [∫ t

0
∥us(s)∥2H1

0 (Ω) ds+ a

]
− 4

[
1

2

(
∥u(t)∥2H1

0 (Ω) − ∥u0∥2H1
0 (Ω)

)
+ a(t+ b)

]2
− 4
[
F (t)− (T − t)∥u0∥2H1

0 (Ω)

] [∫ t

0
∥us(s)∥2H1

0 (Ω) ds+ a

]
≥ −4F (t)

[∫ t

0
∥us(s)∥2H1

0 (Ω) ds+ a

]
,

from which we can deduce

F (t)F ′′(t)− q

2
(F ′(t))2 ≥ 2q[(M − J(u0))− a]F (t).

Now, we choose a ∈ (0,M −J(u0)] such that F (t)F ′′(t)− q
2(F

′(t))2 ≥ 0, using Lemma 5.2

and taking T → Tmax, we have

Tmax ≤
∥u0∥2H1

0 (Ω)

(q − 2)ab
Tmax +

b

q − 2
.

Choosing b ∈
(∥u0∥2

H1
0(Ω)

(q−2)a ,+∞
)
, we obtain

(5.33) Tmax ≤ ab2

(q − 2)ab− ∥u0∥2H1
0 (Ω)

.

Now, we define

Λ :=

{
(a, b)

∣∣∣ a ∈ (0,M − J(u0)], b ∈

(
∥u0∥2H1

0 (Ω)

(q − 2)a
,+∞

)}

=

{
(a, b)

∣∣∣ a ∈

(
∥u0∥2H1

0 (Ω)

(q − 2)b
,M − J(u0)

]
, b ∈

(
∥u0∥2H1

0 (Ω)

(q − 2)(M − J(u0))
,+∞

)}
.
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Then (5.33) can be rewritten as

Tmax ≤ inf
(a,b)∈Λ

ab2

(q − 2)ab− ∥u0∥2H1
0 (Ω)

.

Taking ς = ab and setting

f(b, ς) :=
ςb

(q − 2)ς − ∥u0∥2H1
0 (Ω)

,

then by the decreasing property of f with respect to ς, we can derive the lower bound of

blow-up time

Tmax ≤ inf

b∈
( ∥u0∥2

H1
0(Ω)

(q−2)(M−J(u0))
,+∞

) f(b, b(M − J(u0)))

= inf

b∈
( ∥u0∥2

H1
0(Ω)

(q−2)(M−J(u0))
,+∞

) b2(M − J(u0))

(q − 2)b(M − J(u0))− ∥u0∥2H1
0 (Ω)

=
b2(M − J(u0))

(q − 2)b(M − J(u0))− ∥u0∥2H1
0 (Ω)

∣∣∣
b=

2∥u0∥2
H1
0(Ω)

(q−2)(M−J(u0))

=
4∥u0∥2H1

0 (Ω)

(q − 2)2(M − J(u0))
.

Case 2: J(u0) =M . From I(u(t)) < 0, ∀ t ∈ [0, Tmax), we know that∫
Ω
u(t)ut(t) dx+

∫
Ω
∇u(t) · ∇ut(t) dx = −I(u(t)) > 0, t ∈ [0, Tmax).

Thus ut ̸= 0, ∇ut ̸= 0 and
∫ t
0 ∥us(s)∥

2
H1

0 (Ω)
ds > 0, t ∈ (0, Tmax), from which and energy

inequality (3.1) we can take t1 ∈ (0, Tmax) such that

J(u(t1)) ≤ J(u0)−
∫ t1

0
∥us(s)∥2H1

0 (Ω) ds < d.

If we take t1 as the initial data, then similar to Case 1, we can obtain that the solution u

of problem (1.1)–(1.3) blows up in finite time.

(2) It follows from (5.25) that

(5.34) ∥u∥q+α ≤ BH∥u∥H1
0 (Ω), ∀u ∈ H1

0 (Ω),

where BH is the optimal embedding constant of H1
0 (Ω) ⊂⊂ Lq+α(Ω). Now, we define

(5.35) φ(t) := ∥u(t)∥2H1
0 (Ω) = ∥u(t)∥22 + ∥∇u(t)∥22.
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Differentiating (5.35) directly and using (5.34), we have

φ′(t) = −2∥∆u(t)∥pp + 2

∫
Ω
|u(t)|q log |u(t)|dx

≤ 2

∫
Ω
|u(t)|q log |u(t)|dx ≤ 2

α
∥u(t)∥q+α

q+α

≤
2Bq+α

H

α
∥u(t)∥q+α

H1
0 (Ω)

=
2Bq+α

H

α
φ

q+α
2 (t) a.e. t ∈ [0, Tmax).

(5.36)

Since u(t) blows up in finite time, we can claim that φ(t) > 0, t ∈ [0, Tmax). In fact, if it is

false, then there exists a t0 ∈ [0, Tmax) such that φ(t0) > 0. Meantime, by the continuity

of φ(t) and (5.36), we have φ′(t) ≤ 0, t ∈ [t0, Tmax), which contradicts with the fact that

the weak solution blows up in finite time. Therefore, we obtain

(5.37)
φ′(t)

φ
q+α
2 (t)

≤
2Bq+α

H

α
.

Integrating (5.37) on (0, t) to derive

φ1− q+α
2 (0)− φ1− q+α

2 (t) ≤
(q + α− 2)Bq+α

H

α
t.

Taking t→ Tmax, we can see

Tmax ≥
α∥u0∥2−(q+α)

H1
0 (Ω)

(q + α− 2)Bq+α
H

.

Moreover, integrating (5.37) on (t, Tmax) to derive

∥u(t)∥H1
0 (Ω) ≥

[
α

(q + α− 2)Bq+α
H

] 1
q+α−2

(Tmax − t)
− 1

q+α−2 .

Then Theorem 5.3 is proved completely.

Corollary 5.4 (Finite time blow-up). Let u0 ∈ X \ {0} and p, q satisfy (5.19). If

J(u0) < 0, then the weak solution u(t) of problem (1.1)–(1.3) blows up in finite time with

the upper bound of blow-up time

(5.38) Tmax ≤ TU :=
∥u0∥2H1

0 (Ω)

q(2− q)J(u0)
,

and satisfies

(5.39) ∥u(t)∥2H1
0 (Ω) ≤

[
∥u0∥2H1

0 (Ω)

q(2− q)J(u0)

] 1
q−2

(Tmax − t)
− 1

q−2 .
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Proof. We define

ψ(t) := −2qJ(u(t)) = −2q

p
∥∆u(t)∥pp −

2

q
∥u(t)∥qq + 2

∫
Ω
|u(t)|q log |u(t)| dx.

Differentiating directly, we have

(5.40) φ′(t) = −2∥∆u(t)∥pp + 2

∫
Ω
|u(t)|q log |u(t)|dx ≥ ψ(t),

and

(5.41) ψ′(t) = −2q
d

dt
J(u(t)) = 2q∥ut(t)∥2H1

0 (Ω) ≥ 0.

By combining (5.35) with (5.41), and using Hölder’s inequality and Schwartz’s inequality,

we obtain

φ(t)ψ′(t) ≥ 2q∥u(t)∥2H1
0 (Ω)∥ut(t)∥

2
H1

0 (Ω)

≥ 2q

[∫
Ω
u(t)ut(t) dx+

∫
Ω
∇u(t) · ∇ut(t) dx

]2
=
q

2
(φ′(t))2.

(5.42)

It follows from (1.7) that J(u(t0)) < 0 is stronger than J(u(t0)) ≤ M and I(u(t0)) < 0,

and by the proof of Theorem 5.3, we can see φ(t) > 0, ∀ t ∈ [0, Tmax). Meantime, from

ψ(0) = −2qJ(u0) > 0 and (5.41) we have ψ(t) > 0, ∀ t ∈ [0, Tmax).

Therefore, combining (5.40) with (5.42), we can see

ψ′(t)

ψ(t)
≥ q

2

φ′(t)

φ(t)
.

Integrating the inequality above on (0, t) and using (5.40) to derive

(5.43)
φ′(t)

φ
q
2 (t)

≥ ψ(0)

φ
q
2 (0)

,

then integrating (5.43) on (0, t), we have

1

φ
q
2
−1(t)

≤ 1

φ
q
2
−1(0)

− q − 2

2

ψ(0)

φ
q
2 (0)

t.

Taking t→ Tmax to obtain

Tmax ≤
∥u0∥2H1

0 (Ω)

q(2− q)J(u0)
,

and integrating (5.43) on (t, Tmax) to derive

∥u(t)∥2H1
0 (Ω) ≤

[
∥u0∥2H1

0 (Ω)

q(2− q)J(u0)

] 1
q−2

(Tmax − t)
− 1

q−2 .

Then Corollary 5.4 is proved completely.
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Remark 5.5. From (1.7) we can see that J(u0) < 0 implies I(u0) < 0. Hence, if J(u0) < 0,

p, q satisfy (5.20) and q satisfies (5.22), we also obtain the lower bound of blow-up time

TL such that TL ≤ TU . In fact, it follows from J(u0) < 0 that

−J(u0) = −1

p
∥∆u0∥pp +

1

q

∫
Ω
|u0|q log |u0|dx− 1

q2
∥u0∥qq

≤ 1

qα
∥u0∥q+α

q+α ≤
Bq+α

H

qα
∥u0∥q+α

H1
0 (Ω)

,

which implies

α∥u0∥2−(q+α)

H1
0 (Ω)

Bq+α
H

≤
∥u0∥2H1

0 (Ω)

−qJ(u0)
.

Therefore, we have

α∥u0∥2−(q+α)

H1
0 (Ω)

(q + α− 2)Bq+α
H

≤
∥u0∥2H1

0 (Ω)

−q(q − 2)J(u0)
,

i.e., TL ≤ TU .

For all t0 ∈ [0, Tmax), if we take t0 as the initial time, then we can obtain the following

corollary by Corollary 5.4.

Corollary 5.6 (Finite time blow-up). Let u0 ∈ X \ {0} and p, q satisfy (5.20). If

J(u(t0)) < 0, ∀ t0 ∈ [0, Tmax), then the weak solution u(t) of problem (1.1)–(1.3) blows up

in finite time.

5.3. Blow-up with arbitrary initial energy

The blow-up results studied in Sections 5.1 and 5.2 are closely dependent on the depth of

potential well d, but the value of d is small and difficult to calculate exactly. Therefore,

we establish a blow-up condition independent of d in this subsection.

Theorem 5.7 (Blow-up with arbitrary initial energy). Let u0 ∈ X \ {0} and p, q satisfy

2 < p < q < p

(
1 +

4

N

)
.

If

(5.44) J(u0) ≤
q − p

2qκpp
(
1 +B

2)∥u0∥2H1
0 (Ω) −

(p− 2)(q − p)

2pq
|Ω|,

where κp and B are the optimal embedding constants of W 2,p
0 (Ω) ⊂⊂W 1,p

0 (Ω), ∀ p > 1 and

H1
0 (Ω) ⊂⊂ L2(Ω), respectively, then the weak solution u(t) of problem (1.1)–(1.3) blows

up in finite time.
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Proof. We prove the result by contradiction. We have known that J(u(t0)) < 0, ∀ t0 ∈
[0, Tmax) leads to blow-up in finite time on the basis of Corollary 5.6. Thus we suppose

that u(t) exists globally and J(u(t)) ≥ 0, ∀ t ∈ [0,+∞). By Bochner Theorem, we have∫ t

0
∥us(s)∥H1

0 (Ω) ds ≥
∥∥∥∥∫ t

0
us(s) ds

∥∥∥∥
H1

0 (Ω)

= ∥u(t)− u0∥H1
0 (Ω) ≥ ∥u(t)∥H1

0 (Ω) − ∥u0∥H1
0 (Ω).

Then relying on the fact of J(u0) ≥ J(u(t)) ≥ 0 and Hölder’s inequality, we obtain

∥u(t)∥H1
0 (Ω) ≤ ∥u0∥H1

0 (Ω) +

∫ t

0
∥us(s)∥H1

0 (Ω) ds

≤ ∥u0∥H1
0 (Ω) + t

1
2

(∫ t

0
∥us(s)∥2H1

0 (Ω) ds

) 1
2

≤ ∥u0∥H1
0 (Ω) + t

1
2 (J(u0)− J(u(t)))

1
2

≤ ∥u0∥H1
0 (Ω) + t

1
2J(u0)

1
2 .

(5.45)

On the other hand, it follows from Young’s inequality and (2.3) (γ = p > 2) that

1

1 +B
2 ∥u(t)∥

2
H1

0 (Ω) ≤ ∥∇u(t)∥22 ≤
2

p
∥∇u(t)∥pp +

p− 2

p
|Ω|

≤ 2κpp
p

∥∆u(t)∥pp +
p− 2

p
|Ω|,

(5.46)

where κp is the optimal embedding constant of H1
0 (Ω) ⊂⊂ L2(Ω), i.e., ∥u∥2 ≤ B∥u∥H1

0 (Ω).

Then by (5.46), we have

1

2

d

dt
∥u(t)∥2H1

0 (Ω)

= −∥∆u(t)∥pp +
∫
Ω
|u|q log |u|dx

=

(
q

p
− 1

)
∥∆u(t)∥pp +

1

q
∥u(t)∥qq − qJ(u(t))

≥ q − p

κpp(1 +B
2
)

[
1

2
∥u(t)∥2H1

0 (Ω) −
κpp(1 +B

2
)(p− 2)

2p
|Ω| − qκpp(1 +B

2
)

q − p
J(u(t))

]
,

and by the nonincreasing property of J(u(t)), we have

y′(t) ≥ q − p

κpp(1 +B
2
)
y(t),

where

y(t) =
1

2
∥u(t)∥2H1

0 (Ω) −
κpp(1 +B

2
)(p− 2)

2p
|Ω| − qκpp(1 +B

2
)

q − p
J(u(t)).

The Gronwall’s inequality further indicates

∥u(t)∥2H1
0 (Ω) ≥ 2y(0)e

q−p

κ
p
p(1+B

2
)
t
+
qκpp(1 +B

2
)

q − p
J(u(t)) +

κpp(1 +B
2
)(p− 2)

2p
|Ω|.
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Now, we can deduce ∥u(t)∥2
H1

0 (Ω)
> 0 and y(0) > 0 by u0 ∈ X \{0} and (5.44), respectively.

Recalling the assumption that J(u(t)) ≥ 0, t ∈ [0,+∞), we obtain

∥u(t)∥H1
0 (Ω) ≥ [2y(0)]

1
2 e

q−p

2κ
p
p(1+B

2
)
t
,

which contradicts (5.45) for sufficiently large t > 0. Therefore, u(t) blows up in finite

time. Then Theorem 5.7 is proved completely.

6. Extinction phenomenon

In this section, we present the result of extinction for problem (1.1)–(1.3).

We recall a lemma playing the key role in the proof.

Lemma 6.1. [12] Suppose that 0 < l < r ≤ 1 and σ, β ≥ 0 are positive constants. If

nonnegative and absolutely continuous function h(t) satisfies

h′(t) + σhl(t) ≤ βhr(t), t ≥ 0,

h(0) > 0, βhr−l(0) < σ,

then we have

h(t) ≤
[
− σ0(1− l)t+ h1−l(0)

] 1
1−l , 0 < t < T0,

and

h(t) ≡ 0, t ≥ T0,

where σ0 = σ − βhr−l(0) and T0 =
h1−l(0)
σ0(1−l) .

Theorem 6.2 (Extinction). Assume max
{
1, 2N

N+2

}
< p < q < 2 and 0 < ∥u0∥H1

0 (Ω) <

|Ω|
q+α−2

2

Bp
p

, then the weak solution of problem (1.1)–(1.3) becomes extinct in finite time.

Furthermore, we have the following estimates:

∥u(t)∥H1
0 (Ω)

≤

[
∥u0∥2−p

H1
0 (Ω)

− σ0(2− p)

(
2

p
2
−1B−p

p − 2
q+α
2

−1

α
|Ω|1−

q+α
2 ∥u0∥q+α−p

H1
0 (Ω)

)
t

] 1
2−p

, 0 < t < T∗,

(6.1)

and

∥u(t)∥H1
0 (Ω) ≡ 0, t ≥ T∗,

where

(6.2) T∗ =
∥u0∥2−p

H1
0 (Ω)

(2− p)
(
2

p
2
−1B−p

p − 1
α2

q+α
2

−1|Ω|1−
q+α
2 ∥u0∥q+α−p

H1
0 (Ω)

)
and α > 0 is sufficiently small such that q + α < 2.
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Proof. We define

M(t) :=
1

2
∥u(t)∥2H1

0 (Ω).

Multiplying (1.1) by u and integrating over Ω, we have

(6.3) M ′(t) + ∥∆u(t)∥pp =
∫
Ω
|u|q log |u| dx.

Now, we use Rellich–Kondrachov Theorem (see [1, p. 168]) to derive

W 2,p
0 (Ω) ⊂⊂ H1

0 (Ω), p >
2N

N + 2
,

i.e.,

(6.4) ∥u∥H1
0 (Ω) ≤ Bp∥∆u∥p, ∀u ∈W 2,p

0 (Ω).

Combining (2.8), (6.3), (6.4) and using Hölder’s inequality, we deduce that there exists a

α > 0 such that

M ′(t) + 2
p
2B−p

p M
p
2 (t) ≤ 1

α
∥u∥q+α

q+α ≤ 1

α
|Ω|1−

q+α
2 ∥u∥q+α

2

≤ 1

α
2

q+α
2 |Ω|1−

q+α
2 M

q+α
2 (t).

Then by Lemma 6.1 and assumption 0 < ∥u0∥H1
0 (Ω) <

|Ω|
q+α−2

2

Bp
p

, we can see that

M(t) ≤
[
−σ0

(
1− p

2

)
t+M1− p

2 (0)
] 2

2−p
, 0 < t < T∗,

and

M(t) ≡ 0, t ≥ T∗,

where σ0 = 2
p
2B−p

p − 1
α2

q+α
2 |Ω|1−

q+α
2 M

q+α−p
2 (0) and T∗ = 2M

2−p
2 (0)

(2−p)σ0
. Therefore, the con-

clusion follows by ∥u(t)∥H1
0 (Ω) =

√
2M(t). Then Theorem 6.2 is proved completely.
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