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Eakin–Nagata–Eisenbud Theorem for Right S-Noetherian Rings

Gangyong Lee, Jongwook Baeck* and Jung Wook Lim

Abstract. The Eakin–Nagata theorem examines the condition that the Noetherian

property passes through each other between subrings and extension rings in 1968.

Later, a noncommutative version of Eakin–Nagata theorem was also proved. Lam

called this version Eakin–Nagata–Eisenbud theorem. In addition, Anderson and Du-

mitrescu introduced the S-Noetherian concept which is an extended notion of the

Noetherian property on commutative rings in 2002. In this paper, we consider the

S-variant of Eakin–Nagata–Eisenbud theorem for general rings by using S-Noetherian

modules. We also show that every right S-Noetherian domain is right Ore, which is

embedded into a division ring. For a right S-Noetherian ring, we obtain sufficient

conditions for its right ring of fractions to be right S-Noetherian or right Noetherian.

As applications, the S-variant of Eakin–Nagata–Eisenbud theorem is applied to the

composite polynomial, composite power series and composite skew polynomial rings.

1. Introduction

The notion of Noetherian rings has been an important tool in the arsenal of algebraists

because of their applications to many areas of mathematics. For commutative rings, the

Noetherian property can be characterized by using prime ideals. It is well known as Cohen

theorem that if R is a commutative ring with unity in which every prime ideal is finitely

generated, then R is a Noetherian ring. Also, the Noetherian property in commutative

rings can be ascent and descent under an additional condition between subrings and ex-

tension rings. Let R be a subring of a commutative ring E. Then as stated in [27, p. 158]

in 1958 (or see [13, p. 54, Ex. 15]), it was shown that

(EN1) If R is Noetherian and E is finitely generated as an R-module, then E is a Noethe-

rian ring.

Later, Eakin [7] and Nagata [22] in 1968 independently proved the following result,

so-called Eakin–Nagata theorem (EN2):
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(EN2) If E is Noetherian and E is finitely generated as an R-module, then R is a Noethe-

rian ring.

For the case of noncommutative rings, while (EN1) still holds true (see [10, Corol-

lary 1.5]), (EN2) does not hold true in general as shown in the last example in [12].

However, Eisenbud discovered an alternative proof of (EN2) in [8], which makes use of in-

jective modules and yields a noncommutative generalization. Thus Lam mentioned that a

noncommutative version of Eakin–Nagata theorem is called Eakin–Nagata–Eisenbud the-

orem (ENE) in [16, Theorem 3.98]: Let R be a subring of a ring E with the same unity.

Then

(ENE1) If R is right Noetherian and E is finitely generated as a right R-module, then E

is a right Noetherian ring.

(ENE2) If E is right Noetherian and E is finitely generated as a right R-module with

E = e1R + · · · + ekR and eir = rei for all r ∈ R, i = 1, . . . , k, then R is a right

Noetherian ring.

In addition, Formanek and Jategaonkar in 1974 showed that (ENE2) still holds on the

weakened condition eiR = Rei instead of eir = rei for all r ∈ R (see [9, Theorem 4]).

On the other hand, the notion of (commutative) S-Noetherian rings was introduced

by Anderson and Dumitrescu who proved the S-variant of Eakin–Nagata theorem on

commutative rings in 2002 [4, Corollary 7]. Then it was further studied in [1, 3, 14, 17–

19, 25]. While the research of noncommutative S-Noetherian rings is started recently by

a few authors, they found some valuable results. Especially, the S-variant of (ENE1) is

proved by Baeck, Lee and Lim [5, Lemma 2.14(6)]. Also, the S-variant of Cohen theorem

is shown by Bilgin, Reyes and Tekir [6, Theorem 2.2]. Recall that a submodule N of a

right R-module M is called S-finite if Ns ⊆ F ⊆ N for an element s ∈ S and a finitely

generated submodule F of M , where S is a multiplicative subset of R. M is S-Noetherian

if every submodule is S-finite. A ring R is called right S-Noetherian if RR is S-Noetherian.

Clearly, every Noetherian module is always S-Noetherian.

Inspired by the above two concepts, in this paper we study the conditions which allow

for the right S-Noetherian property to transfer back and forth between subrings and

extension rings, which is called the S-variant of Eakin–Nagata–Eisenbud theorem. This

is a generalization of a ring version of [9, Theorem 4].

After the introduction and some preliminary background, our focus in Section 2 is

on showing the S-variant of the Eakin–Nagata–Eisenbud theorem. First, we provide an

alternative proof for the S-variant of (ENE1) by using module theoretic notion (see The-

orem 2.3 and Corollary 2.4), that is, the S-Noetherian property passes through the ring
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extension under an additional condition. For the converse, we define the S-finite nor-

malizing ring extension (see Definition 1.1(3)). When E is an S-finite normalizing ring

extension of a ring R, we prove that if E is a right S-Noetherian ring and M is S-finite as

a right E-module, then M is S-Noetherian as a right R-module (see Theorem 2.6), which

shows that one of our main results holds true for rings as a corollary (The S-variant of

(ENE2), Corollary 2.7). Finally, combining two above results, we obtain the S-variant of

Eakin–Nagata–Eisenbud theorem for noncommutative rings (see Theorem 2.9).

In Section 3, we consider Ore localizations of right S-Noetherian rings. We prove

that every right S-Noetherian domain is a right Ore domain (see Proposition 3.2), which

is an extension of the well-known result that every right Noetherian domain is right

Ore [26, Chapter II, Proposition 1.7]. Also, for a right denominator subset T of a right

S-Noetherian ring R, we provide sufficient conditions for the ring RT−1 to be right S-

Noetherian or right Noetherian (see Theorems 3.4 and 3.6). In addition, for an S-finite

normalizing ring extension E of a ring R, we obtain sufficient conditions for a ring ET−1

to be right Noetherian when R is a right S-Noetherian ring, and another sufficient con-

ditions for a ring RT−1 to be right Noetherian when E is a right S-Noetherian ring (see

Corollary 3.8).

Lastly, we in Section 4 apply the S-variant of Eakin–Nagata–Eisenbud theorem to

composite polynomial, composite power series and composite skew polynomial rings. More

precisely, we introduce the concept of a right S-stationary chain of rings, and we give

equivalent conditions for composite polynomial, power series and skew polynomial rings

to be right S-Noetherian (see Theorems 4.4 and 4.9 and Corollary 4.16).

Throughout this paper, all rings are associative rings with unity and all modules are

unitary right R-modules. We denote [N : L] = {r ∈ R | Lr ⊆ N} for nonempty subsets N

and L of a module M . N, N0, Z and Q stand for the sets of natural numbers, nonnegative

integers, integers and rational numbers, respectively. The following definitions will be

used in various results of this paper.

Definition 1.1. Let R be a subring of a ring E and let S be a multiplicative subset of R.

(1) E is called a finite ring extension of R if there exist ei ∈ E such that E = e1R +

· · ·+ ekR with e1 = 1R = 1E .

(2) (see [20, p. 289]) E is called a finite normalizing ring extension of R if there exist

ei ∈ E such that E = e1R + · · · + ekR with e1 = 1R = 1E and eiR = Rei for all

i = 1, . . . , k.

(3) E is called an S-finite normalizing ring extension of R if there exist s ∈ S and

ei ∈ E such that Es ⊆ e1R + · · ·+ ekR ⊆ E with e1 = 1R = 1E and eiR = Rei for

all i = 1, . . . , k.
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2. The S-variant of Eakin–Nagata–Eisenbud theorem

Our first result in this section gives an alternative proof of the S-variant of (ENE1) by

using the concept of completely prime ideals. Recall that a proper (two-sided) ideal P of

a ring R is called a completely prime ideal if for any a, b ∈ R, ab ∈ P implies that a ∈ P

or b ∈ P .

Lemma 2.1. Let R be a ring, S a multiplicative subset of R and M an S-finite R-module.

If R is a right S-Noetherian ring and N is a submodule of M which is maximal among

all non-S-finite submodules of M , then [N : M ] is a completely prime ideal of R which is

disjoint from S.

Proof. Let P = [N : M ]. Then P is a proper ideal of R. Suppose that P is not a

completely prime ideal of R. Then there exist a, b ∈ R \P such that ab ∈ P . Since a /∈ P ,

there exists m ∈ M \N such that ma /∈ N . By the maximality of N , N +maR is S-finite;

so we can find an element s1 ∈ S and a finitely generated submodule N1 of N such that

(N + maR)s1 ⊆ N1 + maR ⊆ N + maR. Set I = {r ∈ R | mar ∈ N}. Then I is a

right ideal of R containing P and b. Since R is right S-Noetherian, there exist s2 ∈ S and

ℓ1, . . . , ℓk ∈ I such that Is2 ⊆ ℓ1R+ · · ·+ ℓkR ⊆ I.

Now, let n ∈ N be arbitrary. Then ns1 = n′ +max for some n′ ∈ N1 and x ∈ R; so

max = ns1 − n′ ∈ N , which indicates that x ∈ I. Thus xs2 = ℓ1y1 + · · · + ℓkyk for some

y1, . . . , yk ∈ R. Hence we have

ns1s2 = n′s2 +maxs2 = n′s2 +maℓ1y1 + · · ·+maℓkyk

∈ N1 +maℓ1R+ · · ·+maℓkR.

Since n was arbitrarily chosen in N and maℓj ∈ N for all j = 1, . . . , k, we obtain

Ns1s2 ⊆ N1 +maℓ1R+ · · ·+maℓkR ⊆ N,

which shows that N is S-finite, a contradiction to the hypothesis. Thus P is a completely

prime ideal of R.

Moreover, suppose that P is not disjoint from S. Take s′1 ∈ P ∩ S. Then Ms′1 ⊆ N .

Since M is S-finite, there exist s′2 ∈ S and m1, . . . ,mt ∈ M such that Ms′2 ⊆ m1R +

· · ·+mtR. Therefore we have Ns′2s
′
1 ⊆ (m1R + · · ·+mtR)s′1 = m1Rs′1 + · · ·+mtRs′1 ⊆

m1P+· · ·+mtP . Since R is a right S-Noetherian ring, there exist s′3 ∈ S and p1, . . . , pℓ ∈ P

such that Ps′3 ⊆ p1R + · · · + pℓR ⊆ P . Note that mipj ∈ N for all i = 1, . . . , t and

j = 1, . . . , ℓ. Hence we obtain

Ns′2s
′
1s

′
3 ⊆ (m1P + · · ·+mtP )s′3

= m1Ps′3 + · · ·+mtPs′3
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⊆ m1(p1R+ · · ·+ pℓR) + · · ·+mt(p1R+ · · ·+ pℓR)

= m1p1R+ · · ·+mipjR+ · · ·+mtpℓR

⊆ N,

which indicates that N is S-finite, a contradiction. Thus P ∩ S = ∅.

While the next proposition appears in [5, Lemma 2.14(5)], we give an alternative proof

by using Lemma 2.1.

Proposition 2.2. Let R be a ring, S a multiplicative subset of R and M a right R-module.

If R is right S-Noetherian and M is S-finite, then M is S-Noetherian.

Proof. Suppose to the contrary that M is not S-Noetherian. Let F be the set of non-S-

finite submodules of M . Then F is a nonempty partially ordered set under inclusion. Let

{Lα}α∈Λ be a chain in F and let L =
⋃

α∈Λ Lα. We claim that L is not S-finite: Suppose

that L is S-finite. Then there exists an element s ∈ S and a finitely generated submodule

G of L such that Ls ⊆ G. Since G is finitely generated, G ⊆ Lβ for some β ∈ Λ; so

Lβs ⊆ G ⊆ Lβ. Thus Lβ is S-finite, a contradiction, proving the claim. Clearly, L is

an upper bound of the chain {Lα}α∈Λ. Thus by Zorn’s lemma, we can find a maximal

element in F , say N .

Let P = [N : M ]. Then by Lemma 2.1, P is a completely prime ideal of R which is

disjoint from S. Since M is S-finite, there exists an element w ∈ S and a finitely generated

submodule F of M such that Mw ⊆ F ; so we have P = [N : M ] ⊆ [N : F ] ⊆ [N : Mw] =

(P : w), where (P : w) := {r ∈ R | wr ∈ P}. Since w /∈ P and P is completely prime,

(P : w) = P ; so we have

P = [N : M ] = [N : F ] = [N : Mw] = (P : w).

Write F = f1R+ · · ·+ ftR for some f1, . . . , ft ∈ F . Then P = [N : f1R] ∩ · · · ∩ [N : ftR].

Since P is a proper ideal of R, fℓ /∈ N for some ℓ ∈ {1, . . . , t}. By the maximality of N ,

N + fℓR is S-finite; so we can find an element s1 ∈ S and a finitely generated submodule

N1 of N such that (N + fℓR)s1 ⊆ N1 + fℓR ⊆ N + fℓR. Since R is right S-Noetherian,

there exist s2 ∈ S and t1, . . . , tv ∈ R such that [N : fℓ]s2 ⊆ t1R+ · · ·+ tvR ⊆ [N : fℓ].

Now, let n ∈ N be arbitrary. Then we have ns1 = n′+fℓx for some n′ ∈ N1 and x ∈ R.

Note that fℓx = ns1 − n′ ∈ N ; so x ∈ [N : fℓ]. Therefore we can find y1, . . . , yv ∈ R such

that xs2 = t1y1 + · · ·+ tvyv. Hence we have

ns1s2 = n′s2 + fℓxs2 = n′s2 + fℓt1y1 + · · ·+ fℓtvyv

∈ N1 + fℓt1R+ · · ·+ fℓtvR.
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Since n was arbitrarily chosen in N and fℓtj ∈ N for all j ∈ {1, . . . , v}, we obtain

Ns1s2 ⊆ N1 + fℓt1R+ · · ·+ fℓtvR ⊆ N,

which shows that N is S-finite, a contradiction to the fact that N is not S-finite. Thus

M is S-Noetherian.

Theorem 2.3. Let E be a ring extension of R, M a right E-module and S a multiplicative

subset of R. If M is an S-Noetherian as a right R-module, then M is S-Noetherian as

a right E-module. In particular, if R is right S-Noetherian and M is S-finite as a right

R-module, then M is S-Noetherian as a right E-module.

Proof. Let N be a right E-submodule of M . Then N is a right R-module; so N is S-finite.

Therefore there exist s ∈ S and n1, . . . , nk ∈ N such that

Ns ⊆ n1R+ · · ·+ nkR ⊆ n1E + · · ·+ nkE ⊆ N.

Hence N is S-finite as a right E-module. Thus M is an S-Noetherian right E-module.

The last statement follows directly from Proposition 2.2.

The next corollary is the S-variant of (ENE1).

Corollary 2.4. (see [5, Lemma 2.14(6)]) Let E be a ring extension of a ring R and S

be a multiplicative subset of R. If R is a right S-Noetherian ring and E is an S-finite

R-module, then E is a right S-Noetherian ring.

There is an example that (EN2) does not hold on noncommutative rings in [9, p. 181].

Also, this example shows that the S-variant of (EN2) does not hold on noncommutative

rings as follows.

Example 2.5. (see [9, p. 181]) Let R =
[Q Q
0 Z
]
and E =

[
Q Q
Q Q

]
be rings. Then E is a ring

extension of R and E is generated by [ 1 0
0 1 ] and [ 0 0

1 0 ] as a right R-module. It is clear that

E is right Noetherian, but R is not right Noetherian (see [15, Corollary 1.23]). Thus, if

S1 = {[ 0 0
0 1 ]}, then E is right S1-Noetherian, but R is not right S1-Noetherian. Note that

R is a right S2-Noetherian ring with S2 = {[ 1 0
0 0 ]}.

Now, we concentrate on the other direction of the S-variant of Eakin–Nagata–Eisenbud

theorem for general rings. Next, we provide the main theorem by using S-Noetherian

modules. As corollaries, it yields the S-variant of (ENE2) and a noncommutative version

of Eakin–Nagata theorem. One can also obtain an alternative proof of a noncommutative

version of Eakin–Nagata theorem without using injective modules.
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Theorem 2.6. Let E be an S-finite normalizing ring extension of R where S is a mul-

tiplicative subset of R. If E is a right S-Noetherian ring and M is S-finite as a right

E-module, then M is S-Noetherian as a right R-module.

Proof. Since E is an S-finite normalizing ring extension of R, there exist s ∈ S and ei ∈ E

such that Es ⊆ e1R+ · · ·+ ekR ⊆ E with e1 = 1R = 1E and eiR = Rei for all i = 1, . . . , k

(see Definition 1.1(3)). Also, by Proposition 2.2, M is an S-Noetherian E-module; so it

is easy to see that M is S-finite as an R-module. Suppose to the contrary that M is

not an S-Noetherian R-module. Then there exists a proper R-submodule of M which

is not S-finite. Let N be an R-submodule of M which is maximal among non-S-finite

R-submodules of M . Then (after reordering ei with fixed e1 if necessary) there exists the

smallest integer 2 ≤ t1 ≤ k such that Nei ⊆ N and Nej ⊈ N for all 1 ≤ i < t1 ≤ j ≤ k.

So there is m1 ∈ N such that m1et1 /∈ N . By the maximality of N , N+m1et1R is S-finite.

Therefore there exists an element s′1 ∈ S and a finitely generated submodule N1 of N such

that (
N +m1et1R

)
s′1 ⊆ N1 +m1et1R ⊆ N +m1et1R.

Thus for any n ∈ N , we have ns′1 = n1 + m1et1xt1 where n1 ∈ N1 and xt1 ∈ R. Then

m1et1xt1 = ns′1 − n1 ∈ N .

Now, let It1 =
{
ℓ(t1) ∈ R | m1et1ℓ

(t1) ∈ N
}
. Note that xt1 ∈ It1 . Since It1E is a right

ideal of E, It1E is S-finite; so we obtain

It1Es1 ⊆
p1∑
u=1

ℓ(t1)u E ⊆ It1E

for some s1 ∈ S, p1 ∈ N and ℓ
(t1)
u ∈ It1 , u = 1, . . . , p1. Therefore since xt1 ∈ It1E, we have

ns′1s1 = n1s1 +m1et1(xt1s1) = n1s1 +m1et1

(
p1∑
u=1

ℓ(t1)u y(t1)u

)

for some y
(t1)
u ∈ E. Since et1R = Ret1 , there exists ℓ

′(t1)
u ∈ R such that et1ℓ

(t1)
u = ℓ

′(t1)
u et1

for each 1 ≤ u ≤ p1. Thus we obtain

ns′1s1s = n1s1s+m1

p1∑
u=1

(
ℓ
′(t1)
u

(
et1y

(t1)
u

)
s
)

= n1s1s+m1

p1∑
u=1

(
ℓ
′(t1)
u

(
e1x

(1,t1)
u + · · ·+ ekx

(k,t1)
u

))
for some x

(1,t1)
u , . . . , x

(k,t1)
u ∈ R, because et1y

(t1)
u ∈ E, which leads us to that

α1 := ns′1s1s− n1s1s−m1e1

p1∑
u=1

ℓ
′(t1)
u x(1,t1)u − · · · −m1et1

p1∑
u=1

ℓ(t1)u x(t1,t1)u
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= m1et1+1

p1∑
u=1

ℓ(t1+1,t1)
u x(t1+1,t1)

u + · · ·+m1ek

p1∑
u=1

ℓ(k,t1)u x(k,t1)u

∈ N

for some ℓ
(t1+1,t1)
u , . . . , ℓ

(k,t1)
u ∈ R with

ℓ
′(t1)
u et1+1 = et1+1ℓ

(t1+1,t1)
u , . . . , ℓ

′(t1)
u ek = ekℓ

(k,t1)
u .

If m1ej
∑p1

u=1 ℓ
(j,t1)
u ∈ N for each t1 + 1 ≤ j ≤ k, we have

Ns′1s1s ⊆ N1 +m1e1

p1∑
u=1

(
ℓ
′(t1)
u R

)
+ · · ·+m1ek

p1∑
u=1

(
ℓ(k,t1)u R

)
⊆ N,

a contradiction to the fact that N is not S-finite.

Again, if not, then (after reordering on {et1+1, . . . , ek} if necessary) there exists the

smallest integer t1 + 1 ≤ t2 ≤ k such that

m1

p1∑
u=1

ℓ
′(t1)
u ei = m1ei

p1∑
u=1

ℓ(i,t1)u ∈ N and m1

p1∑
u=1

ℓ
′(t1)
u ej = m1ej

p1∑
u=1

ℓ(j,t1)u /∈ N

for all t1 ≤ i < t2 ≤ j ≤ k. Set m2 = m1
∑p1

u=1 ℓ
′(t1)
u ∈ N . Then m2et2 /∈ N . By the

maximality of N , N +m2et2R is S-finite. Therefore there exists an element s′2 ∈ S and a

finitely generated submodule N2 of N such that(
N +m2et2R

)
s′2 ⊆ N2 +m2et2R ⊆ N +m2et2R.

Thus for any n ∈ N , we have ns′2 = n2 + m2et2xt2 , which implies that m2et2xt2 ∈ N

for some n2 ∈ N2 and xt2 ∈ R. Now, let It2 =
{
ℓ(t2) ∈ R | m2et2ℓ

(t2) ∈ N
}
. Note that

xt2 ∈ It2 . Since It2E is S-finite, we obtain

It2Es2 ⊆
p2∑
u=1

ℓ(t2)u E ⊆ It2E

for some s2 ∈ S, p2 ∈ N and ℓ
(t2)
u ∈ It2 , u = 1, . . . , p2. Therefore for α1 in (1), we have

α1s
′
2s2 = n2s2 +m2et2(xt2s2) = n2s2 +m2et2

(
p2∑
u=1

ℓ(t2)u y(t2)u

)

for some y
(t2)
u ∈ E. Thus we obtain

α1s
′
2s2s = n2s2s+m2

p2∑
u=1

(
ℓ
′(t2)
u

(
et2y

(t2)
u

)
s
)

= n2s2s+m2

p2∑
u=1

ℓ
′(t2)
u

(
e1x

(1,t2)
u + · · ·+ ekx

(k,t2)
u

)
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for some ℓ
′(t2)
u , x

(1,t2)
u , . . . , x

(k,t2)
u ∈ R with et2ℓ

(t2)
u = ℓ

′(t2)
u et2 for each 1 ≤ u ≤ p2. By the

construction, we obtain m2e1, . . . ,m2et1 , . . . ,m2et2−1 ∈ N which leads us to that

α2 := α1s
′
2s2s− n2s2s−m2e1

p2∑
u=1

ℓ
′(t2)
u x(1,t2)u − · · · −m2et2

p2∑
u=1

ℓ(t2)u x(t2,t2)u

= m2et2+1

p2∑
u=1

ℓ(t2+1,t2)
u x(t2+1,t2)

u + · · ·+m2ek

p2∑
u=1

ℓ(k,t2)u x(k,t2)u

∈ N

for some ℓ
(t2+1,t2)
u , . . . , ℓ

(k,t2)
u ∈ R with ℓ

′(t2)
u et2+1 = et2+1ℓ

(t2+1,t2)
u , . . . , ℓ

′(t2)
u ek = ekℓ

(k,t2)
u .

If m2ej
∑p2

u=1 ℓ
(j,t2)
u ∈ N for each t2 + 1 ≤ j ≤ k, we have

Ns′1s1ss
′
2s2s ⊆ N1 +N2 +m1R+m1e2R+ · · ·+m1et1−1R

+m1et1

p1∑
u=1

(
ℓ(t1)u R

)
+ · · ·+m1et2−1

p1∑
u=1

(
ℓ(t2−1,t1)
u R

)
+m2et2

p2∑
u=1

(
ℓ(t2)u R

)
+ · · ·+m2ek

p2∑
u=1

(
ℓ(k,t2)u R

)
⊆ N,

a contradiction to the fact that N is not S-finite. If not, then we continue this process

again. After finite steps, we can reach that

αw−1s
′
wsws = nwsws+mw

pw∑
u=1

(
ℓ
′(tw)
u

(
etwy

(tw)
u

)
s
)

= nwsws+mw

pw∑
u=1

(
ℓ
′(tw)
u

(
e1x

(1,tw)
u + · · ·+ ekx

(k,tw)
u

))
for nw ∈ Nw, where Nw is a finitely generated submodule of N , and

mwe1 ∈ m1R ⊆ N, mwe2 ∈ m1e2R ⊆ N, . . . , mwet1−1 ∈ m1et1−1R ⊆ N,

mwet1 = m1et1

(
p1∑
u=1

ℓ(t1)u

)
· · ·

(
pw∑
u=1

ℓ(t1,tw)
u

)
∈ m1et1

p1∑
u=1

ℓ(t1)u R ⊆ N,

. . . . . . ,

mwet2 ∈ m2et2

p2∑
u=1

ℓ(t2)u R ⊆ N,

. . . . . . ,

mwetw

pw∑
u=1

ℓ(tw)
u ∈ mwetw

pw∑
u=1

ℓ(tw)
u R ⊆ N, . . . , mwek

pw∑
u=1

ℓ(k,tw)
u ∈ mwek

pw∑
u=1

ℓ(k,tw)
u R ⊆ N.
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Hence we finally have

Ns′1s1s · · · s′wsws ⊆ N1 +N2 + · · ·+Nw +m1R+ · · ·+m1et1−1R

+m1et1

p1∑
u=1

ℓ(t1)u R+ · · ·+m1et2−1

p1∑
u=1

ℓ(t2−1,t1)
u R

+m2et1R+ · · ·+m2et2−1R

+m2et2

p2∑
u=1

ℓ(t2)u R+ · · ·+m2et3−1

p2∑
u=1

ℓ(t3−1,t2)
u R+ · · ·

+mwetw−1R+ · · ·+mwetw−1R

+mwetw

pw∑
u=1

ℓ(tw)
u R+ · · ·+mwek

pw∑
u=1

ℓ(k,tw)
u R

⊆ N.

This is a contradiction to the fact that N is not S-finite. Consequently, M is also

S-Noetherian as an R-module.

Comparing Theorem 2.6 to [9, Theorem 4] (If E is a finite normalizing ring extension

of R and M is a Noetherian E-module, then M is a Noetherian R-module), we can

naturally ask the question: Let E be an S-finite normalizing ring extension of R. If M

is an S-Noetherian E-module, then is M an S-Noetherian R-module? as the S-variant

of [9, Theorem 4] for modules. We did not have any clue for this question so far. However,

for the ring case, when M = E is a ring, it is shown that Theorem 2.6 is a generalization

of one direction of [9, Theorem 4]. (If E is a finite normalizing ring extension of a ring R

and E is a right Noetherian ring, then E is Noetherian as a right R-module.) The next

corollary is one of our main results, which is called the S-variant of (ENE2).

Corollary 2.7 (The S-variant of (ENE2)). Let E be an S-finite normalizing ring extension

of R. If E is a right S-Noetherian ring, then R is a right S-Noetherian ring.

Proof. By Theorem 2.6, E is S-Noetherian as a right R-module. If I is a right ideal of

R, then I is S-finite since I is a right R-submodule of E. Thus R is a right S-Noetherian

ring.

When S = {1} in Corollary 2.7, we directly obtain the following result which is our

motivation.

Corollary 2.8. (see [16, Theorem 3.98], (ENE2)) Let E be a finite ring extension of R

with eir = rei for all r ∈ R, i = 1, . . . , k. If E is a right Noetherian ring, then R is a

right Noetherian ring.
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By combining Corollaries 2.4 and 2.7, we obtain the S-variant of Eakin–Nagata–

Eisenbud theorem for general rings.

Theorem 2.9. Let E be an S-finite normalizing ring extension of R. Then R is a right

S-Noetherian ring if and only if E is a right S-Noetherian ring.

We conclude this section with the result on the S-variant of Cohen theorem. While the

S-variant of Cohen theorem was proved in [6], we are successful to show the S-variant of

Cohen theorem without any condition on a multiplicative subset S. Recall that a proper

right ideal P of a ring R is a completely prime right ideal of R if for any a, b ∈ R, ab ∈ P

and aP ⊆ P imply that a ∈ P or b ∈ P (see [23, Definition 2.1]). Clearly, a completely

prime ideal is a completely prime right ideal.

Lemma 2.10. Let S be a multiplicative subset of a ring R. If P is a right ideal of R

maximal among non-S-finite right ideals of R, then P is a completely prime right ideal of

R.

Proof. The proof is similar to that of Lemma 2.1.

Theorem 2.11 (The S-variant of Cohen theorem). Let S be a multiplicative subset of a

ring R. Then the following statements are equivalent.

(1) R is a right S-Noetherian ring.

(2) Every completely prime right ideal of R is S-finite.

Proof. (1) ⇒ (2). This implication is obvious.

(2) ⇒ (1). Suppose to the contrary that R is not a right S-Noetherian ring. Then there

exists a non-S-finite right ideal of R. Let T be the set of non-S-finite right ideals of R. A

similar argument as in the proof of Proposition 2.2 shows that T has a maximal element,

say P . By Lemma 2.10, P is a completely prime right ideal of R. This contradicts our

assumption. Thus R is a right S-Noetherian ring.

3. Ore localizations of right S-Noetherian rings

In this section, we always assume that T is a multiplicative subset of R such that 1 ∈ T

and 0 /∈ T . T is called a right denominator set if (1) for any a ∈ R and t ∈ T , aT ∩ tR ̸= ∅
(i.e., T is right permutable or right Ore) and (2) for any a ∈ R, ta = 0 for some t ∈ T

implies at′ = 0 for some t′ ∈ T (i.e., T is right reversible). A left denominator set can be

defined similarly and a denominator set is a left and right denominator set. From now on,

T always means a right denominator set of a ring R.
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Lemma 3.1. [16, Theorem 10.6] A ring R has a right ring of fractions with respect to

T , denoted by RT−1, if and only if T is a right denominator set.

As shown in [26, Chapter II, Proposition 1.7], any right Noetherian domain is right

Ore. Now, we extend this result to a right S-Noetherian domain as follows.

Proposition 3.2. Every right S-Noetherian domain is a right Ore domain.

Proof. Let a and b be nonzero elements of a right S-Noetherian domain R. For each

i ∈ N ∪ {0}, consider a right ideal Ai = bR + abR + · · · + aibR of R. Then we can get

a chain of right ideals of R, A0 ⊆ A1 ⊆ A2 ⊆ · · · . Since R is right S-Noetherian, there

exist the smallest integer n and s ∈ S such that Ais ⊆ An from [6, Theorem 2.3]. Hence

An+1s ⊆ An and so an+1bs = bc0 + abc1 + · · · + anbcn for some c0, . . . , cn ∈ R. If ci ̸= 0

with c0 = · · · = ci−1 = 0, then ai(bci + abci+1 + · · ·+ an−ibcn − an−i+1bs) = 0. Since R is

a domain, bci + abci+1 + · · ·+ an−ibcn − an−i+1bs = 0. This gives

bci = a(−bci+1 − · · · − an−i−1bcn + an−ibs) ̸= 0.

Thus aR ∩ bR ̸= {0}.

Corollary 3.3. Every right S-Noetherian domain is embedded into a division ring.

It is known that RT−1 is a Noetherian ring for a commutative Noetherian ring R,

and RT−1 is also right Noetherian for a right Noetherian ring R, where T is a right

denominator subset of a ring R [24, Proposition 3.1.13]. For the case of a commutative

S-Noetherian domain R, RT−1 is S-Noetherian [17, Lemma 1]. In the next two theorems,

we consider an Ore localization of a right S-Noetherian ring R, that is, we obtain sufficient

conditions for the ring RT−1 to be right S-Noetherian or right Noetherian.

Theorem 3.4. Let T be a right denominator set in a ring R and let S be a multiplicative

subset of R with sT = Ts for all s ∈ S. If R is right S-Noetherian, then RT−1 is a right

S-Noetherian ring.

Proof. Clearly, S′ :=
{
s
1 | s ∈ S

}
is a multiplicative subset of RT−1. We can identify

S′ = S. Let B be a right ideal of RT−1. Then A = B ∩ R is a right ideal of R with

A(RT−1) = AT−1 = B (see [21, p. 49, Proposition (iii)]). Since R is right S-Noetherian,

As ⊆ f1R+ · · ·+ fkR ⊆ A for some s ∈ S and f1, . . . , fk ∈ A. Thus we have

Bs = AT−1s = AsT−1 ⊆ f1RT−1 + · · ·+ fkRT−1 ⊆ B.

Hence RT−1 is a right S-Noetherian ring.

Corollary 3.5. Let S, T be multiplicative subsets of a commutative ring R. If R is an

S-Noetherian ring, then RT−1 is an S-Noetherian ring.
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Theorem 3.6. Let T be a right denominator set in a ring R and let S be a multiplicative

subset of R with S ⊆ T . If R is right S-Noetherian, then RT−1 is a right Noetherian ring.

Proof. Let S′, B and A be as in the proof of Theorem 3.4. Since R is right S-Noetherian,

As ⊆ f1R+ · · ·+fkR ⊆ A for some s ∈ S and f1, . . . , fk ∈ A. Now, let a
t ∈ B be arbitrary.

Then we obtain

a

t
=

as

ts
=

f1r1 + · · ·+ fkrk
ts

=
f1r1
ts

+ · · ·+ fkrk
ts

= f1
r1
ts

+ · · ·+ fk
rk
ts

∈ f1RT−1 + · · ·+ fkRT−1.

Hence B ⊆ f1RT−1 + · · ·+ fkRT−1 ⊆ B, which shows that B is finitely generated. Thus

RT−1 is right Noetherian.

The next examples show that the condition “S ⊆ T” in Theorem 3.6 is not superfluous,

and the converse of Theorem 3.6 is not true, in general.

Example 3.7. (1) Let D be a Noetherian integral domain, T = D\{0}, X = {Xi | i ∈ N}
a set of indeterminates over D and R = D[[X]]/⟨XiXj | i ̸= j⟩ the factor ring of D[[X]] by

the ideal ⟨XiXj | i ̸= j⟩. Note that T is a right denominator set of R. Fix an i ∈ N and a

set S = {Xi
n | n ∈ N}. Then an easy calculation shows that R is an S-Noetherian ring.

Consider RT−1 = F [[X]]/⟨XiXj | i ̸= j⟩, where F is a field of fraction of D. Let Xi be

the image of Xi under RT−1. Then ⟨X1⟩ ⊊ ⟨X1, X2⟩ ⊊ · · · is an ascending chain of ideals

of RT−1; so RT−1 is not a Noetherian ring. Note that RT−1 is S-Noetherian because

sT = Ts for all s ∈ S.

(2) Let D be an integral domain and X = {Xi | i ∈ N} be a set of indeterminates

over D. Let R = D[X] be the polynomial ring over D. Then RT−1 is a division ring and

thus Noetherian, where T = R \ {0}. However, R is not an S-Noetherian ring for any

multiplicative subset S ⊆ D \ {0}. For an ideal I = ⟨X1, X2, . . .⟩ and for any s ∈ S, there

is no finitely generated ideal J such that Is ⊆ J ⊆ I. Hence R is not S-Noetherian.

From the S-variant of Eakin–Nagata–Eisenbud theorem (see Theorem 2.9) and Theo-

rem 3.6, we have

Corollary 3.8. Let T be a right denominator set in rings R and E, and let S be a

multiplicative subset of R with S ⊆ T . If E is an S-finite normalizing ring extension of a

ring R, then the following assertions hold true.

(1) If R is right S-Noetherian, then ET−1 is right Noetherian.

(2) If E is right S-Noetherian, then RT−1 is right Noetherian.

Corollary 3.9. Let R be a right Ore ring and let S be a multiplicative subset of R con-

sisting of regular elements in R. If R is right S-Noetherian, then the classical right ring

of quotients of R, Qr
cl(R), is right Noetherian.
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4. Composite polynomial, power series and skew polynomial rings

In this section, as applications of Theorem 2.9, we consider the conditions for composite

polynomial, composite power series and composite skew polynomial rings to be right S-

Noetherian when the based ring is right S-Noetherian. Take R = (Rn)n≥0 an ascending

chain of rings with the same unity and X an indeterminate over R. Then R[X] :={∑n
i=0 aiX

i | ai ∈ Ri

}
and R[[X]] :=

{∑∞
n=0 anX

n | an ∈ Rn

}
are rings with unity. We

call these the composite polynomial ring and the composite power series ring, respectively.

Ahmed and Sana [2, Definition 2.4] introduced the concept of an S-stationary ascending

chain of commutative rings where S is a multiplicative subset of a ring R. First, we study

the conditions for an ascending chain of rings to be right S-Noetherian. Now, we define a

right S-Noetherian chain of general rings as follows.

Definition 4.1. Let R = (Rn)n≥0 be an ascending chain of rings with the same unity

and S be a multiplicative subset of R0. We say that R is a right S-Noetherian chain if it

satisfies the following three conditions:

(1) R0 is a right S-Noetherian ring;

(2) R is right S-stationary, i.e., there exist s ∈ S and n ∈ N0 such that Ris ⊆ Rn for all

i ≥ n;

(3) For each positive integer n, Rn is S-finite as a right R0-module.

Remark 4.2. Since Ris ⊆ Ri ⊆ Rn for all i ≤ n for an ascending chain of rings, we use

the condition that there exist s ∈ S and n ∈ N0 such that Ris ⊆ Rn for all i instead of

Definition 4.1(2).

Lemma 4.3. Let R = (Rn)n≥0 be an ascending chain of rings, E =
⋃

n≥0Rn and S a

multiplicative subset of R0. If E[X] is an S-finite normalizing ring extension of a ring

R[X], then E is an S-finite normalizing ring extension of R0.

Proof. Since E[X] is an S-finite normalizing ring extension of R[X], there exist s ∈ S and

e1, . . . , ek ∈ E[X] such that E[X]s ⊆ e1R[X] + · · · + ekR[X] and eiR[X] = R[X]ei for

every i = 1, . . . , k; so for any a ∈ E, we have as = e1(0)g1(0) + · · ·+ ek(0)gk(0) for some

g1, . . . , gk ∈ R[X]. Therefore we have Es ⊆ e1(0)R0+· · ·+ek(0)R0 with ei(0)R0 = R0ei(0)

for all i. Thus E is an S-finite normalizing ring extension of R0.

Recall that for a multiplicative subset S of a ring R, S is said to be right anti-

Archimedean if
⋂∞

n=1 s
nR ∩ S ̸= ∅ for all s ∈ S. Note that if E is a ring extension of

R and S is a right anti-Archimedean subset of R, then S is also a right anti-Archimedean

subset of E. For each ℓ ∈ N0, denote Rℓ[X] =
{∑m

i=ℓ aiX
i−ℓ | ai ∈ Ri and m ≥ ℓ

}
.
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Theorem 4.4. Let R = (Rn)n≥0 be an ascending chain of rings, E =
⋃

n≥0Rn, S a right

anti-Archimedean subset of R0 and let E[X] be an S-finite normalizing ring extension of

a ring R[X]. Then the following statements are equivalent.

(1) R[X] is a right S-Noetherian ring.

(2) R is a right S-Noetherian chain.

(3) R0 is a right S-Noetherian ring.

Proof. (1) ⇒ (2). Suppose that R[X] is a right S-Noetherian ring. First, we claim that

R0 is a right S-Noetherian ring: Let I be a right ideal of R0. Then I +XR1[X] is a right

ideal of R[X]; so we can find s ∈ S and f1, . . . , fn ∈ I +XR1[X] such that

(I +XR1[X])s ⊆ f1R[X] + · · ·+ fnR[X] ⊆ I +XR1[X].

Hence Is ⊆ f1(0)R0 + · · ·+ fn(0)R0 ⊆ I. Thus I is S-finite, which indicates that R0 is a

right S-Noetherian ring.

Second, we claim that R is right S-stationary: Note that XR1[X] is a right ideal of

R[X]. SinceR[X] is a right S-Noetherian ring, we can find s ∈ S and f1, . . . , fm ∈ XR1[X]

such that

(XR1[X])s ⊆ f1R[X] + · · ·+ fmR[X] ⊆ XR1[X].

For each i = 1, . . . ,m, write fi =
∑ni

j=1 dijX
j because fi(0) = 0. Then

f1R[X] + · · ·+ fmR[X] ⊆
∑

1≤i≤m
1≤j≤ni

dijX
jR[X].

Set r = Max{n1, . . . , nm}. Let k ≥ r + 1 and a ∈ Rk. Then aXk ∈ XR1[X] and so

(aXk)s =
∑

1≤i≤m
1≤j≤ni

(dijX
j)gij for some g11, . . . , gmnm ∈ R[X]. For each i = 1, . . . ,m and

j = 1, . . . , ni, let bijt be the coefficient of Xt in gij . Then as =
∑

1≤i≤m
1≤j≤ni

dijbij,k−j ; so we

have

Rks ⊆
∑

1≤i≤m
1≤j≤ni

dijRk−j ⊆
∑

1≤i≤m
1≤j≤ni

dijRk−1.

By repeating the same process when k = r + p for all positive integers p, we obtain

Rr+ps
p ⊆

∑
1≤i≤m
1≤j≤ni

dijRr ⊆ Rr

because dij ∈ Rr for all i = 1, . . . ,m and j = 1, . . . , ni. Since S is a right anti-Archimedean

subset of R0, we can choose an element w ∈
⋂

n≥0 s
nR0 ∩ S. Then Rr+pw ⊆ Rr for all

positive integers p. Thus R is right S-stationary.
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Finally, we claim that Rn is S-finite as a right R0-module for each n ∈ N: Consider

a right ideal XnRn[X] of R[X]. Since R[X] is a right S-Noetherian ring, XnRn[X] is

S-finite. Therefore we can find s ∈ S and f1, . . . , fm ∈ XnRn[X] such that

(XnRn[X])s ⊆ f1R[X] + · · ·+ fmR[X] ⊆ XnRn[X].

For each i = 1, . . . ,m, write fi =
∑ki

j=n dijX
j where dij ∈ Rj . For any b ∈ Rn, (bX

n)s =

f1g1 + · · · + fmgm for some g1, . . . , gm ∈ R[X]; so bs = d1ng1(0) + · · · + dmngm(0). Thus

Rns ⊆ d1nR0 + · · ·+ dmnR0 ⊆ Rn. Hence Rn is S-finite as a right R0-module.

(2) ⇒ (3). It is trivial from the definition of a right S-Noetherian chain R.

(3) ⇒ (1). Suppose that R0 is a right S-Noetherian ring. From Lemma 4.3, E is an

S-finite normalizing ring extension of R0, that is, E is an S-finite R0-module. Thus by

Corollary 2.4, E is a right S-Noetherian ring. Since S is a right anti-Archimedean subset

of R0, S is also a right anti-Archimedean subset of E; so E[X] is a right S-Noetherian

ring from [5, Corollary 3.3]. From Corollary 2.7, R[X] is a right S-Noetherian ring.

If R0 = R and Rn = E for all n ≥ 1 in Theorem 4.4, we obtain

Corollary 4.5. Let E[X] be an S-finite normalizing ring extension of a ring R+XE[X]

and S be a right anti-Archimedean subset of R. Then R is a right S-Noetherian ring if

and only if so is the composite polynomial ring R+XE[X].

Corollary 4.6. Let E be an S-finite normalizing ring extension of R and let S be a right

anti-Archimedean subset of R. Then R is a right S-Noetherian ring if and only if so is

E[X].

When R = Rn for all n ∈ N0, Theorem 4.4 guarantees that the converse of [5, Corol-

lary 3.3] also holds. Thus we have

Corollary 4.7. Let S be a right anti-Archimedean subset of a ring R. Then R is a right

S-Noetherian ring if and only if so is the polynomial ring R[X].

We obtain necessary and sufficient conditions for an ascending chain of rings to be

right Noetherian as a corollary when S = {1} in Theorem 4.4. Note that the concept of

a Noetherian chain of commutative rings was first introduced by Haouat [11].

Corollary 4.8. Let R = (Rn)n≥0 be an ascending chain of rings, E =
⋃

n≥0Rn and let

E[X] be a finite normalizing ring extension of a ring R[X]. Then the following statements

are equivalent.

(1) R[X] is a right Noetherian ring.

(2) R is a right Noetherian chain.
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(3) R0 is a right Noetherian ring.

We next give necessary and sufficient conditions for the ring R[[X]] to be right S-

Noetherian. For each nonnegative integer ℓ, let Rℓ[[X]] :=
{∑∞

i=ℓ aiX
i−ℓ | ai ∈ Ri

}
.

Theorem 4.9. Let R = (Rn)n≥0 be an ascending chain of rings, E =
⋃

n≥0Rn, S a

right anti-Archimedean subset of R0 consisting of regular elements, and let E[[X]] be an

S-finite normalizing ring extension of a ring R[[X]]. If E is right Ore, then the following

statements are equivalent.

(1) R[[X]] is a right S-Noetherian ring.

(2) R is a right S-Noetherian chain.

(3) R0 is a right S-Noetherian ring.

Proof. The proofs of (1) ⇒ (2) and (2) ⇒ (3) are similar to those in Theorem 4.4. Note

that to show that R is right S-stationary in (1) ⇒ (2), we can use a right ideal I =

⟨{djXj | dj ∈ Rj , j ≥ 1}⟩ of R[[X]] instead of a right ideal XR1[X] of R[X].

(3) ⇒ (1). Suppose that R0 is a right S-Noetherian ring. By the similar proof in

Lemma 4.3, it is easy to see that E is S-finite as a right R0-module. Thus E is a right

S-Noetherian ring from Corollary 2.4. Since S is also a right anti-Archimedean subset of

R consisting of regular elements, E[[X]] is a right S-Noetherian ring by [5, Theorem 3.6].

Therefore from Corollary 2.7, R[[X]] is a right S-Noetherian ring.

If R0 = R and Rn = E for all n ≥ 1 in Theorem 4.9, we obtain

Corollary 4.10. Let E[[X]] be an S-finite normalizing ring extension of R +XE[[X]], E

be right Ore and S be a right anti-Archimedean subset of R consisting of regular elements.

Then R is a right S-Noetherian ring if and only if so is the composite power series ring

R+XE[[X]].

Corollary 4.11. Let E be an S-finite normalizing ring extension of R, E be right Ore

and S be a right anti-Archimedean subset of R consisting of regular elements. Then R is

a right S-Noetherian ring if and only if so is E[[X]].

When R = Rn for all n ∈ N0, Theorem 4.9 guarantees that the converse of [5, Theo-

rem 3.6] also holds. Thus we have

Corollary 4.12. Let R be right Ore and S be a right anti-Archimedean subset of R

consisting of regular elements. Then R is a right S-Noetherian ring if and only if so is

the power series ring R[[X]].

In the case of S = {1}, we have
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Corollary 4.13. Let R = (Rn)n≥0 be an ascending chain of rings, E =
⋃

n≥0Rn a right

Ore ring and E[[X]] be a finite normalizing ring extension of R[[X]]. Then the following

statements are equivalent.

(1) R[[X]] is a right Noetherian ring.

(2) R is a right Noetherian chain.

(3) R0 is a right Noetherian ring.

We conclude this paper with the result on the condition for composite skew polyno-

mial rings to be right S-Noetherian. Let R ⊆ E be an extension of rings and σ be an

endomorphism of E. By E[X;σ], we mean the skew polynomial ring over E (of the endo-

morphism type), subject to the left skewed constraint Xa = σ(a)X. If R = (Rn)n≥0 is an

ascending chain of rings, E =
⋃

n≥0Rn and σ is an endomorphism of E with σ(Rn) ⊆ Rn

for each n, then R[X;σ] =
{∑n

i=0 aiX
i | ai ∈ Ri

}
is a ring. We call it the composite skew

polynomial ring. When σ is the identity map on E, a composite skew polynomial ring is a

composite polynomial ring. A multiplicative subset S of a ring R is said to be a right σ-

anti-Archimedean subset for an automorphism σ of R if
⋂

n≥1

(∏n−1
j=0 σ

−n+j(s)
)
R∩S ̸= ∅

for all s ∈ S [5]. Note that if E is a ring extension of R and S is a right σ-anti-Archimedean

subset of R, then S is also a right σ-anti-Archimedean subset of E.

Lemma 4.14. Let R ⊆ E be an extension of rings, σ an automorphism of E such that

σ(R) ⊆ R and S be a multiplicative subset of R. If E[X;σ] is an S-finite normalizing ring

extension of a ring R[X;σ], then E is an S-finite normalizing ring extension of R.

Proof. The proof is similar to that of Lemma 4.3.

Proposition 4.15. Let R = (Rn)n≥0 be an ascending chain of rings, E =
⋃

n≥0Rn, S a

right σ-anti-Archimedean subset of R0 for an automorphism σ of E such that σ(Rn) ⊆ Rn

for each n, and let E[X;σ] be an S-finite normalizing ring extension of a ring R[X;σ].

Then the following statements are equivalent.

(1) R[X;σ] is a right S-Noetherian ring.

(2) R0 is a right S-Noetherian ring.

Proof. (1) ⇒ (2). Let I be a right ideal of R0. Then I + R1[X;σ]X is a right ideal of

R[X;σ]; so we can find s ∈ S and f1, . . . , fm ∈ I +R1[X;σ]X such that

(I +R1[X;σ]X)s ⊆ f1R[X;σ] + · · ·+ fmR[X;σ] ⊆ I +R1[X;σ]X.

So Is ⊆ f1(0)R0+ · · ·+fm(0)R0 ⊆ I. Thus I is S-finite. Hence R0 is a right S-Noetherian

ring.
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(2) ⇒ (1). Suppose R0 is a right S-Noetherian ring. By Lemma 4.14, E is an S-finite

normalizing ring extension of R0, hence E is S-finite as a right R0-module. Thus E is

a right S-Noetherian ring from Corollary 2.4. It is easy to see that S is a right σ-anti-

Archimedean subset of E; so E[X;σ] is a right S-Noetherian ring from [5, Corollary 3.2(1)].

Therefore from Corollary 2.7, R[X;σ] is a right S-Noetherian ring.

Corollary 4.16. Let R ⊆ E be an extension of rings, σ an automorphism of E such

that σ(R) ⊆ R, S a right σ-anti-Archimedean subset of R, and let E[X;σ] be an S-finite

normalizing ring extension of a ring R + XE[X;σ]. Then the following statements are

equivalent.

(1) R is a right S-Noetherian ring.

(2) E is a right S-Noetherian ring.

(3) E[X;σ] is a right S-Noetherian ring.

(4) R+XE[X;σ] is a right S-Noetherian ring.

When E = R, Corollary 4.16 guarantees that the converse of [5, Corollary 3.2(1)] also

holds. Thus we have

Corollary 4.17. Let σ be an automorphism of a ring R and S a right σ-anti-Archimedean

subset of R. Then R is a right S-Noetherian ring if and only if so is the skew polynomial

ring R[X;σ].
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Comm. Algebra 48 (2020), no. 8, 3398–3407.

[4] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002),

no. 9, 4407–4416.

[5] J. Baeck, G. Lee and J. W. Lim, S-Noetherian rings and their extensions, Taiwanese

J. Math. 20 (2016), no. 6, 1231–1250.
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