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The Aα-spectral Radius of Bicyclic Graphs with Given Degree Sequences

Fei Wen*, Mengyue Yuan and Wei Wang

Abstract. Let A(G) and D(G) be the adjacency matrix and the degree matrix of G,

respectively. For any real α ∈ [0, 1], Nikiforov defined the matrix Aα(G) as

Aα(G) = αD(G) + (1− α)A(G).

In this paper, we generalize some previous results about the A1/2-spectral radius

of bicyclic graphs with a given degree sequence. Furthermore, we characterize all

extremal bicyclic graphs which have the largest Aα-spectral radius in the set of all

bicyclic graphs with prescribed degree sequences.

1. Introduction

Throughout this paper, all graphs considered are simple connected and undirected. Let

G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). Denote by

|V (G)| = n and |E(G)| = m the order and the size of graph G, respectively. A connected

graph is a k-cyclic graph if k = m − n + 1. Let A(G) and D(G) be respectively the

adjacency matrix and the diagonal matrix of vertex degrees of G. We write dG(v), i.e.,

d(v), for the degree of the vertex v in G, and NG(v) for the neighbor set of the vertex v

in G. For any real α ∈ [0, 1], Nikiforov [11] defined the matrix Aα(G) as

Aα(G) = αD(G) + (1− α)A(G).

It is clear that A0(G) = A(G), A1(G) = D(G) and 2A1/2(G) = Q(G), where Q(G) is the

signless Laplacian matrix. Moreover, L(G) = (Aα(G)− Aβ(G))/(α− β) if α ̸= β for any

α, β ∈ [0, 1], where L(G) is the Laplacian matrix. The largest eigenvalue of Aα(G) is called

the Aα(G)-spectral radius (or Aα-spectral radius if there is no confusion) of G, and denote

by ρ(Aα(G)). As usual, Tn, Pn and Cn (n ≥ 3) always represent the tree, path and cycle,

respectively. We call a path Pk+1 = v0v1 · · · vk−1vk is an internal path of G if d(v0) ≥ 3,
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d(vk) ≥ 3 and d(vi) = 2 where i = 1, 2, . . . , k − 1. For a graph G, if V ′(G) ⊆ V (G) and

V ′(G) ̸= ∅, then we denote by G[V ′] the subgraph of G induced by V ′. Let uv be a cut

edge of G, if one component of G− uv is a tree T (suppose u ∈ V (T )), then the induced

subgraph G[V (T )∪{v}] is called a hanging tree on vertex v. For all other graph theoretic

notations and terminologies not defined here, we refer the readers to [2].

Next, we introduce three kinds of bicyclic graphs. Let ∞(n1, n2) denote the graph

obtained from two cycles Cn1 and Cn2 (n1, n2 ≥ 3) by identifying a vertex of Cn1 and Cn2 .

The θ-graph is a 2-connected simple graph consisting of 3 internally disjoint paths between

a pair of vertices of degree 3. Let θ(p, q, r) denote the θ-graph with order n = p+q+r−4,

which is obtained from three vertex-disjoint paths Pp, Pq and Pr by identifying the three

initial (resp. terminal) vertices of them, where p, q, r ≥ 2 and at most one of p, q, r equals

2. Denote by F (Cn1 , Cn2 , Pp1 , . . . , Ppd1−4
) the graph obtained from ∞(n1, n2) and d1 − 4

paths by identifying the maximum degree vertex of ∞(n1, n2) with one end vertex of each

path of d1 − 4 paths, where d1 ≥ 5.

A non-increasing sequence of nonnegative integers π = (d1, d2, . . . , dn) is called graphic

if there exists a simple graph G with order n having π as its vertex degree sequence. For

a given graphic degree sequence π, let

Gπ = {G | G is a connected graph with π as its degree sequence}.

Note that Gπ may be an empty set for some degree sequence π. Here we only consider

that Gπ is non-empty.

In order to explore the extent to which the summands of A(G) and D(G) determines

the properties of Q(G), Nikiforov [11] in 2017 proposed to study the convex combinations

Aα-matrix of A(G) and D(G), and claimed in [12] that the matrices Aα(G) can underpin

a unified theory of A(G) and Q(G). In recent years, the research of Aα-matrix is an

intriguing topic in spectral graph theory, the reader may be referred to [5–10, 12–16] and

the references therein.

Up until now, the problem concerning graphs with maximal Aα-spectral radius on

graph perturbation of a given class of graphs has attracted the attention of several schol-

ars. The unique graph with maximum Aα-spectral radius among all connected graphs

with diameter d is determined by Xue et al. in [16]. The extremal graph with maximal

Aα-spectral radius with fixed order and cut vertices, and the extremal tree with the maxi-

mal Aα-spectral radius with fixed order and matching number are characterized by Lin et

al. in [7]. The extremal graphs with largest Aα-spectral radius with fixed vertex or edge

connectivity are depicted by Wang in [15]. Most recently, the extremal graphs with maxi-

mum Aα-spectral radius among all graphs with given size (resp. clique number, chromatic

number) where 1/2 ≤ α ≤ 1 are explored by Li and Qin in [6].
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In particular, with the degree sequence given in advance, Zhang [17] investigated all

extremal trees with the largest Laplacian spectral radius in the set of all trees with a given

degree sequence. Moreover, Zhang [18] also surveyed the unicyclic graphs that have the

largest A1/2-spectral radius (i.e., Q-spectral radius) for the prescribed degree sequence.

In addition, Huang et al. [4] determined all extremal connected bicyclic graphs with the

largest A1/2-spectral radius in the set of all connected bicyclic graphs with prescribed

degree sequences. To generalize these results, Li et al. [5] proposed the following problem.

Problem 1.1. [5] Let 0 ≤ α < 1 and π be a given graphic degree sequence, and

Gπ = {G | G is connected with π as its degree sequence}.

Characterize all extremal graphs such that their Aα-spectral radius reach the largest value

in Gπ.

And then, they characterized respectively the extremal tree with the maximum Aα-

spectral radius in Gπ for a given tree degree sequence and the extremal unicyclic graph

with the largest Aα-spectral radius in Gπ for a given unicycilc degree sequence. Motivated

by the above results, we continue this line of research by the next natural step, i.e., by

considering the following problem.

Problem 1.2. For a given bicyclic graphic degree sequence π, let α ∈ [0, 1) and

Bπ = {B ∈ Gπ | B is a bicyclic graph with degree sequence π}.

Characterize all extremal bicyclic graphs which attain the maximal Aα-spectral radius in

Bπ.

In this paper, we generalize some previous extremal results about the A1/2-spectral

radius among bicyclic graphs with a given degree sequence in [4]. Furthermore, we char-

acterize all extremal bicyclic graphs which have the largest Aα-spectral radius in the set

of all bicyclic graphs with the prescribed degree sequence, which gives a complete answer

to Problem 1.2. The main result of this paper is as follows.

Theorem 1.3. Let π = (d1, d2, . . . , dn) be a given non-increasing bicyclic degree sequence.

Then B∗
π is a unique bicyclic graph with the largest Aα-spectral radius in Bπ, where B∗

π is

shown in Section 3 and α ∈ [0, 1).

2. Preliminaries

In order to show our main result, we are about to introduce some definitions, propositions,

lemmas and corollaries for later use.

Let G be a graph with a root v. We denote by h(u) = dis(u, v) the distance between

u ∈ V (G) and v. Besides, h(u) is called the height of u.
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Definition 2.1. [18, Definition 2.1] Let G = (V (G), E(G)) be a graph with a root

vr ∈ V (G). A well-ordering ≺ of the vertices is called a bread-first-search ordering (BFS-

ordering for short) if the following conditions hold for all vertices u, v ∈ V (G):

(1) u ≺ v implies h(u) ≤ h(v).

(2) u ≺ v implies d(u) ≥ d(v).

(3) suppose uv ∈ E(G), xy ∈ E(G), uy /∈ E(G), xv /∈ E(G) with h(u) = h(x) =

h(v)− 1 = h(y)− 1. If u ≺ x, then v ≺ y.

Proposition 2.2. (see [1, p. 11] or [3]) Let π = (d1, d2, . . . , dn) be a non-increasing

sequence. Then π is graphic if and only if
∑n

i=1 di is even and

(2.1)

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min{k, di},

where 1 ≤ k ≤ n.

From Proposition 2.2, Huang et al. in [4] obtained the following proposition.

Proposition 2.3. [4, Proposition 3.2] Let π = (d1, d2, . . . , dn) be a positive non-increasing

integer sequence with even sum and n ≥ 4. If π is a bicyclic graph sequence, then
∑n

i=1 di =

2n+ 2 and (2.1) holds.

Lemma 2.4. [11, Proposition 14] For α ∈ [0, 1), let G be a graph and X be a non-negative

eigenvector to ρ(Aα(G)).

(1) If G is connected, then X is positive and is unique up to scaling.

(2) If G is not connected and U is the set of vertices with positive entries in X, then the

subgraph induced by U is a union of components H of G with ρ(Aα(H)) = ρ(Aα(G)).

(3) If G is connected and µ is an eigenvalue of Aα(G) with a nonnegative eigenvector,

then µ = ρ(Aα(G)).

(4) If G is connected and H is a proper subgraph of G, then ρ(Aα(G)) > ρ(Aα(H)).

Lemma 2.5. [5, Lemma 2.3] Let G ∈ Gπ be a connected graph with α ∈ [0, 1). Let X be a

unit eigenvector of Aα(G) corresponding to ρ(Aα(G)). Assume that v1u1, v2u2 ∈ E(G) and

v1v2, u1u2 /∈ E(G). Let G′ be a new graph obtained from G by deleting edges v1u1, v2u2

and adding edges v1v2, u1u2. If xv1 ≥ xu2 and xv2 ≥ xu1, then ρ(Aα(G
′)) ≥ ρ(Aα(G)).

Furthermore, if one of the two inequalities is strict, then ρ(Aα(G
′)) > ρ(Aα(G)).
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Corollary 2.6. Let B be a graph with the largest Aα-spectral radius in Bπ and X be a

unit eigenvector of Aα(B) corresponding to ρ(Aα(B)). Assume that v1u1, v2u2 ∈ E(B)

and v1v2, u1u2 /∈ E(B). Let B′ = B − v1u1 − v2u2 + v1v2 + u1u2. If B′ is connected, then

B′ ∈ Bπ. Moreover, the following assertions hold in X.

(1) If xv1 > xu2, then xv2 < xu1.

(2) If xv1 = xu2, then xv2 = xu1.

Proof. Recall that a connected graph G is a bicyclic graph if |E(G)| = |V (G)| + 1. It

is easy to see that |V (B)| = |V (B′)|, |E(B)| = |E(B′)| and |E(B)| = |V (B)| + 1, which

implies |E(B′)| = |V (B′)| + 1. Clearly, the degree sequence of B′ is also π. Thus, if B′

is a connected graph, B′ is a bicyclic graph and B′ ∈ Bπ. Let X be a unit eigenvector

corresponding to ρ(Aα(B)). Suppose xv2 ≥ xu1 in item (1), combining with xv1 > xu2 ,

one can deduce that ρ(Aα(B
′)) > ρ(Aα(B)) by Lemma 2.5, a contradiction.

Assume that xv2 ̸= xu1 in item (2). Then xv2 > xu1 or xv2 < xu1 holds. Without loss of

generality, suppose xv2 > xu1 . Combining with xv1 = xu2 , we have ρ(Aα(B
′)) > ρ(Aα(B))

by Lemma 2.5, a contradiction. Thus, the conclusion of (2) holds.

Lemma 2.7. [5, Lemma 2.5] Let G ∈ Gπ be a connected graph with α ∈ [0, 1) and

V (G) = {v0, v1, . . . , vn−1}. Let ρ(Aα(G)) = max{ρ(Aα(H)) | H ∈ Gπ} and X be a unit

eigenvector of Aα(G) corresponding to ρ(Aα(G)). Then the following assertions hold.

(1) If xvi ≥ xvj , then dG(vi) ≥ dG(vj).

(2) If xvi = xvj , then dG(vi) = dG(vj).

In Lemma 2.7 above, i < j is redundant in assertion (1). So we omit it here.

Corollary 2.8. Under the assumption above, if dG(u) > dG(v), then xu > xv, where

u, v ∈ V (G).

Proof. Assume that xv ≥ xu, it follows from Lemma 2.7 that dG(v) ≥ dG(u), a contradic-

tion.

Lemma 2.9. [5, Lemma 1.1] Let G be a connected graph with α ∈ [0, 1) and uv be an

edge on an internal path of G. If Guv is obtained from G by subdivision of edge uv into

edges uw and wv, then ρ(Aα(Guv)) < ρ(Aα(G)).

Let w be a vertex of connected graph G, and let G(k, s) denote the graph obtained

from G ∪ Pk ∪ Ps by adding an edge between w and one of end vertices of Pk and Ps,

respectively.
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Lemma 2.10. [16, Theorem 2.6] Let G(k, s) be the graph defined above with k ≥ s + 2.

If 0 ≤ α < 1 and ρ(Aα(G(k, s))) ≥ 2, then

ρ(Aα(G(k, s))) < ρ(Aα(G(k − 1, s+ 1))).

Lemma 2.11. Let B be a bicyclic graph with pendant vertices that has the largest Aα-

spectral radius in Bπ, and X be a unit eigenvector of Aα(B) corresponding to ρ(Aα(G)).

Let P = w0w1 · · ·wkwk+1 (k ≥ 0) be a hanging path with d(w0) ≥ 2 and d(wk+1) = 1 in

B, and v1v2 ∈ E(B) be an edge of a cycle. If v1wj, v1wt and v2wt /∈ E(B) for 0 ≤ j ≤ k

and j < t ≤ k + 1, then

xv2 > xwj > xwk+1
.

Moreover, let T be a hanging tree on a vertex v and v1v2 ∈ E(B) (where v1, v2 ̸= v) be an

edge of a cycle. If v1v /∈ E(B), then xv2 > xv.

Proof. Since d(wj) ≥ 2 > 1 = d(wk+1) (0 ≤ j ≤ k), it follows from Corollary 2.8 that

xwj > xwk+1
. Next, we need to show xv2 > xwj .

Assume on the contrary that xv2 ≤ xwj . Clearly, we have v1v2, wjwj+1 ∈ E(B) and

v1wj , v2wj+1 /∈ E(B) due to v1wj , v1wt and v2wt /∈ E(B) for 0 ≤ j ≤ k and j < t ≤ k+1.

Let G = B−v1v2−wjwj+1+v1wj+v2wj+1. Obviously, the degree sequence of G is π also.

It is not difficult to see that G is connected with |E(G)| = |V (G)| + 1, and so, G ∈ Bπ.

We claim that xv1 ≤ xwj+1 since if not, then ρ(Aα(G)) > ρ(Aα(B)) by Lemma 2.5, which

contradicts the maximality of ρ(Aα(B)).

When j = k, we get xv1 ≤ xwk+1
. It follows from Lemma 2.7 that 2 ≤ d(v1) ≤

d(wk+1) = 1, a contradiction.

When 0 ≤ j ≤ k−1, if j = k−1, we let G(1) = B−v1v2−wj+1wj+2+v2wj+1+v1wj+2.

As the same argument as G, one can get G(1) ∈ Bπ, according to the maximality of

ρ(Aα(B)) and Corollary 2.6 we obtain xv2 ≤ xwj+2 ; otherwise, we construct another new

graph G(2) = B − v1v2 −wj+2wj+3 + v1wj+2 + v2wj+3 based on G(1). Clearly, G(2) ∈ Bπ.

Also by similar reasoning as above, one can get xv1 ≤ xwj+3 . Then we repeat appropriately

to construct G(ℓ) until j + ℓ = k, and therefore have

min{xv1 , xv2} ≤ xwk+1
,

which implies 2 ≤ min{d(v1), d(v2)} ≤ d(wk+1) = 1 by Lemma 2.7, a contradiction.

Furthermore, if T is a hanging tree on a vertex v and v1v /∈ E(B), then there exists a

path P = vu1 · · ·ukuk+1 (k ≥ 0) such that d(uk+1) = 1. Using the same method as above,

one can draw xv2 > xv.

Summing up above, the proof completes.
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Lemma 2.12. Let B be a bicyclic graph with pendant vertices that has the largest Aα-

spectral radius in Bπ, and X be a unit eigenvector of Aα(B) corresponding to ρ(Aα(B)).

Then the vertex which has the largest component of X lies on a cycle.

Proof. Without loss of generality, assume that v has the largest component of X but v

doesn’t lie on any cycle. We notice that B is a bicyclic graph, there must be a vertex u

with d(u) ≥ 3 which lies on some cycle. Because v has the largest component of X, we

have xv ≥ xu. Further, by Lemma 2.7 it follows d(v) ≥ d(u) ≥ 3, which means that there

exists a hanging tree on the vertex v. Then, one can find an edge w1w2 of a cycle such

that vw1 /∈ E(B). According to Lemma 2.11, we have xw2 > xv, which is a contradiction.

Thus, the result follows.

3. Main results

The breadth-first-search methods of tree and unicyclic graph have been introduced by

Zhang [17, 18]. Let π = (d1, d2, . . . , dn) (n ≥ 4) be a prescribed non-increasing bicyclic

degree sequence. From Proposition 2.3 the degree sequence π was classified into four types

by Huang et al. in [4], and then they introduced a special bicyclic graph B∗
π (see [4, p. 506])

for each type as follows:

C3
...Cn−2

∞(3, n− 2)

...P3 P2 Pn−1

θ(3, 2, n− 1)

· · ·

F (C3, C3, Pp1, · · · , Ppd1−4
)

Figure 3.1: Some related graphs.

(i) If d1 = 4 and di = 2 for 2 ≤ i ≤ n, then B∗
π = ∞(3, n− 2) (shown in Figure 3.1).

(ii) If d1 = d2 = 3 and di = 2 for 3 ≤ i ≤ n, then B∗
π = θ(3, 2, n − 1) (shown in

Figure 3.1).

(iii) If d1 ≥ 5, d2 = 2 and dn = 1, then B∗
π = F (C3, C3, Pp1 , . . . , Ppd1−4

) where |pi−pj | ≤ 1

for all 1 ≤ i, j ≤ d1 − 4 (shown in Figure 3.1).

(iv) If d1 ≥ d2 ≥ 3 and dn = 1, then B∗
π was defined by the breadth-first-search method

in the following: select a vertex v01 as a root and begin with v01 in the zeroth layer.

Put s1 = d1 and select s1 vertices {v11, v12, . . . , v1,s1} of the first layer such that they

are adjacent to v01, and v11 is adjacent to v12 and v13. Thus d(v01) = d1 = s1. For
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the second layer, put d(v1i) = di+1 (i = 1, 2, . . . , s1) and select s2 =
∑s1

i=1 d(v1i) −
s1 − 4 vertices {v21, v22, . . . , v2,s2} of the second layer such that dv11 − 3 vertices

are adjacent to v11, dv12 − 2 (resp. dv13 − 2) vertices are adjacent to v12 (resp. v13),

and dv1i − 1 vertices are adjacent to v1i for i = 4, 5, . . . , s1. One can continue to

construct all other layers by recursion, and assume that all vertices of the t-th (t ≥ 2)

layer have been constructed and are denoted by {vt1, vt2, . . . , vt,st}. Now using the

induction hypothesis, one can construct all the vertices of the (t+ 1)-th layer. Put

d(vti) = di+1+
∑t−1

j=1 sj
(i = 1, 2, . . . , st) and select st+1 =

∑st
i=1 d(vti) − st vertices

{vt+1,1, . . . , vt+1,st+1} in the (t+1)-th layer such that d(vti)− 1 vertices are adjacent

to vti for i = 1, 2, . . . , st. In this way, one can obtain only one bicyclic graph B∗
π

with degree sequence π, see Example 3.1 for instance.

Example 3.1. Let π = {5, 5, 3, 3, 1, 1, 1, 1, 1, 1} be a given bicyclic degree sequence. Then

by the construction (iv) above, B∗
π is the desired bicyclic graph with order 10 shown in

Figure 3.2.

v01

v11 v12 v13 v14 v15

v21 v22 v23 v24

Figure 3.2: Graph B∗
π.

Lemma 3.2. [5, Theorem 2.6] Let G ∈ Gπ be a connected graph with α ∈ [0, 1). If

ρ(Aα(G)) = max{ρ(Aα(H)) | H ∈ Gπ}, then G has a BFS-ordering, and u ≺ v implies

xu ≥ xv.

Let B be the bicyclic graph with the largest Aα-spectral radius in Bπ, and X be a

unit eigenvector of Aα(B) corresponding to ρ(Aα(B)) whose entries are labeled as xvr at

vertex vr. By Lemma 3.2, there exists a BFS-ordering of B, such that

v1 ≺ v2 ≺ v3 ≺ · · · ≺ vn−1 ≺ vn,

xv1 ≥ xv2 ≥ xv3 ≥ · · · ≥ xvn−1 ≥ xvn ,

d(v1) ≥ d(v2) ≥ d(v3) ≥ · · · ≥ d(vn−1) ≥ d(vn)

and

h(v1) ≤ h(v2) ≤ h(v3) ≤ · · · ≤ h(vn−1) ≤ h(vn).

Let Vi = {v | v ∈ V (G), h(v) = i} for i = 0, 1, . . . , p (= h(vn)). Hence, we can relabel the

vertices of B in such a way that Vi = {vi1, vi2, . . . , visi} with xvi1 ≥ xvi2 ≥ · · · ≥ xvisi ,
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xvij ≥ xvi+1,k
and d(vij) ≥ d(vi+1,k) for 0 ≤ i ≤ p − 1, 1 ≤ j ≤ si, and 1 ≤ k ≤ si. To

exactly, s1 = d(v1) = d(v01) = d1.

Lemma 3.3. Let π = (d1, d2, . . . , dn) be a non-increasing bicyclic degree sequence with

d1 = 4 and di = 2 for 2 ≤ i ≤ n. Then B∗
π = ∞(3, n− 2) is the only bicyclic graph which

has the largest Aα-spectral radius in Bπ (shown in Figure 3.1).

Proof. Note that dv01 = 4 and dvij = 2 for 1 ≤ i ≤ p, 1 ≤ j ≤ si, that is, π = (4, 2, 2, . . . , 2).

There must exist a bicyclic graph G such that G ∈ Bπ by Proposition 2.3. Let B be a

bicyclic graph that has the largest Aα-spectral radius in Bπ. Then, according to the

composition of B we distinguish three cases below.

Case 1. If there exactly exists an edge v1jv1k ∈ E(B) for 1 ≤ j < k ≤ 4, then

B ∼= ∞(3, n− 2).

Case 2. If there exist two independent edges between v11, v12, v13 and v14 in B, say

v11v12 ∈ E(B) and v13v14 ∈ E(B), then we consider two subcases in the following. When

|V (B)| = 5, we have B = ∞(3, 3); when |V (B)| ≥ 6, B is a disconnected graph which

contains ∞(3, 3) as its a component. So we omit it because Bπ is a set of connected

bicyclic graphs with degree sequence π.

Case 3. If v1jv1k /∈ E(B) for all 1 ≤ j < k ≤ 4, then combining with the degree

sequence π = (4, 2, 2, . . . , 2), we can assume that there exist two cycles C1 = {v01, v11, u1,
. . . , un1 , v12, v01} and C2 = {v01, v13, w1, . . . , wn2 , v14, v01}, and |V (C1) ∩ V (C2)| = v01,

where n1, n2 ≥ 1 and n1 + n2 + 5 = n. From Lemma 3.2 one can see that B has a BFS-

ordering, this implies xv11 ≥ xv13 ≥ xu1 ≥ xw1 , and so, xv13 ≥ xu1 , xv11 ≥ xv13 ≥ xw1 .

Since d(v01) > d(v11), it follows from Corollary 2.8 that xv01 > xv11 , together with the

maximality of ρ(Aα(B)) and Corollary 2.6 one can obtain xv13 > xu1 . Furthermore,

we notice that v11u1, v13w1 ∈ E(B) but v11v13, u1w1 /∈ E(B). Let B′ = B − v11u1 −
v13w1 + v11v13 + u1w1. It is clear that B′ ∈ Bπ. Thus, it follows from Lemma 2.5 that

ρ(Aα(B
′)) > ρ(Aα(B)), a contradiction.

Thus, the proof is completed.

Lemma 3.4. Let π = (d1, d2, . . . , dn) be a non-increasing bicyclic degree sequence with

d1 = d2 = 3 and di = 2 for 3 ≤ i ≤ n. Then B∗
π = θ(3, 2, n− 1) is the only bicyclic graph

that has the largest Aα-spectral radius in Bπ (shown in Figure 3.1).

Proof. Let B be a bicyclic graph that has the largest Aα-spectral radius in Bπ, where

π = (3, 3, 2, . . . , 2), i.e., d(v01) = d(v11) = 3, d(v12) = d(v13) = d(vij) = 2 for 2 ≤ i ≤ p

and 1 ≤ j ≤ si. Then by Lemma 3.2, B has a BFS-ordering. In accordance with above,

we discuss three cases as follows.

Case 1. If v11v12 ∈ E(B) or v11v13 ∈ E(B), then B ∼= θ(3, 2, n− 1).
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Case 2. If v11v12 ∈ E(B) and v11v13 ∈ E(B), then we consider the following two

situations. When |V (B)| = 4, we have B = θ(3, 2, 3); when |V (B)| ≥ 5, the graph B is a

disconnected graph containing θ(3, 2, 3) as its component. Since Bπ is a set of connected

bicyclic graphs with degree sequence π, we omit it.

Case 3. If v11v12, v11v13 /∈ E(B), then we consider two subcases below.

Subcase 3.1. There exist two disjoint cycles C1 and C2 inB. Then C1 and C2 connect by

precisely one edge since if not, there is a path Pk (k ≥ 3) to connect C1 and C2. According

to Lemma 2.12, we may suppose v01 ∈ V (C2) without loss of generality, and then, denote

by Pk = v01v11 · · ·w where w ∈ V (C1) and d(v01) = d(w) = 3. It is not difficult to find

that v11 ≺ w. So, from Lemma 3.2 we have xv11 ≥ xw. On the other hand, because

d(v11) = 2 < 3 = d(w), one can derive that xv11 < xw by Corollary 2.8, a contradiction.

Let C1 = {v11, u1, . . . , ul1 , v11} (l1 ≥ 2) and C2 = {v01, v12, w1, . . . , wl2 , v13, v01} (l2 ≥ 1).

Since d(v11) > d(w1), it follows from Corollary 2.8 that xv11 > xw1 . Also because v12 ≺ u1

we have xv12 ≥ xu1 by Lemma 3.2. Note that v11u1, v12w1 ∈ E(B) and v11v12, u1w1 /∈
E(B). Let B′ = B−v11u1−v12w1+v11v12+u1w1. Then we can deduce that ρ(Aα(B

′)) >

ρ(Aα(B)), which contradicts the maximality of ρ(Aα(B)).

Subcase 3.2. B has the form of θ(p, q, r). Using the similar argument as Subcase 3.1,

one can find that the two vertices of degree 3 are adjacent. We may suppose that the two

cycles are C1 = {v01, v11, u1, . . . , ul1 , v12, v01} (l1 ≥ 1) and C2 = {v01, v11, w1, . . . , wl2 , v13,

v01} (l2 ≥ 1). As the same argument as above, we have xv11 > xwl2
and xv13 ≥ xu1 .

Let B′ = B − v11u1 − v13wl2 + v11v13 + u1wl2 . Then it follows from Lemma 2.5 that

ρ(Aα(B
′)) > ρ(Aα(B)), which is a contradiction.

Summing up the above, the proof completes.

Lemma 3.5. Let π = (d1, d2, . . . , dn) be a non-increasing bicyclic degree sequence with

d1 ≥ 5, d2 = 2 and dn = 1. Then B∗
π = F (C3, C3, Pp1 , . . . , Ppd1−4

) is the only bicyclic graph

that has the largest Aα-spectral radius in Bπ, where |pi − pj | ≤ 1 for all 1 ≤ i, j ≤ d1 − 4

(shown in Figure 3.1).

Proof. Let B be a bicyclic graph with order n that has the largest Aα-spectral radius in

Bπ. Then combining the given degree sequence π with Proposition 2.3, B must have the

form of F (Cn1 , Cn2 , Pp1 , . . . , Ppd1−4
). Thus, the following claims should be held.

Claim 1. n1 = n2 = 3.

Proof. We assume on the contrary that either n1 ≥ 4 or n2 ≥ 4 holds. Without loss of

generality, suppose n1 ≥ 4. We construct a new graph G with order n − 1 from B by

contracting an edge of Cn1 . Then conversely, one can obtain B from G by subdivision

an edge of the resulting cycle Cn1−1. So we have ρ(Aα(G)) > ρ(Aα(B)) by Lemma 2.9.

And then, let G′ be a graph with order n obtained from G by joining one ray (leg)
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on one of its pendent vertices. Clearly, G′ ∈ Bπ. It follows from Lemma 2.4(4) that

ρ(Aα(G
′)) > ρ(Aα(G)), which means ρ(Aα(G

′)) > ρ(Aα(B)), a contradiction. Hence, the

claim holds.

Claim 2. |pi − pj | ≤ 1 for 1 ≤ i, j ≤ d1 − 4.

Proof. By contradiction, we may suppose that, without loss of generality, there exist

two pendent paths Pps , Ppt in B such that ps − pt ≥ 2. Let B′ denote the graph

F (Cn1 , Cn2 , Pp1 , . . . , Pps−1 , . . . , Ppt+1 , . . . , Ppd1−4
) obtained from F (Cn1 , Cn2 , Pp1 , . . . , Pps ,

. . . , Ppt , . . . , Ppd1−4
) by deleting a pendent vertex of Pps and adding a pendent vertex of

Ppt . Then by Lemma 2.10, one can easily obtain that ρ(Aα(B
′)) > ρ(Aα(B)), a contra-

diction.

From Claims 1 and 2, we complete the proof.

Lemma 3.6. Let π = (d1, d2, . . . , dn) be a non-increasing bicyclic degree sequence with

d1 ≥ d2 ≥ 3 and dn = 1. Then B∗
π is the only bicyclic graph that has the largest Aα-spectral

radius in Bπ.

Proof. Let B be a bicyclic graph that has the largest Aα-spectral radius in Bπ. In accor-

dance with Lemma 3.2, B has a BFS-ordering with root v01, combining this with degree

sequence π, one can see that d(v01) ≥ d(v11) ≥ 3 and d(v12) ≥ d(v13) ≥ 2. Let Cn1 and

Cn2 denote the two cycles of B, which perhaps have some common vertices or connect

by a unique path. If Cn1 and Cn2 are joined by a unique path, we denote the path by

Pk for convenience. Without loss of generality, we may suppose that v01 ∈ V (Cn1) by

Lemma 2.12. To promote the proof, we need to prove the following claims.

Claim 1. |V (Cn1) ∩ V (Cn2)| ≥ 2.

Proof. Assume that |V (Cn1) ∩ V (Cn2)| ≤ 1, we distinct two cases to be considered here.

Case 1. |V (Cn1) ∩ V (Cn2)| = 0.

Subcase 1.1. There exists a hanging tree on v01. Since v01 ∈ V (Cn1), one can find

an edge w1w2 ∈ E(Cn2) (w1, w2 ̸= v01) such that w1v01 /∈ E(B). Hence, it follows from

Lemma 2.11 that xw2 > xv01 . In fact, from the BFS-ordering we know that xv01 > xw2 ,

a contradiction.

Subcase 1.2. There exists a hanging tree on v11. As the same arguments as above we

can observe an edge w1w2 (w1, w2 ̸= v11) of a cycle such that w1v11 /∈ E(B). Then by

Lemma 2.11, xw2 > xv11 , which contradicts xv11 > xw2 .

Subcase 1.3. There doesn’t exist a hanging tree on v01 and v11. Combining v01v11 ∈
E(B) (v01 ∈ V (Cn1)) with |V (Cn1)∩V (Cn2)| = 0, there must be v01 ∈ V (Cn1)∩V (Pk) and

v11 ∈ V (Cn2)∩V (Pk). To exactly, d(v01) = d(v11) = d(v12) = 3 and there exists a hanging
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tree on v12 since dn = 1, and then, one can deduce v12 ∈ V (Cn1). Meanwhile, there exists

an edge w1w2 ∈ E(Cn2) such that w1, w2 ̸= v12 and w1v12 /∈ E(B), by Lemma 2.11, we

obtain xw2 > xv12 , also a contradiction.

Case 2. |V (Cn1) ∩ V (Cn2)| = 1.

Let ŵ be the common vertex of Cn1 and Cn2 . If ŵ = v01, then v01v11 ∈ E(Cni) for

some i (i = 1, 2) and there exists a hanging tree on v11 since d(v11) ≥ 3 and dn = 1. We

can find an edge w1w2 of a cycle such that w1, w2 ̸= v11 and w1v11 /∈ E(B), it follows from

Lemma 2.11 that xw2 > xv11 , a contradiction. Otherwise, ŵ ̸= v01, by similar reasoning

as above, it is also impossible.

In accordance with Claim 1, one can deduce that B has a θ(p, q, r) as its induced

subgraph. In this case, we assert that dθ(p,q,r)(v01) = dθ(p,q,r)(v11) = 3 since if not, we

may suppose dθ(p,q,r)(v01) = 2, then there exists a hanging tree on v01 in B since v01 is

the maximum degree vertex. Take an edge w1w2 of a cycle such that w1, w2 ̸= v01 and

w1v01 /∈ E(B), by Lemma 2.11 it follows xw2 > xv01 , which leads to a contradiction.

Claim 2. n1 = n2 = 3.

Proof. Assume by a contradiction that either n1 ≥ 4 or n2 ≥ 4 holds. Without loss of

generality, we may suppose that n1 ≥ 4 and n2 = 3. Let Cn1 = v01v11u1u2 · · ·ulv12(=
ul+1)v01 and Cn1 = v01v11v13v01. Then we can conclude that if B contains hanging trees,

then there is at least one vertex of v01, v11 and v12 appending a hanging tree. Since if

not, there exists a hanging tree on v13 (say). We take an edge urur+1 ∈ Cn1 such that

ur, ur+1 ̸= v13 and ur+1v13 /∈ E(B), where 1 ≤ r ≤ l. From Lemma 2.11 it follows that

xur > xv13 . Since v13 ≺ ur, we derive that xv13 ≥ xur , a contradiction. Thus, we may

suppose that there exists a hanging tree on v11 without loss of generality. Then one can

find an edge w1w2 of a cycle such that w1, w2 ̸= v11 and w1v11 /∈ E(B). So, xw2 > xv11 by

Lemma 2.11, which leads to a contradiction. Consequently, the conclusion holds.

From Claim 2, we know that B contains θ(2, 3, 3) as its induced subgraph, where

dθ(2,3,3)(v01) = dθ(2,3,3)(v11) = 3.

Claim 3. v12, v13 ∈ θ(2, 3, 3).

Proof. Suppose on the contrary that there is at least one vertex of v12 and v13, say v13,

such that v13 /∈ θ(2, 3, 3). Then there exists a hanging tree on v13 in B due to d(v13) ≥ 2.

We can take an edge v11v1j (4 ≤ j ≤ d1) in E(θ(2, 3, 3)) such that v11v13 /∈ E(B), then

xv1j > xv13 by Lemma 2.11, which is not possible.

According to Claim 3, we have dθ(2,3,3)(v12) = dθ(2,3,3)(v13) = 2, which means that

v11v12, v11v13 ∈ E(θ(2, 3, 3)). Thus, combining with the BFS-ordering, we have that B

must be isomorphic to B∗
π, as required.
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Proof of Theorem 1.3. Let B be a bicyclic graph that has the largest Aα-spectral radius

in Bπ. Together with Lemmas 3.3, 3.4, 3.5 and 3.6, the proof therefore follows.
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