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New Combinatorial Interpretations for the Partitions into Odd Parts

Greater than One

Cristina Ballantine* and Mircea Merca

Abstract. In this paper, we consider Q1(n) to be the number of partitions of n into

odd parts greater than one and provide new combinatorial interpretations for Q1(n).

New linear relations involving Euler’s partition function p(n) and the overpartition

function p(n) are obtained in this context.

1. Introduction

A partition of a positive integer n is a sequence λ = (λ1, λ2, . . . , λk) of positive integers

whose sum is n. The order of the summands is unimportant when writing the partitions of

n, but for consistency, a partition of n will be written with the summands in nonincreasing

order [1], i.e.,

λ1 + λ2 + · · ·+ λk = n and λ1 ≥ λ2 ≥ · · · ≥ λk.

As usual, we denote by p(n) the number of integer partitions of n. Also we denote by Q(n)

the function which enumerates the partitions of n into odd parts. We have the generating

functions
∞∑
n=0

p(n)qn =
1

(q; q)∞
and

∞∑
n=0

Q(n)qn =
1

(q; q2)∞
.

Here and throughout the paper, we use the following customary q-series notation:

(a; q)n =

1 for n = 0,

(1− a)(1− aq) · · · (1− aqn−1) for n > 0
and (a; q)∞ = lim

n→∞
(a; q)n.

Moreover, we use the short notation

(a1, a2, . . . , an; q)∞ = (a1; q)∞(a2; q)∞ · · · (an; q)∞.

Because the infinite product (a; q)∞ diverges when a ̸= 0 and |q| ≥ 1, whenever (a; q)∞

appears in a formula, we shall assume |q| < 1.
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Definition 1.1. Let n be a nonnegative integer. We define Q1(n) to be the number of

the partitions of n into odd parts greater than 1.

As we can see in [12, A087897], the sequence Q1(n) can be interpreted in many other

ways. In this paper, we shall obtain new combinatorial interpretations for this sequence.

Definition 1.2. For a nonnegative integer n, we define

(i) a(n) to be the number of the partitions λ of n such that ⌈(λ1 − 1)/2⌉ is a part. If

λ1 = 1, then we consider 0 to be a part of λ.

(ii) ae(n) to be the number of the partitions λ of n such that λ1/2 is a part.

(iii) ao(n) to be the number of the partitions λ of n such that (λ1 − 1)/2 is a part. If

λ1 = 1, then we consider 0 to be a part of λ.

It is clear that a(n) = ae(n)+ao(n). For example, the partitions λ of 7 such that λ1/2

is a part are

(4, 2, 1), (2, 2, 2, 1), (2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1),

while the partitions λ of 7 such that (λ1 − 1)/2 is a part are

(5, 2), (3, 3, 1), (3, 2, 1, 1), (3, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1).

We see that ae(7) = 4, ao(7) = 5 and a(7) = 9.

The following result provides new combinatorial interpretations for the number of the

partitions of n into odd parts greater than 1.

Theorem 1.3. Let n be a nonnegative integer. Then

(i) ae(n) = Q1(2n);

(ii) ao(n) = Q1(2n+ 1).

A famous theorem of Euler asserts that there are as many partitions of n into odd

parts as there are partitions into distinct parts, i.e., 1/(q; q2)∞ = (−q; q)∞. For a positive

integer ℓ > 1, a partition is called ℓ-regular if none of its parts is divisible by ℓ. Thus,

if bℓ(n) denotes the number of ℓ-regular partitions of n, then the generating function for

bℓ(n) is given by (qℓ; qℓ)∞/(q; q)∞.

Definition 1.4. Let k ∈ {1, 3}. For a nonnegative integer n, we define ck(n) to be the

number of 8-regular partitions of n with two colors, red and blue, such that the parts

colored red are distinct and ≡ ±k (mod 8).

Definition 1.5. For a nonnegative integer n, we define
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(i) c1,1(n) to be the number of 8-regular partitions of n with two colors, red and blue,

such that the parts colored red are distinct and ≡ ±1 (mod 8) and there is at least

one blue 1.

(ii) c1,2(n) to be the number of 8-regular partitions of n with two colors, red and blue,

such that the parts colored red are distinct and ≡ ±1 (mod 8) and there is no blue

1.

We then have the following identities involving ae(n), ao(n) and a(n).

Theorem 1.6. For any nonnegative integer n, we have

(i) ae(n) = c3(n)− c1,1(n);

(ii) ao(n) = c1(n)− c3(n);

(iii) a(n) = c1,2(n).

As a consequence of Theorem 1.6, we obtain the following generating functions for

ae(n), ao(n) and a(n).

Corollary 1.7. For |q| < 1, we have

(i)

∞∑
n=0

ae(n)q
n =

(−q3,−q5, q8; q8)∞
(q; q)∞

− q
(−q,−q7, q8; q8)∞

(q; q)∞
;

(ii)
∞∑
n=0

ao(n)q
n =

(−q,−q7, q8; q8)∞
(q; q)∞

− (−q3,−q5, q8; q8)∞
(q; q)∞

;

(iii)
∞∑
n=0

a(n)qn =
(−q,−q7, q8; q8)∞

(q2; q)∞
.

Considering that

Q1(n) = Q(n)−Q(n− 1),

by Theorem 1.3 we deduce the following combinatorial interpretation

a(n) = Q(2n+ 1)−Q(2n− 1).

Recall that the numbers k(3k+ 1)/2 for k ∈ Z are called generalized pentagonal numbers

and that m is a generalized pentagonal number if and only if 24m + 1 is a square. It is

well known that Q(n) ≡ 1 (mod 2) if and only if n is a generalized pentagonal number.

Then, from Corollary 1.7 we easily deduce the following q-series congruences.

Corollary 1.8. (i)
(−q,−q7, q8; q8)∞

(q2; q)∞
≡

∑
48n+25 square

(qn + qn+1) (mod 2);
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(ii)
(−q3,−q5, q8; q8)∞

(q2; q)∞
≡

∑
48n+1 square

(qn + qn+1) (mod 2).

Furthermore, by Theorem 1.6 we deduce the following identities involving the functions

ae(n), ao(n), and a(n) and the partition function p(n).

Theorem 1.9. Let n be a nonnegative integer. Then

(i) ae(n) =

∞∑
k=−∞

(−1)kp(n− k2 + ⌊k/2⌋);

(ii) ao(n) =

∞∑
k=−∞

(−1)k−1p(n− k2 + ⌈k/2⌉);

(iii) a(n) =
∞∑

k=−∞
p
(
n− k(4k + 3)

)
− p
(
n− 1− k(4k + 3)

)
.

The numbers k(4k + 3) for k ∈ Z are called generalized decagonal numbers. From

Theorem 1.9(iii) we easily deduce the following decomposition for the number of partitions

of 2n+ 1 into distinct parts:

(1.1) Q(2n+ 1) =

∞∑
k=−∞

p
(
n− k(4k + 3)

)
.

This is not a new result. Another proof of this identity can be seen in [11]. The combina-

torial proof of Theorem 1.9(iii) provides a combinatorial proof of (1.1).

The properties of the partition function p(n), such as its asymptotic behavior and its

parity, have been an object of study for a long time. Recently, Ballantine and Merca [4]

made a conjecture on when ∑
ak+1 square

p(n− k)

is odd, which was proved by Hong and Zhang [9]. Taking into account that m is a

generalized decagonal number if and only if 16m + 9 is a square, we easily deduce the

following result.

Corollary 1.10. Let n be a nonnegative integer. Then∑
16k+9 square

p(n− k) ≡ 1 (mod 2) ⇐⇒ 48n+ 25 is a square.

Linear inequalities involving Euler’s partition function p(n) have been the subject of

recent studies [2, 3, 10]. Related to Theorem 1.9, we remark that there is a substantial

amount of numerical evidence to conjecture the following inequalities.
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Conjecture 1.11. Let n be a nonnegative integer.

(i) For k > 1,

(−1)k

ae(n)− k∑
j=1−k

(−1)jp(n− j2 + ⌊j/2⌋)

 ≥ 0

with strict inequality if n ≥ k2 + ⌈k/2⌉.

(ii) For k > 0,

(−1)k−1

ao(n) + k∑
j=1−k

(−1)jp(n− j2 + ⌈j/2⌉)

 ≥ 0

with strict inequality if n ≥ k2 + ⌊k/2⌋.

From an asymptotic point of view, the case k even of Conjecture 1.11(i) and the case

k odd of Conjecture 1.11(ii) seem to be trivial. On the other hand, the other cases lead to

interesting inequalities. For example, some special cases of Conjecture 1.11(i) for k odd

are

p(n)− p(n− 1) ≥ ae(n),

p(n)− p(n− 1)− p(n− 2) + p(n− 3) + p(n− 5)− p(n− 8) ≥ ae(n),

p(n)− p(n− 1)− p(n− 2) + p(n− 3) + p(n− 5)− p(n− 8)

− p(n− 11) + p(n− 14) + p(n− 18)− p(n− 23) ≥ ae(n).

Similarly, some special cases of Conjecture 1.11(ii) for k even are

p(n− 1)− p(n− 3) ≥ ao(n),

p(n− 1)− p(n− 3)− p(n− 5) + p(n− 7) + p(n− 10)− p(n− 14) ≥ ao(n),

p(n− 1)− p(n− 3)− p(n− 5) + p(n− 7) + p(n− 10)− p(n− 14)

− p(n− 18) + p(n− 22) + p(n− 27)− p(n− 33) ≥ ao(n).

In [2], while investigating the truncated Euler’s pentagonal number theorem, Andrews

and Merca introduced the partition functionMk(n), which counts the number of partitions

of n where k is the least positive integer that is not a part and there are more parts > k

than there are parts < k. For instance, we have M3(18) = 3 because the three partitions

in question are

(5, 5, 5, 2, 1), (6, 5, 4, 2, 1), (7, 4, 4, 2, 1).

Using the notations

δe(n) =

(−1)k if n = k2 − ⌊k/2⌋, k ∈ Z,

0 otherwise
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and

δo(n) =

(−1)k if n = k2 − ⌈k/2⌉, k ∈ Z,

0 otherwise,

we obtain the following result.

Theorem 1.12. Let n be a nonnegative integer. For k > 0, we have

(i) (−1)k−1

 k∑
j=1−k

(−1)jae
(
n− j(3j − 1)/2

)
− δe(n)

 =

∞∑
j=−∞

(−1)jMk(n−j2+⌊j/2⌋);

(ii) (−1)k−1

 k∑
j=1−k

(−1)jao
(
n− j(3j − 1)/2

)
+ δo(n)

 =

∞∑
j=−∞

(−1)j+1Mk(n−j2+⌈j/2⌉).

The limiting case k → ∞ of this theorem reads as follows.

Corollary 1.13. For n ≥ 0,

(i)
∞∑

j=−∞
(−1)jae

(
n− j(3j − 1)/2

)
= δe(n);

(ii)
∞∑

j=−∞
(−1)jao

(
n− j(3j − 1)/2

)
= δo(n).

This corollary states that the partition function p(n) and the sequences ae(n) and

ao(n) share a common linear homogeneous recurrence relation for most values of n.

Related to Theorem 1.12, we remark that there is a substantial amount of numerical

evidence to state the following conjecture.

Conjecture 1.14. Let n be a nonnegative integer. For k > 0, we have

(i) (−1)k−1

 k∑
j=1−k

(−1)jae
(
n− j(3j − 1)/2

)
− δe(n)

 ≥ 0;

(ii) (−1)k−1

 k∑
j=1−k

(−1)jao
(
n− j(3j − 1)/2

)
+ δo(n)

 ≥ 0.

The remainder of the paper is organized as follows. In Section 2 we introduce some

notation and preliminaries on partitions. In Sections 3–5, we prove Theorems 1.3, 1.6

and 1.9, respectively. For each theorem we give both analytic and combinatorial proofs.

In Section 6, we prove Theorem 1.12 using generating functions. A combinatorial proof

of this theorem would be welcome. In Section 7, we consider a classical theta identity

of Gauss and two series that involve the half generalized pentagonal numbers in order to

obtain new relations involving the partition functions a(n), ae(n) and ao(n).
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2. Preliminaries

In this section, we give some necessary background and notation concerning integer par-

titions, which were introduced in Section 1.

If λ = (λ1, λ2, . . . , λj) with λ1 ≥ λ2 ≥ · · · ≥ λj > 0 is a partition and
∑j

i=1 λi = n we

refer to n as the size of λ and to the integers λi as the parts of λ. The length of λ, denoted

by ℓ(λ), is the number of parts of λ. We write |λ| for the size of λ and λ ⊢ n to mean

that λ is a partition of size n. We use the convention that λk = 0 for all k > ℓ(λ). When

convenient we will also use the exponential notation for parts in a partition: the exponent

of a part is the multiplicity of the part in the partition. This notation will be used mostly

for rectangular partitions. We write (ab) for the partition consisting of b parts equal to a.

The Ferrers diagram of a partition λ = (λ1, λ2, . . . , λj) is an array of left justified

boxes such that the ith row from the top contains λi boxes. We abuse notation and

use λ to mean a partition or its Ferrers diagram. For example, the Ferrers diagram of

λ = (5, 2, 2, 1) is

Given a partition λ, its conjugate λ′ is the partition for which the rows in its Ferrers

diagram are precisely the columns in the Ferrers diagram of λ. For example, the conjugate

of λ = (5, 2, 2, 1) is λ′ = (4, 3, 1, 1, 1).

Given two partitions λ = (λ1, λ2, . . . , λj) and µ = (µ1, µ2, . . . , µk), by their sum we

mean the partition λ + µ = (λ1 + µ1, λ2 + µ2, . . . , λℓ + µℓ), where ℓ = max{j, k}. The

union of λ and µ is the partition λ ∪ µ consisting of all the parts in λ and µ each with

multiplicity equal to the sum of its multiplicities in λ and µ. For example, if λ = (5, 2, 2, 1)

and µ = (6, 2), then λ+ µ = (11, 4, 2, 1) and λ ∪ µ = (6, 5, 2, 2, 2, 1).

Given a positive integer b and an integer 0 ≤ a < b, we denote by ℓa,b(λ) the number

of parts ≡ a (mod b) in λ.

For more details on partitions, we refer the reader to [1].

3. Proof of Theorem 1.3

3.1. Analytic proof

In order to prove theorem, we consider Euler’s identity (cf. [8, Eq. (18)])

∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
, |z| < 1
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and the generating function for Q1(n) which is given by

∞∑
n=0

Q1(n)q
n =

1

(q3; q2)∞
.

We can write
∞∑
n=0

Q1(2n)q
n =

1

2

(
1

(q3/2; q)∞
+

1

(−q3/2; q)∞

)

=
1

2

( ∞∑
n=0

q3n/2

(q; q)n
+

∞∑
n=0

(−1)nq3n/2

(q; q)n

)
=

∞∑
n=0

q2n+n

(q; q)2n
=

∞∑
n=0

ae(n)q
n

and
∞∑
n=0

Q1(2n+ 1)qn =
1

2q1/2

(
1

(q3/2; q)∞
− 1

(−q3/2; q)∞

)

=
1

2q1/2

( ∞∑
n=0

q3n/2

(q; q)n
−

∞∑
n=0

(−1)nq3n/2

(q; q)n

)

=

∞∑
n=0

q(2n+1)+n

(q; q)2n+1
=

∞∑
n=0

ao(n)q
n.

This concludes the analytic proof.

3.2. Combinatorial proof

Let Ae(n) (respectively Ao(n)) be the set of partitions λ of n such that λ1/2 (respectively

(λ1− 1)/2) is a part of λ and let Q1(n) be the set of partitions of n into odd parts greater

than 1. Note that, for every partition λ ∈ Q1(n) we have ℓ(λ) ≡ n (mod 2).

To prove the first identity combinatorially, we create a bijection φ : Ae(n) → Q1(n) as

follows. Start with λ ∈ Ae(n) with λ1 = 2m and such that m is a part of λ. Let µ be the

partition obtained from λ by removing one part equal to 2m and one part equal to m. If

µ′ is the conjugate of µ, then µ′ has at most 2m parts. Let η be the partition obtained by

doubling each part of µ′. Finally, we define φ(λ) = η+ (32m) ∈ Q1(2n), i.e., the partition

obtained by adding 3 to each part of η, where η is padded with parts equal to 0 to form

a partition with 2m parts.

To see that φ is invertible, start with a partition ζ ∈ Q1(2n) with 2m parts. Since all

parts are at least 3, we subtract 3 from each part to obtain a partition ξ with at most 2m

parts, all even. Divide each part of ξ by 2 and take its conjugate to obtain a partition ρ

with parts at most 2m. Finally, insert a part equal to 2m and a part equal to m into ρ to

obtain a partition λ ∈ Ae(n). Then, φ(λ) = ζ.

The combinatorial proof of the second identity is nearly identical. To define the trans-

formation from Ao(n) to Q1(2n + 1) start with λ ∈ Ae(n) with λ1 = 2m + 1 and such
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that m is a part of λ, remove parts 2m+ 1 and m, conjugate the obtained partition and

double each of its parts. Then add the partition (32m+1) to the obtained partition.

4. Proof of Theorem 1.6

4.1. Analytic proof

Elementary techniques in the theory of partitions show that the generating functions for

the sequences c1(n), c3(n), c1,1(n) and c1,2(n) are

∞∑
n=0

c1(n)q
n =

(−q,−q7, q8; q8)∞
(q; q)∞

,

∞∑
n=0

c3(n)q
n =

(−q3,−q5, q8; q8)∞
(q; q)∞

,

∞∑
n=0

c1,1(n)q
n = q

(−q,−q7, q8; q8)∞
(q; q)∞

,

∞∑
n=0

c1,2(n)q
n =

(−q,−q7, q8; q8)∞
(q2; q)∞

.

The Jacobi triple product identity (cf. [8, Eq. (1.6.1)]) states that

(4.1) (z, q/z, q; q)∞ =

∞∑
n=−∞

(−z)nqn(n−1)/2.

Letting q → q2 and setting z = ±√
q in (4.1), we obtain

(4.2) (±√
q,±q√q, q2; q2)∞ =

∞∑
n=−∞

(∓√
q)nqn(n−1).

Letting q → q8 and successively setting z = −q3, z = −q in (4.1), we obtain

(4.3) (−q3,−q5, q8; q8)∞ =

∞∑
n=−∞

q4n
2−n

and

(4.4) (−q,−q7, q8; q8)∞ =
∞∑

n=−∞
q4n

2−3n.

Thus, we have

∞∑
n=0

ae(n)q
n =

∞∑
n=0

(Q(2n)−Q(2n− 1))qn (by Theorem 1.3(i))
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=
1

2

(
1

(
√
q; q)∞

+
1

(−√
q; q)∞

)
−

√
q

2

(
1

(
√
q; q)∞

− 1

(−√
q; q)∞

)
=

(
√
q; q)∞ + (−√

q; q)∞

2(q; q2)∞
+
√
q
(
√
q; q)∞ − (−√

q; q)∞

2(q; q2)∞

=
(
√
q, q

√
q, q2; q2)∞ + (−√

q,−q√q, q2; q2)∞
2(q; q)∞

+
√
q
(
√
q, q

√
q, q2; q2)∞ − (−√

q,−q√q, q2; q2)∞
2(q; q)∞

=
1

2(q; q)∞

( ∞∑
n=−∞

(−√
q)nqn(n−1) +

∞∑
n=−∞

(
√
q)nqn(n−1)

)

+

√
q

2(q; q)∞

( ∞∑
n=−∞

(−√
q)nqn(n−1) −

∞∑
n=−∞

(
√
q)nqn(n−1)

)
(by (4.2))

=
1

(q; q)∞

∞∑
n=−∞

q4n
2−n − q

(q; q)∞

∞∑
n=−∞

q4n
2+3n

=
(−q3,−q5, q8; q8)∞

(q; q)∞
− q

(−q,−q7, q8; q8)∞
(q; q)∞

(by (4.3) and (4.4))

and

∞∑
n=0

ao(n)q
n =

∞∑
n=0

(Q(2n+ 1)−Q(2n))qn (by Theorem 1.3(ii))

=
1

2
√
q

(
1

(
√
q; q)∞

− 1

(−√
q; q)∞

)
− 1

2

(
1

(
√
q; q)∞

+
1

(−√
q; q)∞

)
=

1

(q; q)∞

∞∑
n=−∞

q4n
2+3n − 1

(q; q)∞

∞∑
n=−∞

q4n
2−n

=
(−q,−q7, q8; q8)∞

(q; q)∞
− (−q3,−q5, q8; q8)∞

(q; q)∞
.

This concludes the proof.

4.2. Combinatorial proof

First we introduce some useful notation. We denote by Q(n) the set of partitions on n

into odd parts.

For integers a, b with 0 ≤ a < b, we denote by Ua,b(n) the set of partitions of n in which

all parts are distinct and ≡ ±a (mod b), and by Bb(n) the set of b-regular partitions of n.

By the same notation with omitted n we mean the set of partitions of any size satisfying

the given properties. We denote by C1(n), respectively C3(n), the set of 8-regular partitions
of n with two colors, red and blue, such that the parts colored red form a partition in U1,8,
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respectively in U3,8. We denote by C1,1(n), respectively C1,2(n) be subset of partitions in

C1(n) such that there is at least one blue 1, respectively no blue 1.

A b-modular diagram of a partition λ is a Ferrers diagram in which the ith row consists

of ⌈λi/b⌉ boxes with the first box filled with λi − ⌈λi/b⌉ and the remaining boxes filled

with b. Note that elsewhere in the literature, in modular Ferrers diagrams, it is the last

box that is filled with the residue. For a positive integer b and a positive residue a modulo

b, we denote by δm(a, b) the b-modular staircase partition with residue a and length m,

i.e.,

δm(a, b) =
(
b(m− 1) + a, b(m− 2) + a, . . . , b+ a, a

)
if m ̸= 0, and δ0(a) := ∅. We have |δm(a, b)| = bm(m− 1)/2 +ma.

The injection χ : Q(n − 1) → Q(n) defined by χ(λ) = λ ∪ (1) shows combinatorially

that

(4.5) Q1(n) = Q(n)−Q(n− 1).

In [13], Yee gave an elegant description of Wright’s bijection for proving the Jacobi

triple product identity. We denote Yee’s bijection by ψa,b. For positive integers a, b with

0 < a < b, the mapping ψa,b is a bijection from Ua,b(n) to the set

{
(δm(x, b), ρ) | x ∈ {a, b− a}, ρ ∈ U0,b and |δm(x, b)|+ |ρ| = n

}
.

Thus, the image of ψa,b consists of pairs of partitions (of sizes adding up to n) such

that the first partition is a b-modular staircase with residue a or b − a and all parts

of the second partition are divisible by b. Either partition in the pair may be empty.

Moreover, if λ ∈ Ua,b(n), and ℓa,b(λ) ≥ ℓb−a,b(λ), then the staircase δm(x, b) in ψa,b(λ) has

m = ℓa,b(λ)− ℓb−a,b(λ) and x = a. Otherwise, m = ℓb−a,b(λ)− ℓa,b(λ) and x = b− a.

Next, we create a bijection f : Q(2n) → C3(n) as follows. Start with µ ∈ Q(2n). Then

µ can be written uniquely as µ = µ1 ∪ µ2, where µ1 has distinct parts and each part in

µ2 has even multiplicity. Here, µ1 consists of one copy of each part of µ that occurs with

odd multiplicity. Clearly ℓ(µ1) is even. Since µ1 ∈ U1,4, we have ψ1,4(µ
1) = (δm(x, 4), ρ)

with m even and x ∈ {1, 3}. We transform µ2, δm(x, 4), ρ as follows.

(I) We map µ2 to µ21/2, the partitions consisting of the parts of µ2, each with half its

multiplicity in µ2. All parts in µ2 are odd.

(II) We map ρ to ρ1/2, the partition whose parts are the parts of ρ divided by 2. Since

ρ ∈ U0,4, all parts of ρ1/2 are even.
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(III) Letm = 2k. We map δ2k(x, 4) to δk(x+2, 8). Since x ∈ {1, 3}, we have x+2 ∈ {3, 5}.
Note that

|δk(x+ 2, 8)| = 4k(k − 1) + (x+ 2)k =
1

2
(2(2k)(2k − 1) + x(2k)) =

1

2
|δ2k(x, 4)|.

Then, ρ1/2 ∪ µ21/2 ∪ δk(x+ 2, 8) ⊢ n. We write ρ1/2 ∪ µ21/2 := ζ1/2 ∪ γ1/2, where ζ1/2 is the

partition consisting of the parts of ρ1/2 ∪ µ21/2 divisible by 8. Then γ1/2 ∈ B8.

We define

f(µ) :=
(
ψ−1
x+2,8(δk(x+ 2, 8), ζ1/2), γ1/2

)
with ψ−1

x+2,8(δk(x+ 2, 8), ζ1/2) ∈ Ux+2,8 colored red and γ1/2 colored blue.

The transformation above is clearly invertible.

We create a bijection g : Q(2n+1) → C1(n) by following the same steps as for f with a

slight modification in (III). First note that in this case ℓ(µ1) is odd. Then, in (III) above

we let m = 2k + 1 for some k ≥ 0. We map δ2k+1(1, 4) to δk(7, 8) and we map δ2k+1(3, 4)

to δk+1(1, 8). We have

|δk(7, 8)| =
1

2
(|δ2k+1(1, 4)| − 1) and |δk+1(1, 8)| =

1

2
(|δ2k+1(3, 4)| − 1).

Finally, we create a bijection h : Q(2n − 1) → C1,1(n) by starting with a partition

µ ∈ Q(2n− 1), map it to g(µ) ∈ C1(n− 1), and then we insert a part equal to 1 into the

8-regular partition γ1/2.

Using the combinatorial proofs of Theorem 1.3 and identity (4.5) together with the

bijections f , g, and h we obtain combinatorial proofs of (i) and (ii).

To prove (iii) combinatorially, we create a bijection ι : C1,2(n) → Q1(2n)∪Q1(2n+1).

Then, we compose with the bijections in Theorem 1.3 to complete the proof.

Let λ be a colored partition in C1,2(n) and denote by λr, respectively λb, the partition

whose parts are the red, respectively blue parts of λ. Thus, λb has no part equal to 1.

Since λr ∈ U1,8, we have ψ1,8(λ
r) = (δk(x, 8), ρ) with x ∈ {1, 7} and ρ ∈ U0,8. Reversing

the transformation in the definition of the bijection g above, we map δk(x, 8) to δm(y, 4),

y ∈ {1, 3} as follows. If x = 1, then m = 2k − 1 and y = 3, and if x = 7, then m = 2k + 1

and y = 1. We have |δm(y, 4)| = 2|δk(x, 8)| + 1. Next, in the partition λb ∪ ρ we double

the size of each even part and we double the multiplicity of each odd part to obtain a

partition η = ηe∪ηo, where ηe, respectively ηo, consists of the even, respectively odd parts

of η. Thus ηe ∈ U0,4 and all parts in ηo are odd, greater than 1 and have even multiplicity.

Then, ψ−1
1,4(δm(y, 4), ηe) is a partition with distinct odd parts. If this partition contains 1

as a part, we remove it, else we leave this partition unchanged. Denote by ε the obtained

partition into distinct odd parts greater than 1 and let ι(λ) := ε∪ηo ∈ Q1(2n)∪Q1(2n+1).

Since all steps above can be reversed, ι is a bijection.
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5. Proof of Theorem 1.9

5.1. Analytic proof

Considering Theorem 1.6 and (4.3) and (4.4), we can write

∞∑
n=0

ae(n)q
n =

1

(q; q)∞

( ∞∑
n=−∞

q4n
2−n −

∞∑
n=−∞

q4n
2−3n+1

)

=

( ∞∑
n=0

p(n)qn

)( ∞∑
n=−∞

(−1)nqn
2−⌊n/2⌋

)

and

∞∑
n=0

ao(n)q
n =

1

(q; q)∞

( ∞∑
n=−∞

q4n
2−3n −

∞∑
n=−∞

q4n
2−n

)

=

( ∞∑
n=0

p(n)qn

)( ∞∑
n=−∞

(−1)n+1qn
2−⌈n/2⌉

)
.

The first two assertions of Theorem 1.9 now follow by comparing coefficients of qn on

both sides of these identities. The next assertion follows easily considering that a(n) =

ae(n) + ao(n).

5.2. Combinatorial proof

The combinatorial proof uses ideas from the combinatorial proof of Theorem 1.6. We use

the notation in that proof.

We obtain a bijection from Q(2n) to the set{
(4k2 − k, λ) | k ∈ Z, λ ⊢ n− (4k2 − k)

}
by mapping µ ∈ Q(2n), to (

4k2 − k, ρ1/2 ∪ µ21/2
)
,

where 2k = ℓ1,4(µ
1)− ℓ3,4(µ

1).

We can obtain similar bijections from Q(2n− 1) to{
(4k2 + 3k + 1, λ) | k ∈ Z, λ ⊢ n− (4k2 + 3k + 1)

}
and from Q(2n+ 1) to{

(4k2 + 3k, λ) | k ∈ Z, λ ⊢ n− (4k2 + 3k)
}
,

where in both cases 2k + 1 = ℓ1,4(µ
1)− ℓ3,4(µ

1).
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To complete the proof, we combine these bijections with the combinatorial proofs of

Theorem 1.3 and (4.5) and the observation that

j2−⌊j/2⌋ =

4k2 − k if j = 2k,

4k2 + 3k + 1 if j = 2k + 1
and j2−⌈j/2⌉ =

4k2 − k if j = 2k,

4k2 + 3k if j = 2k + 1.

6. Proof of Theorem 1.12

In [2], Andrews and Merca considered Euler’s pentagonal number theorem

(q; q)∞ =

∞∑
n=−∞

(−1)nqn(3n−1)/2,

and proved the following truncated form: For any k ≥ 1,

(6.1)
(−1)k−1

(q; q)∞

k∑
n=1−k

(−1)nqn(3n−1)/2 = (−1)k−1 +
∞∑
n=k

q(
k
2)+(k+1)n

(q; q)n

[
n− 1

k − 1

]
,

where [
n

k

]
=


(q; q)n

(q; q)k(q; q)n−k
if 0 ≤ k ≤ n,

0 otherwise.

We note that the series on the right hand side of (6.1) is the generating function forMk(n),

i.e.,
∞∑
n=0

Mk(n)q
n =

∞∑
n=k

q(
k
2)+(k+1)n

(q; q)n

[
n− 1

k − 1

]
.

Multiplying both sides of (6.1) by

(−q3,−q5, q8; q8)∞ − q(−q,−q7, q8; q8)∞ =
∞∑

n=−∞
(−1)nqn

2−⌊n/2⌋,

we obtain

(−1)k−1

(( ∞∑
n=0

ae(n)q
n

)(
k∑

n=1−k

(−1)nqn(3n−1)/2

)
−

∞∑
n=−∞

(−1)nqn
2−⌊n/2⌋

)

=

( ∞∑
n=−∞

(−1)nqn
2−⌊n/2⌋

)( ∞∑
n=0

Mk(n)q
n

)
.

The first identity of Theorem 1.12 follows easily considering Cauchy’s multiplication of

two power series.

In a similar way, multiplying both sides of (6.1) by

(−q,−q7, q8; q8)∞ − (−q3,−q7, q8; q8)∞ = −
∞∑

n=−∞
(−1)nqn

2−⌈n/2⌉,

we obtain the second identity of Theorem 1.12. We omit the details.
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7. A theta identity of Gauss

The following theta identity is often attributed to Gauss [1, p. 23, (2.2.12)]:

(7.1) 1 + 2

∞∑
n=1

(−1)nqn
2
=

(q; q)∞
(−q; q)∞

.

In this section, we use identity (7.1) in order to obtain new relations involving the partition

functions ae(n) and ao(n). We define ϱe(n) and ϱo(n) by

∞∑
n=0

ϱe(n)q
n =

∞∑
n=−∞

(−1)nq⌈n(3n−1)/4⌉ and
∞∑
n=0

ϱo(n)q
n =

∞∑
n=−∞

(−1)n−1q⌊n(3n−1)/4⌋.

The numbers n(3n − 1)/4 for n ∈ Z are the half generalized pentagonal numbers. We

remark that ϱe(1) = −2 and all other coefficients ϱe(n), ϱo(n) are from the set {−1, 0, 1}.
The following result shows that our functions ae(n), ao(n) and a(n) share two common

linear recurrence relations for most values of n.

Theorem 7.1. Let n be a nonnegative integer. Then

(i) ae(n) + 2
∞∑
j=1

(−1)jae(n− j2) = ϱe(n);

(ii) ao(n) + 2
∞∑
j=1

(−1)jao(n− j2) = ϱo(n).

Proof. (i) Considering the generating function for ae(n) from Corollary 1.7(i), we have

(q; q)∞
(−q; q)∞

∞∑
n=0

ae(n)q
n

=
(−q3,−q5, q8; q8)∞

(−q; q)∞
− q

(−q,−q7, q8; q8)∞
(−q; q)∞

=
(q6, q10; q16)∞(q8; q8)∞(q; q2)∞

(q3, q5; q8)∞
− q

(q2, q14; q16)∞(q8; q8)∞(q; q2)∞
(q, q7; q8)∞

= (q6, q10; q16)∞(q, q7, q8; q8)∞ − q (q2, q14; q16)∞(q3, q5; q8)∞.

The Watson quintuple product identity [6] states that

(7.2) (q/z2, qz2; q2)∞(z, q/z, q; q)∞ =

∞∑
n=−∞

qn(3n+1)/2(z−3n − z3n+1).

Letting q → q8 and successively setting z = q, z = q3 in (7.2), we obtain

(q6, q10; q16)∞(q, q7, q8; q8)∞ =

∞∑
n=−∞

q4n(3n+1)(q−3n − q3n+1)

=
∞∑

n=−∞

(
qG(4n)/2 − qG(4n+3)/2

)
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and

q (q2, q14; q16)∞(q3, q5, q8; q8)∞ =
∞∑

n=−∞
q4n(3n+1)+1(q−9n − q9n+3)

=
∞∑

n=−∞

(
qG(4n+1)/2+1/2 − qG(4n+2)/2+1/2

)
,

where G(n) = n(3n− 1)/2 is the nth generalized pentagonal number. Thus, we obtain

(q; q)∞
(−q; q)∞

∞∑
n=0

ae(n)q
n =

∞∑
n=−∞

(−1)nq⌈n(3n−1)/4⌉.

On the other hand, we have

(q; q)∞
(−q; q)∞

∞∑
n=0

ae(n)q
n =

(
1 + 2

∞∑
n=1

(−1)nqn
2

)( ∞∑
n=0

ae(n)q
n

)

=

∞∑
n=0

(
ae(n) + 2

∞∑
k=1

(−1)kae(n− k2)

)
qn

and the first assertion of the theorem is proved.

(ii) The proof of the second identity is quite similar, so we omit the details.

Next, we remark that the reciprocal of the infinite product in (7.1) is the generating

function for p(n), the number of overpartitions of n (cf. [7]):

∞∑
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

.

Overpartitions are ordinary partitions with the added condition that the first appearance

of any part may be overlined or not. Thus, there are eight overpartitions of 3:

(3), (3, 2, 1), (2, 1), (2, 1), (2, 1), (1, 1, 1), (1, 1, 1).

The functions ae(n), ao(n) and a(n) are closely related to the overpartition function p(n)

as seen in the next theorem.

Theorem 7.2. Let n be a nonnegative integer. Then

(i) ae(n) =

∞∑
k=−∞

(−1)kp
(
n− ⌈k(3k − 1)/4⌉

)
;

(ii) ao(n) =

∞∑
k=−∞

(−1)k−1p
(
n− ⌊k(3k − 1)/4⌋

)
;
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(iii) a(n) =

∞∑
k=−∞

(−1)k
(
p
(
n− ⌈k(3k − 1)/4⌉

)
− p
(
n− ⌊k(3k − 1)/4⌋

))
.

Proof. The proof follows easily considering that

∞∑
n=0

ae(n)q
n =

(−q; q)∞
(q; q)∞

∞∑
n=−∞

(−1)nq⌈n(3n−1)/4⌉

=

( ∞∑
n=0

p(n)qn

)( ∞∑
n=−∞

(−1)nq⌈n(3n−1)/4⌉

)

and

∞∑
n=0

ao(n)q
n =

(−q; q)∞
(q; q)∞

∞∑
n=−∞

(−1)n−1q⌊n(3n−1)/4⌋

=

( ∞∑
n=0

p(n)qn

)( ∞∑
n=−∞

(−1)n−1q⌊n(3n−1)/4⌋

)
.

In [2], Andrews and Merca introduced the overpartition functionMk(n), which counts

the number of overpartitions of n in which the first part larger than k appears at least

k+1 time. For example, M2(12) = 16, and the partitions in question are (4, 4, 4), (4, 4, 4),

(3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 2, 1), (3, 3, 3, 2, 1), (3, 3, 3, 2, 1), (3, 3, 3, 2, 1), (3, 3, 3, 2, 1),

(3, 3, 3, 2, 1), (3, 3, 3, 2, 1), (3, 3, 3, 2, 1), (3, 3, 3, 1, 1, 1), (3, 3, 3, 1, 1, 1), (3, 3, 3, 1, 1, 1), (3, 3,

3, 1, 1, 1). We remark that there is a more general result where Theorem 7.1 is the limiting

case k → ∞.

Theorem 7.3. For n, k > 0,

(i) (−1)k

ae(n) + 2
k∑

j=1

(−1)jae(n− j2)− ϱe(n)

 =
∞∑

j=−∞
(−1)jMk

(
n−⌈j(3j−1)/4⌉

)
;

(ii) (−1)k

ao(n) + 2

k∑
j=1

(−1)jao(n− j2)− ϱo(n)

 =
∞∑

j=−∞
(−1)j−1Mk

(
n−⌊j(3j−1)/4⌋

)
.

Proof. In [2], Andrews and Merca proved the following truncated form of (7.1): For any

k ≥ 1,

(−q; q)∞
(q; q)∞

1 + 2
k∑

j=1

(−1)jqj
2

− 1

= 2(−1)k
(−q; q)k
(q; q)k

∞∑
j=0

q(k+1)(k+j+1)(−qk+j+2; q)∞
(1− qk+j+1)(qk+j+2; q)∞

.

(7.3)
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The series on the right hand side of (7.3) is the generating function for Mk(n), i.e.,
∞∑
n=0

Mk(n)q
n = 2

(−q; q)k
(q; q)k

∞∑
j=0

q(k+1)(k+j+1)(−qk+j+2; q)∞
(1− qk+j+1)(qk+j+2; q)∞

.

Multiplying both sides of (7.3) by

(q; q)∞
(−q; q)∞

∞∑
n=0

ae(n)q
n =

∞∑
n=−∞

(−1)nq⌈n(3n−1)/4⌉,

we obtain ( ∞∑
n=0

ae(n)q
n

)1 + 2
k∑

j=1

(−1)jqj
2

−
∞∑

n=−∞
(−1)nq⌈n(3n−1)/4⌉

= (−1)k

( ∞∑
n=−∞

(−1)nq⌈n(3n−1)/4⌉

)( ∞∑
n=0

Mk(n)q
n

)
.

The first identity of theorem follows easily considering Cauchy’s multiplication of two

power series.

In a similar way, multiplying both sides of (7.3) by

(q; q)∞
(−q; q)∞

∞∑
n=0

ao(n)q
n =

∞∑
n=−∞

(−1)n−1q⌊n(3n−1)/4⌋,

we obtain the second identity. We omit the details.

Finally, we remark that there is a substantial amount of numerical evidence to state

the following conjectures related to Theorems 7.2 and 7.3.

Conjecture 7.4. Let n be a nonnegative integer. For k > 0, we have

(i) (−1)k

ae(n)− k∑
j=1−k

(−1)jp
(
n− ⌈j(3j − 1)/4⌉

) ≥ 0;

(ii) (−1)k−1

ao(n)− k∑
j=1−k

(−1)j−1p
(
n− ⌊j(3j − 1)/4⌋

) ≥ 0;

(iii) (−1)⌈k/2⌉

a(n)− k∑
j=1−k

(−1)j
(
p
(
n− ⌈j(3j − 1)/4⌉

)
− p
(
n− ⌊j(3j − 1)/4⌋

)) ≥ 0.

Conjecture 7.5. Let n be a nonnegative integer. For k > 0, we have

(i) (−1)k

ae(n) + 2

k∑
j=1

(−1)jae(n− j2)− ϱe(n)

 ≥ 0;

(ii) (−1)k

ao(n) + 2
k∑

j=1

(−1)jao(n− j2)− ϱo(n)

 ≥ 0.
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8. Concluding remarks

In this article we gave a new combinatorial interpretation for the function Q1(n) by intro-

ducing the functions ae(n), ao(n), and a(n) = ae(n) + ao(n). We studied the connection

between these functions and 8-regular partitions in two colors satisfying certain condi-

tions. We found connections between the respective functions ae(n), ao(n), and a(n) and

the partition function p(n), and we also gave a truncated pentagonal number theorem for

each of these functions. The generating functions for ae(n), ao(n), and a(n) allow us to

easily deduce an interesting identity

∞∑
n=0

q⌊3n/2⌋

(q; q)n
=

(−q,−q7, q8; q8)∞
(q2; q)∞

.

To conclude, we consider the function d(n) := ao(n) − ae(n), which has the following

generating function
∞∑
n=0

d(n)qn =
∞∑
n=0

(−1)n+1q⌊3n/2⌋

(q; q)n
.

First note that Q1(n) is also equal to the number of partitions of n into distinct parts

such that the first two parts differ by 1. To see this, recall that Q(n) is also the number

of partitions of n into distinct parts. We abuse notation and write Q(n) for the set of

distinct partitions of n. Then we have an injection τ : Q(n − 1) → Q(n) defined by

τ(λ1, λ2, . . . , λk) = (λ1+1, λ2, . . . , λk). Then Q1(n) = Q(n)−Q(n−1) = |Q(n)\ τ(Q(n−
1))| and Q(n) \ τ(Q(n − 1)) is the set of partitions of n into distinct parts such that the

first two parts differ by 1. We abuse notation and refer to this set as Q1(n).

We denote by Q2(n) the set of partitions λ of n into distinct parts greater than 1

such that λ1 − λ2 = λ2 − λ3 = 1, and set Q2(n) := |Q2(n)|. Then we have the following

theorem.

Theorem 8.1. For n ≥ 3 we have d(n) = Q2(2n+ 1).

Proof. To prove the theorem, we need to show that Q2(2n + 1) = Q1(2n + 1) − Q1(2n).

We will show the more general result that Q2(n) = Q1(n) − Q1(n − 1) for n ≥ 5. We

define an injection σ : Q1(n − 1) → Q1(n) as follows. Let λ ⊢ n − 1 be a partition into

distinct part such that λ1 − λ2 = 1. If 1 is not a part of λ, we define σ(λ) = λ ∪ (1).

If 1 is a part of λ, we define σ(λ) to be the partition obtained from λ by removing the

part equal to 1 and increasing each of λ1 and λ2 by 1. Clearly, this is an injection and

Q1(n) \ σ(Q1(n− 1)) = Q2(n).

It would be interesting to describe Q2 as a subset of partitions into odd parts greater

than 1.
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Finally, we remark that the proof of Theorem 8.1 implies that, starting with n = 4,

the sequence Q1(n) is non-decreasing. Thus, ae(n) ≤ ao(n) ≤ ae(n + 1) for n ≥ 2. This

also implies the function Q(n) is convex for n ≥ 4, i.e.,

2Q(n) ≤ Q(n− 1) +Q(n+ 1).

Of course, the convexity of Q(n) follows from the Bateman–Erdős Theorem [5] but the

argument above provides a very easy combinatorial proof.
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