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Novel Results on Persistence and Attractivity of Delayed Nicholson’s

Blowflies System with Patch Structure

Weiping Fan* and Jian Zhang

Abstract. This paper is concerned with the dynamic characteristics of a class of

Nicholson’s blowflies system with patch structure and multiple pairs of distinct time-

varying delays. We aim to find the influence of the distinct time-varying delays in the

same reproductive function on its asymptotic behavior. First, we derive the global

existence, positiveness and uniform persistence of solutions for the addressed system.

Then, by employing the theory of functional differential equations, the fluctuation

lemma and the technique of differential inequalities, we build up some new delay-

dependent criteria for the global attractivity of the positive equilibrium point vector,

which does not possess the same components. In addition, we exam the effectiveness

and feasibility of the theoretical achievements by some numerical simulations.

1. Introduction

In the real world, considering that logical self limiting control can occur at any stage of

the population life cycle, it is indispensable to introduce maturity delay and feedback

delay corresponding to maturity period and feedback time in the same time-dependent

reproductive function of population dynamics model, which are often different [7, 8]. In

particular, Berezansky and Braverman [1] established the following Nicholson’s blowflies

model with different mature delay and feedback delay:

(1.1) x′(t) = β(t)[−δx(t) + ρx(t− τ(t))e−hx(t−σ(t))],

which in the case β(t) ≡ 1 and τ(t) ≡ σ(t) is in accord with the classical scalar Nicholson’s

blowflies equation [2,24] and has been widely studied, including the existence, persistence,

oscillation, periodicity, almost periodicity and stability [2,5, 11,17,18,21,23,24,29,31]. It

should be noted that Berezansky and Braverman showed by examples in [1] that distinct

delays in the same reproductive function may lead to chaotic oscillation. In this case,

the feedback term ρx(t − τ(t))e−hx(t−σ(t)) is actually a binary function, which greatly
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improves the difficulty of studying the dynamics on the model, resulting in the almost

stagnation of the research on the model (1.1). So far, we only found that the authors

of [9,13,22,25] explored the stability of Nicholson’s blowflies (1.1) with different maturity

delay and feedback delay in the same reproductive function. Particularly, the authors in [9]

investigated a scalar Nicholson’s equation incorporating multiple pairs of time-varying

delays, and obtained several sufficient criterion for the permanence, local stability and

global attractivity of the positive equilibrium.

On the other hand, considering that living environment of many species is fragmented

in the process of reproduction, and the natural division of spatial regions is discrete (each

region is usually described as a patch), we naturally extend the model (1.1) to the following

Nicholson’s blowflies system with patch structure:

(1.2) x′i(t) = βi(t)

[
− δixi(t) +

n∑
j=1,j ̸=i

aijxj(t) +
m∑
j=1

ρijxi(t− τij(t))e
−hijxi(t−σij(t))

]
,

where t ≥ t0, i ∈ Λ := {1, 2, . . . , n}, xi describes the number of the density of the ith-

population at time t, aij (i ̸= j) is refer to the proportion of the population moving from

patch j to patch i at time t, δi designates the coefficient of instantaneous loss for class i

at time t (which integrates both the death proportion and the dispersal proportion of the

population in class i moving to the other classes), ρijxi(t−τij(t))e
−hijxi(t−σij(t)) represents

the reproductive function for class i at time t, ρij is the birth rate for the species, τij(t)

and σij(t) stand for maturity delay and feedback delay respectively. For more detailed

biological significance, one can refer to [14,30,33] and their references cited therein.

Introducing the change of variable

δi = δi − aii with aii < 0,

we have the equivalent expression of (1.2) as

(1.3) x′i(t) = βi(t)

[
− δixi(t) +

n∑
j=1

aijxj(t) +
m∑
j=1

ρijxi(t− τij(t))e
−hijxi(t−σij(t))

]
,

where δi > 0, ρij > 0, hij > 0, aij ≥ 0 (i ̸= j), βi, τij , σij : R → (0,+∞) (i ∈ Λ, j ∈ Ω :=

{1, 2, . . . ,m}) are bounded and continuous functions, and (aij)n×n is a cooperative and

irreducible matrix satisfying

(1.4)
n∑

j=1,j ̸=i

aij = −aii for all i ∈ Λ.

For the case of τij(t) ≡ σij(t) (i ∈ Λ, j ∈ Ω), the dynamic behavior for model (1.3) has

been extensively studied in recent years [3,4,10,15,16,19,20,32]. As pointed out in [6], the
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positive equilibrium point (N1, N2, . . . , Nn) with different components can be transformed

into the positive equilibrium point with the same components, i.e.,

(1.5) N1 = N2 = · · · = Nn = N∗.

This has been considered as fundamental for the obtained research in [4,19,20]. Obviously,

(1.5) is not consistent with the biological background in the considered system [3,10]. How-

ever, for the case of τij(t) ̸= σij(t), there are relatively few studies devoted to model (1.3),

we only find that the stability of its zero equilibrium has been discussed in [22, 33], and

few attempts have been made to reveal the asymptotic behavior of the positive equilib-

rium [30]. Thus, without adopting the technical conditions (1.4) and (1.5), the attractivity

analysis on the system (1.3) has not been involved, which needs further research.

Based on the above observations, we are committed to establish the global attractivity

conditions of the unique positive equilibrium point for the system (1.3) with τij(t) ̸= σij(t)

(i ∈ Λ, j ∈ Ω). In short, the contributions of this article can be summarized as below.

(1) With the help of some novel differential inequality techniques, we establish the global

positiveness and uniform persistence on the solutions of system (1.3); (2) Under certain

assumptions, we drive some new sufficient criteria guaranteeing the attractivity of the

positive equilibrium point of system (1.3) for the first time, which improve and generalize

some recent existing ones; (3) We carry out some numerical examples including comparison

analyses to validate the correctness and feasibility of the obtained theoretical results.

The remaining of this paper is systematized as below. The positiveness and uniform

persistence are presented in Section 2. In Section 3, we substantiate the global attrac-

tivity of the unique positive equilibrium point for the addressed system (1.3). Moreover,

numerical simulations in Section 4 indicate that our theoretical findings are correct, and

a concise conclusion is offered in Section 5.

2. Global existence, positiveness and uniform persistence

Throughout this paper, we label the collection of all n-dimensional real vectors by Rn

(R1 = R) and the set of all positive integers by N+. For a bounded real function ϕ, let

ϕH = sup
ϑ∈[H,+∞)

ϕ(ϑ), ϕ+ = sup
ϑ∈R

ϕ(ϑ), ϕ− = inf
ϑ∈R

ϕ(ϑ).

Denote

h = max
i∈Λ

max
j∈Ω

hij , rHi = max

{
max
j∈Ω

τHij ,max
j∈Ω

σH
ij

}
,

ri = max

{
max
j∈Ω

τ+ij ,max
j∈Ω

σ+
ij

}
, r = max

i∈Λ
{ri}.
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Furthermore, assume that δi > 0, ρij > 0, σij > 0, β−
i > 0, τij , σij , βi : R → (0,+∞)

(i ∈ Λ, j ∈ Ω) are bounded and continuous functions, A = (aij)n×n is a cooperative matrix

with aij ≥ 0 (i ̸= j), and

(2.1)
n∑

j=1,j ̸=i

aij ≤ −aii for all i ∈ Λ,

and there exists t̃0 ∈ [t0,+∞) such that

(2.2) σij(t) ≥ τij(t) for arbitrary t ∈ [t̃0,+∞), i ∈ Λ, j ∈ Ω.

Clearly, (2.1) is a weaker assumption than (1.4), and (2.2) suggests that the feedback delay

is not less than maturity delay.

Because we will prove the persistence of the system (1.3), it is not difficult by using

the argument method in the literatures [3, 10] to find a positive vector (N∗
1 , N

∗
2 , . . . , N

∗
n)

such that

(2.3) −δiN
∗
i +

n∑
j=1

aijN
∗
j +

m∑
j=1

ρijN
∗
i e

−hijN
∗
i = 0 for all i ∈ Λ,

which entails that (N∗
1 , N

∗
2 , . . . , N

∗
n) is a positive equilibrium point of model (1.3).

Let C =
∏n

i=1C([−ri, 0],R) be a Banach space accompanying the supremum norm

∥ · ∥, and C+ =
∏n

i=1C([−ri, 0], [0,+∞)). In addition, we label xt(t0, φ)(x(t; t0, φ)) as an

admissible solution of (1.3) involving the initial conditions:

(2.4) xt0 = φ, φ ∈ C+ and φi(0) > 0, i ∈ Λ,

and [t0, η(φ)) as the maximal right-interval of existence of xt(t0, φ).

We next give three key lemmas which will be used to prove our main results.

Lemma 2.1. x(t) = x(t; t0, φ) is positive on [t0,+∞).

Proof. According to Theorem 5.2.1 in [26, p. 81], one has xt(t0, φ) ∈ C+ for all t ∈
[t0, η(φ)). Thus, owing to (1.3) and (2.4), we drive

xi(t)

= φi(0)e
−

∫ t
t0
(δi−aii)βi(s) ds

+ e
−

∫ t
t0
(δi−aii)βi(s) ds

∫ t

t0

βi(s)

[ n∑
j=1,j ̸=i

aijxj(s) +
m∑
j=1

ρijxi(s− τij(s))e
−hijxi(s−σij(s))

]
× e

∫ s
t0
(δi−aii)βi(v) dv ds

> 0 for all t ∈ [t0, η(φ)) and i ∈ Λ.
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It remains to substantiate that η(φ) = +∞. For t ∈ [t0, η(φ)), i ∈ Λ, set

Xi(t) = max
t0−ri≤s≤t

xi(s), Γ(t) = max
i∈Λ

Xi(t).

Then

x′i(s) ≤ βi(s)

( n∑
j=1,j ̸=i

aij +
m∑
j=1

ρij

)
Γ(s), ∀ s ∈ [t0, t], i ∈ Λ,

and

xi(s) ≤ xi(t0) +

∫ s

t0

βi(v)

( n∑
j=1,j ̸=i

aij +
m∑
j=1

ρij

)
Γ(v) dv,

≤ ∥φ∥+
∫ t

t0

max
i∈Λ

{
β+
i

( n∑
j=1,j ̸=i

aij +

m∑
j=1

ρij

)}
Γ(v) dv, ∀ s ∈ [t0, t], i ∈ Λ.

This, together with the definition of Γ(t), implies

Γ(t) ≤ ∥φ∥+
∫ t

t0

max
i∈Λ

{
β+
i

( n∑
j=1,j ̸=i

aij +
m∑
j=1

ρij

)}
Γ(v) dv for all t ∈ [t0, η(φ)).

In view of the Gronwall–Bellman inequality, we have

0 < xi(t) ≤ Xi(t) ≤ Γ(t)

≤ ∥φ∥e
∫ t
t0

maxi∈Λ

{
β+
i

(∑n
j=1,j ̸=i aij+

∑m
j=1 ρij

)}
dv
, ∀ t ∈ [t0, η(φ)), i ∈ Λ,

which, together with Theorem 2.3.1 in [12], indicates that η(φ) = +∞ and completes the

proof.

Lemma 2.2. Assume that

(2.5)

δi −
m∑
j=1

ρij lim sup
t→+∞

(σij(t)− τij(t))× lim sup
t→+∞

βi(t)

( n∑
j=1,j ̸=i

aij +

m∑
j=1

ρij

)
> 0 for all i ∈ Λ

holds. Then x(t) is bounded on [t0,+∞).

Proof. For t > t0, let i0 ∈ Λ and Mi0(t) ∈ [t0 − ri0 , t] agree with

xi0(Mi0(t)) = max
t0−ri0≤s≤t

xi0(s) = max
i∈Λ

{
max

t0−ri≤s≤t
xi(s)

}
.

Now, we validate that x(t) is bounded on [t0,+∞). Assume on the contrary that

lim
t→+∞

xi0(Mi0(t)) = +∞, lim
t→+∞

Mi0(t) = +∞.
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On account of (2.2) and (2.5), there exist ε > 0 and T0 > t̃0 such that for all t ≥ T0, i ∈ Λ,

j ∈ Ω,

(2.6) σij(t)− τij(t) < lim sup
t→+∞

(σij(t)− τij(t)) + ε, βi(t) < lim sup
t→+∞

βi(t) + ε,

and

(2.7)

δi −
m∑
j=1

ρij

(
lim sup
t→+∞

(σij(t)− τij(t)) + ε

)(
lim sup
t→+∞

βi(t) + ε

)( n∑
j=1,j ̸=i

aij +
m∑
j=1

ρij

)
> 0.

Consequently, there must be a T̃0 > T0 obeying

(2.8) Mi0(t) > T0 + r for all t ≥ T̃0.

Apparently, for all t ∈ [t0,+∞), (1.3) and (2.1) lead to

x′i0(s) = βi0(s)

[
− δi0xi0(s) +

n∑
j=1

ai0jxj(s) +

m∑
j=1

ρi0jxi0(s− τi0j(s))e
−hi0j

xi0
(s−σi0j

(s))

]

≤ βi0(s)

[
− δi0xi0(s) +

n∑
j=1

ai0jxj(s) +

m∑
j=1

ρi0jxi0(s− τi0j(s))

]

≤ βi0(s)

[ n∑
j=1,j ̸=i0

ai0jxi0(Mi0(t)) +
m∑
j=1

ρi0jxi0(Mi0(t))

]

= βi0(s)

[ n∑
j=1,j ̸=i0

ai0j +
m∑
j=1

ρi0j

]
xi0(Mi0(t)) for all s ∈ [t0, t],

which, together with (1.3), (2.1), (2.6), (2.7), (2.8) and the fact supx≥0 xe
−x = 1

e , yields

0 ≤ x′i0(Mi0(t))

= βi0(Mi0(t))

[
− δi0xi0(Mi0(t)) +

n∑
j=1

ai0jxj(Mi0(t))

+
m∑
j=1

ρi0jxi0(Mi0(t)− τi0j(Mi0(t)))e
−hi0j

xi0
(Mi0

(t)−σi0j
(Mi0

(t)))

]

≤ βi0(Mi0(t))

{
− δi0xi0(Mi0(t)) +

n∑
j=1

ai0jxi0(Mi0(t))

+

m∑
j=1

ρi0j
hi0j

hi0jxi0(Mi0(t)− σi0j(Mi0(t)))e
−hi0j

xi0
(Mi0

(t)−σi0j
(Mi0

(t)))

+

m∑
j=1

ρi0j
[
xi0(Mi0(t)− τi0j(Mi0(t)))− xi0(Mi0(t)− σi0j(Mi0(t)))

]
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× e−hi0j
xi0

(Mi0
(t)−σi0j

(Mi0
(t)))

}
≤ βi0(Mi0(t))

[
− δi0xi0(Mi0(t)) +

n∑
j=1

ai0jxi0(Mi0(t)) +
m∑
j=1

ρi0j
hi0je

+

m∑
j=1

ρi0j

∫ Mi0
(t)−τi0j(Mi0

(t))

Mi0
(t)−σi0j

(Mi0
(t))

x′i0(s) ds

]

≤ βi0(Mi0(t))

[
− δi0xi0(Mi0(t)) +

m∑
j=1

ρi0j
hi0je

+

m∑
j=1

ρi0j

(
lim sup
t→+∞

(σi0j(t)− τi0j(t)) + ε

)

×
(
lim sup
t→+∞

βi0(t) + ε

)( n∑
j=1,j ̸=i0

ai0j +
m∑
j=1

ρi0j

)
xi0(Mi0(t))

]

for all t ≥ T̃0, and then

0 < xi0(Mi0(t))

≤

m∑
j=1

ρi0j
hi0je

δi0 −
m∑
j=1

ρi0j

(
lim sup
t→+∞

(σi0j(t)− τi0j(t)) + ε

)(
lim sup
t→+∞

βi0(t) + ε

)( n∑
j=1,j ̸=i0

ai0j +

m∑
j=1

ρi0j

)

for arbitrary t ≥ T̃0. This is contrary to limt→+∞ xi0(Mi0(t)) = +∞ and terminates the

proof of Lemma 2.2.

Lemma 2.3. If

(2.9) δi − aii <
m∑
j=1

ρij and lim
t→+∞

[σij(t)− τij(t)] = 0 for all i ∈ Λ, j ∈ Ω.

Then mini∈Λ lim inft→+∞ xi(t) > 0.

Proof. To derive a contradiction, we assume that l = mini∈Λ lim inft→+∞ xi(t) = 0. Define

v(t) = max

{
ξ : ξ ≤ t

∣∣∣ there exists î ∈ Λ obeying xî(ξ) = min
i∈Λ

{
min

t0≤s≤t
xi(s)

}}
.

Then, limt→+∞ v(t) = +∞. Meanwhile, for a strictly monotone increasing infinite se-

quence {tp}p≥1, one can find î ∈ Λ and a subsequence {tpk}k≥1 ⊆ {tp}p≥1 such that

(2.10) xî(v(tpk)) = min
t0≤s≤tpk

xî(s) = min
i∈Λ

{
min

t0≤s≤tpk

xi(s)

}
and lim

k→+∞
xî(v(tpk)) = 0.
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In view of (1.3), (2.1), (2.9) and (2.10), we acquire

0 ≥ x′
î
(v(tpk))

= βî(v(tpk))

[
− δ̂ixî(v(tpk)) +

n∑
j=1

âijxj(v(tpk))

+

m∑
j=1

ρ̂ijxî(v(tpk)− τ̂ij(v(tpk)))e
−hîjxî(v(tpk )−σîj(v(tpk )))

]

≥ βî(v(tpk))

[
− (δ̂i − âîi)xî(v(tpk)) + xî(v(tpk))

n∑
j=1,j ̸=î

âij

+
m∑
j=1

ρ̂ijxî(v(tpk)− τ̂ij(v(tpk)))e
−hîjxî(v(tpk )−σîj(v(tpk )))

]

≥ βî(v(tpk))

[
− (δ̂i − âîi)xî(v(tpk))

+
m∑
j=1

ρ̂ijxî(v(tpk)− τ̂ij(v(tpk)))e
−hîjxî(v(tpk )−σîj(v(tpk )))

]

≥ βî(v(tpk))

[
− (δ̂i − âîi)xî(v(tpk))

+
m∑
j=1

ρ̂ijxî(v(tpk)− τ̂ij(v(tpk)))e
−hîj sups∈[−r̂

i
,+∞) xî(s)

]
for all v(tpk) > t0 + r. Consequently,

(δ̂i − âîi) ≥
m∑
j=1

ρ̂ij
xî(v(tpk)− τ̂ij(v(tpk)))

xî(v(tpk))
e−hîjxî(v(tpk )−σîj(v(tpk )))

≥
m∑
j=1

ρ̂ije
−hîjxî(v(tpk )−σîj(v(tpk ))) for all v(tpk) > t0 + r,

(2.11)

and

(δ̂i − âîi)xî(v(tpk))

≥
m∑
j=1

ρ̂ijxî(v(tpk)− τ̂ij(v(tpk)))e
−hîj sups∈[−r̂

i
,+∞) xî(s) for all v(tpk) > t0 + r.

(2.12)

By taking limits of (2.12), we gain

lim
k→+∞

xî(v(tpk)− τ̂ij(v(tpk))) = lim
k→+∞

xî(v(tpk)− σîj(v(tpk))) = lim
k→+∞

xî(v(tpk)) = 0,

which, together with (2.9) and (2.11), suggests that δ̂i − âîi ≥
∑m

j=1 ρ̂ij . This yields a

contradiction and finishes the proof.
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Theorem 2.4. Let (2.9) be satisfied, and define

M∗ = max
i∈Λ

∑m
j=1

ρij
hij

1
e

δi
, χi = sup

{
χ
∣∣∣ χ ∈ (0,+∞), δi − aii <

m∑
j=1

ρije
−χ

}
,(2.13)

kij ∈ (0, 1] with kije
−kij = hijM

∗e−hijM
∗
,(2.14)

and

(2.15) kmin = min

{
min

i∈Λ, j∈Ω

kij
hij

, min
i∈Λ, j∈Ω

χi

hij

}
,

where i ∈ Λ, j ∈ Ω. Then

(2.16) kmin ≤ min
i∈Λ

lim inf
t→+∞

xi(t) ≤ max
i∈Λ

lim sup
t→+∞

xi(t) ≤ M∗.

Proof. First, one can choose i∗∗ ∈ Λ satisfying

Lsup = lim sup
t→+∞

xi∗∗(t) = max
i∈Λ

lim sup
t→+∞

xi(t).

Owing to the fluctuation lemma [27, Lemma A.1], it is an easy matter to find a sequence

{t∗k}k≥1 obeying

(2.17) lim
k→+∞

t∗k = +∞, lim
k→+∞

xi∗∗(t
∗
k) = lim sup

t→+∞
xi∗∗(t) = Lsup, lim

k→+∞
x′i∗∗(t

∗
k) = 0.

For simplicity but without loss of generality, we also assume that limk→+∞ xl(t
∗
k) (l ∈

Λ \ {i∗∗}), limk→+∞ βi∗∗(t
∗
k), limk→+∞ xi∗∗(t

∗
k − τi∗∗j(t

∗
k)) and limk→+∞ xi∗∗(t

∗
k −σi∗∗j(t

∗
k))

exist for all j ∈ Ω. Due to (1.3), (2.1) and (2.17), we gain

0 = lim
k→+∞

x′i∗∗(t
∗
k)

= lim
k→+∞

βi∗∗(t
∗
k)

[
− δi∗∗ lim

k→+∞
xi∗∗(t

∗
k) +

n∑
j=1

ai∗∗j lim
k→+∞

xj(t
∗
k)

+

m∑
j=1

ρi∗∗j
hi∗∗j

hi∗∗j lim
k→+∞

xi∗∗(t
∗
k − τi∗∗j(t

∗
k))e

−hi∗∗j limk→+∞ xi∗∗ (t
∗
k−σi∗∗j(t

∗
k))

]

≤ lim
k→+∞

βi∗∗(t
∗
k)

[
− δi∗∗L

sup +
n∑

j=1

ai∗∗jL
sup +

m∑
j=1

ρi∗∗j
hi∗∗j

1

e

]

≤ lim
k→+∞

βi∗∗(t
∗
k)

[
− δi∗∗L

sup +

m∑
j=1

ρi∗∗j
hi∗∗j

1

e

]
,

which yields

Lsup ≤
∑m

j=1
ρi∗∗j
hi∗∗j

1
e

δi∗∗
≤ max

i∈Λ

∑m
j=1

ρij
hij

1
e

δi
= M∗.
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Next, define l∗∗ ∈ Λ with

Linf = lim inf
t→+∞

xl∗∗(t) = min
i∈Λ

lim inf
t→+∞

xi(t).

Again from the fluctuation lemma [27, Lemma A.1], one can find a sequence {t∗∗k }k≥1

obeying

(2.18) lim
k→+∞

t∗∗k = +∞, lim
k→+∞

xl∗∗(t
∗∗
k ) = lim inf

t→+∞
xl∗∗(t) = Linf , lim

k→+∞
x′l∗∗(t

∗∗
k ) = 0.

In particular, limk→+∞ xl(t
∗∗
k ) (l ∈ Λ \ {l∗∗}), limk→+∞ βl∗∗(t

∗∗
k ), limk→+∞ xl∗∗(t

∗∗
k −

τl∗∗j(t
∗∗
k )) and limk→+∞ xl∗∗(t

∗∗
k − σl∗∗j(t

∗∗
k )) exist for all j ∈ Ω. Now, we claim that

Linf ≥ kmin.

Otherwise,

Linf < kmin, hijL
inf < kij and min

U∈[hijLinf ,hijLsup]
Ue−U = hijL

infe−hijL
inf
.

Clearly, (2.13)–(2.15) lead to

hijL
inf ≤ hij lim

k→+∞
xl∗∗(t

∗∗
k − τl∗∗j(t

∗∗
k )) = hij lim

k→+∞
xl∗∗(t

∗∗
k − σl∗∗j(t

∗∗
k )) ≤ hijL

sup

and

(2.19) hij lim
k→+∞

xl∗∗(t
∗∗
k − τl∗∗j(t

∗∗
k ))e−hij limk→+∞ xl∗∗ (t

∗∗
k −τl∗∗j(t

∗∗
k )) ≥ hijL

infe−hijL
inf
.

Due to (1.3), (2.1), (2.18) and (2.19), we gain

0 = lim
k→+∞

x′l∗∗(t
∗∗
k )

= lim
k→+∞

βl∗∗(t
∗∗
k )

[
− δl∗∗ lim

k→+∞
xl∗∗(t

∗∗
k ) +

n∑
j=1

al∗∗j lim
k→+∞

xj(t
∗∗
k )

+

m∑
j=1

ρl∗∗j
hl∗∗j

hl∗∗j lim
k→+∞

xl∗∗(t
∗∗
k − τl∗∗j(t

∗∗
k ))e−hl∗∗j limk→+∞ xl∗∗ (t

∗∗
k −σl∗∗j(t

∗∗
k ))

]

= lim
k→+∞

βl∗∗(t
∗∗
k )

[
− δl∗∗ lim

k→+∞
xl∗∗(t

∗∗
k ) +

n∑
j=1

al∗∗j lim
k→+∞

xj(t
∗∗
k )

+

m∑
j=1

ρl∗∗j
hl∗∗j

hl∗∗j lim
k→+∞

xl∗∗(t
∗∗
k − τl∗∗j(t

∗∗
k ))e−hl∗∗j limk→+∞ xl∗∗ (t

∗∗
k −τl∗∗j(t

∗∗
k ))

]

≥ lim
k→+∞

βl∗∗(t
∗∗
k )

[
− (δl∗∗ − al∗∗l∗∗)L

inf

+

n∑
j=1,j ̸=l∗∗

al∗∗jL
inf +

m∑
j=1

ρl∗∗j
hl∗∗j

hl∗∗jL
infe−hl∗∗jL

inf

]
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≥ lim
k→+∞

βl∗∗(t
∗∗
k )Linf

[
− (δl∗∗ − al∗∗l∗∗) +

m∑
j=1

ρl∗∗je
−hl∗∗jL

inf

]

> lim
k→+∞

βl∗∗(t
∗∗
k )Linf

[
− (δl∗∗ − al∗∗l∗∗) +

m∑
j=1

ρl∗∗je
−hl∗∗jk

min

]

≥ lim
k→+∞

βl∗∗(t
∗∗
k )Linf

[
− (δl∗∗ − al∗∗l∗∗) +

m∑
j=1

ρl∗∗je
−χl∗∗

]
= 0,

which yields a contradiction and proves the above claim. Hence, (2.16) holds, which

verifies Theorem 2.4.

Remark 2.5. Theorem 2.4 indicates that, under the assumption (2.9), system (1.3) has

uniform persistence, and then (0, 0, . . . , 0) is unstable.

3. Global attractivity analysis

In this section, the strategies of the proof of the present paper follow from those used in

some earlier papers [8, 19,28], but some modifications are nontrivial.

First, we establish the attractivity conditions for non-oscillatory solutions of model (1.3).

Proposition 3.1. Provided that (2.9) is satisfied, and

(3.1) lim inf
t→+∞

xi(t) ≥ N∗
i for all i ∈ Λ

hold. Moreover, assume that

(3.2)

n∑
j=1

aijN
∗
j = 0 for all i ∈ Λ.

Then limt→+∞ xi(t) = N∗
i for arbitrary i ∈ Λ.

Proof. Denote zi(t) = xi(t)−N∗
i (i ∈ Λ), it can be deduced from Lemma 2.2 that

0 ≤ lim sup
t→+∞

zi(t) < +∞ for all i ∈ Λ.

Let i∗ ∈ Λ be such an index as lim supt→+∞ zi∗(t) = maxi∈Λ lim supt→+∞ zi(t). In

order to verify Proposition 3.1, it suffices to state that

lim sup
t→+∞

zi∗(t) = 0.
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Otherwise, lim supt→+∞ zi∗(t) > 0. Owing to the fluctuation lemma [27, Lemma A.1], it

is an easy matter to find a sequence {tk}k≥1 obeying

(3.3) lim
k→+∞

tk = +∞, lim
k→+∞

zi∗(tk) = lim sup
t→+∞

zi∗(t), lim
k→+∞

z′i∗(tk) = 0.

Due to (1.3) and (2.3), we gain

z′i∗(tk) = βi∗(tk)

[
− δi∗xi∗(tk) +

n∑
j=1

ai∗jzj(tk) +

n∑
j=1

ai∗jN
∗
j

+

m∑
j=1

ρi∗jx(tk − τi∗j(tk))e
−hi∗jxi∗ (tk−σi∗j(tk))

]
.

(3.4)

Because βi∗(t), xi∗(t − τi∗j(t)) and xi∗(t − σi∗j(t)) are bounded on [t0,+∞), we can se-

lect a subsequence of {tk} (for convenience of exposition, we still label by {tk}) satisfy-

ing that limk→+∞ zl(tk) (l ∈ Ω \ {i∗}), limk→+∞ βi∗(tk), limk→+∞ xi∗(tk − τi∗j(tk)) and

limk→+∞ xi∗(tk − σi∗j(tk)) exist for all j ∈ Ω. Moreover, (2.9) and (3.1) yield

(3.5) N∗
i∗ ≤ lim

k→+∞
xi∗(tk − τi∗j(tk)) = lim

k→+∞
xi∗(tk − σi∗j(tk)) ≤ N∗

i∗ + lim
k→+∞

zi∗(tk)

for all j ∈ Ω.

Hereafter, with the help of (3.3), we regard two cases as follows.

Case 1. If limk→+∞ xi∗(tk − τi∗j(tk)) = limk→+∞ xi∗(tk −σi∗j(tk)) = N∗
i∗ for all j ∈ Ω,

by taking limits, (2.1)–(2.3) and (3.3)–(3.5) give us

0 = lim
k→+∞

z′i∗(tk)

= lim
k→+∞

βi∗(tk)

[
− δi∗ lim

k→+∞
xi∗(tk) +

n∑
j=1

ai∗j lim
k→+∞

zj(tk) +

n∑
j=1

ai∗jN
∗
j

+

m∑
j=1

ρi∗jN
∗
i∗e

−hi∗jN
∗
i∗

]

≤ lim
k→+∞

βi∗(tk)

[
− δi∗

(
lim sup
t→+∞

zi∗(t) +N∗
i∗

)
+ lim sup

t→+∞
zi∗(t)

n∑
j=1

ai∗j

+
n∑

j=1

ai∗jN
∗
j +

m∑
j=1

ρi∗jN
∗
i∗e

−hi∗jN
∗
i∗

]

< lim
k→+∞

βi∗(tk)

[
− δi∗N

∗
i∗ +

n∑
j=1

ai∗jN
∗
j +

m∑
j=1

ρi∗jN
∗
i∗e

−hi∗jN
∗
i∗

]
= 0,

which leads to a contradiction, and suggests that lim supt→+∞ zi∗(t) = 0.
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Case 2. If there are some j ∈ Ω such that N∗
i∗ < limk→+∞ xi∗(tk − τi∗j(tk)) =

limk→+∞ xi∗(tk − σi∗j(tk)), it follows from (2.1)–(2.3), (3.2), (3.4) and (3.5) that

0 = lim
k→+∞

z′i∗(tk)

< lim
k→+∞

βi∗(tk)

[
− δi∗ lim

k→+∞
xi∗(tk) +

n∑
j=1

ai∗j lim
k→+∞

zj(tk) +

n∑
j=1

ai∗jN
∗
j

+
m∑
j=1

ρi∗j

(
lim

k→+∞
xi∗(tk − τi∗j(tk))

)
e−hi∗jN

∗
i∗

]

≤ lim
k→+∞

βi∗(tk)

(
lim sup
t→+∞

zi∗(t) +N∗
i∗

)[
− δi∗ +

m∑
j=1

ρi∗je
−hi∗jN

∗
i∗

]
= 0,

which is also a contradiction and proves the above statement. This accomplishes the proof

of Proposition 3.1.

Proposition 3.2. Assume that (2.9) and (3.2) hold, and

(3.6) lim sup
t→+∞

xi(t) ≤ N∗
i for all i ∈ Λ

is satisfied. Then, limt→+∞ xi(t) = N∗
i for arbitrary i ∈ Λ.

Proof. Denote zi(t) = xi(t)−N∗
i (i ∈ Λ), according to Lemma 2.1, one can see that

−∞ < lim sup
t→+∞

zi(t) ≤ 0 for all i ∈ Λ.

Label i∗∗ ∈ Λ be such an index as lim inft→+∞ zi∗∗(t) = mini∈J lim inft→+∞ zi(t). So

as to confirm Proposition 3.2, we only need to show that

lim inf
t→+∞

zi∗∗(t) = 0.

Conversely, suppose that lim inft→+∞ zi∗∗(t) < 0. On account of the fluctuation lemma [27,

Lemma A.1], there exists a sequence {tk}k≥1 agreeing with

(3.7) lim
k→+∞

tk = +∞, lim
k→+∞

zi∗∗(tk) = lim inf
t→+∞

zi∗∗(t), lim
k→+∞

z′i∗∗(tk) = 0.

It follows from (1.4), (1.5) and (2.3) that

z′i∗∗(tk) = βi∗∗(tk)

[
− δi∗∗xi∗∗(tk) +

n∑
j=1

ai∗∗jzj(tk) +
n∑

j=1

ai∗∗jN
∗
j

+

m∑
j=1

ρi∗∗jx(tk − τi∗∗j(tk))e
−hi∗∗jxi∗∗ (tk−σi∗∗j(tk))

]
.

(3.8)
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Since βi∗∗(t), xi∗∗(t−τi∗∗j(t)) and xi∗∗(t−σi∗∗j(t)) are bounded on [t0,+∞), one can choose

a subsequence of {tk} (still labeled by {tk}) such that limk→+∞ zl(tk) (l ∈ Ω \ {i∗∗}),
limk→+∞ βi∗∗(tk), limk→+∞ xi∗∗(tk − τi∗∗j(tk)) and limk→+∞ xi∗∗(tk − σi∗∗j(tk)) exist for

all j ∈ Ω. Moreover, (2.3) and (3.6) lead to

(3.9) N∗
i∗∗ + lim

k→+∞
zi∗∗(tk) ≤ lim

k→+∞
xi∗∗(tk−τi∗∗j(tk)) = lim

k→+∞
xi∗∗(tk−σi∗∗j(tk)) ≤ N∗

i∗∗ ,

for all j ∈ Ω, and one of the following cases must occur:

Case 1. If limk→+∞ xi∗∗(tk − τi∗∗j(tk)) = limk→+∞ xi∗∗(tk − σi∗∗j(tk)) = N∗
i∗∗ for all

j ∈ Ω, by taking limits, (2.1)–(2.3) and (3.7)–(3.9) reveal that

0 = lim
k→+∞

z′i∗∗(tk)

= lim
k→+∞

βi∗∗(tk)

[
− δi∗∗ lim

k→+∞
xi∗∗(tk) +

n∑
j=1

ai∗∗j lim
k→+∞

zj(tk) +

n∑
j=1

ai∗∗jN
∗
j

+

m∑
j=1

ρi∗∗jN
∗
i∗∗e

−hi∗∗jN
∗
i∗∗

]

≥ lim
k→+∞

βi∗∗(tk)

[
− δi∗∗

(
lim inf
t→+∞

zi∗∗(t) +N∗
i∗∗

)
+ lim inf

t→+∞
zi∗∗(t)

n∑
j=1

ai∗∗j

+
n∑

j=1

ai∗∗jN
∗
j +

m∑
j=1

ρi∗∗jN
∗
i∗∗e

−hi∗∗jN
∗
i∗∗

]

> lim
k→+∞

βi∗(tk)

[
− δi∗∗N

∗
i∗∗ +

n∑
j=1

ai∗∗jN
∗
j +

m∑
j=1

ρi∗∗jN
∗
i∗∗e

−hi∗∗jN
∗
i∗∗

]
= 0,

which is impossible and implies that lim inft→+∞ zi∗∗(t) = 0.

Case 2. If limk→+∞ xi∗∗(tk − τi∗∗j(tk)) = limk→+∞ xi∗∗(tk −σi∗∗j(tk)) < N∗
i∗∗ holds for

some j ∈ Ω, it follows from (2.1)–(2.3), (3.2), (3.7) and (3.8) that

0 = lim
k→+∞

z′i∗∗(tk)

> lim
k→+∞

βi∗∗(tk)

[
− δi∗∗ lim

k→+∞
xi∗∗(tk) +

n∑
j=1

ai∗∗j lim
k→+∞

zj(tk) +

n∑
j=1

ai∗∗jN
∗
j

+
m∑
j=1

ρi∗∗j

(
lim

k→+∞
xi∗∗(tk − τi∗∗j(tk))

)
e−hi∗∗jN

∗
i∗∗

]

≥ lim
k→+∞

βi∗∗(tk)

(
lim inf
k→+∞

zi∗∗(t) +N∗
i∗∗

)[
− δi∗∗ +

m∑
j=1

ρi∗∗je
−hi∗∗jN

∗
i∗∗

]
= 0,
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leads to a clear contradiction and the above statement is proved. This completes the proof

of Proposition 3.2.

Corollary 3.3. Assume that (2.9) and (3.2) hold, and for each i ∈ Λ, xi(t) is eventually

nonoscillatory about N∗
i , i.e., there exists T ∗ ≥ t0 agreeing with

(3.10) xi(t) ≥ N∗
i (or xi(t) ≤ N∗

i ) for all t ≥ T ∗ and i ∈ Λ.

Then, limt→+∞ xi(t) = N∗
i for all i ∈ Λ.

Remark 3.4. It can be concluded from Corollary 3.3 that, under the assumptions (2.9),

(3.2) and (3.10), the convergence criterion for non-oscillatory solutions of the system (1.3)

is independent of the size of the delays, and all conclusions of Propositions 2.1 and 2.2

in [28] and the results of Theorem 4.1 in [19] are special ones of Corollary 3.3.

Theorem 3.5. Let (2.9) and (3.2) be satisfied, and there exists H ≥ t0 such that for all

i ∈ Λ,

(3.11)
(e(δi−aii)β

H
i rHi − 1)hδiN

∗
i

δi − aii
≤ 1

and

(3.12) 0 <
hδiN

∗
i (1− e−rHi (δi−aii)β

H
i )

δi − δie(1− e−rHi (δi−aii)βH
i )− aiie

−rHi (δi−aii)βH
i

≤ 1

hold. Then limt→+∞ xi(t) = N∗
i for all i ∈ Λ.

Proof. Label

ζi(t) = h(xi(t)−N∗
i ), i ∈ Λ.

In light of (1.3), we drive

ζ ′i(t) + hδiβi(t)N
∗
i + δiβi(t)ζi(t)

= βi(t)

n∑
j=1

aij(t)ζj(t) + hβi(t)

n∑
j=1

aijN
∗
j

+ hβi(t)
m∑
j=1

ρij

[
ζi(t− τij(t))

h
+N∗

i

]
e−

hijζi(t−σij(t))

h
−hijN

∗
i ,

and

(ζi(t)e
∫ t
t0
(δi−aii)βi(v) dv)′

=

[ n∑
j=1,j ̸=i

aijβi(t)ζj(t) + hβi(t)

n∑
j=1

aijN
∗
j

+ hβi(t)

m∑
j=1

ρij

(
ζi(t− τij(t))

h
+N∗

i

)
e−

hijζi(t−σij(t))

h
−hijN

∗
i − hβi(t)δiN

∗
i

]
× e

∫ t
t0
(δi−aii)βi(v) dv, t ≥ t0, i ∈ Λ.

(3.13)
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To accomplish the verification, we shall reveal that

min
i∈Λ

lim inf
t→+∞

ζi(t) = max
i∈Λ

lim sup
t→+∞

ζi(t) = 0.

Owing to Corollary 3.3, it suffices to treat the case that for each T ∗ > t0, there are

t∗, t∗∗ ∈ (T ∗,+∞) agreeing with

(3.14) min
i∈Λ

ζi(t
∗) < 0 and max

i∈Λ
ζi(t

∗∗) > 0.

Denote

(3.15) µ = lim sup
t→+∞

ζi1(t) = max
i∈Λ

lim sup
t→+∞

ζi(t), λ = lim inf
t→+∞

ζi2(t) = min
i∈Λ

lim inf
t→+∞

ζi(t).

In view of (3.14), we acquire

λ ≤ 0 ≤ µ.

Now, our problem reduces to proof that λ = µ = 0. If the conclusion was false, then

µ > 0 or λ < 0.

We only consider the case of µ > 0. (λ < 0 can be handled similarly).

If λ = 0, i.e., λ = mini∈Λ lim inft→+∞ ζi(t) = 0. It follows from Proposition 3.1 that

µ = lim supt→+∞ ζi1(t) = 0, and limt→+∞ xi(t) = N∗
i for all i ∈ Λ.

When µ > 0 and λ < 0, with the aid of the fluctuation lemma [27, Lemma A.1], one

can pick two strictly monotone increasing infinite sequences {lq}q≥1, {sq}q≥1 obeying that,

for all q ∈ N+,

(3.16) lq > t̃0 + r, ζi1(lq) > 0, lq → +∞, ζi1(lq) → µ, ζ ′i1(lq) → 0 as q → +∞,

and

sq > t̃0 + r, ζi2(sq) < 0, sq → +∞, ζi2(sq) → λ, ζ ′i2(sq) → 0 as q → +∞.

Since a bounded sequence has a convergent subsequence, it can be assumed that for all

j ∈ Ω,

(3.17)

lim
q→+∞

βi1(lq) = β∗
i1 , lim

q→+∞
ζi1(lq − τi1j(lq)) = ζji1 , lim

q→+∞
ζi(lq) = ζ li , i ∈ Λ \ {i1},

and

lim
q→+∞

βi2(sq) = β∗∗
i2 , lim

q→+∞
ζi2(sq − τi2j(sq)) = ζji2 , lim

q→+∞
ζi(sq) = ζsi , i ∈ Λ \ {i2}.

To drive a contradiction, the proof falls naturally into three parts.
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First, we state that there is an H1 > 0 such that, for any q ≥ H1, there exists

Lq ∈ [lq − ri1 , lq) obeying

(3.18) ζi1(Lq) = 0, and ζi1(t) > 0 for all t ∈ (Lq, lq).

Otherwise, we can choose a subsequence of {lq} (do not relabel) such that

ζi1(t) > 0 for all t ∈ [lq − ri1 , lq), q = 1, 2, . . ..

Subsequently,

0 ≤ lim
q→+∞

ζi1(lq − τi1j(lq)) ≤ µ for all j ∈ Ω,

and

ζ ′i1(lq) = βi1(lq)

n∑
j=1

ai1jζj(lq) + hβi1(lq)

n∑
j=1

ai1jN
∗
j

+ hβi1(lq)
m∑
j=1

ρi1j

[
ζi1(lq − τi1j(lq))

h
+N∗

i1

]
e
−

hi1j
ζi1

(lq−σi1j
(lq))

h
−hi1j

N∗
i1

− hδi1βi1(lq)N
∗
i1 − δi1βi1(lq)ζi1(lq)

< βi1(lq)
n∑

j=1

ai1jζj(lq) + hβi1(lq)
n∑

j=1

ai1jN
∗
j

+ hβi1(lq)
m∑
j=1

ρi1j

[
ζi1(lq − τi1j(lq))

h
+N∗

i1

]
e
−hi1j

N∗
i1

− hδi1βi1(lq)N
∗
i1 − δi1βi1(lq)ζi1(lq).

(3.19)

In what follows, we assert that

(3.20) lim
q→+∞

ζi1(lq − τi1j(lq)) = lim
q→+∞

ζi1(lq − σi1j(lq)) = ζji1 = µ for all j ∈ Ω.

If the assertion would not hold, then there exists ĵ ∈ Ω such that

lim
q→+∞

ζi1(lq − τi1ĵ(lq)) = lim
q→+∞

ζi1(lq − σi1ĵ(lq)) = ζ ĵi1 < µ,

which, together with (2.9), (3.2), (3.15), (3.16), (3.17) and (3.19), leads to

0 ≤ ai1i1β
∗
i1 lim

q→+∞
ζi1(lq) + β∗

i1

n∑
j=1,j ̸=i1

ai1j lim
q→+∞

ζj(lq) + hβ∗
i1

n∑
j=1

ai1jN
∗
j

+ hβ∗
i1

m∑
j=1

ρi1j

[
limq→+∞ ζi1(lq − τi1j(lq))

h
+N∗

i1

]
e
−hi1j

N∗
i1

− hδi1β
∗
i1N

∗
i1 − δi1β

∗
i1 lim

q→+∞
ζi1(lq)
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< hβ∗
i1

m∑
j=1

ρi1j

(
N∗

i1 +
µ

h

)
e
−hi1j

N∗
i1 − hβ∗

i1δi1

(
N∗

i1 +
µ

h

)
= 0,

which derives a contradiction and verifies (3.20). Furthermore, (2.3), (3.2), (3.17) and

(3.20) yield

0 = ai1i1β
∗
i1 lim

q→+∞
ζi1(lq) + β∗

i1

n∑
j=1,j ̸=i1

ai1j lim
q→+∞

ζj(lq) + hβ∗
i1

n∑
j=1

ai1jN
∗
j

+ hβ∗
i1

m∑
j=1

ρi1j

(
N∗

i1 +
µ

h

)
e
−hi1j

(
N∗

i1
+µ

h

)
− hδi1β

∗
i1N

∗
i1 − δi1β

∗
i1 lim

q→+∞
ζi1(lq)

< hβ∗
i1

m∑
j=1

ρi1j

(
N∗

i1 +
µ

h

)
e
−hi1j

N∗
i1 − hβ∗

i1δi1

(
N∗

i1 +
µ

h

)
= 0,

which is a clear contradiction and proves the assertion (3.18).

Likewise, it is not difficult to find H∗
1 > 0 such that for any q ≥ H∗

1 , there exists

Sq ∈ [sq − ri2 , sq) agreeing with

(3.21) ζi2(Sq) = 0 and ζi2(t) < 0 for all t ∈ (Sq, sq).

Secondly, we certificate that

(3.22) e−µ − 1 ≤ λ ≤ 0 ≤ µ ≤ e−λ − 1.

For any ε > 0, (3.15) indicates that one can select a positive integer q∗ > H1+H∗
1 obeying

(3.23) λ− ε < ζi(t) < µ+ ε for arbitrary t > min{lq∗ , sq∗} − 2r and i ∈ Λ.

In view of (1.3), (2.3), (3.2), (3.13), (3.21) and (3.23), we acquire

ζi2(sq)e
∫ sq
t0

(δi2−ai2i2 )βi2
(v) dv

= −hδi2N
∗
i2

e
∫ sq
t0

(δi2−ai2i2 )βi2
(v) dv − e

∫ Sq
t0

(δi2−ai2i2 )βi2
(v) dv

δi2 − ai2i2

+
n∑

j=1,j ̸=i2

ai2j

∫ sq

Sq

ζj(t)βi2(t)e
∫ t
t0
(δi2−ai2i2 )βi2

(v) dv
dt

+ h

m∑
j=1

ρi2j

∫ sq

Sq

[
N∗

i2 +
ζi2(t− τi2j(t))

h

]
e
−hi2j

N∗
i2
−

hi2j
h

ζi2 (t−σi2j
(t))
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× βi2(t)e
∫ t
t0
(δi2−ai2i2 )βi2

(v) dv
dt

> −hδi2N
∗
i2

e
∫ sq
t0

(δi2−ai2i2 )βi2
(v) dv − e

∫ Sq
t0

(δi2−ai2i2 )βi2
(v) dv

δi2 − ai2i2

+ (λ− ε)
e
∫ sq
t0

(δi2−ai2i2 )βi2
(v) dv − e

∫ Sq
t0

(δi2−ai2i2 )βi2
(v) dv

δi2 − ai2i2

n∑
j=1,j ̸=i2

ai2j

+ h
m∑
j=1

ρi2j

∫ sq

Sq

(
N∗

i2 +
λ− ε

h

)
e
−hi2j

N∗
i2
−

hi2j
h

(µ+ε)
βi2(t)e

∫ t
t0
(δi2−ai2i2 )βi2

(v) dv
dt

> −hδi2N
∗
i2

e
∫ sq
t0

(δi2−ai2i2 )βi2
(v) dv − e

∫ Sq
t0

(δi2−ai2i2 )βi2
(v) dv

δi2 − ai2i2

+ (λ− ε)
e
∫ sq
t0

(δi2−ai2i2 )βi2
(v) dv − e

∫ Sq
t0

(δi2−ai2i2 )βi2
(v) dv

δi2 − ai2i2
(−ai2i2)

+
e
∫ sq
t0

(δi2−ai2i2 )βi2
(v) dv − e

∫ Sq
t0

(δi2−ai2i2 )βi2
(v) dv

δi2 − ai2i2

×
[
h

m∑
j=1

ρi2jN
∗
i2e

−hi2j
N∗

i2e−(µ+ε) + (λ− ε)
m∑
j=1

ρi2je
−hi2j

N∗
i2

]

= hδi2N
∗
i2

e
∫ sq
t0

(δi2−ai2i2 )βi2
(v) dv − e

∫ Sq
t0

(δi2−ai2i2 )βi2
(v) dv

δi2 − ai2i2
[e−(µ+ε) − 1]

+ (λ− ε)
(
e
∫ sq
t0

(δi2−ai2i2 )βi2
(v) dv − e

∫ Sq
t0

(δi2−ai2i2 )βi2
(v) dv), q > q∗

and

zi2(sq) + (λ− ε)
(
e
−(δi2−ai2i2 )β

H
i2
rHi2 − 1

)
≥ zi2(sq) + (λ− ε)

(
e
−

∫ sq
Sq

(δi2−ai2i2 )βi2
(v) dv − 1

)
>

(
1− e

−
∫ sq
Sq

(δi2−ai2i2 )βi2
(v) dv) hδi2N

∗
i2

δi2 − ai2i2
[e−(µ+ε) − 1]

≥
(
1− e

−(δi2−ai2i2 )β
H
i2
rHi2

) hδi2N
∗
i2

δi2 − ai2i2
[e−(µ+ε) − 1], q > q∗.

(3.24)

Letting q → ∞ and ε → 0, (3.11) and (3.24) reveal that

λ ≥ 1− e
−(δi2−ai2i2 )β

H
i2
rHi2

(e
−(δi2−ai2i2 )β

H
i2
rHi2 − 1) + 1

×
hδi2N

∗
i2

δi2 − ai2i2
(e−µ − 1)

=
(e

(δi2−ai2i2 )β
H
i2
rHi2 − 1)hδi2N

∗
i2

δi2 − ai2i2
(e−µ − 1) ≥ e−µ − 1 ≥ −1.

(3.25)
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In the light of (1.3), (2.3), (3.2), (3.13), (3.17), (3.18), (3.23) and (3.25), we obtain

ζi1(lq)e
∫ lq
t0

(δi1−ai1i1 )βi1
(v) dv

= −hδi1N
∗
i1

e
∫ lq
t0

(δi1−ai1i1 )βi1
(v) dv − e

∫ Lq
t0

(δi1−ai1i1 )βi1
(v) dv

δi1 − ai1i1

+
n∑

j=1,j ̸=i1

ai1j

∫ lq

Lq

ζj(t)βi1(t)e
∫ t
t0
(δi1−ai1i1 )βi1

(v) dv
dt

+ h
m∑
j=1

ρi1j

∫ lq

Lq

[
N∗

i1 +
ζi1(t− τi1j(t))

h

]
e
−hi1j

N∗
i1
−

hi1j
h

ζi1 (t−σi1j
(t))

× βi1(t)e
∫ t
t0
(δi1−ai1i1 )βi1

(v) dv
dt

< −hδi1N
∗
i1

e
∫ lq
t0

(δi1−ai1i1 )βi1
(v) dv − e

∫ Lq
t0

(δi1−ai1i1 )βi1
(v) dv

δi1 − ai1i1

+ (µ+ ε)
e
∫ lq
t0

(δi1−ai1i1 )βi1
(v) dv − e

∫ Lq
t0

(δi1−ai1i1 )βi1
(v) dv

δi1 − ai1i1

n∑
j=1,j ̸=i1

ai1j

+ h
m∑
j=1

ρi1j

∫ lq

Lq

(
N∗

i1 +
µ+ ε

h

)
e
−hi1j

N∗
i1
−

hi1j
h

(λ−ε)
βi1(t)e

∫ t
t0
(δi1−ai1i1 )βi1

(v) dv
dt

< −hδi1N
∗
i1

e
∫ lq
t0

(δi1−ai1i1 )βi1
(v) dv − e

∫ Lq
t0

(δi1−ai1i1 )βi1
(v) dv

δi1 − ai1i1

+ (µ+ ε)
e
∫ lq
t0

(δi1−ai1i1 )βi1
(v) dv − e

∫ Lq
t0

(δi1−ai1i1 )βi1
(v) dv

δi1 − ai1i1
(−ai1i1)

+
e
∫ lq
t0

(δi1−ai1i1 )β(v) dv − e
∫ Lq
t0

(δi1−ai1i1 )β(v) dv

δi1 − ai1i1

×
[
h

m∑
j=1

ρi1jN
∗
i1e

−hi1j
N∗

i1e−(λ−ε) + (µ+ ε)e1+ε
m∑
j=1

ρi1je
−hi1j

N∗
i1

]

= hδi1N
∗
i1

e
∫ lq
t0

(δi1−ai1i1 )βi1
(v) dv − e

∫ Lq
t0

(δi1−ai1i1 )βi1
(v) dv

δi1 − ai1i1
[e−(λ−ε) − 1]

+
δi1e

1+ε − ai1i1
δi1 − ai1i1

(µ+ ε)e1+ε
(
e
∫ lq
t0

(δi1−ai1i1 )βi1
(v) dv − e

∫ Lq
t0

(δi1−ai1i1 )βi1
(v) dv),

for q > q∗, and

zi1(lq) < hδi1N
∗
i1

1− e
∫ Lq
lq

(δi1−ai1i1 )βi1
(v) dv

δi1 − ai1i1
[e−(λ−ε) − 1]

+
δi1e

1+ε − ai1i1
δi1 − ai1i1

(µ+ ε)
(
1− e

∫ Lq
lq

(δi1−ai1i1 )βi1
(v) dv)
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≤ hδi1N
∗
i1

1− e
−rHi1

(δi1−ai1i1 )β
H
i1

δi1 − ai1i1
[e−(λ−ε) − 1](3.26)

+
δi1e

1+ε − ai1i1
δi1 − ai1i1

(µ+ ε)
(
1− e

−rHi1
(δi1−ai1i1 )β

H
i1

)
, q > q∗.

Letting q → ∞ and ε → 0, (3.12) and (3.26) entail that

µ ≤
hδi1N

∗
i1

(
1− e

−rHi1
(δi1−ai1i1 )β

H
i1

)
δi1 − δi1e

(
1− e

−rHi1
(δi1−ai1i1 )β

H
i1

)
− ai1i1e

−rHi1
(δi1−ai1i1 )β

H
i1

(e−λ − 1)

≤ e−λ − 1,

which, together with (3.25), entails that (3.22) holds.

Finally, using the same argument as in the proof of Theorem 4.1 of [28], we can

conclude from (3.22) that λ = µ = 0, which contradicts the fact that µ > 0. This ends

the proof.

Remark 3.6. In fact, limrHi →0+ er
H
i (δi−aii)β

H
i = 1 means that the conditions of (3.11) and

(3.12) naturally hold, but limrHi →+∞ er
H
i (δi−aii)β

H
i = +∞ shows that (3.11) and (3.12)

are obviously not satisfied. Thus, one can find that the sufficiently small pairs of timing-

varying delays have little effect on the global attractivity of the positive equilibrium for

system (1.3), but the system (1.3) may produce chaotic oscillation when the time-varying

delays are sufficiently large. This will be verified through some numerical simulations in

the next section.

Remark 3.7. It should be pointed out that, for i ∈ Λ, j ∈ Ω and i ̸= j, if aij = 0 and

without patch structure in (1.3), then it is simplified to the scalar Nicholson’s equation

in [28], and one can easily discovery that our results cover the corresponding results in [28].

In addition, since the actual biological background often leads to the positive equilibrium

point possesses different components, then all the results in literature [4, 19, 20] are the

special case of this paper when N1 = N2 = · · · = Nn = N∗ and τij(t) ≡ σij(t) (i ∈ Λ,

j ∈ Ω), which has been adopted as a basic assumption for the considered attractivity of

(1.3) in previous work.

Remark 3.8. In Theorem 5.1 of [10] and Corollary 3.4 of [3], one can find that

(3.27)

∑n
j=1 ρij

δi −
∑n

j=1 aij
< e2, i ∈ Λ

has been considered as a technical assumption for the permanence and stability for Nichol-

son’s blowflies system with patch structure. Evidently, the assumption (3.27) is no longer

required in Theorems 2.4 and 3.5 of our manuscript. This implies that the theoretical

results of this present paper improve and complement some existing ones in the above

mentioned papers.
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4. Numerical simulations

In this section, we carry out some numerical simulations to verify the theoretical findings

of this paper.

Example 4.1. Consider the following patch structure Nicholson’s blowflies system incor-

porating multiple pairs of time-varying delays:

x′1(t) = (10 + cos2(t))

[
− 1

5
x1(t) +

(
− 1

20
x1(t) +

1

20
x2(t)

)
+

11

100
e

2
5x1(t− τ11(t))e

− 1
5
x1(t−σ11(t))

+
9

100
e

4
5x1(t− τ12(t))e

− 2
5
x1(t−σ12(t))

]
,

x′2(t) = (12 + sin2(2t))

[
− 1

20
x2(t) +

(
1

40
x1(t)−

1

40
x2(t)

)
+

3

100
e

2
3x2(t− τ21(t))e

− 1
3
x2(t−σ21(t))

+
1

50
e

1
2x2(t− τ22(t))e

− 1
4
x2(t−σ22(t))

]
,

x′3(t) = (10 + sin2(3t))

[
−

√
2

4
x3(t) +

(
1

40
x1(t) +

1

40
x2(t)−

√
2

20
x3(t)

)
+

13

80

√
2e

√
2

3 x3(t− τ31(t))e
− 1

3
x3(t−σ31(t))

+
7

80

√
2e

√
2

2 x3(t− τ32(t))e
− 1

2
x3(t−σ32(t))

]
,

(4.1)

which takes on a unique positive equilibrium point (N∗
1 , N

∗
2 , N

∗
3 ) = (2, 2,

√
2).

Now, an easy computation shows that

(4.2) τij(t) =
1

20
| cos 2(i+ j)t|, σij(t) =

1

20
| sin 2(i+ j)t|+ 1

1 + t2
, i, j = 1, 2, 3.

satisfy (2.9), (3.2), (3.11) and (3.12). Thus, we deduce from Theorem 3.5 that the positive

equilibrium point (2, 2,
√
2) is a global attractor of (4.1) incorporating delays (4.2). The

numerical simulation in Figure 4.1 is consistent with this assertion.

In addition, take

(4.3) τij(t) = 40j, σij(t) = 40j +
1

1 + t2
, i, j = 1, 2, 3,

we check at once that (3.11) and (3.12) do not hold for system (4.1) involving delays (4.3).

From Figure 4.2, we can find that (2, 2,
√
2) is unstable and maybe not the global attractor

of (4.1) with delays (4.3). This confirms the conclusions reached in Remark 3.6.
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Figure 4.1: Numerical solutions to example (4.1) with delays (4.2) and ini-

tial values:(3| cos(t)|, 1.5 + | sin(t)|, 3 + | sin(t)|), (0.5 + 5| sin(t)|, 1 + 3| cos(t)|, 0.5 +

0.5| cos(t)|), (3.5| cos(t)|, 0.5 + 2| sin(t)|, 2 + 2| sin(t)|).

0 20 40 60 80 100 120 140 160 180 200

t

0.5

1

1.5

2

2.5

3

3.5

4

x
i(
t)
,i

=
1,
2,
3

x1(t)
x2(t)
x3(t)

Figure 4.2: Numerical solutions to example (4.1) with delays (4.3) and ini-

tial values:(3| cos(t)|, 1.5 + | sin(t)|, 3 + | sin(t)|), (0.5 + 5| sin(t)|, 1 + 3| cos(t)|, 0.5 +

0.5| cos(t)|), (3.5| cos(t)|, 0.5 + 2| sin(t)|, 2 + 2| sin(t)|).

Remark 4.2. Because τij(t) ̸≡ σij(t) (i ∈ Λ, j ∈ Ω), and the compositions of the positive

equilibrium point vector of system (4.1) are unequal, and hence the results in literature

[3, 4, 6, 9, 10, 13–16, 19, 20, 28, 30, 32, 33] cannot be used to reveal the global attractiveness

of system (4.1). This implies that our results are novel and generalize all the ones in

the above-mentioned references. On the other hand, the positive equilibrium point of
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system (4.1) is globally attractive when the time-varying delays are sufficiently small, but

when the time-varying delays are sufficiently large, the system (4.1) may yield complex

dynamic behavior, which confirms our findings.

5. Conclusions

This paper explores the effect of delays on the attractivity of Nicholson’s blowflies model

with patch structure and multiple pairs of distinct time-varying delays. Without assum-

ing that the equilibrium vector possesses the same components, by applying some novel

differential inequality analyses and the fluctuation lemma, the uniform persistence on the

positive solutions, as well as the global attractivity on the positive equilibrium point have

firstly been established for the addressed system. The obtained results substantiate that,

by controlling the death rate, the dispersal rates and the related parameters in the repro-

duction function, the attractivity of the positive equilibrium point can be attained if the

time-varying delays are sufficiently small in the development process. The results of this

manuscript are verified by some numerical simulations, and supplement some early pub-

lications to a certain extent. The adopted strategies in this present study could be taken

into consideration in the area of dynamics problems on other patch structure population

systems incorporating two or more distinct delays in the same reproduction function. This

is our future research direction.
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