TAIWANESE JOURNAL OF MATHEMATICS

Vol. 27, No. 1, pp. [I41}{I67] February 2023
DOI: 10.11650/tjm /220803

Novel Results on Persistence and Attractivity of Delayed Nicholson’s

Blowflies System with Patch Structure

Weiping Fan* and Jian Zhang

Abstract. This paper is concerned with the dynamic characteristics of a class of
Nicholson’s blowflies system with patch structure and multiple pairs of distinct time-
varying delays. We aim to find the influence of the distinct time-varying delays in the
same reproductive function on its asymptotic behavior. First, we derive the global
existence, positiveness and uniform persistence of solutions for the addressed system.
Then, by employing the theory of functional differential equations, the fluctuation
lemma and the technique of differential inequalities, we build up some new delay-
dependent criteria for the global attractivity of the positive equilibrium point vector,
which does not possess the same components. In addition, we exam the effectiveness

and feasibility of the theoretical achievements by some numerical simulations.

1. Introduction

In the real world, considering that logical self limiting control can occur at any stage of
the population life cycle, it is indispensable to introduce maturity delay and feedback
delay corresponding to maturity period and feedback time in the same time-dependent
reproductive function of population dynamics model, which are often different |7,8]. In
particular, Berezansky and Braverman [1] established the following Nicholson’s blowflies

model with different mature delay and feedback delay:
(L.1) 2 (t) = B(t)[~6x(t) + pr(t — 7(t))e hrt=o®)),

which in the case 5(t) = 1 and 7(t) = o(t) is in accord with the classical scalar Nicholson’s
blowflies equation [2,24] and has been widely studied, including the existence, persistence,
oscillation, periodicity, almost periodicity and stability [2,5,11}17,(18}21,123}24,29,31]. It
should be noted that Berezansky and Braverman showed by examples in [1] that distinct
delays in the same reproductive function may lead to chaotic oscillation. In this case,

the feedback term pz(t — 7(t))e "*(t=o(1) is actually a binary function, which greatly
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improves the difficulty of studying the dynamics on the model, resulting in the almost
stagnation of the research on the model . So far, we only found that the authors
of [9,/131/22}25] explored the stability of Nicholson’s blowflies with different maturity
delay and feedback delay in the same reproductive function. Particularly, the authors in [9]
investigated a scalar Nicholson’s equation incorporating multiple pairs of time-varying
delays, and obtained several sufficient criterion for the permanence, local stability and
global attractivity of the positive equilibrium.

On the other hand, considering that living environment of many species is fragmented
in the process of reproduction, and the natural division of spatial regions is discrete (each
region is usually described as a patch), we naturally extend the model to the following

Nicholson’s blowflies system with patch structure:

n

m
(1.2)  ai(t) = @-(t){— Siwi(t)+ Y agzi(t)+ Y piai(t — ij(t))e o)
j=1.j#i j=1

where t > tg, i € A := {1,2,...,n}, x; describes the number of the density of the ith-
population at time ¢, a;; (¢ # j) is refer to the proportion of the population moving from
patch j to patch i at time ¢, J; designates the coefficient of instantaneous loss for class 4
at time t (which integrates both the death proportion and the dispersal proportion of the
population in class i moving to the other classes), p;jzi(t —7;;(t))e %=1 (1) represents
the reproductive function for class i at time t, p;; is the birth rate for the species, 7;;(t)
and o0;j(t) stand for maturity delay and feedback delay respectively. For more detailed
biological significance, one can refer to [14430,33] and their references cited therein.

Introducing the change of variable

6; = 0; —ay;  with a; <0,

we have the equivalent expression of (1.2)) as
n m
(L3)  a(t) = Bi(t) [ = Gimi(t) + D aijwi(t) + Y pigwit — 7i(t))erurimon) |
j=1 j=1

where 6; > 0, pij > 0, hij >0, a;; >0 (i # j), Bi,7ij, 0ij: R — (0,400) (i € A, j € Q:=
{1,2,...,m}) are bounded and continuous functions, and (ai;)nxn is a cooperative and

irreducible matrix satisfying

(14) Z Qij = —Qjj for all i € A.
J=1j#i

For the case of 7;(t) = 04;(t) (i € A, j € Q), the dynamic behavior for model (1.3)) has
been extensively studied in recent years [3,/4,[10L[15/16119,20,32]. As pointed out in [6], the
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positive equilibrium point (N7, No, ..., N,,) with different components can be transformed

into the positive equilibrium point with the same components, i.e.,
(1.5) Ni=Ny=.--=N, =N*

This has been considered as fundamental for the obtained research in [4,19,20]. Obviously,
is not consistent with the biological background in the considered system [3,{10]. How-
ever, for the case of 7;;(t) # 04;(t), there are relatively few studies devoted to model (1.3),
we only find that the stability of its zero equilibrium has been discussed in [22,33|, and
few attempts have been made to reveal the asymptotic behavior of the positive equilib-
rium [30]. Thus, without adopting the technical conditions and , the attractivity
analysis on the system has not been involved, which needs further research.

Based on the above observations, we are committed to establish the global attractivity
conditions of the unique positive equilibrium point for the system with 7;;(t) # 04 (t)
(i € A, 7 € Q). In short, the contributions of this article can be summarized as below.
(1) With the help of some novel differential inequality techniques, we establish the global
positiveness and uniform persistence on the solutions of system ; (2) Under certain
assumptions, we drive some new sufficient criteria guaranteeing the attractivity of the
positive equilibrium point of system for the first time, which improve and generalize
some recent existing ones; (3) We carry out some numerical examples including comparison
analyses to validate the correctness and feasibility of the obtained theoretical results.

The remaining of this paper is systematized as below. The positiveness and uniform
persistence are presented in Section [2] In Section [3, we substantiate the global attrac-
tivity of the unique positive equilibrium point for the addressed system . Moreover,
numerical simulations in Section [4] indicate that our theoretical findings are correct, and

a concise conclusion is offered in Section [l

2. Global existence, positiveness and uniform persistence

Throughout this paper, we label the collection of all n-dimensional real vectors by R"™

(R! = R) and the set of all positive integers by N*. For a bounded real function ¢, let

¢H = sup ¢(19)7 ¢+ = sup (ﬁ(ﬁ)v ¢ = inf (b(ﬁ)

VE[H,+00) YER veR

Denote
h = max max h;;, rH? = max { max Til;l ,max O'g ,
€A FEQ JEQ JEQ

7; = max<{ max7.;,maxo;; o, r=max{r;}.
je Y jeq Y ieA
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Furthermore, assume that d; > 0, p;; > 0, 035 > 0, 5;7 > 0, 735,045, Bi: R — (0, +00)
(1 € A, j € Q) are bounded and continuous functions, A = (a;j)nxn is a cooperative matrix
with a;; > 0 (i # j), and
n
(2.1) Z a;j < —ay  for all i € A,
=L

and there exists ty € [tg, +00) such that
(2.2) 0i;(t) > 7i;(t) for arbitrary ¢ € [to, +00), i € A, j € Q.

Clearly, is a weaker assumption than , and suggests that the feedback delay
is not less than maturity delay.

Because we will prove the persistence of the system , it is not difficult by using
the argument method in the literatures [3},/10] to find a positive vector (Ny, N3, ..., N})
such that

(2.3) 5N*+ZawN —i—meN* N =0 forallieA,
Jj=1 Jj=1

which entails that (Nf, N5,..., N}

n

) is a positive equilibrium point of model (1.3).
Let C =[], C([-74,0],R) be a Banach space accompanying the supremum norm
|-, and Cy =i, C’([ ri,0], [0, +00)). In addition, we label z(to, ©)(z(t; to, v)) as an

admissible solution of ([1.3)) involving the initial conditions:
(2.4) Ty =¢, @eCy and ¢;i(0) >0, €A,

and [to,n(y)) as the maximal right-interval of existence of x(t¢, ¢).

We next give three key lemmas which will be used to prove our main results.
Lemma 2.1. z(t) = z(t; to, p) is positive on [tg, +00).

Proof. According to Theorem 5.2.1 in [26, p. 81], one has z(tg, ) € C4 for all t €
[to, n(¢)). Thus, owing to (1.3) and (2.4)), we drive

xi(t)
= i(0)e” Ji, ($i—ai)Bi(s) ds
+e fto [ a'L'L)IBZ S) ds BZ( )|: Z aijx] —|— szsz T’L] ))eihijxi(sfo'ij(s))
to

J=1,j#i
% efts() (6;—ai;)Bi(v) dv ds

>0 foralltefty,n(p)) and i € A.
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It remains to substantiate that n(¢) = +o0. For t € [to,n(y)), i € A, set

Xi(t) = max x(s), I'(t)=maxX;(t).

to—r; <s<t ’ €A
Then
zi(s) < 5@'(8)( Z a;j + qu)F(S), Vs € [to, t], i € A,
j=Li#i =1
and
x;i(s) < zi(to) +/ ( Z a;j + me>
J=1j#1
t n
< [lell +/ mfiAX{W( D> ay +Zpij> }F(v) dv, Vs € [to,t], i €A.
to '€ j=Ljti i=1
This, together with the definition of I'(¢), implies
t n
r) < ol + [ ma{ o (Y o+ me)} Yo for all £ € fip.n(s)).
to N
J=1j#1

In view of the Gronwall-Bellman inequality, we have

0 < 2i(t) < Xi(t) < T(¢)

t n m
< flpllefto mmsien {8 (Sim st Siios) v gy ¢ 1o mig)), i € AL

which, together with Theorem 2.3.1 in [12], indicates that n(¢) = +00 and completes the
proof. O

Lemma 2.2. Assume that
(2. 5)

9 — Zp” lim sup(o;(t) — 7;(t)) x limsup Bi(t)< Z ai; + Zpi]) >0 forallieA

=1 e frree j=LiAi =l
holds. Then x(t) is bounded on [tg, +00).

Proof. For t > to, let ig € A and M;,(t) € [to — r4,,t] agree with

iy (M (1)) = MX%@ﬁm{mmm@}

tofTiOSSSt €A to—ri<s<t
Now, we validate that z(¢) is bounded on [tg, +00). Assume on the contrary that

lim ;, (M;,(t)) =400, lm M, (t) = +oo.

t—4o00 t—+o00
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On account of (2.2) and ({2.5)), there exist ¢ > 0 and Ty > to such that for all ¢ > Tp, i € A,
JEeQ,

(26) O'Z'j(t) — Tij(t) < lim sup(aij(t) — Ti]’(t)) + ¢, ﬁl(t) < limsup ﬁl(t) + &,

t—+o00 t—+oo
and
(2.7)
0; — Z Pij <hm sup(oy;(t) — m5(t)) + 5> <lim sup Bi(t) + 5) ( Z a;; + Z pij> >0
t—-+o0 : - s i
Jj=1 J=Lj#i Jj=1

Consequently, there must be a T o > Tp obeying
(2.8) M;,(t) > To+r for all t > Ty.

Apparently, for all t € [tg, +00), (1.3) and (2.1]) lead to

n m
:L';o (5) = 61'0 (5) - 5ioxio (S) + Z aiojxj(s) + Z PiojLig (S - Tioj(S))e_hiojxio(s_aioj(sn
< Bio(8) | = 0ipmig (s) + Z igj 5 (s) + Z PiojTig (s — Tioj(s)):|

S /Bio (S) Z aloszo + Z p'LO]xZO ):|

SJj= IJ#O

= Bi, (s ) Z Qo5 + szoj] xio (M, (t)) for all s € [tg, 1],

- Jj=L,j#%0

which, together with (1.3, (2.1), (2.6), (2.7), (2.8) and the fact sup,~qze™* = %, yields

0< x;o (Mio (t))

= By (Mio (t)) |: 5103310 )+ Z alOJ:BJ
3 i (Mg () = Tigj (Mg (8)) )37 (Mo (00101 0y ()
< /Bio (Mio (t)){ 5loxlo + Z alo]xlo )

e higeio (Mg (1) — i (Mg (1)))e 0070 Mo =01 (Mo (1)

+
hig;

M= 114:

+ > Pioj [Tio (Mg (t) = Tigi (Mig () — @i (Mg (t) — 00 (M, (t)))]

<.
Il
—



Persistence and Attractivity Nicholson’s Blowflies System 147

w e MigiTio (Mig (t)=0igj (Mig(t))) }

< Bio (M, (1)) I: — i io (Mo (t)) + Z Qo5 Tig (M, (1)) + Z pio?
j=1
+ Z Pioj
j=1

< B (M 0)| = B (M 0+ 3 2 3 i Himsup(oi6) = 75 (1) + ¢
j=1 j=1 o

Mo (t)—Tig; (Mg (£))
/ ;1:20 (s) ds}
M; (t)—o'ioj (Mi() (t))

— hioje
X (lim sup i, (t) + 5> < Z Qi + Z Pioj)SUz’o(Mio (t))]
t—+o00 j=1,j#io j=1

for all + > Tp, and then

0< T, (Mz (t))

j=1
— m n m
Big = > Pioj (lim sup(0iy; () = Tig; (t)) + 6) <lim sup [, (t) + 5) ( > ity pioj)
J=1 t——+oo t—+o00 J=1,j%i0 j=1

for arbitrary ¢ > fo. This is contrary to lims—s oo @i, (Mi,(t)) = 400 and terminates the
proof of Lemma, [2.2 O

Lemma 2.3. If

(2.9) 0 —ay < leij and tlj{&—noo[aij(t) — Tij(t)] =0 fOT all i € A, j € Q.
j=

Then min;ep liminfy_, 1 oo 2;(¢) > 0.

Proof. To derive a contradiction, we assume that | = min;ep liminf;, o 2;(¢) = 0. Define

iceA | to<s<t

v(t) = max {f &<t ‘ there exists i € A obeying 23(§) = min{ min xz(s)}}

Then, lim; ;o v(t) = 4+00. Meanwhile, for a strictly monotone increasing infinite se-

quence {tp}p>1, one can find 7 € A and a subsequence {tp. }e>1 € {tp}p>1 such that

(2.10) $2(v(tpk)): min xf(s):min{ min xz(s)} and lim a:;(v(tpk))zo.

to<s<tp, ° ieh | to<s<tp, k——+o00
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In view of (L3), (1), €9) and @10), we acquire
0= ”%(U(tpk))

= B(u(tyy) [ — b(ulty) + 3 as (0(ty,)

j=1

2y aiolty) = (w0

J=1,5#1

+ > pyai(v(ty,) — 7 (v(ty,)))e )7 <v<tpk>>>}
Z i (v(tp,) — T?j(U(tpk)))e_hijx?(”(tpk)_"a(“(tvk)))}

S —h;, su SE[—r~,400) T7\S
> ryas(u(tn) ol e e )

for all v(tp,) > to + r. Consequently,

(&\ B am) 2 Z . IL”[(U(tpk) - 7_/@\] (U(tpk)>) e—hsz;(”U(tpk)—(f?j(v(tpk)))

(2.11) B = 7(v(tp))
> Z ijefhgjx;(v(tpk)*Ugj(v(tpk))) for all U(tpk) >ty 4+,
j=1
and
(05 — az) 25 (v(tp,)
(2.12)

By taking limits of (2.12]), we gain

S z3(v(ty,) — 7(u(tp,)) = lim 23(u(ty,) — o3 (v(tp,))) = Ll z3(v(ty,)) =0,

which, together with (2.9) and (2.11), suggests that &> — az > E;n:l py;- This yields a
contradiction and finishes the proof. O
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Theorem 2.4. Let (2.9) be satisfied, and define

S !
(213) M~ :IZD&X%, Xz—SU.p{X ‘ X € (0,400),0; — as; <pre x}’
1
(2.14) kij € (0,1]  with kije % = hjM*e MM,
and
(2.15) E™M® = min{ min -2 in XL
ieh, jeQ hyj’ zeA ]GQ hZ]

where i € A, j € Q. Then

2.16 k™" < minlim inf 2;(¢) < max]1 < M*.
(210) S TR el < pgeimanp ) <

Proof. First, one can choose i,, € A satisfying

L?"P = lim sup z;,, (t) = max lim sup x;(t).
t—+o0 €A t—to00

Owing to the fluctuation lemma [27, Lemma A.1], it is an easy matter to find a sequence

{tz }kzl obeying

(217)  lim tj =+oo, lim ay, (t;) =limsupa,,, (¢t) = L"P, lim xz; (¢;) =0.

k——+o0 k——+o0 t—+00 k——+o0

For simplicity but without loss of generality, we also assume that limy_, 4 2;(t;) (I €

*

AN A{iss}), By oo Bi,, (8), Timps oo @4, (8 — 7i. 5 (27)) and limys 4 oo w4, (8 — 04, 5(2]))

exist for all j € Q. Due to (1.3)), (2.1) and (2.17)), we gain

0= 1li t;
Jm g (6)

- kgﬂlil 57/** (tk) |: - 61** llm xz** tk + ]Zl al**] 1151:1 x.? (tk)

Z Pl By M (b = T (1)) e oo i (i )

7/**]

j=1

1
< hm /B’L** (tk) |: 51**Lsup + Z al**]Lsup + Z pl**j :|
1**] €

k—+
7=1

m

i 1
< lim @**(m{—amﬁuuz‘“”]

)
k—+ ] hi**je

which yields

Zm Pixsxg 1 Zm Pij 1
=1 hi,.j € =1 h;j e

97 Miei © < max Y

LSUP <
- i€EA 0;

Tax
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Next, define I, € A with

L™ = liminf z;, (t) = min lim inf ;(¢).
t——+00 1EAN t—+o0

Again from the fluctuation lemma [27, Lemma A.1], one can find a sequence {t;*};>1

obeying

(218) lim #}* = +oo, lim axy, (t") = liminfa,, (t) = L™,  lim 2] (") = 0.

k——+o0 k—+o00 t——+o0 k—+o0

In particular, limy_, oo 2i(¢5*) (I € A\ {lis}), limpqoo Br,, (855), lmpqoo zp,, (8 —
7,5 (t5F)) and limg_, oo 27, (8" — 0y, (7)) exist for all j € Q. Now, we claim that

Linf > kmin'
Otherwise,
Linf < k?min, hi]’Linf < k” and min U€_U _ hijLinfe—hijLinf.
Ue[hij Linf,hijLS“p}

Clearly, (2.13)—(2.15]) lead to

hijLinf < hyj kgrfoo xy,, (U — 7.5 (t5)) = hyj kginoo xy,, (" — o, (t5)) < hij L™®
and
(2.19) hw k:hm ffl**(t — Tl (tk )e —hij imp_ g oo T, (855 =71, (E55)) > hijLinfe—hijLinf.

Jr

Due to (I3), 1), 18 and (.19, we gain

0= 1 e
k_lff 951**( )

= li )| =96 1 (ti ; 1 10N

+ Z Zl**] h’l**j lim Ly (t T Tlesj (tl:*)) —hipg IMp oo @1, (tz*—"l**j(tz*))]
l**] —+00

:kgm 51**(7575*)[ 55** hm x,, (1) +z;al**] hm :L“j(t}:,*)
J

- Z Plosi oy, i ay,, (65 — 7,5 (67 ) ewd b b0 B (07 =T ()
hl**] k—+o00

> lim Bl**(tz*)[—(%*—az**l**)me

k—+o0
. p
2 mf 2 : lsrJ mf —hi, L
+ **]L h**]L J
J=1j Al =t e
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m
: i _ .7 inf
> lim B, (G| = (O, = ara) + ) prge et
k—4o00 —
I =

m
> lim B, (6L = (G, — @) + Z/’l**ﬂ'ehwkmm}
k—+o00 L =

m
> hm Bl** (tz*)Llnf - (61** - a’l**l**) + Z pl**je_Xl**:|

" k—+4oo

L j=1
=0,

which yields a contradiction and proves the above claim. Hence, (2.16) holds, which
verifies Theorem [2.41 0

Remark 2.5. Theorem indicates that, under the assumption (2.9)), system ((1.3)) has

uniform persistence, and then (0,0, ...,0) is unstable.

3. Global attractivity analysis

In this section, the strategies of the proof of the present paper follow from those used in
some earlier papers [8}/19,28], but some modifications are nontrivial.
First, we establish the attractivity conditions for non-oscillatory solutions of model (|1.3]).

Proposition 3.1. Provided that (2.9)) is satisfied, and

(3.1) liminf z;(t) > N} for alli e A

t—+o00

hold. Moreover, assume that
n

(3.2) ZaijN;‘ =0 forallieA.
j=1

Then limy—, o z;(t) = N for arbitrary i € A.
Proof. Denote z;(t) = z;i(t) — N} (i € A), it can be deduced from Lemma [2.2f that

0 <limsup z;(t) < 400 for all i € A.

t—+o00

Let i* € A be such an index as limsup;_,, ., () = max;ep limsup; ,, o 2i(t). In

order to verify Proposition [3.1] it suffices to state that

lim sup z;=(t) = 0.

t—4o0
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Otherwise, limsup; ., o, z(t) > 0. Owing to the fluctuation lemma [27, Lemma A.1], it

is an easy matter to find a sequence {t;}r>1 obeying

(3.3) lim t; = +oo, lm 2z;(tg) = limsup z+(t),  lim 25 (t;) = 0.

k——+o0 k——+o0 t—+oco k——+o0

Due to and ( ., we gain

20 (t) = Bir (tr) [ — 0 (L) + Z a2 (te) + Z az‘*jN;
(3.4) . = !
+ > pieja(ty — i (te))e (tk_ai*j(tk))] :

Because f3;+(t), xi(t — 73+;(t)) and x;+(t — 04+j(t)) are bounded on [tg,+00), we can se-
lect a subsequence of {tx} (for convenience of exposition, we still label by {tx}) satisfy-
ing that limy o0 21(tx) (I € @\ {7*}), limg o0 Bir (L), limp— o0 @4 (t — Tixj(tx)) and
limy, s 4 oo @4+ (t — 04+ (ti)) exist for all j € Q. Moreover, (2.9) and (3.1) yield

(3.5) N:; < lim x4+ (tk —Ti*j<tk)) = lim xl*(tk — O+ J(tk» < N* + lim 2 (tk)

k—+o0 k—4o00 k—+o0

for all j € Q.
Hereafter, with the help of (3.3), we regard two cases as follows.
Case 1. If limy_y 4 o0 Ti= (L, — Ti=j(tg)) = Umypyt o0 Tix (t — 04+ (tg)) = N for all j € Q,

by taking limits, (2.1)—(2.3]) and (3.3)—(3.5) give us

0= lim z.(tx)

k—+4o0

= lim S (tk)[ (5i* hm i+ (tg) +Za1] hm L Zj (tx) +Za1j

k——+oco
Jj=1 Jj=1

+ZPZJ har JNZ*:|

n
< kEI—lI—loo Bix (tx) [ — O (lim sup zi«(t) + N{i) + lim sup z;+(t) Zl Qe j

t—+o0 t——4o00
+Zaz ]N +Z’07’ *j _hz*]N'L :|

= 07

which leads to a contradiction, and suggests that limsup,_, ., zi<(t) = 0.
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Case 2. If there are some j € € such that N < limy_ ooz (ty — 7(tg)) =
limyy oo @i+ (tr, — 04+ (tr)), it follows from (2.1)—(2.3), (3.2), (3.4) and (3.5) that

0= lim z.(tx)

k—4o00

U] RONUIERARD LR INSARD Sty
Jj=

+Zp”< o <tk—w<tk>>> h”N’*]

m
< hm Bix (tr) (hm sup 2+ (t) + N;i) [ — 0 + Z pi*jehi*fNi**]
j=1

k—+ t—+o00
= 0’

which is also a contradiction and proves the above statement. This accomplishes the proof
of Proposition O

Proposition 3.2. Assume that (2.9) and (3.2)) hold, and

(3.6) limsupz;(t) < N forallie A

t—+o0

is satisfied. Then, limy_, 1 zi(t) = N; for arbitrary i € A.
Proof. Denote z;(t) = x;(t) — N; (i € A), according to Lemma one can see that

—o0 < limsupz;(t) <0 for all i € A.
t—+o00

Label ** € A be such an index as liminf; ;o 24+« (t) = min;e s liminf; 4o 2(¢). So
as to confirm Proposition we only need to show that

lim inf 2+ (t) = 0.
t—+o00

Conversely, suppose that lim inf;_, ;o 2+ () < 0. On account of the fluctuation lemma [27,

Lemma A.1], there exists a sequence {t;}r>1 agreeing with

(3.7) lim tp =400, lim zp=(tg) = Uminf 2; (), lm 25 (tx) = 0.

k——+o0 k——+o0 t——+o0 k——+o0

It follows from ((1.4)), (1.5) and (2.3]) that

22** (tk) = ,Bi** (tk) |: — 51'**:[11'** (tk) + Z Qix* 525 (tk) + Z ai**jN
(3.8) = =

m
+ ) pieeja(ty — Ti**j(tk))e_hi**jxi**(tk_ai**j(tk))] :
=1
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Since By (t), zjex (t—T5++;(t)) and @i (t— 04+ (t)) are bounded on [ty, +00), one can choose
a subsequence of {t;} (still labeled by {¢x}) such that limg_, o 2zi(tx) (I € Q\ {i**}),
limg 1 o0 Bie= (tr), limk_>+oo Ty (t, — T (1)) and im0 Tiex (b — 040 (ty)) exist for
all j € Q. Moreover, and . lead to

(3.9) Njiwd Hm zpe(tg) < Hm @pes (b — Tyerj(Eg)) = Hm @i (E — 0er j(Er)) < Njss,

k—4o00 k—4o00 k—4o00

for all j € Q, and one of the following cases must occur:
Case 1. If limk*)+oo wi**(tk — Ti**j(tk)) = hmkﬁ+oo Tjxx (tk — Ui**j(tk)) = N;;* for all

j € Q, by taking limits, (2.1)—(2.3]) and (3.7)—(3.9) reveal that

0= lim 2. ()

k—+o0

= kgm ﬁl**(tk)[—dz** hm L tk +§:1a2**] hm ZJ tk —1—221(11**
J J

m
3 e
j=1

> *k T i 1 TS -t* ok sk
hm Bi (tk)[ 0; <ltlglﬁ£10le (t) + N; >+hm1nle ZQZ j

k—+ t—+o0

n m
+) e NP+ pi**jNZi*ehz**sz**]
j=1 j=1

n m

1 . — 0 * e s N U NTE o —hyxx 'Ni***

> lim B (t) [ Oies Nie + Z; agr i Nj + Z‘T pivejNfee i }
J J

=0,

which is impossible and implies that liminf;, . 2+« (t) = 0.
Case 2. If limy_, 4 o0 Tjes (tg — Tier j(tg)) = Umpypoo Tixx (t — 0=+ j(tg)) < N5 holds for

some j € €, it follows from (2.1)—(2.3), (3.2), (3.7) and (3.8]) that

0= lim 2z ()

k—+o0

> lim S (t — Ojx hm xpex (tg) + Qi hm zi(tx) + Qi
k—>+ooIBZ (k)|: 7 % k ]ZIZJ j k jzlzj

+sz** (im0 = ey oo

m
> Hm Sy (tr) (1;35‘ nf 2 (t) + N) [ — Ojee + Zl pis+je hz**aNz**]
]:

=0,
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leads to a clear contradiction and the above statement is proved. This completes the proof
of Proposition O

Corollary 3.3. Assume that (2.9)) and (3.2) hold, and for each i € A, x;(t) is eventually

nonoscillatory about N, i.e., there exists T* >ty agreeing with
(3.10) zi(t) > N (orz;i(t) < NJ) forallt>T" and i€ A.
Then, limy_, o z;(t) = N for all i € A.

Remark 3.4. It can be concluded from Corollary that, under the assumptions ([2.9)),
(3.2) and (3.10)), the convergence criterion for non-oscillatory solutions of the system (/1.3))
is independent of the size of the delays, and all conclusions of Propositions 2.1 and 2.2

in [28] and the results of Theorem 4.1 in [19] are special ones of Corollary
Theorem 3.5. Let (2.9) and (3.2)) be satisfied, and there exists H > to such that for all

i€A,

(3.11) (e(&_%)?ﬂwﬁa_ Dh&NT

and Lo

(3.12) ho; N (1 — e~ri Gimaa)Bil )

8 — d;e(1 — e—r{{(éi—an)ﬁf{) _ aiie—rﬁ(éi—an)ﬁf{
hold. Then limy_,4 oo xi(t) = N} for all i € A.

Proof. Label
Gi(t) = h(x;(t) — N;), i€A.
In light of (1.3)), we drive

Gi(t) + hdiBi(t)N; + 6:Bi(t)Ci(t)
= ﬁz Z az] C] + hﬁl( )

M:

aUN*

Il
i

-

h;jCi(t—o;5(t)) .
+ hﬁz ZP’L] |:Cz Tz]( ) + Nz*:| e—%—hij]vi ’

h
and
t
0i—a;i)Bi(v) dv
(Ci(t)efto( Bi(v)dvy,
:[ Z aijBi(t)¢;(t) + hBi(t ZamN*
(3.13) s
i Si (=045 (1)) «
+ hﬁz(t) Z Pij <W + Ni*)e_]h]_hijNi _ hﬁl(t)(SlNZ*
7j=1
% efzto(fsi*an)ﬂi(v) dv7 t>t, i€ A
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To accomplish the verification, we shall reveal that

in liminf ¢ (¢) = li i(t) =0.
i uf () = gl sup (1)

Owing to Corollary it suffices to treat the case that for each T > tg, there are
t*, t** € (T*, +00) agreeing with

(3.14) min Gi(t") <0 and max G(t™) > 0.
Denote

(3.15)  p=limsup(;, (t) = maxlimsup (;(¢), A= liminf(;,(¢) = minliminf (¢).

t—400 €N {100 t—+o0 1€EAN t—+o0

In view of (3.14]), we acquire
A<0< p.

Now, our problem reduces to proof that A = p = 0. If the conclusion was false, then
w>0o0r A<O0.

We only consider the case of © > 0. (A < 0 can be handled similarly).

If A =0,ie., A = mingep liminf; o (;(t) = 0. It follows from Proposition [3.1] that
p=limsup, ., G, (t) =0, and limy_, 4o ;(t) = N;* for all i € A.

When g > 0 and A < 0, with the aid of the fluctuation lemma [27, Lemma A.1], one
can pick two strictly monotone increasing infinite sequences {l;}4>1, {Sq}4>1 Obeying that,
for all ¢ € NT,

(3.16) Iy >to+r, G,y >0, Iy — +oo, Ciy(ly) — p, ¢ (1) =0 asq— 4oo,
and
sg>to+ 7, Cu(s) <0, 84— 400, Cin(sg) = A, (i,(sq) = 0 as g — +o0.

Since a bounded sequence has a convergent subsequence, it can be assumed that for all
Jjeq,

(3.17)
i B () =B lim Gl - () =G lim Glla) = ¢ i AN i),
and

lim ﬁig (Sq) = B;;*a lim Ciz (8(1 - T¢2j(3q)) = nga

q—>+00 q—+00

i Glsg) =G i€ AN\ {ia):

To drive a contradiction, the proof falls naturally into three parts.
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First, we state that there is an H; > 0 such that, for any ¢ > H;, there exists
Ly € [lg—1i,,14) obeying

(3.18) Gii(Lg) =0, and (;,(t) >0 forallte (Lgly).
Otherwise, we can choose a subsequence of {l;} (do not relabel) such that
G (t) >0 forallte(ly—ri,ly),qg=1,2,....

Subsequently,
0< lim G,(lg—Ti(ly)) <p forall jeQ,

q—) oo
and

n

Czl = Bi,(lq Z aiy G (lg) + hBi, (Ig) Z @iy AV,
j=1

m

— 73,4 (1 _hiyig (ta=eiy ja)) *
+ hﬁ“ Z [Cn 21]( Q)) + Nl*1:| e h hiy Ni

_hdilﬁil( ) i _5i16i1(Q)Ci1(llI)

(3.19) n
< /811 Z iy g CJ )+ hBi (1 ) Z ailej
j=1

m

+ hﬁu Z [Cn Tzl](l )) + N*:| hiyi N7

— hézlﬁzl( q) i1 - 5i1/8i1( Q)Cil (ZQ)

In what follows, we assert that

(3.20) lim G, (g — 7ij(lg) = lim G, (lg — 04,5(lg)) = ¢ = p forall j € Q.

qg—+00 q—r+00

If the assertion would not hold, then there exists 5 € Q) such that

lim Czd(lq - Tilj(lq)) = lim Cz‘l(lq - Uilj(lq)) = z'jl < W,

which, together with (2.9)), (3.2)), (3.15)), (3.16)), (3.17) and (3.19)), leads to

0 < aii B hgloo Giy (Ig) + 87, Z iy j qETOO Gillg) + B, Z aiy N
J=Llj#i J=1
+ hﬁ; thj |:limQ—>+oo €i1}(qu — Tixj (l )) + N*] ZUN”
j=1

- h5i1 61*1N2*1 - 51'1 61*1 qgrfoo Giy (l(I)



158 Weiping Fan and Jian Zhang

* % * —h; N*
<Y pay (Nil +%> e~ _ gy “( s %)
j=1
—0,

which derives a contradiction and verifies (3.20). Furthermore, (2.3)), (3.2), (3.17) and

(3.20) yield

0= amlﬂn hm Giy (I Z @i, hm gj ) + hB: Zam]\f*
J=1j#i
; a (Wi +4)
* * —hi i (N5 +5
+ hp3}, ; piny (NG + E) e hiaa NG

— héi, B, N, — 04y B35, qEIJPoo Giy (Ig)

< hﬁfl Zp“] <N2*1 + %) e hzl] hﬁzl Zl ( 74*1 + %)
j=1
= ()7

which is a clear contradiction and proves the assertion (3.18)).
Likewise, it is not difficult to find Hf > 0 such that for any ¢ > H7, there exists

Sq € [sq — Ty, Sq) agreeing with
(3.21) Gis(Sq) =0 and (,(t) <0 forall t € (Sg,sq).
Secondly, we certificate that
(3.22) eh—1<A <0< u<e—1.
For any € > 0, indicates that one can select a positive integer ¢* > H; + H{ obeying
(3.23) A —e < ((t) < p+e  for arbitrary t > min{lg, sg+} —2r and i € A.

In view of (L3), 23), B.2), B.13), (B:21) and (8.23), we acquire
Cig (Sq)eftsoq (0iy—@iyig)Bigy (v) dv

eftsoq (57,2 a127,2 )/87,2 ('U dv ftO i9 aiziz )ﬁzz (U) dv

ig4 Vg (5i2 S
T Z al?]/ C] 612 )fto in —Qigin)Big (v) dv dt
.7 1,]757,2

n hzmj pios / {N* Gia (8 = Tigg (D)) ] —hins Nz, =22 i (=01 ()
' h
j=1 Sa
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X /Bz'g (t)eftto (5i2 —Qigiq )57;2 (v) dv dt

*eftso ig ~Qigiz)Biy (v) d fto iy ~igiy)Bip (v) dv
> —hdi, Ny, r—
i 61y =ainin)Biy (V) v _ 10 (8 —a155)Bi (W) dv 0
+(A—¢) 5 —a, inj
v =150
A—c¢

+thl2j/ < 12+

h

> —hiy; N}~

(H+5)5 (t)e ftto(tsigfaizi?)ﬁb(v) dv g

(_ai2i2)

i eftO io a1212)[3’12 (’U ‘];50 ig ~Qigig )1822 (’U) dv
> —hd;, N,
e iy — Qigiy
efti) io a1212),312 (’U d'U o ftO ig ~Qigig )ﬁzg (U) dv
+(A—¢)
Oiy — Qigi
ej;ti)q (512 —Qigig )/812 (U) dv _ eftiq (612 —Qigig )612 (U) dv

iy

= Qigiy

efto e

i9 (112 9 )/312

m
—h N*
et
Jj=1

ig —Qigis ) Big (V) dv

—he. N e—(ute) _q
12+ V9 51'2 aigig [ ]
+ ()\ )( fio (0ig— (11212)/312(” fto in —Qigiy)Big (v) dv)7 q > q*
and
zia(sg) + (1 ) (¢ Oy 1)
> 2y (50) + (A=) (¢ aCamran a0 )
(3.24) S (1 e f;§(6i2—ai212)512(v) d”)w[e*(“+5) —1]
5i2 — Qjyiq
> (1 — 6—(&2—%2@)5&5)M[Gf(um —1], ¢>dq".
- 52'2 - a’igig
Letting ¢ — oo and € — 0, (3.11)) and (3.24)) reveal that
s 1— 6—(51‘2—%21‘2)557”521 y h(sz* (ef'u B 1)
(3 25) - (e*(‘;iz*“iz@)ﬁgrg _ 1) +1 5@'2 — Qigiy
’ (5i2—a12i2)5i}]7"fl — 1Dhé:. N>
:(6 2" 12 ) 12 zz(e—u_l)ze—ﬂ_lz_l_

5y —

Qigig

159
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In the light of (T.3), @.3), B-2), (3-13), (3.17), B.18), (3.23) and (3.25), we obtain

Cil (lq)eftlg (0iy —@iyiqy )Biq (v) dv

1 L
eftg((sil—ailil)ﬁil (v)dv eftoq (8iy =i iq)Biy (v) dv

= —hé;, N}
nen 6i1_ai1i1
K ft i1 —@iyiq ) Biy (V) dv
+ Z @iy j CJ )Biy (t)e’to dt
J= 1717521
+thm / [ +C1(;:”(t)) ¢~V = G 10 ()

X B, (el Ca )P (0 g

! L
oJig Big—aiyiy)Biy (W) dv _ [, 0% (8iy —aiyiy )Biy (v) dv

< —hé;, N}’
nen 5i1 — Q444
eftlg (61'1 —Qiqiq )Bll (’U) dv o eftzq (51'1 —Qjqiq ),811 (U) dv n
+ (n+e) aiy;
% ~ G =L

_ )Bil (t)eftto (0iy —@iyiq )Biy (v) dv gt

M+€ —hiyiNf —
+thllj/ ( i N > 14

L
€ft0 i1 —ailil)ﬁil (U) dv _ eﬁOq (67;1 _ailil)ﬁil (1}) dv

< —hé;, Nj;
nen 5i1 - ailil
eftloq (511 7041'1751 )57'1 (’U) dv _ eﬁﬁq (611 7(17;11'1 )611 (q_)) dv
+ (:U’ + 6) 5 (_ahil)
i1 ailil

fto iy —@iyip )B(v) dv fto i1 —ipiq)B(v) dv

5i1 - ailil
m m
X [h Z pirj N, e MiNipe=(A—e) 4 (1 +e)el™ Z pilje_hileil}
= st
fto (0iq —aiqy4y)Biq (v) dv ft() ip —@iyiq )Bip (v) dv
= héilN* [e*(/\*E) _ 1]
51'1 - ailil
. plt .
4 5’166—_(1“’1(” + €)61+5 (eftlg (6iy—@iyiy)Biy (v)dv _ eftﬁq((%‘l —aiyip)Bip (v) dv)7
0iy — Qiyiy
for ¢ > ¢*, and
1— ef 185y —aiyiy)Biy (v) dv A
2iy (lq) < héiy, Nj, [e= (A9 — 1]

5’i1 — Qjy4q

1
n i e ‘e — Qiyiy ('u + 6)(1 _ efliq(éh_ailﬁ)ﬁil (v) dv)
Oy — Qiyiy
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_ 6*7’{1{(511 T @iy )ﬁff

(3.26) < hé;, N}, =) _ 1)
(51' — Q44
Coplde
L U T AT L N
0iy — Qiyiy

Letting ¢ — oo and € — 0, (3.12) and (3.26]) entail that
—rH (8iy —aiyi ) B
s P N, (1 — ¢ 8

-

et —1)
- —rH (8, —ai i) BH —rH (8 —aiyi H(
51'1_51'16(1_6 7"21( 1 all)ﬁzl)_ailile 7"21( 1 all)ﬁn

§€_>\_17

which, together with (3.25)), entails that (3.22)) holds.

Finally, using the same argument as in the proof of Theorem 4.1 of [28], we can
conclude from (3.22)) that A = p = 0, which contradicts the fact that g > 0. This ends
the proof. O

Remark 3.6. In fact, hmr{f o+ eri (6i—ai)" — 1 means that the conditions of and
naturally hold, but lim .z, et Gi—ai)B" — 406 shows that and
are obviously not satisfied. Thuzs,7 one can find that the sufficiently small pairs of timing-
varying delays have little effect on the global attractivity of the positive equilibrium for
system , but the system (|1.3)) may produce chaotic oscillation when the time-varying
delays are sufficiently large. This will be verified through some numerical simulations in

the next section.

Remark 3.7. It should be pointed out that, for ¢ € A, j € Q and ¢ # j, if a;; = 0 and
without patch structure in , then it is simplified to the scalar Nicholson’s equation
in [28], and one can easily discovery that our results cover the corresponding results in [2§].
In addition, since the actual biological background often leads to the positive equilibrium
point possesses different components, then all the results in literature [4,19,20] are the
special case of this paper when Ny = Ny = --- = N, = N* and 7;5(t) = 04(t) (7 € A,
j € Q), which has been adopted as a basic assumption for the considered attractivity of
in previous work.

Remark 3.8. In Theorem 5.1 of [10] and Corollary 3.4 of [3], one can find that

n
j=1 Qij

has been considered as a technical assumption for the permanence and stability for Nichol-
son’s blowflies system with patch structure. Evidently, the assumption is no longer
required in Theorems and of our manuscript. This implies that the theoretical

results of this present paper improve and complement some existing ones in the above

(3.27)

mentioned papers.
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4. Numerical simulations

In this section, we carry out some numerical simulations to verify the theoretical findings

of this paper.

Example 4.1. Consider the following patch structure Nicholson’s blowflies system incor-

porating multiple pairs of time-varying delays:

(1) = (10 + cos?(¢)) [ L+ ( L+ 21()332(7:))

5 20
+ £€5$1(t — Tll(t))e 571(t—0o11(t))
100
9 —0
+ mef)l‘l(t — le(t))e 5ot 12(t)):| ,
(1) = (12 + sin(20))| — coaa(t) +  zoaa() — Joea(t)
N ° 202 407 T 402
3
) byt = m(p)e o)
* %62$2(t — Ta(t))e 4120022@))} ,
. V2 1 1 V2
25(t) = (10 + sin?(3t)) [ — T:L‘g(t) + <40x1(t) 4 4—0332@) — 201’3@))
1
+ %\/iegl“g(t — 731 (t))e_%xg’(t_am(t))
N ng(t))e—éws@—asa(t))] ,

which takes on a unique positive equilibrium point (N, N3, N3) = (2,2,v/2).

Now, an easy computation shows that

1 L 1 . L
(4.2) 7)) = 2—0|cos 20+ j)t|, o44(t) = 2—0|sm2(2 + )t + el

i,j=1,2,3.

satisfy , , and . Thus, we deduce from Theoremthat the positive
equilibrium point (2,2,v/2) is a global attractor of incorporating delays . The
numerical simulation in Figure is consistent with this assertion.

In addition, take

) . 1 ..
(4.3) 7;5(t) = 404, 045(t) = 405 + T b= 1,2,3,

we check at once that (3.11)) and (3.12]) do not hold for system (4.1]) involving delays (4.3]).
From Figure we can find that (2,2,1/2) is unstable and maybe not the global attractor

of (4.1) with delays (4.3]). This confirms the conclusions reached in Remark
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—z1(t)
— Ty (t) i
—m3(t)
[ap)
e
o
I
é
5
15 I
N
0s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18

t

Figure 4.1: Numerical solutions to example (4.1) with delays (4.2) and ini-
tial values:(3|cos(t)[,1.5 + |sin(¢)|,3 + |sin(¢)]), (0.5 + 5|sin(¢)],1 + 3|cos(t)],0.5 +
0.5] cos(t)|), (3.5| cos(t)],0.5 + 2| sin(t)|, 2 + 2| sin(t)|).

— I (t)
35 — X2 (t) q
— X3 (t)

| u.ﬁ \M\Q‘
i

oo
i |

Figure 4.2: Numerical solutions to example (4.1)) with delays (4.3) and ini-
tial values:(3|cos(t)[,1.5 + |[sin(¢)|,3 + |sin(¢)]), (0.5 + 5|sin(¢)],1 + 3|cos()],0.5 +
0.5] cos(t)|), (3.5| cos(t)], 0.5 + 2| sin(t)|, 2 + 2| sin(t)|).

Remark 4.2. Because 7;;(t) # 04;(t) (i € A, j € Q), and the compositions of the positive
equilibrium point vector of system are unequal, and hence the results in literature
@@,,, cannot be used to reveal the global attractiveness
of system . This implies that our results are novel and generalize all the ones in

the above-mentioned references. On the other hand, the positive equilibrium point of
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system (4.1 is globally attractive when the time-varying delays are sufficiently small, but
when the time-varying delays are sufficiently large, the system (4.1)) may yield complex

dynamic behavior, which confirms our findings.

5. Conclusions

This paper explores the effect of delays on the attractivity of Nicholson’s blowflies model
with patch structure and multiple pairs of distinct time-varying delays. Without assum-
ing that the equilibrium vector possesses the same components, by applying some novel
differential inequality analyses and the fluctuation lemma, the uniform persistence on the
positive solutions, as well as the global attractivity on the positive equilibrium point have
firstly been established for the addressed system. The obtained results substantiate that,
by controlling the death rate, the dispersal rates and the related parameters in the repro-
duction function, the attractivity of the positive equilibrium point can be attained if the
time-varying delays are sufficiently small in the development process. The results of this
manuscript are verified by some numerical simulations, and supplement some early pub-
lications to a certain extent. The adopted strategies in this present study could be taken
into consideration in the area of dynamics problems on other patch structure population
systems incorporating two or more distinct delays in the same reproduction function. This

is our future research direction.
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