Log Canonical Thresholds on Burniat Surfaces with $K^{2}=6$ via Pluricanonical Divisors

In-Kyun Kim and YongJoo Shin*

Abstract. Let S be a Burniat surface with $K_{S}^{2}=6$ and φ be the bicanonical map of S. In this paper we show optimal lower bounds of \log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by φ. Indeed, for a positive even integer m, the \log canonical threshold of members of an invariant (resp. anti-invariant) part of $\left|m K_{S}\right|$ is greater than or equal to $1 /(2 m)$ (resp. $1 /(2 m-2)$). For a positive odd integer m, the \log canonical threshold of members of an invariant (resp. anti-invariant) part of $\left|m K_{S}\right|$ is greater than or equal to $1 /(2 m-5)($ resp. $1 /(2 m))$. The inequalities are all optimal.

1. Introduction

Let X be a variety and $\mathrm{p} \in X$ be a smooth point. And let D be an effective Cartier divisor on X. The \log canonical threshold or the complex singularity exponent of D at p is the number

$$
\operatorname{lct}_{\mathrm{p}}(X, D):=\sup \left\{\left.c \in \mathbb{Q}| | f\right|^{-c} \text { is locally } L^{2} \text { near } \mathrm{p}\right\}
$$

where f is a local defining equation of D at p . In [7] we have the following inequalities

$$
\frac{1}{\operatorname{mult}_{\mathrm{p}}(D)} \leq \operatorname{lct}_{\mathrm{p}}(X, D) \leq \frac{\operatorname{dim} X}{\operatorname{mult}_{\mathrm{p}}(D)}
$$

and the \log canonical threshold of D at p is equal to the absolute value of the largest root of the Bernstein-Sato polynomial of f.

The \log canonical threshold can be formally defined for \log pairs (cf. [7, 8.2 Proposition]). Let X be a normal variety with at worst \log canonical singularities, Z be a closed subvariety of X and D be an effective \mathbb{Q}-Cartier divisor on X. The \log canonical threshold of D along Z on X is the number
$\operatorname{lct}_{Z}(X, D):=\sup \{c \in \mathbb{Q} \mid(X, c D)$ is \log canonical in an open neighborhood of $Z\}$.
For simplicity, we put $\operatorname{lct}(X, D)=\operatorname{lct}_{X}(X, D)$.
We have the following invariant for every polarised pair (X, \mathcal{L}).

[^0]Definition 1.1. Let X be a normal variety with at worst \log canonical singularities, and \mathcal{L} be an ample \mathbb{Q}-Cartier divisor on X. The global \log canonical threshold of a pair (X, \mathcal{L}) is the number

$$
\operatorname{glct}(X, \mathcal{L})
$$

$:=\inf \{\operatorname{lct}(X, D) \mid D$ is an effective \mathbb{Q}-Cartier divisor on X, \mathbb{Q}-linearly equivalent to $\mathcal{L}\}$.
Chen, Chen and Jiang [5] proved the Noether inequality for projective 3-folds of general type. They use the global log canonical threshold of a surface of general type with $p_{g}=2$ and $K^{2}=1$ via its ample canonical divisor (see the appendix by Kollár in [5]).

The authors in [6] showed that the global log canonical threshold of a Burniat surface with $K^{2}=6$ via its ample canonical divisor is $1 / 2$, where the Burniat surface is a minimal surface of general surface with $p_{g}=0$ and $K^{2}=6$.

In this paper, we give optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems via Klein group induced by the bicanonical map of a Burniat surface with $K^{2}=6$.

Let S be a Burniat surface with $K_{S}^{2}=6$ (see [1, 2, 8 10]). The bicanonical map φ of S has an image, a del Pezzo surface Σ of degree 6 in \mathbb{P}^{6} which is a blow-up $\rho: \Sigma \rightarrow \mathbb{P}^{2}$ at three point p_{1}, p_{2}, p_{3} in general position. Denote by e_{i} the (-1)-curve corresponding to p_{i}, by e_{i}^{\prime} the strict transform of the line passing through the two points p_{j} and p_{k} by ρ, and by m_{l}^{i} the strict transform of a general line passing through the point p_{i} by ρ for each $\{i, j, k\}=\{1,2,3\}$ and $l=1,2$. Then φ is a bidouble covering map over Σ with a branch divisor $B:=B_{1}+B_{2}+B_{3}$ satisfying $2 L_{i} \sim B_{j}+B_{k}$ for a line bundle L_{i} on Σ and $\{i, j, k\}=\{1,2,3\}$, where

$$
\begin{aligned}
& B_{1}=e_{1}+e_{1}^{\prime}+m_{1}^{2}+m_{2}^{2}, \\
& B_{2}=e_{2}+e_{2}^{\prime}+m_{1}^{3}+m_{2}^{3}, \\
& B_{3}=e_{3}+e_{3}^{\prime}+m_{1}^{1}+m_{2}^{1},
\end{aligned}
$$

and \sim means the linearly equivalent relation between divisors.
For $i=1,2,3$, we note $\varphi^{*}\left(B_{i}\right)=2 R_{i}$ for some divisor R_{i} ramified by φ, and denote by G the Klein group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}=\left\{\operatorname{Id}_{S}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ induced by φ such that R_{i} is the divisorial fixed part of σ_{i}.

For a positive integer m, the natural action of the group G splits the set of global sections of the pluricanonical divisor $m K_{S}$ of S into eigen spaces via the characters of G :

$$
H^{0}\left(S, m K_{S}\right)=H^{0}\left(S, m K_{S}\right)^{\mathrm{inv}} \oplus \bigoplus_{i=1}^{3} H^{0}\left(S, m K_{S}\right)^{\chi_{i}}
$$

where χ_{i} is a character of G such that $\chi_{i}\left(\sigma_{j}\right)=\delta_{i j}$ for $i, j \in\{1,2,3\}$. Then the pluricanonical linear system $\left|m K_{S}\right|$ for a positive integer m contains an invariant part $\left|m K_{S}\right|_{0}$
(resp. an anti-invariant part $\left.\left|m K_{S}\right|_{i}\right)$ that consists of zeros of sections of $H^{0}\left(S, m K_{S}\right)^{\text {inv }}$ (resp. $\left.H^{0}\left(S, m K_{S}\right)^{\chi_{i}}\right)$ for $i=1,2,3$, that is,

$$
\left|m K_{S}\right| \supseteq\left|m K_{S}\right|_{0} \cup \bigcup_{i=1}^{3}\left|m K_{S}\right|_{i}
$$

We consider the log canonical threshold of members of the invariant and anti-invariant parts of the complete linear system $\left|m K_{S}\right|$, where m is a positive integer. To calculate the \log canonical threshold, we use the following representation of pluricanonical linear systems for a bidouble covering map $\varphi: S \rightarrow \Sigma$. Denote by R the ramification divisor $R_{1}+R_{2}+R_{3}$ of φ.

Proposition 1.2. (cf. [10, Proposition 1.6]) For a positive integer n and each $i=1,2,3$ with $\{i, j, k\}=\{1,2,3\}$,
(i) $\left|2 n K_{S}\right|_{0}=\varphi^{*}\left|n\left(2 K_{\Sigma}+B\right)\right|$ and $\left|2 n K_{S}\right|_{i}=R_{j}+R_{k}+\left|\varphi^{*}\left(n\left(2 K_{\Sigma}+B\right)-L_{i}\right)\right|$;
(ii) $\left|(2 n+1) K_{S}\right|_{0}=R+\left|\varphi^{*}\left((2 n+1) K_{\Sigma}+n B\right)\right|$ and $\left|(2 n+1) K_{S}\right|_{i}=R_{i}+\mid \varphi^{*}((2 n+$ 1) $\left.K_{\Sigma}+n B+L_{i}\right) \mid$.

We apply

$$
B \sim-3 K_{\Sigma}
$$

to Proposition 1.2 and obtain log canonical thresholds of members of the pluricanonical sublinear systems of Burniat surfaces S with $K_{S}^{2}=6$ via the Klein group induced by the bicanonical map of φ as follows.

Theorem 1.3 (Main theorem). Let S be a Burniat surface with $K_{S}^{2}=6$. Then for a positive integer n and each $i=1,2,3$,
(i) if $D_{0} \in\left|2 n K_{S}\right|_{0}$ and $D_{i} \in\left|2 n K_{S}\right|_{i}$,

$$
\operatorname{lct}\left(S, D_{0}\right) \geq \frac{1}{4 n} \quad \text { and } \quad \operatorname{lct}\left(S, D_{i}\right) \geq \frac{1}{4 n-2}
$$

(ii) if $D_{0}^{\prime} \in\left|(2 n+1) K_{S}\right|_{0}$ and $D_{i}^{\prime} \in\left|(2 n+1) K_{S}\right|_{i}$,

$$
\operatorname{lct}\left(S, D_{0}^{\prime}\right) \geq \frac{1}{4 n-3} \quad \text { and } \quad \operatorname{lct}\left(S, D_{i}^{\prime}\right) \geq \frac{1}{4 n+2}
$$

Moreover the inequalities are optimal.
Remark 1.4. Since $\left|2 K_{S}\right|_{i}=\emptyset$ for all $i=1,2,3$ (see [9, Proposition 3.1]), we actually have $\operatorname{lct}\left(S, D_{i}\right) \geq 1 /(4 n-2)$ for any $D_{i} \in\left|2 n K_{S}\right|_{i}$ when an integer $n \geq 2$ in Theorem 1.3(i).

Corollary 1.5. Let S be a Burniat surface with $K_{S}^{2}=6$. Then for a positive integer n and each $i=1,2,3$,
(i) if $D_{i} \in\left|2 n K_{S}\right|_{i}$,

$$
\operatorname{lct}\left(S, D_{i}\right)>\frac{1}{4 n}
$$

(ii) if $D_{0}^{\prime} \in\left|(2 n+1) K_{S}\right|_{0}$,

$$
\operatorname{lct}\left(S, D_{0}^{\prime}\right)>\frac{1}{4 n+2}
$$

Remark 1.6. Corollary 1.5(i) is [6, Proposition 5.2].
Since

$$
\operatorname{glct}\left(S, K_{S}\right)=\frac{1}{2}
$$

(see [6, Theorem 1.3],) we obtain
Corollary 1.7. Let S be a Burniat surface with $K_{S}^{2}=6$. For any positive even (resp. odd) integer m, if a divisor D is in the linear system $\left|m K_{S}\right|$ such that $\operatorname{glct}\left(S, K_{S}\right)=\operatorname{lct}\left(S, \frac{1}{m} D\right)$, then the divisor D is not in the anti-invariant parts $\left|m K_{S}\right|_{i}$ (resp. the invariant part $\left.\left|m K_{S}\right|_{0}\right)$ for $i=1,2,3$.

Proof. We get the result by Corollary 1.5 .

2. Preliminaries

Let X be a normal variety with at worst \log canonical singularities. Note that $\sim_{\mathbb{Q}}$ means the \mathbb{Q}-linearly equivalent relation.

Lemma 2.1. Let $\mathcal{N}_{0} \sim_{\mathbb{Q}} A$ be an effective \mathbb{Q}-Cartier divisor on X such that the log pair $\left(X, \mathcal{N}_{0}\right)$ is not \log canonical at a point p. And let $\mathcal{N} \sim_{\mathbb{Q}} A$ be an effective \mathbb{Q}-Cartier divisor on X such that the \log pair (X, \mathcal{N}) is log canonical at the point p. Then there is an effective \mathbb{Q}-Cartier divisor $\mathcal{N}^{\prime} \sim_{\mathbb{Q}} A$ on X such that at least one component of \mathcal{N} is not contained in the support of \mathcal{N}^{\prime} and the \log pair $\left(X, \mathcal{N}^{\prime}\right)$ is not log canonical at the point p.

Proof. See [4, Remark 2.22].
The following is used for a non \log canonical pair at some smooth point.
Lemma 2.2. (cf. [7, 8.10 Lemma]) Let D be an effective \mathbb{Q}-Cartier divisor on X. If the \log pair (X, D) is not \log canonical at some smooth point p , then the inequality

$$
\operatorname{mult}_{\mathfrak{p}}(D)>1
$$

holds.

3. Proof of the main theorem

We remark that for $i=1,2,3$ and $j=1,2$,

$$
E_{i}^{2}=E_{i}^{\prime 2}=-1, \quad K_{S} \cdot E_{i}=K_{S} \cdot E_{i}^{\prime}=1, \quad M_{j}^{2^{2}}=0 \quad \text { and } \quad K_{S} \cdot M_{j}^{i}=2
$$

where $\varphi^{*}\left(e_{i}\right)=2 E_{i}, \varphi^{*}\left(e_{i}^{\prime}\right)=2 E_{i}^{\prime}$ and $\varphi^{*}\left(m_{j}^{i}\right)=2 M_{j}^{i}$.

3.1. Even pluricanonical linear system

For a positive integer n, the complete linear system $\left|2 n K_{S}\right|$ contains the invariant part $\left|2 n K_{S}\right|_{0}$ and the anti-invariant parts $\left|2 n K_{S}\right|_{i}$ with $i=1,2,3$, that is,

$$
\left|2 n K_{S}\right| \supseteq \bigcup_{i=0}^{3}\left|2 n K_{S}\right|_{i}
$$

3.1.1. Invariant part

In [6] we have

$$
\operatorname{glct}\left(S, 2 K_{S}\right)=\operatorname{lct}\left(S, \bar{D}_{0}\right)=\frac{1}{4}
$$

for some divisor $\bar{D}_{0} \in\left|2 K_{S}\right|$. For example, $\bar{D}_{0}:=2 E_{1}+4 E_{3}+2 E_{1}^{\prime}+4 E_{2}^{\prime}$, then

$$
\operatorname{lct}\left(S, D_{0}\right) \geq \frac{1}{4 n}
$$

for any $D_{0} \in\left|2 n K_{S}\right|_{0}$ and the inequality is optimal.

3.1.2. Anti-invariant parts

To show

$$
\operatorname{lct}\left(S, D_{i}\right) \geq \frac{1}{4 n-2}
$$

for any $D_{i} \in\left|2 n K_{S}\right|_{i}$, we need the following lemma.
Lemma 3.1. [6, Lemma 4.1] Let $\psi: X \rightarrow Y$ be a bidouble covering map between a normal variety X and a smooth variety Y branched along an effective divisor \mathcal{B} on Y, and \mathcal{D} be an effective \mathbb{Q}-Cartier divisor on X. Then

$$
(X, \mathcal{D}) \text { is log canonical if }\left(Y, \psi(\mathcal{D})+\frac{1}{2} \mathcal{B}\right) \text { is log canonical. }
$$

We deal with an integer $n \geq 2$ by Remark 1.4. Suppose that $\operatorname{lct}\left(S, D_{i}\right)<1 /(4 n-2)$. Then the \log pair $\left(S, \frac{1}{4 n-2} D_{i}\right)$ is not \log canonical at some point p. By Lemma 2.2 ,

$$
\operatorname{mult}_{\mathrm{p}}\left(D_{i}\right)>4 n-2 .
$$

We put an effective divisor $d_{i}:=\varphi\left(D_{i}\right)$ on Σ. Then

$$
\left(\Sigma, \frac{1}{4 n-2} d_{i}+\frac{1}{2} B\right) \text { is not } \log \text { canonical at a point } \varphi(\mathrm{p}) \text { on } \Sigma
$$

by Lemma 3.1.
We consider the case $\varphi(\mathrm{p}) \notin B_{1} \cup B_{2} \cup B_{3}$. Then $\left(\Sigma, \frac{1}{4 n-2} d_{i}\right)$ is not \log canonical at $\varphi(\mathrm{p})$ which implies

$$
\operatorname{glct}\left(\Sigma, d_{i}\right)<\frac{1}{4 n-2}
$$

However, it contradicts because $d_{i} \sim_{\mathbb{Q}}-n K_{\Sigma}$ and $\operatorname{glct}(\Sigma, \Delta) \geq 1 / 2$ for any effective \mathbb{Q}-Cartier divisor $\Delta \sim_{\mathbb{Q}}-K_{\Sigma}$ since Σ is a nonsingular del Pezzo surface of degree 6 (see [3, Theorem 1.7]). Thus $\varphi(\mathrm{p}) \in B_{1} \cup B_{2} \cup B_{3}$.

By Proposition 1.2, we have an effective \mathbb{Q}-Cartier divisor $D_{i}-\left(R_{j}+R_{k}\right)$ for $\{i, j, k\}=$ $\{1,2,3\}$. We may deal with $i=1$.

The case $\mathrm{p} \in E_{1} \cap E_{2}^{\prime}$. We have

$$
D_{1}=\alpha_{1} E_{1}+\alpha_{2} E_{2}+\alpha_{3}^{\prime} E_{3}^{\prime}+\Omega
$$

where rational numbers $\alpha_{1} \geq 0$ and $\alpha_{2}, \alpha_{3}^{\prime} \geq 1$, and $E_{1}, E_{2}, E_{3}^{\prime} \not \subset \operatorname{Supp}(\Omega)$ with an effective \mathbb{Q}-Cartier divisor Ω (denote by $\operatorname{Supp}(\Omega)$ the support of Ω). Since p $\notin E_{2} \cup E_{3}^{\prime}$, the \log pair $\left(S, \frac{1}{4 n-2}\left(D_{1}-\alpha_{2} E_{2}-\alpha_{3}^{\prime} E_{3}^{\prime}\right)\right)$ is not \log canonical at the point p.

Suppose $\alpha_{1}=0$, and then $2 n=D_{1} \cdot E_{1} \geq \operatorname{mult}_{\mathrm{p}}\left(D_{1}\right) \operatorname{mult}_{\mathrm{p}}\left(E_{1}\right)>4 n-2$ which is a contradiction. So $\alpha_{1} \neq 0$.

Since $D_{1}-\left(R_{2}+R_{3}\right)$ is effective,

$$
\Omega \cdot M_{1}^{1} \geq\left(M_{1}^{3}+M_{2}^{3}\right) \cdot M_{1}^{1}=2
$$

Thus $4 n=D_{1} \cdot M_{1}^{1}=\alpha_{1}+\Omega \cdot M_{1}^{1}$ implies $4 n-2 \geq \alpha_{1}$, and so

$$
\frac{\alpha_{1}}{4 n-2} \leq 1
$$

We have a pair $\left(S, E_{1}+\frac{1}{4 n-2} \Omega\right)$ is not \log canonical at p. By the inversion of adjunction formula,

$$
\text { the pair }\left(E_{1},\left.\frac{1}{4 n-2} \Omega\right|_{E_{1}}\right) \text { is not } \log \text { canonical at } \mathrm{p} \text {. }
$$

This implies that

$$
2 n+\alpha_{1}-\alpha_{3}^{\prime}=\left(D_{1}-\alpha_{1} E_{1}-\alpha_{2} E_{2}-\alpha_{3}^{\prime} E_{3}^{\prime}\right) \cdot E_{1}>4 n-2
$$

On the other hand, since $D_{1}-\left(R_{2}+R_{3}\right)$ is effective,
$2 n=D_{1} \cdot E_{3}^{\prime}=\alpha_{1}+\alpha_{2}-\alpha_{3}^{\prime}+\Omega \cdot E_{3}^{\prime} \geq \alpha_{1}+\alpha_{2}-\alpha_{3}^{\prime}+\left(M_{1}^{3}+M_{2}^{3}\right) \cdot E_{3}^{\prime}=\alpha_{1}+\alpha_{2}-\alpha_{3}^{\prime}+2$.

Hence

$$
\alpha_{2}<0
$$

which is a contradiction.
The case $\mathrm{p} \in E_{1} \backslash\left(E_{2}^{\prime} \cup E_{3}^{\prime}\right)$. We have

$$
D_{1}=\alpha_{1} E_{1}+\alpha_{2}^{\prime} E_{2}^{\prime}+\alpha_{3}^{\prime} E_{3}^{\prime}+\Omega
$$

where rational numbers $\alpha_{1} \geq 0$ and $\alpha_{2}^{\prime}, \alpha_{3}^{\prime} \geq 1$, and $E_{1}, E_{2}^{\prime}, E_{3}^{\prime} \not \subset \operatorname{Supp}(\Omega)$ with an effective \mathbb{Q}-Cartier divisor Ω. Then

$$
2 n=D_{1} \cdot E_{3}^{\prime}=\alpha_{1}-\alpha_{3}^{\prime}+\Omega \cdot E_{3}^{\prime} \geq \alpha_{1}-\alpha_{3}^{\prime}+\left(E_{2}+M_{1}^{3}+M_{2}^{3}\right) \cdot E_{3}^{\prime}=\alpha_{1}-\alpha_{3}^{\prime}+3
$$

And since

$$
4 n=D_{1} \cdot M_{1}^{1}=\alpha_{1}+\Omega \cdot M_{1}^{1} \geq \alpha_{1}+\left(M_{1}^{3}+M_{2}^{3}\right) \cdot M_{1}^{1}=\alpha_{1}+2
$$

we obtain

$$
2 n+\alpha_{1}-\alpha_{2}^{\prime}-\alpha_{3}^{\prime}=\left(D_{1}-\alpha_{1} E_{1}-\alpha_{2}^{\prime} E_{2}^{\prime}-\alpha_{3}^{\prime} E_{3}^{\prime}\right) \cdot E_{1}>4 n-2
$$

by the inversion of adjunction formula. Hence

$$
\alpha_{2}^{\prime}<-1
$$

which is a contradiction.
The case $\mathrm{p} \in M_{1}^{1} \backslash\left(E_{1} \cup E_{1}^{\prime}\right)$. The log pair

$$
\left(S, \frac{1}{4 n-2}\left(M_{1}^{1}+M_{1}^{3}+M_{2}^{3}+D\right)\right)
$$

is not \log canonical at the point p , where $D_{1} \sim R_{2}+R_{3}+D$ for some $D \in\left|\varphi^{*}\left(-n K_{\Sigma}-L_{1}\right)\right|$ by Proposition 1.2 (i). We have

$$
D=\alpha M_{1}^{3}+\Delta
$$

where a rational number $\alpha \geq 0$ and $M_{1}^{3} \not \subset \operatorname{Supp}(\Delta)$ with an effective \mathbb{Q}-Cartier divisor Δ. By using a general member \bar{M} of the linear system $\left|2 M_{1}^{2}\right|$ such that $\bar{M} \not \subset \operatorname{Supp}(D)$,

$$
8 n-12=D \cdot \bar{M} \geq \alpha M_{1}^{3} \cdot \bar{M}=2 \alpha .
$$

Thus we can use the inversion of adjunction formula. So the log pair

$$
\left(M_{1}^{3},\left.\frac{1}{4 n-2}\left(M_{1}^{1}+M_{2}^{3}+\Delta\right)\right|_{M_{1}^{3}}\right)
$$

is not \log canonical at p . Then

$$
1+(4 n-4)=\left(M_{1}^{1}+M_{2}^{3}+\Delta\right) \cdot M_{1}^{3} \geq \operatorname{mult}_{p}\left(\left.\left(M_{1}^{1}+M_{2}^{3}+\Delta\right)\right|_{M_{1}^{3}}\right)>4 n-2
$$

which is a contradiction.
We can induce a contradiction by using a similar argument like the above cases for each point of R. Therefore for all cases $i=1,2,3$,

$$
\operatorname{lct}\left(S, D_{i}\right) \geq \frac{1}{4 n-2} \quad \text { for any } D_{i} \in\left|2 n K_{S}\right|_{i} .
$$

And the inequality is optimal because $\operatorname{lct}_{\mathrm{p}}\left(S, \bar{D}_{i}\right)=1 /(4 n-2)$ for

$$
\bar{D}_{i}:=R_{i+1}+R_{i+2}+2\left((2 n-1) E_{i}^{\prime}+(n-2) E_{i+1}^{\prime}+(2 n-3) E_{i+1}+n E_{i+2}\right) \in\left|2 n K_{S}\right|_{i}
$$

and

$$
\mathrm{p} \in E_{i}^{\prime} \backslash\left(E_{i+1} \cup E_{i+2} \cup M_{1}^{i} \cup M_{2}^{i}\right)
$$

where the index $i \in\{1,2,3\}$ is considered as modulo 3 .

3.2. Odd pluricanonical linear system

For a positive integer n, the complete linear system $\left|(2 n+1) K_{S}\right|$ contains the invariant part $\left|(2 n+1) K_{S}\right|_{0}$ and the anti-invariant parts $\left|(2 n+1) K_{S}\right|_{i}$ with $i=1,2,3$, that is,

$$
\left|(2 n+1) K_{S}\right| \supset \bigcup_{i=0}^{3}\left|(2 n+1) K_{S}\right|_{i}
$$

3.2.1. Invariant part

We prove that for any $D_{0}^{\prime} \in\left|(2 n+1) K_{S}\right|_{0}$, the \log pair $\left(S, \frac{1}{4 n-3} D_{0}^{\prime}\right)$ is \log canonical. To obtain a contradiction, we assume that there is a member D_{0}^{\prime} of $\left|(2 n+1) K_{S}\right|_{0}$ such that the \log pair $\left(S, \frac{1}{4 n-3} D_{0}^{\prime}\right)$ is not \log canonical at some point p . Note that

$$
\left|(2 n+1) K_{S}\right|_{0}=R+\left|2(n-1) K_{S}\right|
$$

(see Proposition 1.2 and apply $B \sim-3 K_{\Sigma}$ and $K_{S} \sim_{\mathbb{Q}} \varphi^{*}\left(K_{\Sigma}+\frac{1}{2} B\right)$). Thus there is the member D^{\prime} of the complete linear system $\left|2(n-1) K_{S}\right|$ such that $D_{0}^{\prime}=R+D^{\prime}$. Since the global \log canonical threshold of the pair $\left(S, 2(n-1) K_{S}\right)$ is $1 /(4 n-4)$ (see [6, Theorem 1.3]), p is contained in R. We consider the following cases.

The case $\mathrm{p} \in E_{3} \cap E_{1}^{\prime}$. The \log pair $\left(S, \frac{1}{4 n-3}\left(E_{3}+E_{1}^{\prime}+D^{\prime}\right)\right)$ is not \log canonical at the point p. For the effective divisor

$$
N:=(4 n-3) E_{3}+(4 n-3) E_{1}^{\prime}+(2 n-2) E_{2}+(2 n-2) E_{2}^{\prime} \sim E_{3}+E_{1}^{\prime}+D^{\prime}
$$

the \log canonical threshold of the \log pair (S, N) is $1 /(4 n-3)$. By Lemma 2.1, there is an effective \mathbb{Q}-Cartier divisor $N^{\prime} \sim_{\mathbb{Q}} N$ such that at least one component of N is not
contained in the support of N^{\prime} and the \log pair $\left(S, \frac{1}{4 n-3} N^{\prime}\right)$ is not \log canonical at p . Thus at least one of $E_{2}, E_{3}, E_{1}^{\prime}$ and E_{2}^{\prime} is not contained in $\operatorname{Supp}\left(N^{\prime}\right)$.

We can represent

$$
N^{\prime}=\alpha_{3} E_{3}+\alpha_{1}^{\prime} E_{1}^{\prime}+\Omega
$$

where rational numbers $\alpha_{3}, \alpha_{1}^{\prime} \geq 0$ and $E_{3}, E_{1}^{\prime} \not \subset \operatorname{Supp}(\Omega)$ with an effective \mathbb{Q}-Cartier divisor Ω.

Suppose $E_{2} \not \subset \operatorname{Supp}\left(N^{\prime}\right)$. Then

$$
2 n-1=N^{\prime} \cdot E_{2} \geq \alpha_{1}^{\prime} E_{1}^{\prime} \cdot E_{2}=\alpha_{1}^{\prime}
$$

By the inversion of adjunction formula, the log pair

$$
\left(E_{1}^{\prime},\left.\frac{1}{4 n-3}\left(\alpha_{3} E_{3}+\Omega\right)\right|_{E_{1}^{\prime}}\right)
$$

is not \log canonical at p . Thus

$$
(2 n-2)+\alpha_{1}^{\prime}=\left(\alpha_{3} E_{3}+\Omega\right) \cdot E_{1}^{\prime} \geq \operatorname{mult}_{\mathrm{p}}\left(\left.\left(\alpha_{3} E_{3}+\Omega\right)\right|_{E_{1}^{\prime}}\right)>4 n-3
$$

which is a contradiction.
For each case E_{2}^{\prime}, E_{3} or $E_{1}^{\prime} \not \subset \operatorname{Supp}\left(N^{\prime}\right)$, we also get a contradiction by using a similar argument as above. We remark that $E_{3} \not \subset \operatorname{Supp}\left(N^{\prime}\right)\left(\right.$ resp. $\left.E_{1}^{\prime} \not \subset \operatorname{Supp}\left(N^{\prime}\right)\right)$ means $\alpha_{3}=0$ (resp. $\alpha_{1}^{\prime}=0$).

The case $\mathrm{p} \in E_{3} \backslash\left(E_{1}^{\prime} \cup E_{2}^{\prime}\right)$. The log pair $\left(S, \frac{1}{4 n-3}\left(E_{3}+M_{1}^{3}+M_{2}^{3}+D^{\prime}\right)\right)$ is not log canonical at the point p. We have

$$
D^{\prime}=\alpha_{3} E_{3}+\alpha_{1}^{\prime} E_{1}^{\prime}+\alpha_{2}^{\prime} E_{2}^{\prime}+\Delta,
$$

where rational numbers $\alpha_{3}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime} \geq 0$ and $E_{3}, E_{1}^{\prime}, E_{2}^{\prime} \not \subset \operatorname{Supp}(\Delta)$ with an effective \mathbb{Q} Cartier divisor Δ. Let \widetilde{M} be a general member of the linear system $\left|2 M_{1}^{3}\right|$ such that $\widetilde{M} \not \subset \operatorname{Supp}\left(D^{\prime}\right)$. Then

$$
8 n-8=D^{\prime} \cdot \widetilde{M} \geq \alpha_{3} E_{3} \cdot \widetilde{M}=2 \alpha_{3}
$$

implies that $4 n-4 \geq a_{3}$. By the inversion of adjunction formula, the \log pair

$$
\left(E_{3},\left.\frac{1}{4 n-3}\left(M_{1}^{3}+M_{2}^{3}+\Delta\right)\right|_{E_{3}}\right)
$$

is not \log canonical at p . Thus

$$
(2 n-1)+\alpha_{3}-\alpha_{1}^{\prime}-\alpha_{2}^{\prime} \geq\left(\left(M_{1}^{3}+M_{2}^{3}+\Delta\right) \cdot E_{3}\right)_{\mathrm{p}} \geq \operatorname{mult}_{\mathrm{p}}\left(\left.\left(M_{1}^{3}+M_{2}^{3}+\Delta\right)\right|_{E_{3}}\right)>4 n-3
$$

which implies $\alpha_{3}>(2 n-2)+\alpha_{1}^{\prime}+\alpha_{2}^{\prime}$. Meanwhile, the inequality

$$
(2 n-2)-\alpha_{3}+\alpha_{1}^{\prime}=\Delta \cdot E_{1}^{\prime} \geq 0
$$

implies that $(2 n-2)+\alpha_{1}^{\prime} \geq \alpha_{3}$ which is a contradiction.
The case $\mathrm{p} \in M_{1}^{1} \backslash\left(E_{1} \cup E_{1}^{\prime}\right)$. Set $M:=M_{1}^{2}+M_{2}^{2}+M_{1}^{3}+M_{2}^{3}$. Then the log pair

$$
\left(S, \frac{1}{4 n-3}\left(M_{1}^{1}+M+D^{\prime}\right)\right)
$$

is not \log canonical at the point p . We have

$$
D^{\prime}=\alpha M_{1}^{1}+\Delta
$$

where a rational number $\alpha \geq 0$ and $M_{1}^{1} \not \subset \operatorname{Supp}(\Delta)$ with an effective \mathbb{Q}-Cartier divisor Δ. By using a general member \widehat{M} of the linear system $\left|2 M_{1}^{2}\right|$ such that $\widehat{M} \not \subset \operatorname{Supp}\left(D^{\prime}\right)$,

$$
8 n-8=D^{\prime} \cdot \widehat{M} \geq \alpha M_{1}^{1} \cdot \widehat{M}=2 \alpha
$$

which implies $4 n-4 \geq \alpha$. By the inversion of adjunction formula, the \log pair

$$
\left(M_{1}^{1},\left.\frac{1}{4 n-3}(M+\Delta)\right|_{M_{1}^{1}}\right)
$$

is not \log canonical at p . Then

$$
1+(4 n-4) \geq\left((M+\Delta) \cdot M_{1}^{1}\right)_{\mathrm{p}} \geq \operatorname{mult}_{\mathrm{p}}\left(\left.(M+\Delta)\right|_{M_{1}^{1}}\right)>4 n-3
$$

which is a contradiction.
We can induce a contradiction by using a similar argument like the above cases for each point of R. Hence

$$
\operatorname{lct}\left(S, D_{0}^{\prime}\right) \geq \frac{1}{4 n-3} \quad \text { for any } D_{0}^{\prime} \in\left|(2 n+1) K_{S}\right|_{0}
$$

And the inequality is optimal because $\operatorname{lct}_{\mathrm{p}}\left(S, \bar{D}_{0}^{\prime}\right)=1 /(4 n-3)$ for

$$
\bar{D}_{0}^{\prime}:=R+2(n-1)\left(2 E_{2}^{\prime}+E_{3}^{\prime}+2 E_{1}+E_{3}\right) \in\left|(2 n+1) K_{S}\right|_{0}
$$

and

$$
\mathrm{p} \in E_{2}^{\prime} \backslash\left(E_{1} \cup E_{3} \cup M_{1}^{2} \cup M_{2}^{2}\right)
$$

3.2.2. Anti-invariant part

For a positive integer n and $i=1,2,3,\left|(2 n+1) K_{S}\right|_{i}$ is represented by

$$
R_{i}+\left|\varphi^{*}\left((1-n) K_{\Sigma}+L_{i}\right)\right|
$$

(see Proposition 1.2 and apply $B \sim-3 K_{\Sigma}$).

We may consider for $i=1$. The divisor

$$
\bar{D}_{1}^{\prime}:=E_{1}+E_{1}^{\prime}+M_{1}^{2}+M_{2}^{2}+2\left((2 n+1) E_{2}^{\prime}+(n-1) E_{1}^{\prime}+n E_{1}+2 n E_{3}\right)
$$

is in $\left|(2 n+1) K_{S}\right|_{1}$. The log canonical threshold of the log pair $\left(S, \bar{D}_{1}^{\prime}\right)$ is $1 /(4 n+2)$. Note that the global \log canonical threshold of the \log pair $\left(S, K_{S}\right)$ is $1 / 2$ (see [6, Theorem 1.3]). This means that the infimum of the set

$$
\left\{\left.\operatorname{lct}\left(S, D_{1}^{\prime}\right)\left|D_{1}^{\prime} \in\right|(2 n+1) K_{S}\right|_{1}\right\}
$$

is $1 /(4 n+2)$. Thus

$$
\inf \left\{\left.\operatorname{lct}\left(S, D_{i}^{\prime}\right)\left|D_{i}^{\prime} \in\right|(2 n+1) K_{S}\right|_{i}\right\}=\frac{1}{4 n+2}
$$

for each $i=1,2,3$.

Acknowledgments

The authors are very grateful to the referees for valuable suggestions and comments. The first author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2020R1A2C4002510). The second author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1I1A1A01074847) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A4A3033098).

References

[1] I. Bauer and F. Catanese, Burniat surfaces I: fundamental groups and moduli of primary Burniat surfaces, in: Classification of Algebraic Varieties, 49-76, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011.
[2] P. Burniat, Sur les surfaces de genre $P_{12}>1$, Ann. Mat. Pura Appl. (4) 71 (1966), 1-24.
[3] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 18 (2008), no. 4, 1118-1144.
[4] I. A. Chel'tsov and K. A. Shramov, Log-canonical thresholds for nonsingular Fano threefolds, translation in Russian Math. Surveys 63 (2008), no. 5, 859-958.
[5] J. A. Chen, M. Chen and C. Jiang, Addendum to "The Noether inequality for algebraic 3-folds", Duke Math. J. 169 (2020), no. 11, 2199-2204.
[6] I.-K. Kim and Y. Shin, Log canonical thresholds of Burniat surfaces with $K^{2}=6$, Math. Res. Lett. 27 (2020), no. 4, 1079-1094.
[7] J. Kollár, Singularities of pairs, in: Algebraic Geometry—Santa Cruz 1995, 221-287, Proc. Sympos. Pure Math. 62, Part 1, Amer. Math. Soc., Providence, RI, 1997.
[8] V. S. Kulikov, Old examples and a new example of surfaces of general type with $p_{g}=0$, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 5, 123-170.
[9] M. Mendes Lopes and R. Pardini, A connected component of the moduli space of surfaces with $p_{g}=0$, Topology 40 (2001), no. 5, 977-991.
[10] C. A. M. Peters, On certain examples of surfaces with $p_{g}=0$ due to Burniat, Nagoya Math. J. 66 (1977), 109-119.

In-Kyun Kim
Department of Mathematics, Yonsei University, Seoul 03722, South Korea
E-mail address: soulcraw@gmail.com

YongJoo Shin
Department of Mathematics, Chungnam National University, Science Building 1, 99
Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
E-mail address: haushin@cnu.ac.kr

[^0]: Received December 29, 2021; Accepted June 27, 2022.
 Communicated by Jungkai Alfred Chen.
 2020 Mathematics Subject Classification. 14J17, 14J29.
 Key words and phrases. Burniat surface, log canonical threshold, surface of general type, pluricanonical divisor.
 *Corresponding author.

