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Log Canonical Thresholds on Burniat Surfaces with K2 = 6 via Pluricanonical

Divisors

In-Kyun Kim and YongJoo Shin*

Abstract. Let S be a Burniat surface with K2
S = 6 and ϕ be the bicanonical map

of S. In this paper we show optimal lower bounds of log canonical thresholds of

members of pluricanonical sublinear systems of S via Klein group G induced by ϕ.

Indeed, for a positive even integer m, the log canonical threshold of members of

an invariant (resp. anti-invariant) part of |mKS | is greater than or equal to 1/(2m)

(resp. 1/(2m − 2)). For a positive odd integer m, the log canonical threshold of

members of an invariant (resp. anti-invariant) part of |mKS | is greater than or equal

to 1/(2m− 5) (resp. 1/(2m)). The inequalities are all optimal.

1. Introduction

Let X be a variety and p ∈ X be a smooth point. And let D be an effective Cartier divisor

on X. The log canonical threshold or the complex singularity exponent of D at p is the

number

lctp(X,D) := sup
{
c ∈ Q | |f |−c is locally L2 near p

}
,

where f is a local defining equation of D at p. In [7] we have the following inequalities

1

multp(D)
≤ lctp(X,D) ≤ dimX

multp(D)
,

and the log canonical threshold of D at p is equal to the absolute value of the largest root

of the Bernstein–Sato polynomial of f .

The log canonical threshold can be formally defined for log pairs (cf. [7, 8.2 Proposi-

tion]). Let X be a normal variety with at worst log canonical singularities, Z be a closed

subvariety of X and D be an effective Q-Cartier divisor on X. The log canonical threshold

of D along Z on X is the number

lctZ(X,D) := sup{c ∈ Q | (X, cD) is log canonical in an open neighborhood of Z}.

For simplicity, we put lct(X,D) = lctX(X,D).

We have the following invariant for every polarised pair (X,L).
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Definition 1.1. Let X be a normal variety with at worst log canonical singularities, and

L be an ample Q-Cartier divisor on X. The global log canonical threshold of a pair (X,L)

is the number

glct(X,L)

:= inf{lct(X,D) | D is an effective Q-Cartier divisor on X, Q-linearly equivalent to L}.

Chen, Chen and Jiang [5] proved the Noether inequality for projective 3-folds of general

type. They use the global log canonical threshold of a surface of general type with pg = 2

and K2 = 1 via its ample canonical divisor (see the appendix by Kollár in [5]).

The authors in [6] showed that the global log canonical threshold of a Burniat surface

with K2 = 6 via its ample canonical divisor is 1/2, where the Burniat surface is a minimal

surface of general surface with pg = 0 and K2 = 6.

In this paper, we give optimal lower bounds of log canonical thresholds of members

of pluricanonical sublinear systems via Klein group induced by the bicanonical map of a

Burniat surface with K2 = 6.

Let S be a Burniat surface with K2
S = 6 (see [1, 2, 8–10]). The bicanonical map ϕ of

S has an image, a del Pezzo surface Σ of degree 6 in P6 which is a blow-up ρ : Σ → P2

at three point p1, p2, p3 in general position. Denote by ei the (−1)-curve corresponding

to pi, by e′i the strict transform of the line passing through the two points pj and pk by

ρ, and by mi
l the strict transform of a general line passing through the point pi by ρ for

each {i, j, k} = {1, 2, 3} and l = 1, 2. Then ϕ is a bidouble covering map over Σ with a

branch divisor B := B1 +B2 +B3 satisfying 2Li ∼ Bj +Bk for a line bundle Li on Σ and

{i, j, k} = {1, 2, 3}, where

B1 = e1 + e′1 +m2
1 +m2

2,

B2 = e2 + e′2 +m3
1 +m3

2,

B3 = e3 + e′3 +m1
1 +m1

2,

and ∼ means the linearly equivalent relation between divisors.

For i = 1, 2, 3, we note ϕ∗(Bi) = 2Ri for some divisor Ri ramified by ϕ, and denote

by G the Klein group Z/2Z × Z/2Z = {IdS , σ1, σ2, σ3} induced by ϕ such that Ri is the

divisorial fixed part of σi.

For a positive integer m, the natural action of the group G splits the set of global

sections of the pluricanonical divisor mKS of S into eigen spaces via the characters of G:

H0(S,mKS) = H0(S,mKS)inv ⊕
3⊕
i=1

H0(S,mKS)χi ,

where χi is a character of G such that χi(σj) = δij for i, j ∈ {1, 2, 3}. Then the pluri-

canonical linear system |mKS | for a positive integer m contains an invariant part |mKS |0
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(resp. an anti-invariant part |mKS |i) that consists of zeros of sections of H0(S,mKS)inv

(resp. H0(S,mKS)χi) for i = 1, 2, 3, that is,

|mKS | ⊇ |mKS |0 ∪
3⋃
i=1

|mKS |i.

We consider the log canonical threshold of members of the invariant and anti-invariant

parts of the complete linear system |mKS |, where m is a positive integer. To calculate

the log canonical threshold, we use the following representation of pluricanonical linear

systems for a bidouble covering map ϕ : S → Σ. Denote by R the ramification divisor

R1 +R2 +R3 of ϕ.

Proposition 1.2. (cf. [10, Proposition 1.6]) For a positive integer n and each i = 1, 2, 3

with {i, j, k} = {1, 2, 3},

(i) |2nKS |0 = ϕ∗|n(2KΣ +B)| and |2nKS |i = Rj +Rk + |ϕ∗(n(2KΣ +B)− Li)|;

(ii) |(2n + 1)KS |0 = R + |ϕ∗((2n + 1)KΣ + nB)| and |(2n + 1)KS |i = Ri + |ϕ∗((2n +

1)KΣ + nB + Li)|.

We apply

B ∼ −3KΣ

to Proposition 1.2 and obtain log canonical thresholds of members of the pluricanonical

sublinear systems of Burniat surfaces S with K2
S = 6 via the Klein group induced by the

bicanonical map of ϕ as follows.

Theorem 1.3 (Main theorem). Let S be a Burniat surface with K2
S = 6. Then for a

positive integer n and each i = 1, 2, 3,

(i) if D0 ∈ |2nKS |0 and Di ∈ |2nKS |i,

lct(S,D0) ≥ 1

4n
and lct(S,Di) ≥

1

4n− 2
;

(ii) if D′0 ∈ |(2n+ 1)KS |0 and D′i ∈ |(2n+ 1)KS |i,

lct(S,D′0) ≥ 1

4n− 3
and lct(S,D′i) ≥

1

4n+ 2
.

Moreover the inequalities are optimal.

Remark 1.4. Since |2KS |i = ∅ for all i = 1, 2, 3 (see [9, Proposition 3.1]), we actually have

lct(S,Di) ≥ 1/(4n− 2) for any Di ∈ |2nKS |i when an integer n ≥ 2 in Theorem 1.3(i).
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Corollary 1.5. Let S be a Burniat surface with K2
S = 6. Then for a positive integer n

and each i = 1, 2, 3,

(i) if Di ∈ |2nKS |i,
lct(S,Di) >

1

4n
;

(ii) if D′0 ∈ |(2n+ 1)KS |0,

lct(S,D′0) >
1

4n+ 2
.

Remark 1.6. Corollary 1.5(i) is [6, Proposition 5.2].

Since

glct(S,KS) =
1

2

(see [6, Theorem 1.3],) we obtain

Corollary 1.7. Let S be a Burniat surface with K2
S = 6. For any positive even (resp. odd)

integer m, if a divisor D is in the linear system |mKS | such that glct(S,KS) = lct
(
S, 1

mD
)
,

then the divisor D is not in the anti-invariant parts |mKS |i (resp. the invariant part

|mKS |0) for i = 1, 2, 3.

Proof. We get the result by Corollary 1.5.

2. Preliminaries

Let X be a normal variety with at worst log canonical singularities. Note that ∼Q means

the Q-linearly equivalent relation.

Lemma 2.1. Let N0 ∼Q A be an effective Q-Cartier divisor on X such that the log pair

(X,N0) is not log canonical at a point p. And let N ∼Q A be an effective Q-Cartier

divisor on X such that the log pair (X,N ) is log canonical at the point p. Then there is an

effective Q-Cartier divisor N ′ ∼Q A on X such that at least one component of N is not

contained in the support of N ′ and the log pair (X,N ′) is not log canonical at the point p.

Proof. See [4, Remark 2.22].

The following is used for a non log canonical pair at some smooth point.

Lemma 2.2. (cf. [7, 8.10 Lemma]) Let D be an effective Q-Cartier divisor on X. If the

log pair (X,D) is not log canonical at some smooth point p, then the inequality

multp(D) > 1

holds.
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3. Proof of the main theorem

We remark that for i = 1, 2, 3 and j = 1, 2,

E2
i = E′i

2
= −1, KS · Ei = KS · E′i = 1, M i

j
2

= 0 and KS ·M i
j = 2,

where ϕ∗(ei) = 2Ei, ϕ
∗(e′i) = 2E′i and ϕ∗(mi

j) = 2M i
j .

3.1. Even pluricanonical linear system

For a positive integer n, the complete linear system |2nKS | contains the invariant part

|2nKS |0 and the anti-invariant parts |2nKS |i with i = 1, 2, 3, that is,

|2nKS | ⊇
3⋃
i=0

|2nKS |i.

3.1.1. Invariant part

In [6] we have

glct(S, 2KS) = lct(S,D0) =
1

4

for some divisor D0 ∈ |2KS |. For example, D0 := 2E1 + 4E3 + 2E′1 + 4E′2, then

lct(S,D0) ≥ 1

4n

for any D0 ∈ |2nKS |0 and the inequality is optimal.

3.1.2. Anti-invariant parts

To show

lct(S,Di) ≥
1

4n− 2

for any Di ∈ |2nKS |i, we need the following lemma.

Lemma 3.1. [6, Lemma 4.1] Let ψ : X → Y be a bidouble covering map between a normal

variety X and a smooth variety Y branched along an effective divisor B on Y , and D be

an effective Q-Cartier divisor on X. Then

(X,D) is log canonical if

(
Y, ψ(D) +

1

2
B
)

is log canonical.

We deal with an integer n ≥ 2 by Remark 1.4. Suppose that lct(S,Di) < 1/(4n− 2).

Then the log pair
(
S, 1

4n−2Di

)
is not log canonical at some point p. By Lemma 2.2,

multp(Di) > 4n− 2.
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We put an effective divisor di := ϕ(Di) on Σ. Then(
Σ,

1

4n− 2
di +

1

2
B

)
is not log canonical at a point ϕ(p) on Σ

by Lemma 3.1.

We consider the case ϕ(p) /∈ B1 ∪ B2 ∪ B3. Then
(
Σ, 1

4n−2di
)

is not log canonical at

ϕ(p) which implies

glct(Σ, di) <
1

4n− 2
.

However, it contradicts because di ∼Q −nKΣ and glct(Σ,∆) ≥ 1/2 for any effective

Q-Cartier divisor ∆ ∼Q −KΣ since Σ is a nonsingular del Pezzo surface of degree 6

(see [3, Theorem 1.7]). Thus ϕ(p) ∈ B1 ∪B2 ∪B3.

By Proposition 1.2, we have an effective Q-Cartier divisor Di−(Rj+Rk) for {i, j, k} =

{1, 2, 3}. We may deal with i = 1.

The case p ∈ E1 ∩ E′2. We have

D1 = α1E1 + α2E2 + α′3E
′
3 + Ω,

where rational numbers α1 ≥ 0 and α2, α
′
3 ≥ 1, and E1, E2, E

′
3 6⊂ Supp(Ω) with an effective

Q-Cartier divisor Ω (denote by Supp(Ω) the support of Ω). Since p /∈ E2 ∪ E′3, the log

pair
(
S, 1

4n−2(D1 − α2E2 − α′3E′3)
)

is not log canonical at the point p.

Suppose α1 = 0, and then 2n = D1 · E1 ≥ multp(D1) multp(E1) > 4n − 2 which is a

contradiction. So α1 6= 0.

Since D1 − (R2 +R3) is effective,

Ω ·M1
1 ≥ (M3

1 +M3
2 ) ·M1

1 = 2.

Thus 4n = D1 ·M1
1 = α1 + Ω ·M1

1 implies 4n− 2 ≥ α1, and so

α1

4n− 2
≤ 1.

We have a pair
(
S,E1 + 1

4n−2Ω
)

is not log canonical at p. By the inversion of adjunction

formula,

the pair

(
E1,

1

4n− 2
Ω
∣∣∣
E1

)
is not log canonical at p.

This implies that

2n+ α1 − α′3 = (D1 − α1E1 − α2E2 − α′3E′3) · E1 > 4n− 2.

On the other hand, since D1 − (R2 +R3) is effective,

2n = D1 ·E′3 = α1 +α2−α′3 + Ω ·E′3 ≥ α1 +α2−α′3 + (M3
1 +M3

2 ) ·E′3 = α1 +α2−α′3 + 2.
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Hence

α2 < 0

which is a contradiction.

The case p ∈ E1 \ (E′2 ∪ E′3). We have

D1 = α1E1 + α′2E
′
2 + α′3E

′
3 + Ω,

where rational numbers α1 ≥ 0 and α′2, α
′
3 ≥ 1, and E1, E

′
2, E

′
3 6⊂ Supp(Ω) with an effective

Q-Cartier divisor Ω. Then

2n = D1 · E′3 = α1 − α′3 + Ω · E′3 ≥ α1 − α′3 + (E2 +M3
1 +M3

2 ) · E′3 = α1 − α′3 + 3.

And since

4n = D1 ·M1
1 = α1 + Ω ·M1

1 ≥ α1 + (M3
1 +M3

2 ) ·M1
1 = α1 + 2,

we obtain

2n+ α1 − α′2 − α′3 = (D1 − α1E1 − α′2E′2 − α′3E′3) · E1 > 4n− 2

by the inversion of adjunction formula. Hence

α′2 < −1

which is a contradiction.

The case p ∈M1
1 \ (E1 ∪ E′1). The log pair(

S,
1

4n− 2
(M1

1 +M3
1 +M3

2 +D)

)
is not log canonical at the point p, where D1 ∼ R2+R3+D for some D ∈ |ϕ∗(−nKΣ−L1)|
by Proposition 1.2(i). We have

D = αM3
1 + ∆

where a rational number α ≥ 0 and M3
1 6⊂ Supp(∆) with an effective Q-Cartier divisor ∆.

By using a general member M of the linear system |2M2
1 | such that M 6⊂ Supp(D),

8n− 12 = D ·M ≥ αM3
1 ·M = 2α.

Thus we can use the inversion of adjunction formula. So the log pair(
M3

1 ,
1

4n− 2
(M1

1 +M3
2 + ∆)

∣∣∣
M3

1

)
is not log canonical at p. Then

1 + (4n− 4) = (M1
1 +M3

2 + ∆) ·M3
1 ≥ multp

(
(M1

1 +M3
2 + ∆)

∣∣
M3

1

)
> 4n− 2
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which is a contradiction.

We can induce a contradiction by using a similar argument like the above cases for

each point of R. Therefore for all cases i = 1, 2, 3,

lct(S,Di) ≥
1

4n− 2
for any Di ∈ |2nKS |i.

And the inequality is optimal because lctp(S,Di) = 1/(4n− 2) for

Di := Ri+1 +Ri+2 + 2
(
(2n− 1)E′i + (n− 2)E′i+1 + (2n− 3)Ei+1 + nEi+2

)
∈ |2nKS |i

and

p ∈ E′i \ (Ei+1 ∪ Ei+2 ∪M i
1 ∪M i

2),

where the index i ∈ {1, 2, 3} is considered as modulo 3.

3.2. Odd pluricanonical linear system

For a positive integer n, the complete linear system |(2n + 1)KS | contains the invariant

part |(2n+ 1)KS |0 and the anti-invariant parts |(2n+ 1)KS |i with i = 1, 2, 3, that is,

|(2n+ 1)KS | ⊃
3⋃
i=0

|(2n+ 1)KS |i.

3.2.1. Invariant part

We prove that for any D′0 ∈ |(2n+ 1)KS |0, the log pair
(
S, 1

4n−3D
′
0

)
is log canonical. To

obtain a contradiction, we assume that there is a member D′0 of |(2n+ 1)KS |0 such that

the log pair
(
S, 1

4n−3D
′
0

)
is not log canonical at some point p. Note that

|(2n+ 1)KS |0 = R+ |2(n− 1)KS |

(see Proposition 1.2 and apply B ∼ −3KΣ and KS ∼Q ϕ∗(KΣ + 1
2B)). Thus there is the

member D′ of the complete linear system |2(n− 1)KS | such that D′0 = R+D′. Since the

global log canonical threshold of the pair (S, 2(n−1)KS) is 1/(4n−4) (see [6, Theorem 1.3]),

p is contained in R. We consider the following cases.

The case p ∈ E3 ∩ E′1. The log pair
(
S, 1

4n−3(E3 + E′1 + D′)
)

is not log canonical at

the point p. For the effective divisor

N := (4n− 3)E3 + (4n− 3)E′1 + (2n− 2)E2 + (2n− 2)E′2 ∼ E3 + E′1 +D′,

the log canonical threshold of the log pair (S,N) is 1/(4n − 3). By Lemma 2.1, there

is an effective Q-Cartier divisor N ′ ∼Q N such that at least one component of N is not
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contained in the support of N ′ and the log pair
(
S, 1

4n−3N
′) is not log canonical at p.

Thus at least one of E2, E3, E′1 and E′2 is not contained in Supp(N ′).

We can represent

N ′ = α3E3 + α′1E
′
1 + Ω,

where rational numbers α3, α
′
1 ≥ 0 and E3, E

′
1 6⊂ Supp(Ω) with an effective Q-Cartier

divisor Ω.

Suppose E2 6⊂ Supp(N ′). Then

2n− 1 = N ′ · E2 ≥ α′1E′1 · E2 = α′1

By the inversion of adjunction formula, the log pair(
E′1,

1

4n− 3
(α3E3 + Ω)

∣∣∣
E′

1

)
is not log canonical at p. Thus

(2n− 2) + α′1 = (α3E3 + Ω) · E′1 ≥ multp
(
(α3E3 + Ω)

∣∣
E′

1

)
> 4n− 3

which is a contradiction.

For each case E′2, E3 or E′1 6⊂ Supp(N ′), we also get a contradiction by using a similar

argument as above. We remark that E3 6⊂ Supp(N ′) (resp. E′1 6⊂ Supp(N ′)) means α3 = 0

(resp. α′1 = 0).

The case p ∈ E3 \ (E′1 ∪ E′2). The log pair
(
S, 1

4n−3(E3 + M3
1 + M3

2 + D′)
)

is not log

canonical at the point p. We have

D′ = α3E3 + α′1E
′
1 + α′2E

′
2 + ∆,

where rational numbers α3, α
′
1, α
′
2 ≥ 0 and E3, E

′
1, E

′
2 6⊂ Supp(∆) with an effective Q-

Cartier divisor ∆. Let M̃ be a general member of the linear system |2M3
1 | such that

M̃ 6⊂ Supp(D′). Then

8n− 8 = D′ · M̃ ≥ α3E3 · M̃ = 2α3

implies that 4n− 4 ≥ a3. By the inversion of adjunction formula, the log pair(
E3,

1

4n− 3
(M3

1 +M3
2 + ∆)

∣∣∣
E3

)
is not log canonical at p. Thus

(2n− 1) +α3 −α′1 −α′2 ≥
(
(M3

1 +M3
2 + ∆) ·E3

)
p
≥ multp

(
(M3

1 +M3
2 + ∆)

∣∣
E3

)
> 4n− 3

which implies α3 > (2n− 2) + α′1 + α′2. Meanwhile, the inequality

(2n− 2)− α3 + α′1 = ∆ · E′1 ≥ 0
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implies that (2n− 2) + α′1 ≥ α3 which is a contradiction.

The case p ∈M1
1 \ (E1 ∪ E′1). Set M := M2

1 +M2
2 +M3

1 +M3
2 . Then the log pair(

S,
1

4n− 3
(M1

1 +M +D′)

)
is not log canonical at the point p. We have

D′ = αM1
1 + ∆,

where a rational number α ≥ 0 and M1
1 6⊂ Supp(∆) with an effective Q-Cartier divisor ∆.

By using a general member M̂ of the linear system |2M2
1 | such that M̂ 6⊂ Supp(D′),

8n− 8 = D′ · M̂ ≥ αM1
1 · M̂ = 2α

which implies 4n− 4 ≥ α. By the inversion of adjunction formula, the log pair(
M1

1 ,
1

4n− 3
(M + ∆)

∣∣∣
M1

1

)
is not log canonical at p. Then

1 + (4n− 4) ≥
(
(M + ∆) ·M1

1

)
p
≥ multp((M + ∆)|M1

1
) > 4n− 3

which is a contradiction.

We can induce a contradiction by using a similar argument like the above cases for

each point of R. Hence

lct(S,D′0) ≥ 1

4n− 3
for any D′0 ∈ |(2n+ 1)KS |0.

And the inequality is optimal because lctp(S,D
′
0) = 1/(4n− 3) for

D
′
0 := R+ 2(n− 1)(2E′2 + E′3 + 2E1 + E3) ∈ |(2n+ 1)KS |0

and

p ∈ E′2 \ (E1 ∪ E3 ∪M2
1 ∪M2

2 ).

3.2.2. Anti-invariant part

For a positive integer n and i = 1, 2, 3, |(2n+ 1)KS |i is represented by

Ri + |ϕ∗((1− n)KΣ + Li)|

(see Proposition 1.2 and apply B ∼ −3KΣ).
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We may consider for i = 1. The divisor

D
′
1 := E1 + E′1 +M2

1 +M2
2 + 2

(
(2n+ 1)E′2 + (n− 1)E′1 + nE1 + 2nE3

)
is in |(2n+ 1)KS |1. The log canonical threshold of the log pair (S,D

′
1) is 1/(4n+ 2). Note

that the global log canonical threshold of the log pair (S,KS) is 1/2 (see [6, Theorem 1.3]).

This means that the infimum of the set

{lct(S,D′1) | D′1 ∈ |(2n+ 1)KS |1}

is 1/(4n+ 2). Thus

inf{lct(S,D′i) | D′i ∈ |(2n+ 1)KS |i} =
1

4n+ 2

for each i = 1, 2, 3.
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[2] P. Burniat, Sur les surfaces de genre P12 > 1, Ann. Mat. Pura Appl. (4) 71 (1966),

1–24.

[3] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 18

(2008), no. 4, 1118–1144.

[4] I. A. Chel’tsov and K. A. Shramov, Log-canonical thresholds for nonsingular Fano

threefolds, translation in Russian Math. Surveys 63 (2008), no. 5, 859–958.

[5] J. A. Chen, M. Chen and C. Jiang, Addendum to “The Noether inequality for algebraic

3-folds”, Duke Math. J. 169 (2020), no. 11, 2199–2204.



1144 In-Kyun Kim and YongJoo Shin

[6] I.-K. Kim and Y. Shin, Log canonical thresholds of Burniat surfaces with K2 = 6,

Math. Res. Lett. 27 (2020), no. 4, 1079–1094.

[7] J. Kollár, Singularities of pairs, in: Algebraic Geometry—Santa Cruz 1995, 221–287,

Proc. Sympos. Pure Math. 62, Part 1, Amer. Math. Soc., Providence, RI, 1997.

[8] V. S. Kulikov, Old examples and a new example of surfaces of general type with

pg = 0, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 5, 123–170.

[9] M. Mendes Lopes and R. Pardini, A connected component of the moduli space of

surfaces with pg = 0, Topology 40 (2001), no. 5, 977–991.

[10] C. A. M. Peters, On certain examples of surfaces with pg = 0 due to Burniat, Nagoya

Math. J. 66 (1977), 109–119.

In-Kyun Kim

Department of Mathematics, Yonsei University, Seoul 03722, South Korea

E-mail address: soulcraw@gmail.com

YongJoo Shin

Department of Mathematics, Chungnam National University, Science Building 1, 99

Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea

E-mail address: haushin@cnu.ac.kr


	Introduction
	Preliminaries
	Proof of the main theorem
	Even pluricanonical linear system
	Invariant part
	Anti-invariant parts

	Odd pluricanonical linear system
	Invariant part
	Anti-invariant part



