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Distance (Signless) Laplacian Eigenvalues of k-uniform Hypergraphs

Xiangxiang Liu and Ligong Wang*

Abstract. The distance (signless) Laplacian eigenvalues of a connected hypergraph are

the eigenvalues of its distance (signless) Laplacian matrix. For all n-vertex k-uniform

hypertrees, we determine the k-uniform hypertree with minimum second largest dis-

tance (signless) Laplacian eigenvalue. For all n-vertex k-uniform unicyclic hyper-

graphs, we obtain the k-uniform unicyclic hypergraph with minimum largest distance

(signless) Laplacian eigenvalue, and the k-uniform unicyclic hypergraph with mini-

mum second largest distance Laplacian eigenvalue.

1. Introduction

Let G = (V (G), E(G)) be an n-vertex m-edge hypergraph, where V (G) = {u1, u2, . . . , un},
E(G) = {e1, e2, . . . , em} and ei ⊆ V (G) for every i ∈ {1, 2, . . . ,m}. If k ≥ 2 and every

edge e ∈ E(G) satisfies |e| = k, then G is a k-uniform hypergraph. Let w, u ∈ V (G).

If there is some edge e ∈ E(G) satisfying {w, u} ⊆ e, then u is a neighbour of w. Let

NG(w) = {u ∈ V (G) : u is a neighbour of w} and EG(w) = {e ∈ E(G) : w ∈ e}. The

degree of w in G is dG(w) = |EG(w)|. For e = {u1, . . . , uk} ∈ E(G), if dG(u1) ≥ 2 and

dG(ui) = 1 for every i ∈ {2, . . . , k}, then e is a pendent edge of G at u1.

Let P = (u0, e1, u1, . . . , up−1, ep, up) be a sequence of vertices and edges in a hypergraph

G. If {ui−1, ui} ⊆ ei, and ui−1 6= ui for each i ∈ {1, 2, . . . , p}, then P is called a walk of

length p connecting u0 and up in G. If all vertices ui are pairwise distinct and all edges

ei are pairwise distinct, then the walk P is called a path. If all vertices ui are pairwise

distinct except u0 = up, all edges ei are pairwise distinct and p ≥ 2, then the walk P is

called a cycle. For any w, u ∈ V (G), if w and u are connected by a path, then G is a

connected hypergraph.

Let G be an n-vertex m-edge k-uniform connected hypergraph. If G contains no

cycles, then G is called a k-uniform hypertree. Note that such hypertree G satisfies
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n = m(k − 1) + 1. If G has exactly one cycle, then G is called a k-uniform unicyclic

hypergraph. Note that such unicyclic hypergraph G satisfies n = m(k − 1).

Let T be a k-uniform hypertree. If there exists a vertex w ∈ V (T ) satisfying w ∈ e for

every edge e ∈ E(T ), then we say T is a hyperstar, and w is the centre of T . We use Sn,k

to denote the n-vertex k-uniform hyperstar.

Let U = (V (U), E(U)) be a k-uniform unicyclic hypergraph, where V (U) = {u1, u2,
. . . , un} and E(U) = {e1, e2, . . . , em}. If ei = {u(i−1)(k−1)+1, . . . , u(i−1)(k−1)+k} for each

i ∈ {1, 2, . . . ,m} and u(m−1)(k−1)+k = u1, then U is called a k-uniform loose cycle. We

use Cn,k to denote the n-vertex k-uniform loose cycle.

Let U be a k-uniform unicyclic hypergraph that contains Cgk−g,k as an induced sub-

hypergraph, where k ≥ 3 and g ≥ 2. We label the vertices of Cgk−g,k as above. Let

H1, . . . ,Hgk−g be the gk − g components of U − E(Cgk−g,k) with ui ∈ V (Hi) for each

i ∈ {1, . . . , gk − g} (it is possible that some Hi consists of a single vertex ui), and we

denote U by Ck
gk−g(H1, . . . ,Hgk−g). In particular, if Hi = Sti(k−1)+1,k with ti ≥ 0 for

some i ∈ {1, . . . , gk − g}, then we use Ck
gk−g(H1, . . . , ti, . . . ,Hgk−g) to denote U . If

Hi = Sti(k−1)+1,k with ti = 0 for some i ∈ {1, . . . , gk − g}, then U is also denoted by

Ck
gk−g(H1, . . . , ui, . . . ,Hgk−g).

Let G be an n-vertex connected hypergraph and w, u ∈ V (G). Suppose that P is a

shortest path that connects w and u in G. The length of P is the distance dG(w, u)

between w and u. We define dG(w,w) = 0. The diameter d = d(G) of G is d =

max{dG(w, u) : w, u ∈ V (G)}. The distance matrix of G is an n × n matrix index by

V (G), whose (w, u)-entry is dG(w, u). For w ∈ V (G), the transmission of w is defined as

TrG(w) =
∑

u∈V (G) dG(w, u). Let Trmax(G) = max{TrG(w) : w ∈ V (G)} be the maximum

vertex transmission. If TrG(w) = r (r is a real number) for all w ∈ V (G), then G is trans-

mission regular. The Wiener index of G is defined as W (G) =
∑
{w,u}⊆V (G) dG(w, u) =

1
2

∑
w∈V (G) TrG(w).

Let Tr(G) = diag(TrG(w) : w ∈ V (G)). The distance Laplacian matrix of a connected

hypergraph G is L(G) = Tr(G) −D(G). Let ∂1(G), ∂2(G), . . . , ∂n(G) be the eigenvalues

of L(G), which are called the distance Laplacian eigenvalues of G and satisfy ∂1(G) ≥
∂2(G) ≥ · · · ≥ ∂n(G). The distance signless Laplacian matrix of a connected hypergraph

G is Q(G) = Tr(G)+D(G). Let q1(G), q2(G), . . . , qn(G) be the eigenvalues of Q(G), which

are called the distance signless Laplacian eigenvalues of G and satisfy q1(G) ≥ q2(G) ≥
· · · ≥ qn(G).

In addition, let Jn×m be the n × m all-one matrix and In be the identity matrix of

order n. In particular, 1n = Jn×1 and Jn = Jn×n. Let A be a real n×n symmetric matrix

and λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) be its eigenvalues.

The use of distance matrix was arisen in a wide range of areas. For example, Balaban,
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Ciubotariu and Medeleanu [4] proposed to use the largest distance eigenvalue of graphs

as a molecular descriptor, which can be used to investigate the boiling points of alkanes

and also to infer the extent of branching. There are many results about the distance

eigenvalues of graphs, see [2, 8, 14, 16, 23]. Recently, some scholars paid attention to the

distance eigenvalues of hypergraphs, see [9–12,15,18,20–22]. In [1], Aouchiche and Hansen

defined the distance (signless) Laplacian eigenvalues of ordinary graphs, and we refer

to [3, 6, 7, 19] for more results. In [13], Lin, Zhou and Wang obtained some extremal k-

uniform hypergraphs whose distance (signless) Laplacian spectral radius are minimum or

maximum.

In this paper, for all n-vertex k-uniform hypertrees, we determine the k-uniform hyper-

tree with minimum second largest distance (signless) Laplacian eigenvalue. For n-vertex

k-uniform unicyclic hypergraphs, we obtain the k-uniform unicyclic hypergraphs with

minimum largest distance (signless) Laplacian eigenvalue and minimum second largest

distance Laplacian eigenvalue, respectively.

2. Preliminaries

Let G be an n-vertex connected k-uniform hypergraph and let V (G) = {u1, u2, . . . , un}
be its vertex set. Let x = (xu1 , xu2 , . . . , xun)T ∈ Rn. We can also view x as a function

x : V (G)→ R such that x(ui) = xui for every i ∈ {1, 2, . . . , n}. We have

xTL(G)x =
∑

{w,u}⊆V (G)

dG(w, u)(xw − xu)2

and

xTQ(G)x =
∑

{w,u}⊆V (G)

dG(w, u)(xw + xu)2.

Lemma 2.1. [5] Let B be a real n × n symmetric matrix. If B′ is a t × t principal

submatrix of B and t ≤ n, then

λj+n−t(B) ≤ λj(B′) ≤ λj(B), 1 ≤ j ≤ t.

Lemma 2.2. [17] Let C = (cij) be a complex matrix of order n. Suppose that λ1, λ2, . . . , λp

are its distinct eigenvalues. Then

{λ1, λ2, . . . , λp} ⊂
n⋃

i=1

z : |z − cii| ≤
∑
j 6=i

|cij |

 .

The following result is obtained by Lemma 2.2 and analogous arguments as the proof

of Theorem 2.2 in [3].
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Lemma 2.3. For any n-vertex connected hypergraph G, ∂n(G) = 0 with multiplicity 1.

Lemma 2.4. [24] Let U be an n-vertex m-edge k-uniform unicyclic hypergraph, where

m = n
k−1 ≥ 4 and U � Ck

2k−2(m− 2, u2, . . . , u2k−2). Then

W (U) ≥W (Ck
2k−2(m− 3, u2, . . . , uk−1, 1, uk+1, . . . , u2k−2))

> W (Ck
2k−2(m− 2, u2, . . . , u2k−2)),

where W (Ck
2k−2(m− 3, u2, . . . , uk−1, 1, uk+1, . . . , u2k−2)) = n2 − 2n+ 6k − 2 + nk

2 − 3k2.

Lemma 2.5. Given an n-vertex nontrivial connected hypergraph G, we have

q1(G) ≥ 4W (G)

n
,

and equality if and only if G is a transmission regular hypergraph.

Proof. Let x = (xu1 , xu2 , . . . , xun)T ∈ Rn be a unit vector and there exists an index i

satisfying xui ≥ 0. By the Rayleigh’s principle,

q1(G) ≥ xTQ(G)x.

In particular, let z = 1√
n

(1, 1, . . . , 1)T . We have

q1(G) ≥ zTQ(G)z =
∑

{w,u}⊆V (G)

dG(w, u)

(
1√
n

+
1√
n

)2

=
4W (G)

n
,

and equality if and only if G is a transmission regular hypergraph.

By Lemma 2.2, we obtain the following result.

Lemma 2.6. If G is an n-vertex nontrivial connected hypergraph, then

q1(G) ≤ 2 Trmax(G).

Lemma 2.7. Let k ≥ 3 and G be an n-vertex k-uniform hypergraph. If e1, e2, . . . , e` are

pendent edges at u, then all vertices in (e1∪e2∪· · ·∪e`)\{u} have the same transmission,

say Tr. Moreover, L(G) has Tr +1 as an eigenvalue and its multiplicity is at least (k−2)`.

Proof. Let ui ∈ ei \ {u} for each i ∈ {1, 2, . . . , `}. Then

TrG(ui) = (k − 1) + 2(`− 1)(k − 1) +
∑

w∈V (G)\{e1,e2,...,e`}

(dG(w, u) + 1).

Thus all vertices in (e1 ∪ e2 ∪ · · · ∪ e`) \ {u} have the same transmission, say Tr.

Let A = (Tr +1)In − L(G). For all i ∈ {1, 2, . . . , `}, the rows of A indexed by the

vertices ei \{u} are identical. Hence, L(G) has Tr +1 as an eigenvalue and its multiplicity

is at least (k − 2)`.
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3. The second largest distance (signless) Laplacian eigenvalue of k-uniform

hypertrees

Lemma 3.1. [13] The eigenvalues of L(Sn,k) are 2n − 1 (multiplicity m − 1), 2n − k
(multiplicity m(k − 2)), n, 0, where m = n−1

k−1 and k ≥ 2.

Let k ≥ 3 and T be an n-vertex k-uniform hypertree with diameter d. Suppose

that P = (u0, e1, u1, . . . , ud−1, ed, ud) is a diametrical path of T . For each wi ∈ V (P ), the

nontrivial component of T−E(P ) that contains wi is denoted by Twi and let ni = |V (Twi)|,
where 1 ≤ i ≤ s and s ≤ (d − 2)(k − 1) + 1. Suppose that T ′ is obtained from T by

transforming every Twi into a k-uniform hyperstar Sni,k with centre wi.

Lemma 3.2. If T , P and T ′ are as described above, then

max{TrT (u0),TrT (ud)} > 1

2
(n− 1)(d+ 2)− d(k − 1) +

1

2
d.

Proof. If v ∈ V (P ), then dT (u0, v) = dT ′(u0, v). If v /∈ V (P ), then dT (u0, v) ≥ dT ′(u0, v).

Thus

TrT (u0) =
∑

v∈V (T )

dT (u0, v) ≥
∑

v∈V (T ′)

dT ′(u0, v) = TrT ′(u0).

Similarly, TrT (ud) ≥ TrT ′(ud). So max{TrT (u0),TrT (ud)} ≥ max{TrT ′(u0),TrT ′(ud)}.
In T ′, for v ∈ V (P ), we have

dT ′(u0, ui) + dT ′(ui, ud) = d for i = 0, 1, . . . , d,

dT ′(u0, v) + dT ′(v, ud) = d+ 1 for v ∈ ei \ {ui−1, ui} and i = 1, . . . , d,

and for v /∈ V (P ), we have

dT ′(u0, v) + dT ′(v, ud) ≥ d+ 2.

Thus

TrT ′(u0) + TrT ′(ud) ≥ (n− d(k − 1)− 1)(d+ 2) + d(d+ 1)(k − 2) + d(d+ 1)

> (n− d(k − 1)− 1)(d+ 2) + d2(k − 2) + d(d+ 1)

= (n− 1)(d+ 2)− 2d(k − 1) + d.

Therefore,

max{TrT (u0),TrT (ud)} ≥ max{TrT ′(u0),TrT ′(ud)} ≥ 1

2

(
TrT ′(u0) + TrT ′(ud)

)
>

1

2
(n− 1)(d+ 2)− d(k − 1) +

1

2
d.
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Theorem 3.3. Let k ≥ 3, n ≥ 5(k − 1) + 1, and T be an n-vertex k-uniform hypertree.

Then ∂2(T ) ≥ 2n− 1, with equality if and only if T ∼= Sn,k.

Proof. Let T be an n-vertex k-uniform hypertree with diameter d. Assume that P =

(u0, e1, u1, . . . , ud−1, ed, ud) is a diametrical path of T .

By Lemma 3.1, we have ∂2(Sn,k) = 2n− 1 for n ≥ 5(k− 1) + 1. So it suffices to prove

∂2(T ) > 2n− 1 for T � Sn,k and n ≥ 5(k − 1) + 1. If T � Sn,k, then we have d ≥ 3. We

next consider two cases.

Case 1: d = 3. Suppose that there is a vertex with degree at least 3 and there

are at least two vertices each with degree at least 2. Without loss of generality, let

dT (u1) ≥ 3. By Lemma 2.7, TrT (u0) + 1 is an eigenvalue of L(T ) and its multiplicity is

at least (k − 2)(dT (u1)− 1) ≥ 2. Suppose that there are at least three vertices each with

degree 2 and all the other vertices have degree 1. Without loss of generality, let dT (u1) = 2

and dT (u2) = 2. Obviously, we have TrT (u0) = TrT (u3). By Lemma 2.7, TrT (u0) + 1 is

an eigenvalue of L(T ) and its multiplicity is at least (k − 2) ≥ 1, and TrT (u3) + 1 is an

eigenvalue of L(T ) and its multiplicity is at least (k − 2) ≥ 1.

Since

TrT (u0) = (k − 1) + 2(k − 1) + 3(k − 1) +
∑

v∈V (T )\V (P )

dT (v, u0)

≥ (k − 1) + 2(k − 1) + 3(k − 1) + 3(k − 1) + 2(n− 4(k − 1)− 1)

= 2n+ k − 3,

we have ∂2(T ) ≥ 2n+ k − 2 ≥ 2n+ 1 > 2n− 1.

Suppose that there are exactly two vertices each with degree at least 3 and all the

other vertices have degree 1. Similarly as above, we have ∂2(T ) > 2n− 1.

Suppose that there are exactly one vertex with degree at least 3 and exactly one

vertex with degree 2, and all the other vertices have degree 1. Without loss of generality,

let dT (u1) ≥ 3 and dT (u2) = 2. Let v ∈ e3 \{u2, u3}. Then we consider the 2×2 principal

submatrix of L(T ), denoted by M , indexed by vertices v and u3, where

M =

TrT (v) −1

−1 TrT (u3)

 .

Note that TrT (v) = TrT (u3) and

TrT (v) = (k − 1) + 2(k − 1) + 3(n− 2(k − 1)− 1) = 3n− 3k.

By Lemma 2.1, we have ∂2(T ) ≥ λ2(M) = TrT (v)− 1. Recall that n ≥ 5(k − 1) + 1 and

k ≥ 3, so 3n− 3k − 1 > 2n− 1. Thus ∂2(T ) > 2n− 1.
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Case 2: d ≥ 4. Let u ∈ e1 \ {u0, u1}. Since e1 is a pendent edge at u1, we have

TrT (u0) = TrT (u). Then we consider the 2 × 2 principal submatrix of L(T ), denoted by

M ′, indexed by vertices u0 and u, where

M ′ =

TrT (u0) −1

−1 TrT (u)

 .

Without loss of generality, let TrT (u0) ≥ TrT (ud). By Lemma 3.2, we have TrT (u0) >
1
2(n− 1)(d+ 2)− d(k − 1) + 1

2d. By Lemma 2.1, we have ∂2(T ) ≥ λ2(M ′) = TrT (u0)− 1.

Since d ≥ 4 and n ≥ d(k − 1) + 1, we have

λ2(M
′) >

1

2
nd+ n− d(k − 1)− 2 ≥ 3n− d(k − 1)− 2 ≥ 2n− 1.

Thus ∂2(T ) > 2n− 1.

Lemma 3.4. The eigenvalues of Q(Sn,k) are 2n−k−2 (multiplicity m(k−2)), 2n−2k−1

(multiplicity m− 1),
5n−2k−4−

√
9n2−12nk−8n+4k(k+2)

2 , and
5n−2k−4+

√
9n2−12nk−8n+4k(k+2)

2 ,

where m = n−1
k−1 and k ≥ 2.

Proof. Let e1, e2, . . . , em be the pendent edges of Sn,k at centre v, where m = n−1
k−1 . By

calculation, we have TrT (v) = n − 1 and TrT (u) = 2n − k − 1 for any u ∈ V (Sn,k) \ {v}.
We partition V (Sn,k) into {v} ∪ (e1 \ {v}) ∪ (e2 \ {v}) ∪ · · · ∪ (em \ {v}). Then

Q(Sn,k) =



n− 1 1Tk−1 1Tk−1 · · · 1Tk−1

1k−1 aIk−1 + Jk−1 2Jk−1 · · · 2Jk−1

1k−1 2Jk−1 aIk−1 + Jk−1 · · · 2Jk−1
...

...
...

. . .
...

1k−1 2Jk−1 2Jk−1 · · · aIk−1 + Jk−1


,

where a = 2n− k − 2. Thus

|λIn −Q(Sn,k)|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− n+ 1 −1Tk−1 −1Tk−1 · · · −1Tk−1

−1k−1 (λ− a)Ik−1 − Jk−1 −2Jk−1 · · · −2Jk−1

−1k−1 −2Jk−1 (λ− a)Ik−1 − Jk−1 · · · −2Jk−1
...

...
...

. . .
...

−1k−1 −2Jk−1 −2Jk−1 · · · (λ− a)Ik−1 − Jk−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ− a)m(k−2)

∣∣∣∣∣∣λ− n+ 1 −(k − 1)1Tm

−1m (λ− a+ k − 1)Im − 2(k − 1)Jm

∣∣∣∣∣∣



1100 Xiangxiang Liu and Ligong Wang

= (λ− a)m(k−2)(λ− a+ k − 1)m−1

∣∣∣∣∣∣λ− n+ 1 −(n− 1)

−1 λ− a− 2(n− 1) + k − 1

∣∣∣∣∣∣
= (λ− a)m(k−2)(λ− a+ k − 1)m−1f(λ),

where f(λ) = λ2 − (5n− 2k − 4)λ+ 4n2 − 2nk − 8n+ 2k + 4. The two roots of f(λ) are

λ1 =
5n−2k−4−

√
9n2−12nk−8n+4k(k+2)

2 and λ2 =
5n−2k−4+

√
9n2−12nk−8n+4k(k+2)

2 .

Hence, the eigenvalues of Q(Sn,k) are 2n− k − 2 (multiplicity m(k − 2)), 2n− 2k − 1

(multiplicity m− 1),
5n−2k−4−

√
9n2−12nk−8n+4k(k+2)

2 , and
5n−2k−4+

√
9n2−12nk−8n+4k(k+2)

2 .

Remark 3.5. By calculation, we have
5n−2k−4+

√
9n2−12nk−8n+4k(k+2)

2 > 2n − k − 2. For

m ≥ 3 (i.e., n ≥ 3(k − 1) + 1) and k ≥ 2, we have

9n2 − 12nk − 8n+ 4k(k + 2)− n2 = 4[n(2n− 3k − 2) + k(k + 2)]

≥ 4[n(3k − 6) + k(k + 2)] > 0.

Thus 2n− k − 2 >
5n−2k−4−

√
9n2−12nk−8n+4k(k+2)

2 .

Theorem 3.6. Let k ≥ 3, n ≥ 3(k − 1) + 1, and T be an n-vertex k-uniform hypertree.

Then q2(T ) ≥ 2n− k − 2, with equality if and only if T ∼= Sn,k.

Proof. Let T be an n-vertex k-uniform hypertree with diameter d. Assume that P =

(u0, e1, u1, . . . , ud−1, ed, ud) is a diametrical path of T .

By Lemma 3.4 and Remark 3.5, we have q2(Sn,k) = 2n− k − 2. So it suffices to prove

q2(T ) > 2n − k − 2 for T � Sn,k and n ≥ 3(k − 1) + 1. If T � Sn,k, then we have d ≥ 3.

We next consider two cases.

Case 1: d = 3. Let v ∈ e1 \ {u0, u1}. Then we consider the 2× 2 principal submatrix

of Q(T ), denoted by M , indexed by vertices u0 and v, where

M =

TrT (u0) 1

1 TrT (v)

 .

Note that TrT (v) = TrT (u0) and

TrT (u0) = (k − 1) + 2(k − 1) + 3(k − 1) +
∑

u∈V (T )\V (P )

dT (u, u0)

≥ (k − 1) + 2(k − 1) + 3(k − 1) + 2(n− 3(k − 1)− 1) = 2n− 2.

By Lemma 2.1, we have q2(T ) ≥ λ2(M) = TrT (u0) − 1. Since 2n − 3 > 2n − k − 2 for

k ≥ 3, we have q2(T ) > 2n− k − 2.
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Case 2: d ≥ 4. Let u ∈ e1 \ {u0, u1}. Since e1 is a pendent edge at v1, we have

TrT (u0) = TrT (u). Then we consider the 2× 2 the principal submatrix of Q(T ), denoted

by M ′, indexed by vertices u0 and u, where

M ′ =

TrT (u0) 1

1 TrT (u)

 .

Without loss of generality, let TrT (u0) ≥ TrT (ud). By Lemma 3.2, we have TrT (u0) >
1
2(n− 1)(d+ 2)− d(k − 1) + 1

2d. By Lemma 2.1, we have q2(T ) ≥ λ2(M ′) = TrT (u0)− 1.

Since d ≥ 4 and n ≥ d(k − 1) + 1, we have

λ2(M
′) >

1

2
nd+ n− d(k − 1)− 2 ≥ 3n− d(k − 1)− 2 ≥ 2n− 1 > 2n− k − 2.

Thus q2(T ) > 2n− k − 2.

4. Distance (signless) Laplacian eigenvalues of k-uniform unicyclic hypergraphs

Lemma 4.1. The eigenvalues of L(Ck
2k−2(m−2, u2, . . . , u2k−2)) are 0, 2n−2, 2n−2k+2,

n, 2n− 1 (multiplicity m− 2), and 2n− k (multiplicity (m− 2)(k− 2) + 2(k− 3)), where

m = n
k−1 ≥ 3 and k ≥ 3.

Proof. Let U = Ck
2k−2(m − 2, u2, . . . , u2k−2) and f1, f2, . . . , fm−2 be the pendent edges

of Ck
2k−2(m − 2, u2, . . . , u2k−2) at u1. It is easy to see that a := TrU (u1) = n − 1, c :=

TrU (uk) = 2n − 2k + 1, b := TrU (u) = 2n − k − 1 for any u /∈ {u1, uk}. Then we

have a = b+k−1
2 and c = b − k + 2. We partition V (Ck

2k−2(m − 2, u2, . . . , u2k−2)) into

{u1} ∪ (e1 \ {u1, uk}) ∪ {uk} ∪ (e2 \ {u1, uk}) ∪ (f1 \ {u1}) ∪ · · · ∪ (fm−2 \ {u1}). Then

L(Ck
2k−2(m− 2, u2, . . . , u2k−2))

=



a −1Tk−2 −1 −1Tk−2 −1Tk−1 −1Tk−1 · · · −1Tk−1

−1k−2 M −1k−2 −2Jk−2 N N · · · N

−1 −1Tk−2 c −1Tk−2 −21Tk−1 −21Tk−1 · · · −21Tk−1

−1k−2 −2Jk−2 −1k−2 M N N · · · N

−1k−1 NT −21k−1 NT P −2Jk−1 · · · −2Jk−1

−1k−1 NT −21k−1 NT −2Jk−1 P · · · −2Jk−1
...

...
...

...
...

...
. . .

...

−1k−1 NT −21k−1 NT −2Jk−1 −2Jk−1 · · · P



,
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where M = (b+ 1)Ik−2 − Jk−2, P = (b+ 1)Ik−1 − Jk−1 and N = −2J(k−2)×(k−1). Thus

|λ− L(Ck
2k−2(m− 2, u2, . . . , u2k−2))|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− a 1Tk−2 1 1Tk−2 1Tk−1 1Tk−1 · · · 1Tk−1

1k−2 λIk−2 −M 1k−2 2Jk−2 −N −N · · · −N

1 1Tk−2 λ− c 1Tk−2 21Tk−1 21Tk−1 · · · 21Tk−1

1k−2 2Jk−2 1k−2 λIk−2 −M −N −N · · · −N

1k−1 −NT 21k−1 −NT λIk−1 − P 2Jk−1 · · · 2Jk−1

1k−1 −NT 21k−1 −NT 2Jk−1 λIk−1 − P · · · 2Jk−1
...

...
...

...
...

...
. . .

...

1k−1 −NT 21k−1 −NT 2Jk−1 2Jk−1 · · · λIk−1 − P

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ− b− 1)(m−2)(k−2)+2(k−3)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− a k − 2 1 k − 2 (k − 1)1Tm−2

1 λ− b+ k − 3 1 2(k − 2) 2(k − 1)1Tm−2

1 k − 2 λ− c k − 2 2(k − 1)1Tm−2

1 2(k − 2) 1 λ− b+ k − 3 2(k − 1)1Tm−2

1m−2 2(k − 2)1m−2 21m−2 2(k − 2)1m−2 (λ− b− k)Im−2 + 2(k − 1)Jm−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ− b− 1)(m−2)(k−2)+2(k−3)(λ− b− k)m−3g(λ),

where g(λ) = |λI5 −A| and

A =



b+k−1
2 2− k −1 2− k 3k−5−b

2

−1 b− k + 3 −1 4− 2k 3k − 5− b

−1 2− k b− k + 2 2− k 3k − 5− b

−1 4− 2k −1 b− k + 3 3k − 5− b

−1 4− 2k −2 4− 2k 4k − 5


.

Since

g(λ) = λ5 −
(

7

2
b+

3

2
k +

5

2

)
λ4 +

(
9

2
b2 + 4bk +

13

2
b− k2

2
+

15

2
k − 2

)
λ3

+

(
5

2
b+

3

2
k − 12bk +

bk2

2
− 7

2
b2k − 11

2
b2 − 5

2
b3 − 13

2
k2 +

3

2
k3 +

3

2

)
λ2

+

(
b4

2
+ b3k +

3

2
b3 +

9

2
b2k − b2

2
− bk3 +

9

2
bk2 − 3

2
b− k4

2
+

3

2
k3 +

k2

2
− 3

2
k

)
λ

= λ(λ− b− k)(λ− b− k + 1)(λ− b+ k − 3)

(
λ− b+ k + 1

2

)
,
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the eigenvalues of L(Ck
2k−2(m − 2, u2, . . . , u2k−2)) are 0, 2n − 2, 2n − 2k + 2, n, 2n − 1

(multiplicity m− 2), and 2n− k (multiplicity (m− 2)(k − 2) + 2(k − 3)).

4.1. The largest distance (signless) Laplacian eigenvalue of k-uniform unicyclic

hypergraphs

Theorem 4.2. Let k ≥ 3, n ≥ 6(k− 1), and U be an n-vertex k-uniform unicyclic hyper-

graph. Then ∂1(U) ≥ 2n− 1, with equality if and only if U ∼= Ck
2k−2(m− 2, u2, . . . , u2k−2),

where m = n
k−1 .

Proof. By Lemma 4.1, we have ∂1(C
k
2k−2(m− 2, u2, . . . , u2k−2)) = 2n− 1 for n ≥ 6(k− 1).

So it suffices to prove ∂1(U) > 2n−1 for U � Ck
2k−2(m−2, u2, . . . , u2k−2) and n ≥ 6(k−1).

By Lemma 2.4, we have

W (U) ≥ n2 − 2n+ 6k − 2 +
nk

2
− 3k2 > W (Ck

2k−2(m− 2, u2, . . . , u2k−2)).

Since
∑n

i=1 ∂i(U) = 2W (U), and by Lemma 2.3, we have (n − 1)∂1(U) ≥ 2W (U). Note

that 6k2 − 13k + 6 > 0 for k ≥ 3. Hence,

∂1(U) ≥ 2W (U)

n− 1
≥ 2n2 − 4n+ 12k − 4 + nk − 6k2

n− 1

= 2n+ (k − 2)− 6k2 − 13k + 6

n− 1
≥ 2n+ (k − 2)− 6k2 − 13k + 6

6k − 7

= 2n+ (k − 2)− (6k − 7)(k − 1)− 1

6k − 7
= 2n− 1 +

1

6k − 7
> 2n− 1.

Theorem 4.3. Let k ≥ 3, n ≥ 4(k − 1), and U be an n-vertex k-uniform unicyclic

hypergraph. Then q1(U) ≥ q1(C
k
2k−2(m − 2, u2, . . . , u2k−2)), with equality if and only if

U ∼= Ck
2k−2(m− 2, u2, . . . , u2k−2).

Proof. Let U be an n-vertex k-uniform unicyclic hypergraph and U � Ck
2k−2(m−2, u2, . . . ,

u2k−2). By Lemmas 2.4, 2.5 and 2.6, we have

q1(U) ≥ 4W (U)

n
≥ 2 · 2n2 − 4n+ 12k − 4 + nk − 6k2

n
,

and

q1(C
k
2k−2(m− 2, u2, . . . , u2k−2)) ≤ 2 Trmax(Ck

2k−2(m− 2, u2, . . . , u2k−2)) = 2(2n− k − 1).

Since

2n2 − 4n+ 12k − 4 + nk − 6k2

n
− (2n− k − 1)

= 2n− 4 + k − 6k2 − 12k + 4

n
− 2n+ k + 1 = 2k − 3− 6k2 − 12k + 4

n

≥ 2k − 3− 3k2 − 6k + 2

2k − 2
=

(k − 2)2

2k − 2
> 0,

we have q1(U) > q1(C
k
2k−2(m− 2, u2, . . . , u2k−2)).
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4.2. The second largest distance Laplacian eigenvalue of k-uniform unicyclic hypergraphs

Lemma 4.4. Let k ≥ 3, n ≥ 5(k−1) and U be an n-vertex k-uniform unicyclic hypergraph

and U � Cn,k. Suppose that P = (v0, f1, v1, . . . , vd−1, fd, vd) is a diametrical path of U

satisfies f1 is a pendent edge at v1 and d ≥ 4. Then ∂2(U) > 2n− 1.

Proof. Let w ∈ f1 \ {v0, v1}. Then we consider the 2 × 2 principal submatrix of L(U),

denoted by M , indexed by vertices v0 and w, where

M =

TrU (v0) −1

−1 TrU (w)

 .

Note that TrU (v0) = TrU (w). Let t be the length of the cycle of U .

Case 1: t > 2. In this case,

TrU (v0) ≥ (k − 1) + 2(k − 1) + · · ·+ d(k − 1)− 1 + 2(n− d(k − 1)− 1)

=
d(d+ 1)

2
(k − 1) + 2n− 2d(k − 1)− 3

=
k − 1

2
(d2 − 3d) + 2n− 3 ≥ 2(k − 1) + 2n− 3 ≥ 2n+ 1.

By Lemma 2.1, we have ∂2(U) ≥ λ2(M) = TrU (v0)− 1 > 2n− 1.

Case 2: t = 2 and d ≥ 5. In this case,

TrU (v0) > (k − 1) + 2(k − 1) + · · ·+ d(k − 1)− d+ 2(n− d(k − 1)− 1)

=
d(d+ 1)

2
(k − 1)− d+ 2n− 2d(k − 1)− 2

=
k − 1

2
(d2 − 3d)− d+ 2n− 2 ≥ d(k − 2) + 2n− 2 ≥ 2n+ 1.

By Lemma 2.1, we have ∂2(U) ≥ λ2(M) = TrU (v0)− 1 > 2n− 1.

Case 3: t = 2 and d = 4. If P contains at most one edge of the cycle of U , then

TrU (v0) ≥ (k − 1) + 2(k − 1) + 3(k − 1) + 4(k − 1) + 2(n− 4(k − 1)− 1)

= 2n+ 2(k − 1)− 2 > 2n+ 1.

By Lemma 2.1, we have ∂2(U) ≥ λ2(M) = TrU (u0)− 1 > 2n− 1.

If P contains two edges of the cycle of U and dU (v1) = 2, then

TrU (v0) ≥ (k − 1) + 2(k − 1) + 3(k − 1) + 4(k − 1)− 4 + 3(n− 4(k − 1))

= 3n− 2(k − 1)− 4 ≥ 3(k − 1)− 4 + 2n > 2n+ 1.

By Lemma 2.1, we have ∂2(U) ≥ λ2(M) = TrU (v0)− 1 > 2n− 1.
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If P contains two edges of the cycle of U and dU (v1) ≥ 3, then

TrU (v0) ≥ (k − 1) + 2(k − 1) + 3(k − 1) + 4(k − 1)− 4 + 2(n− 4(k − 1))

= 2n+ 2(k − 1)− 4 ≥ 2n.

By Lemma 2.7, TrU (v0) + 1 is an eigenvalue of L(U) and its multiplicity is at least (k −
2)(dU (v1)− 1) ≥ 2. Thus ∂2(U) ≥ 2n+ 1 > 2n− 1.

Lemma 4.5. Let k ≥ 3 and U ∼= Ck
gk−g(t1, t2, . . . , tk, Hk+1, Hk+2, . . . ,Hgk−g). If there

exist pairwise distinct i, j, z ∈ {1, 2, . . . , k} such that ti ≥ 2 and tj , tz ≥ 1, or there exist

distinct i, j ∈ {1, 2, . . . , k} such that ti, tj ≥ 2 and ty = 0 for any y ∈ {1, 2, . . . , k} \ {i, j},
then ∂2(U) > 2n− 1.

Proof. First suppose that ti ≥ 2 and tj , tz ≥ 1 for pairwise distinct i, j, z ∈ {1, 2, . . . , k}.
Let v ∈ V (Hi) \ {ui}. By Lemma 2.7, TrU (v) + 1 is an eigenvalue of L(U) and its

multiplicity is at least (k − 2)ti ≥ 2. Since

TrU (v) ≥ (k − 1) + 2(k − 1) + 3(k − 1) + 3(k − 1) + 2(n− 4(k − 1)− 1) = 2n+ k − 3,

we have ∂2(U) ≥ 2n+ k − 2 ≥ 2n+ 1 > 2n− 1.

Next suppose that ti, tj ≥ 2 and ty = 0 for y ∈ {1, 2, . . . , k}\{i, j}. Similarly as above,

we have ∂2(U) > 2n− 1.

Lemma 4.6. Let k ≥ 3, n ≥ 6(k−1) and U ∼= Ck
gk−g(t1, t2, . . . , tk, Hk+1, Hk+2, . . . ,Hgk−g).

If there exist distinct i, j ∈ {1, 2, . . . , k} such that ti ≥ 2, tj = 1, and tz = 0 for any

z ∈ {1, 2, . . . , k} \ {i, j}, then ∂2(U) > 2n− 1.

Proof. Suppose that there exist distinct i, j ∈ {1, 2, . . . , k} such that ti ≥ 2, tj = 1, and

tz = 0 for any z ∈ {1, 2, . . . , k} \ {i, j}. Let w, v ∈ V (Hj) \ {uj}. Then we consider the

2× 2 principal submatrix of L(U), denoted by M , indexed by vertices v and w, where

M =

TrU (v) −1

−1 TrU (w)

 .

Note that TrU (v) = TrU (w) and

TrU (v) ≥ (k − 1) + 2(k − 1) + 2(k − 1) + 3(n− 3k + 3− 1) ≥ 3n− 4k + 1.

By Lemma 2.1, we have ∂2(U) ≥ λ2(M) = TrU (v)− 1 ≥ 3n− 4k > 2n− 1.

Lemma 4.7. Let k ≥ 3 and U ∼= Ck
gk−g(t1, t2, . . . , tk, Hk+1, Hk+2, . . . ,Hgk−k). If ti ≤ 1

for 1 ≤ i ≤ k and there are at least four vertices each with exactly one pendent edge in e1,

then we have ∂2(U) > 2n− 1.
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Proof. Suppose that ti ≤ 1 for 1 ≤ i ≤ k and there are at least four vertices each with

exactly one pendent edge. Without loss of generality, we may assume that t2 = 1 and

t3 = 1. Let v ∈ V (H2) \ {u2} and w ∈ V (H3) \ {u3}. By Lemma 2.7, TrU (v) + 1 is

an eigenvalue of L(U) and its multiplicity is at least (k − 2) ≥ 1, and TrU (w) + 1 is an

eigenvalue of L(U) and its multiplicity is at least (k− 2) ≥ 1. Since TrU (w) = TrU (v) and

TrU (v) ≥ (k − 1) + 2(k − 1) + 3(k − 1) + 3(k − 1) + 2(n− 4(k − 1)− 1) = 2n+ k − 3,

we have ∂2(U) ≥ 2n+ k − 2 ≥ 2n+ 1 > 2n− 1.

Theorem 4.8. Let k ≥ 3, n ≥ 7(k − 1) and U be an n-vertex k-uniform unicyclic hyper-

graph. Then ∂2(U) ≥ 2n− 1, with equality if and only if U ∼= Ck
2k−2(m− 2, u2, . . . , u2k−2),

where m = n
k−1 .

Proof. By Lemma 4.1, we have ∂2(C
k
2k−2(m− 2, u2, . . . , u2k−2)) = 2n− 1 for n ≥ 7(k− 1).

So it suffices to prove ∂2(U) > 2n−1 for U � Ck
2k−2(m−2, u2, . . . , u2k−2) and n ≥ 7(k−1).

We first consider the case U ∼= Cn,k. Let s =
⌊

n
2(k−1)

⌋
. Let w and v be two vertices in

e1 and e2 with degree 1, respectively. Then we consider the 2× 2 principal submatrix of

L(U), denoted by M , indexed by vertices v and w, where

M =

TrU (v) −2

−2 TrU (w)

 .

Obviously, we have TrU (v) = TrU (w) and

TrU (v) = (k − 1) + 2(k − 1) + · · ·+ s(k − 1)

+ 2(k − 1) + 3(k − 1) + · · ·+ (s+ 1)(k − 1)− (s+ 1)

=
s(s+ 1)

2
(k − 1) +

s(s+ 3)

2
(k − 1)− (s+ 1)

= (k − 1)(s2 + 2s)− (s+ 1)

≥ 5s(k − 1)− (s+ 1) = 2n+ s(k − 2)− 1 ≥ 2n+ s− 1.

By Lemma 2.1, we have ∂2(U) ≥ λ2(M) = TrU (v) − 2. Since s =
⌊

n
2(k−1)

⌋
≥ 3, we have

2n+ s− 3 ≥ 2n and thus ∂2(U) > 2n− 1.

In the following, suppose that U � Cn,k and the diameter of U is d.

Case 1: d ≥ 4. We choose a diametrical path P = (v0, f1, v1, . . . , vd−1, fd, vd) of U

such that f1 is a pendent edge at v1. By Lemma 4.4, we have ∂2(U) > 2n− 1.

Case 2: d = 3.

Subcase 2.1: U ∼= Ck
2k−2(t1, t2, . . . , tk, uk+1, uk+2, . . . , u2k−2).

If U � Ck
2k−2(u1,m − 2, u3, . . . , uk, uk+1, uk+2, . . . , u2k−2), then by Lemmas 4.5, 4.6

and 4.7, we have ∂2(U) > 2n− 1.
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If U ∼= Ck
2k−2(u1,m − 2, u3, . . . , uk, uk+1, uk+2, . . . , u2k−2), then we consider the prin-

cipal submatrix of L(U), denoted by N , indexed by V (H2) \ {u2}. Obviously, TrU (w) =

2n− 3 for w ∈ V (H2) \ {u2}. Then

N =


(2n− 2)Ik−1 − Jk−1 −2Jk−1 · · · −2Jk−1

−2Jk−1 (2n− 2)Ik−1 − Jk−1 · · · −2Jk−1
...

...
. . .

...

−2Jk−1 −2Jk−1 · · · (2n− 2)Ik−1 − Jk−1

 .

Thus

|λIn−2k+2 −N |

=

∣∣∣∣∣∣∣∣∣∣∣∣

(λ− 2n+ 2)Ik−1 + Jk−1 2Jk−1 · · · 2Jk−1

2Jk−1 (λ− 2n+ 2)Ik−1 + Jk−1 · · · 2Jk−1
...

...
. . .

...

2Jk−1 2Jk−1 · · · (λ− 2n+ 2)Ik−1 + Jk−1

∣∣∣∣∣∣∣∣∣∣∣∣
= (λ− 2n+ 2)(m−2)(k−2)(λ− 2n− k + 3)(m−3)(λ− 5k + 7).

By Lemma 2.1, we have ∂2(U) ≥ λ2(N) = 2n+ k − 3 > 2n− 1.

Subcase 2.2: U ∼= Ck
2k−2(H1, u2, . . . , u2k−2), where H1 is obtained from e = {u1, w1,

. . . , wk−1} by attaching pendent edges at u1 and wi for 1 ≤ i ≤ k − 1, and there exists wj

with dH1(wj) ≥ 2.

First suppose that there exists wi with dH1(wi) ≥ 3 for some 1 ≤ i ≤ k − 1, say

dH1(w1) ≥ 3. Let v ∈ NH1(w1) \ e. By Lemma 2.7, TrU (v) + 1 is an eigenvalue of L(U)

and its multiplicity is at least (k − 2)(dH1(w1)− 1) ≥ 2. Note that

TrU (v) ≥ (k − 1) + 2(k − 1) + 3(k − 1) + 3(k − 2) + 2(n− 4(k − 1)) = 2n+ k − 4.

Thus ∂2(U) ≥ 2n+ k − 3 ≥ 2n > 2n− 1.

Next suppose that dH1(wi) ≤ 2 for 1 ≤ i ≤ k − 1 and there is a vertex wj with

dH1(wj) = 2. Let v, w ∈ NH1(wj) \ e. Then we consider the 2× 2 principal submatrix of

L(U), denoted by M∗, indexed by vertices v and w, where

M∗ =

TrU (v) −1

−1 TrU (w)

 .

Note that TrU (v) = TrU (w) and

TrU (v) = (k − 1) + 2(k − 1) + 3(k − 1) + 3(k − 2) + 3(n− 4k + 4) = 3n− 3k.
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By Lemma 2.1, we have ∂2(U) ≥ λ2(M∗) = TrU (v)− 1 = 3n− 3k − 1 > 2n− 1.

Subcase 2.3: U ∼= Ck
3k−3(t1, t2, . . . , tk, uk+1, uk+2, . . . , u3k−3) or U ∼= Ck

3k−3(t1, u2, . . . ,

uk−1, tk, uk+1, . . . , u2k−2, t2k−1, u2k, . . . , u3k−3).

If U /∈ {Ck
3k−3(m− 3, u2, . . . , uk, uk+1, uk+2, . . . , u3k−3), C

k
3k−3(u1,m− 3, u3, . . . , uk,

uk+1, uk+2, . . . , u3k−3), C
k
3k−3(t1, u2, . . . , uk−1, tk, uk+1, . . . , u2k−2, t2k−1, u2k, . . . , u3k−3)},

then by Lemmas 4.5, 4.6 and 4.7, we have ∂2(U) > 2n− 1.

If U ∼= Ck
3k−3(u1,m − 3, u3, . . . , uk, uk+1, uk+2, . . . , v3k−3), then let v be a pendent

vertex in V (H2) \ {u2}. By Lemma 2.7, TrU (v) + 1 is an eigenvalue of L(U) and its

multiplicity is at least (k − 2)(m− 3) ≥ 2. Since

TrU (v) = (k − 1) + 2(k − 1) + 3(k − 1) + 3(k − 2) + 2(n− 4(k − 1)) = 2n+ k − 4,

we have ∂2(U) ≥ 2n+ k − 3 ≥ 2n > 2n− 1.

If U ∼= Ck
3k−3(m − 3, u2, . . . , uk, uk+1, uk+2, . . . , u3k−3), then we consider the principal

submatrix of L(U), denoted by N ′, indexed by V (H1)\{u1}. Obviously, TrU (w) = 2n−3

for w ∈ V (H1) \ {u1}. Then

N ′ =


(2n− 2)Ik−1 − Jk−1 −2Jk−1 · · · −2Jk−1

−2Jk−1 (2n− 2)Ik−1 − Jk−1 · · · −2Jk−1
...

...
. . .

...

−2Jk−1 −2Jk−1 · · · (2n− 2)Ik−1 − Jk−1

 .

Thus

|λIn−3k+3 −N ′|

=

∣∣∣∣∣∣∣∣∣∣∣∣

(λ− 2n+ 2)Ik−1 + Jk−1 2Jk−1 · · · 2Jk−1

2Jk−1 (λ− 2n+ 2)Ik−1 + Jk−1 · · · 2Jk−1
...

...
. . .

...

2Jk−1 2Jk−1 · · · (λ− 2n+ 2)Ik−1 + Jk−1

∣∣∣∣∣∣∣∣∣∣∣∣
= (λ− 2n+ 2)(m−3)(k−2)(λ− 2n− k + 3)(m−4)(λ− 7k + 9).

By Lemma 2.1, we have ∂2(U) ≥ λ2(N ′) = 2n+ k − 3 > 2n− 1.

If U ∼= Ck
3k−3(t1, u2, . . . , uk−1, uk, uk+1, . . . , u2k−2, t2k−1, u2k, . . . , u3k−3), then at least

one of t1 ≥ 2 and t2k−1 ≥ 2 holds since n ≥ 7(k − 1). By Lemmas 4.5 and 4.6, we have

∂2(U) > 2n− 1.

Subcase 2.4: U ∼= Ck
4k−4(t1, u2, . . . , uk−1, tk, uk+1, uk+2, . . . , u4k−4) or U ∼= Ck

4k−4(t1,

u2, . . . , uk−1, uk, uk+1, . . . , u4k−4).

If U ∼= Ck
4k−4(t1, u2, . . . , uk−1, tk, uk+1, uk+2, . . . , v4k−4), then at least one of t1 ≥ 2 and

tk ≥ 2 holds since n ≥ 7(k − 1). By Lemmas 4.5 and 4.6, we have ∂2(U) > 2n− 1.
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If U ∼= Ck
4k−4(t1, u2, . . . , uk−1, uk, uk+1, . . . , u4k−4), then let v be a pendent vertex in

V (H1) \ {u1}. By Lemma 2.7, TrU (v) + 1 is an eigenvalue of L(U) and its multiplicity is

at least (k − 2)(m− 4) ≥ 2. Since

TrU (v) = (k − 1) + 4(k − 1) + 3(k − 1) + 3(k − 2) + 2(n− 5(k − 1)) = 2n+ k − 4,

we have ∂2(U) ≥ 2n+ k − 3 ≥ 2n > 2n− 1.
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