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Distance (Signless) Laplacian Eigenvalues of k-uniform Hypergraphs
Xiangxiang Liu and Ligong Wang*

Abstract. The distance (signless) Laplacian eigenvalues of a connected hypergraph are
the eigenvalues of its distance (signless) Laplacian matrix. For all n-vertex k-uniform
hypertrees, we determine the k-uniform hypertree with minimum second largest dis-
tance (signless) Laplacian eigenvalue. For all n-vertex k-uniform unicyclic hyper-
graphs, we obtain the k-uniform unicyclic hypergraph with minimum largest distance
(signless) Laplacian eigenvalue, and the k-uniform unicyclic hypergraph with mini-
mum second largest distance Laplacian eigenvalue.

1. Introduction

Let G = (V(G), E(GQ)) be an n-vertex m-edge hypergraph, where V(G) = {u1,ua, ..., un},
E(G) = {e1,ea,...,en} and e; C V(G) for every i € {1,2,...,m}. If K > 2 and every
edge e € E(G) satisfies |e| = k, then G is a k-uniform hypergraph. Let w,u € V(G).
If there is some edge e € E(G) satisfying {w,u} C e, then u is a neighbour of w. Let
Ng(w) = {u € V(G) : u is a neighbour of w} and Eg(w) = {e € E(G) : w € e}. The
degree of w in G is dg(w) = |Eg(w)|. For e = {uy,...,ux} € E(Q), if dg(u1) > 2 and
dg(u;) =1 for every ¢ € {2,...,k}, then e is a pendent edge of G at u;.

Let P = (ug,e1,u1,...,Up—1, €p, up) be a sequence of vertices and edges in a hypergraph
G. If {uj—1,u;} C e;, and u;—1 # u; for each i € {1,2,...,p}, then P is called a walk of
length p connecting up and u, in G. If all vertices u; are pairwise distinct and all edges
e; are pairwise distinct, then the walk P is called a path. If all vertices u; are pairwise
distinct except ug = up, all edges e; are pairwise distinct and p > 2, then the walk P is
called a cycle. For any w,u € V(G), if w and u are connected by a path, then G is a
connected hypergraph.

Let G be an n-vertex m-edge k-uniform connected hypergraph. If G contains no

cycles, then G is called a k-uniform hypertree. Note that such hypertree G satisfies
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n = m(k — 1) + 1. If G has exactly one cycle, then G is called a k-uniform unicyclic
hypergraph. Note that such unicyclic hypergraph G satisfies n = m(k — 1).

Let T be a k-uniform hypertree. If there exists a vertex w € V(T) satisfying w € e for
every edge e € E(T'), then we say T is a hyperstar, and w is the centre of T'. We use S,
to denote the n-vertex k-uniform hyperstar.

Let U = (V(U),E(U)) be a k-uniform unicyclic hypergraph, where V(U) = {uq, us,
coup}y and E(U) = {e1,e2,...,em}. If e; = {u_1)(h—1)4+1,- - > U(i—1)(h—1)+k} for each
i€{1,2,...,m} and u(p_1)(k—1)+r = u1, then U is called a k-uniform loose cycle. We

use Oy, to denote the n-vertex k-uniform loose cycle.

Let U be a k-uniform unicyclic hypergraph that contains Cyj_g4  as an induced sub-
hypergraph, where k& > 3 and g > 2. We label the vertices of Cyr_4 1 as above. Let
Hi,...,Hg,_4 be the gk — g components of U — E(Cgr—g1) with u; € V(H;) for each
i € {1,...,9k — g} (it is possible that some H; consists of a single vertex u;), and we
denote U by Cgk_g(Hl, ooy Hy—g). In particular, if H; = Sy, (y—1)+1,, with t; > 0 for
some ¢ € {1l,...,g9k — g}, then we use Cgk_g(Hl,...,ti,...,Hgk_g) to denote U. If
H; = S; (k—1)4+1,, With t; = 0 for some i € {1,...,gk — g}, then U is also denoted by
Ch_J(Hi, o yuiy . Ho ).

Let G be an n-vertex connected hypergraph and w,u € V(G). Suppose that P is a
shortest path that connects w and w in G. The length of P is the distance dg(w,u)
between w and w. We define dg(w,w) = 0. The diameter d = d(G) of G is d =
max{dg(w,u) : w,u € V(G)}. The distance matrix of G is an n x n matrix index by
V(G), whose (w,u)-entry is dg(w,u). For w € V(G), the transmission of w is defined as
Tra(w) = > ev(q) da(w, u). Let Trmax(G) = max{Trg(w) : w € V(G)} be the maximum
vertex transmission. If Trg(w) = r (r is a real number) for all w € V(G), then G is trans-
mission regular. The Wiener index of G is defined as W(G) = >y, ,ycv(e) da(w,u) =
2 2 wev() Tra(w).

Let Tr(G) = diag(Trg(w) : w € V(G)). The distance Laplacian matrix of a connected
hypergraph G is L(G) = Tr(G) — D(G). Let 01(G), 02(G), ..., 0,(G) be the eigenvalues
of L(G), which are called the distance Laplacian eigenvalues of G' and satisfy 01(G) >
R(G) > -+ > 0,(G). The distance signless Laplacian matrix of a connected hypergraph
Gis Q(G) = Tr(G)+D(G). Let ¢1(G), ¢2(G), - .., qn(G) be the eigenvalues of Q(G), which
are called the distance signless Laplacian eigenvalues of G' and satisfy ¢1(G) > ¢2(G) >
2 qn(G).

In addition, let J,xm be the n x m all-one matrix and I,, be the identity matrix of
order n. In particular, 1,, = J,x1 and J,, = J,xn. Let A be a real n X n symmetric matrix

and A\1(A) > A2(A) > --- > A\, (A) be its eigenvalues.

The use of distance matrix was arisen in a wide range of areas. For example, Balaban,



Distance (Signless) Laplacian Eigenvalues of k-uniform Hypergraphs 1095

Ciubotariu and Medeleanu [4] proposed to use the largest distance eigenvalue of graphs
as a molecular descriptor, which can be used to investigate the boiling points of alkanes
and also to infer the extent of branching. There are many results about the distance
eigenvalues of graphs, see [2,18,|14,/16}23]. Recently, some scholars paid attention to the
distance eigenvalues of hypergraphs, see [9H12}[15,18,20-22]. In |1], Aouchiche and Hansen
defined the distance (signless) Laplacian eigenvalues of ordinary graphs, and we refer
to [3,(6}/7,[19] for more results. In [13], Lin, Zhou and Wang obtained some extremal k-
uniform hypergraphs whose distance (signless) Laplacian spectral radius are minimum or
maximum.

In this paper, for all n-vertex k-uniform hypertrees, we determine the k-uniform hyper-
tree with minimum second largest distance (signless) Laplacian eigenvalue. For n-vertex
k-uniform unicyclic hypergraphs, we obtain the k-uniform unicyclic hypergraphs with
minimum largest distance (signless) Laplacian eigenvalue and minimum second largest

distance Laplacian eigenvalue, respectively.

2. Preliminaries

Let G be an n-vertex connected k-uniform hypergraph and let V(G) = {ui,ug,...,un}
be its vertex set. Let & = (Tyy, Tuy,---,Tu,). € R™. We can also view x as a function
x: V(G) — R such that x(u;) = z,, for every i € {1,2,...,n}. We have

2T L(Q)r = Z de(w, u) (2 — 24)?

and

2T Q(G)x = Z de (w, w) (T + 34)°.
{w,u}CV(G)

Lemma 2.1. [5] Let B be a real n x n symmetric matriz. If B' is a t X t principal
submatriz of B and t < n, then

Njtn—t(B) < X\j(B') < \j(B), 1<j<t.
Lemma 2.2. [17] Let C = (ci;) be a complex matrixz of order n. Suppose that A1, Az, ..., Ap
are its distinct eigenvalues. Then

n

{Al,)\g,...,Ap}CU Z:|Z_Cii|§Z|Cij|

i=1 i

The following result is obtained by Lemma [2.2] and analogous arguments as the proof
of Theorem 2.2 in [3].
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Lemma 2.3. For any n-vertex connected hypergraph G, 0,(G) = 0 with multiplicity 1.

Lemma 2.4. [24] Let U be an n-vertex m-edge k-uniform unicyclic hypergraph, where
m= ;5 >4and U 2 C§k72(m —2,ug,...,usp—2). Then
W(U) Z W(C§k72(m — 3, Uy v ooy U—1, 1, Uk+15 - - - ,U,gk_g))
> W(C’gkfz(m —2,u3,... ,UQk,Q)),

where W(C’gk_Q(m — 3,2,y U1, L U1, Uok—2)) = N2 — 20+ 6k — 2 + %k — 3k2.

Lemma 2.5. Given an n-verter nontrivial connected hypergraph G, we have

aw (G
a(@) > G,
n
and equality if and only if G is a transmission regqular hypergraph.
)T

Proof. Let © = (Tyy, Tug,---,%u,)” € R"™ be a unit vector and there exists an index i

satisfying x,, > 0. By the Rayleigh’s principle,
1 (G) > 21 9(G)z.

In particular, let z = -L(1,1,...,1)”. We have

v
> ;T - ) (= 1>2 _ AW(G)
@ (G) > 21 9(G)z {W}Zg:v((;) de(w,u) ( NG -
and equality if and only if GG is a transmission regular hypergraph. O
By Lemma 2.2] we obtain the following result.
Lemma 2.6. If G is an n-vertex nontrivial connected hypergraph, then
q1(G) < 2Trpax(G).
Lemma 2.7. Let k > 3 and G be an n-vertex k-uniform hypergraph. If e1,eq, ..., e; are

pendent edges at u, then all vertices in (eyUeaU---Uey)\ {u} have the same transmission,

say Tr. Moreover, L(G) has Tr+1 as an eigenvalue and its multiplicity is at least (k—2)¢.
Proof. Let u; € e; \ {u} for each i € {1,2,...,¢}. Then
Trg(u) = (k-1 +20— -1+ S (de(wu)+1).
weV (G)\{e1,e2,....es}

Thus all vertices in (e; Uea U---Uey) \ {u} have the same transmission, say Tr.

Let A = (Tr+1)I, — L(G). For all i € {1,2,...,¢}, the rows of A indexed by the
vertices e; \ {u} are identical. Hence, £(G) has Tr +1 as an eigenvalue and its multiplicity
is at least (k — 2)¢. O
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3. The second largest distance (signless) Laplacian eigenvalue of k-uniform

hypertrees
Lemma 3.1. [13] The eigenvalues of L(Sy k) are 2n — 1 (multiplicity m — 1), 2n — k
(multiplicity m(k — 2)), n, 0, where m = %=1 and k > 2.

Let £ > 3 and T be an n-vertex k-uniform hypertree with diameter d. Suppose
that P = (ug,e1,u1,...,Uq—1,€4,uq) is a diametrical path of T'. For each w; € V(P), the
nontrivial component of 7'— E(P) that contains w; is denoted by T, and let n; = |V (T, )|,
where 1 < i < sand s < (d —2)(k — 1) + 1. Suppose that 7" is obtained from T by

transforming every T,,, into a k-uniform hyperstar S,  with centre w;.

Lemma 3.2. If T, P and T’ are as described above, then
1 1
max{Trr(uo), Trr(ug)} > 5(n = 1)(d +2) —d(k —1) + 5d.

Proof. If v € V(P), then dr(ug,v) = dp/(ug,v). If v ¢ V(P), then dr(up,v) > dp(ug,v).
Thus

TI“T uo Z dT UQ, Z dT’ ’LLO, TI‘T/ (UO)
veV(T) veV(T")

Similarly, Trr(ug) > Trpr (ug). So max{Trr(uo), Trr(uq)} > max{Trz (ug), Tro (uq)}-
In 7", for v € V(P), we have

dpr (g, ug) + dpr(ug, ug) = d fori=0,1,....,d,
dp(ug,v) +dp(v,uq) =d+1 for v € e; \ {uj—1,uw;} and i =1,...,d,

and for v ¢ V(P), we have
dri (ug,v) + dp(v,ug) > d+ 2.
Thus

TI"T/(’LLQ) + TrT/(ud) > (n — d(k — 1) — 1)(d+ 2) + d(d+ 1)(141 — 2) + d(d+ 1)
>m—dk—1)—1)(d+2)+d*(k—2) +dd+1)
(n—1)(d+2) —2d(k — 1) + d.

Therefore,
max{Trr(up), Trr(ug)} > max{Try (ug), Tryr(ug)} > %(TrT/ (uo) + Tryv(uq))
>%(n—1)(d+2)—d(kz— )+%d. O
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Theorem 3.3. Let k >3, n > 5(k— 1)+ 1, and T be an n-vertex k-uniform hypertree.
Then 02(T) > 2n — 1, with equality if and only if T = Sy, .

Proof. Let T be an n-vertex k-uniform hypertree with diameter d. Assume that P =
(ug, €1,uU1, ..., Ug—1,€4,Uq) is a diametrical path of T

By Lemma we have 0s(Sy, 1) = 2n — 1 for n > 5(k — 1) + 1. So it suffices to prove
0o(T)>2n—1for T 2 S, and n > 5(k—1)+ 1. If T2 S, 1, then we have d > 3. We
next consider two cases.

Case 1: d = 3. Suppose that there is a vertex with degree at least 3 and there
are at least two vertices each with degree at least 2. Without loss of generality, let
dr(ui) > 3. By Lemma Trr(up) + 1 is an eigenvalue of £(7') and its multiplicity is
at least (k — 2)(dp(u1) — 1) > 2. Suppose that there are at least three vertices each with
degree 2 and all the other vertices have degree 1. Without loss of generality, let dp(uq) = 2
and dr(uz) = 2. Obviously, we have Trr(ug) = Trr(us). By Lemma Try(ug) + 1 is
an eigenvalue of £(7') and its multiplicity is at least (kK —2) > 1, and Trp(uz) + 1 is an
eigenvalue of £(7T) and its multiplicity is at least (k — 2) > 1.

Since
Trr(ug) = (k—1)+2(k = 1)+ 3k -1+ > dr(v,up)
veV(T)\V(P)
>(k—1)+2k—1)+3(k—1)+3(k—1)+2(n—4(k —1) — 1)
=2n+k -3,

we have 92(T) >2n+k—-2>2n+1>2n—1.

Suppose that there are exactly two vertices each with degree at least 3 and all the
other vertices have degree 1. Similarly as above, we have 02(T") > 2n — 1.

Suppose that there are exactly one vertex with degree at least 3 and exactly one
vertex with degree 2, and all the other vertices have degree 1. Without loss of generality,
let dr(u1) > 3 and dr(u2) = 2. Let v € ez \ {uz2,us}. Then we consider the 2 x 2 principal
submatrix of £(T'), denoted by M, indexed by vertices v and ug, where

. Trp(v) -1
-1 Trp(us)

Note that Trp(v) = Trp(us) and
Trr(v) =(k—1)+2(k—1)+3(n—2(k—1)—1) =3n — 3k.

By Lemma we have 02(T') > Ao(M) = Trp(v) — 1. Recall that n > 5(k — 1) + 1 and
k>3,s03n—3k—1>2n—1. Thus &»(T) > 2n — 1.
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Case 2: d > 4. Let u € e; \ {up,u1}. Since e; is a pendent edge at uj, we have
Trr(ug) = Trp(u). Then we consider the 2 x 2 principal submatrix of £(T'), denoted by

M’, indexed by vertices ug and u, where

TI‘T(U[)) -1
-1 Try(u)

M' =

Without loss of generality, let Try(ug) > Trr(uq). By Lemma [3.2] we have Try(ug) >
2(n—1)(d+2) —d(k — 1) + $d. By Lemma 2.1} we have 05(T) > Ao(M’) = Trp(ug) — 1.
Since d > 4 and n > d(k — 1) + 1, we have

1
Ao (M) > §nd+n—d(k:—1)—223n—d(k‘—1)—222n—1.
Thus 92(T) > 2n — 1. O
Lemma 3.4. The eigenvalues of Q(Sy i) are 2n—k—2 (multiplicity m(k—2)), 2n—2k—1

5n—2k—4—/9n?—12nk—8n+4k(k+2) 5n—2k—A4++/9n%—12nk—8n+4k(k12)
-1), 5 , and 5 ,

(multiplicity m

where m = % and k > 2.

Proof. Let eq,e2,...,e, be the pendent edges of S, ;. at centre v, where m = Z—j By
calculation, we have Trp(v) =n — 1 and Trp(u) = 2n — k — 1 for any v € V(S,1) \ {v}.
We partition V (S, ) into {v} U (e1 \ {v}) U (e2 \ {v}) U---U(em \ {v}). Then

n—1 1%—1 1%—1 T 15—1

1p—1 alp—1+ Jp— 2Jk—1 e 2Jk—1
Q(Snk) = | 1p1 2Jp1 alp_1+ Jp—1 - 2Jp1 ;

1p—1 2Jp1 2J1 cadp_ 4+ -1

where a = 2n — k — 2. Thus

A — Q(Shk)l
A-—n+1 17, 17, 7,
11 A=a)lp—1 — Jp1 —2Jp1 ax —2Jp1
=| —lp—1 —2Jk—1 A=a)lp—1 — Jp—1 -+ —2Jk—1
—1p1 —2Jk—1 —2Jk1 o (A=a) o1 — Tkt
_ (b 1\T
g P (k— 117

T A—atk— 1)y —2(k—1)Jm
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A—n+1 —(n—-1)
-1 A—a—-2n—-1)+k—-1
= A =a)" N —at+k-1" ),

=A—a)" DN —a+k—1)"""!

where f(A) = A2 — (5bn — 2k — 4)\ + 4n? — 2nk — 8n + 2k + 4. The two roots of f(\) are

5n—2k—4—+/9n2—12nk—8n+4k(k+2 Sn—2k—4 In2—12nk—8n+4k(k-+2
/\1:71 \/nQn n+(+)and)\2:n +\/n2n n-l—(—&—)‘

Hence, the eigenvalues of Q(S,, 1) are 2n — k — 2 (multiplicity m(k — 2)), 2n — 2k — 1

o 5n—2k—4—/9n%—12nk—8n+ak(k+2 5n—2k—d+/9n% —12nk—8n+Ak(k12
(multiplicity m — 1), = V/on o AR+ and 57 +1/9n 12n nt4k(k+2)

O]

—k— 2_ —
Remark 3.5. By calculation, we have o2k dty/on 212nk Sntak(k+2) > 2n — k — 2. For

m >3 (ie,n>3(k—1)+1) and k > 2, we have

In? — 12nk — 8n + 4k(k +2) — n? = 4[n(2n — 3k — 2) + k(k + 2)]
> 4[n(3k — 6) + k(k + 2)] > 0.

—2k—4—+/9n%—12nk—8n+4k(k+2
Thus 2n — k — 2 > 2n=2k=4=y/on Tonk—Eny R(kt2)

Theorem 3.6. Let k >3, n > 3(k— 1)+ 1, and T be an n-vertex k-uniform hypertree.
Then q2(T) > 2n — k — 2, with equality if and only if T = S, j.

Proof. Let T be an n-vertex k-uniform hypertree with diameter d. Assume that P =
(ug,e1,u,...,uq4_1,€e4,uq) is a diametrical path of T

By Lemma and Remark we have ¢2(Sy 1) = 2n — k — 2. So it suffices to prove
@(T)>2n—k—2for T2 S, and n >3(k—1)+1. If T2 S, 1, then we have d > 3.
We next consider two cases.

Case 1: d = 3. Let v € e1 \ {ug, u1}. Then we consider the 2 x 2 principal submatrix
of Q(T'), denoted by M, indexed by vertices ug and v, where

M- Try(ug) 1
1 TI”T(U)

Note that Trp(v) = Trp(ug) and

Trr(ug) = (k—1)+2(k = 1) +3(k—1)+ > dp(u,up)
ueV(T)\V(P)

>(k—1)+20k—1)+3(k—1)+2n—3(k—1)—1) =2n—2.

By Lemma [2.1] we have ¢2(T") > Ao(M) = Trp(ug) — 1. Since 2n — 3 > 2n — k — 2 for
k > 3, we have q2(T") > 2n — k — 2.
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Case 2: d > 4. Let u € e1 \ {up,u1}. Since e; is a pendent edge at v, we have
Trr(ug) = Trp(u). Then we consider the 2 x 2 the principal submatrix of Q(7T'), denoted
by M’, indexed by vertices ug and u, where

TI'T('LLO) 1
1 TI‘T(’LL)

M' =

Without loss of generality, let Try(ug) > Try(uq). By Lemma 3.2 we have Trp(ug) >
3(n—1)(d+2) —d(k — 1) + }d. By Lemma[2.1] we have q2(T) > Ay(M’) = Trp(ug) — 1.
Since d > 4 and n > d(k — 1) + 1, we have

1
/\Q(M')>ind—I—n—d(k:—l)—223n—d(k—1)—222n—1>2n—k—2.

Thus ¢2(T) > 2n — k — 2. O

4. Distance (signless) Laplacian eigenvalues of k-uniform unicyclic hypergraphs
Lemma 4.1. The eigenvalues ofE(C’éck_Q(m—27 U2, ..., Ugp—2)) are 0, 2n—2, 2n —2k+2,
n, 2n — 1 (multiplicity m — 2), and 2n — k (multiplicity (m — 2)(k — 2) + 2(k — 3) ), where

m:%Z?)cmde?).

Proof. Let U = Cé“k_2(m — 2,ug,...,ugk—2) and fi, fa,..., fm—2 be the pendent edges

of C§._,(m — 2,u,...,usk—2) at uj. It is easy to see that a := Try(w1) =n —1, ¢ :=
Try(ug) = 2n — 2k + 1, b := Try(u) = 2n — k — 1 for any u ¢ {uj,ur}. Then we
have @ = =1 and ¢ = b — k + 2. We partition V(C§,_,(m — 2,us, ..., uz_2)) into

{ur} U (e \ {ur, up}) U {urt U (e2 \ {ur,ur}) U (fi \ {ur}) U+ U (fin—2 \ {u1}). Then

L(CY o(m —2,us, ..., usp_2))

a —1js -1 R
—lpe M ~1jp_s —2Jp_o N N .. N
—1 _1;{72 ¢ _1;‘572 _21571 _21;}[;1 T _21;{4
—lpeo —2J4_o —1j_o M N N - N
|-, NT —21,, AT P —2Jiq o 2T |
—1,.; NI —21,., NT —2J,, P s =20k

—1p_q NT 21,4 NT 2y —2Jp_q --- P
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where M = (b+ 1)Ik_2 — Jp_9, P = (b + 1)Ik_1 — Jp_1and N = _2J(k72)><(k71)‘ Thus

A= L(C,_o(m —2,us,. .., ug_2))|

A—a 1572 1 1572 1571 1%’71 1;}[;1
leeo Mpo—M 19 2J1_o —-N —N —N
1 17, A—c 17, 217, 217, .21k
1p_o 2J5 o lpo Mpo—M -N -N ~N
- 151 —NT 211 —NT M1 —P  2J,1 e 20
151 —NT 211 —NT 21 Mp_1—P -+ 2]y
151 —NT 2151 —NT 2Jk1 2Jk1 oo My —P
= (A —b— 1)m=D(k=2+2(k=3)
A—a k—2 1 k—2 (k—11T
1 A=b+k-3 1 2(k —2) 2(k — 1)1l
x| 1 k—2 A—c k—2 2(k —1)1%
1 2(k — 2) 1 A—-b+k-3 2(k —1)1L _,
Lo 2k =2)1m2 2lpm2 2(k—2)1p-2 A—=b—Fk)pno+2(k—1)Jmn_2

— ()\ —b— 1)(m72)(k72)+2(k73)(A —bh— ]C)midg()\),

where g(\) = | A5 — A| and

b+k— 3k—5-b
bthol 2k —1 2—k sk—2-b
-1 b—k+3 -1 4-2k 3k—5-—b
A=| -1 2-k b—k+2 2—-k 3k—5-—0
—1 4 — 2%k -1 b—k+3 3k—5-0
-1 4 — 2%k -2 4 — 2k 4k — 5
Since
7 3 5 9 13 k2 15
5 4 2 3
=N =b+k+ = = 4 Sh— S+ k-2
g(\) =\ <2b+2k+2>)\ +<2b+bk+2b 5+ 3 )
5 3 bkz 7 11 5 13 3 3
bt Sk — 120k + — — b’k — —b% — =B — SR+ Sk 4+ S ) N2
+<2 *3 Tt T3 2 2 g T gh g
vt oo, 3.5 9, b 5 9 o, 3 K 3., kK 3
il Z Z - z —p—-—=—4 Tk
+<2+bk+2b+2bk 5 bk+2bk 2b 2+2k+2 2k

=AA—b=R)A—b—k+ DA -b+k—3) ()\_b""k“>’

2
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the eigenvalues of E(C’é'k_Q(m — 2,ug,...,Uusk—2)) are 0, 2n — 2, 2n — 2k + 2, n, 2n — 1
(multiplicity m — 2), and 2n — k (multiplicity (m — 2)(k — 2) + 2(k — 3)). O

4.1. The largest distance (signless) Laplacian eigenvalue of k-uniform unicyclic

hypergraphs

Theorem 4.2. Let k >3, n > 6(k—1), and U be an n-vertex k-uniform unicyclic hyper-
graph. Then 01(U) > 2n — 1, with equality if and only if U = C’gk_Q(m —2,Ug, ..., Usk—2),

_n_
k—1°

Proof. By Lemmam we have 01 (C5,_,(m —2,us, ..., us_2)) = 2n—1 for n > 6(k — 1).
So it suffices to prove 9y (U) > 2n—1for U 2 C¥,_,(m—2,us, ..., us_2) and n > 6(k—1).
By Lemma [2.4] we have

where m =

k
W(U) > n® —2n+ 6k — 2+ % —3k2 > W(Ck_o(m — 2,us, . .., uzp_2)).

Since >, 8;(U) = 2W(U), and by Lemma we have (n —1)01(U) > 2W(U). Note
that 6k? — 13k +6 > 0 for k > 3. Hence,
S 2WU) 2n? — 4n + 12k — 4 + nk — 6k>

81(U)_ n—1 — n—1
6k — 13k + 6 6k2 — 13k + 6
= — - =" > -2
o+ (k —2) 2t (k- 2) R
6k —T)(k—1)—1
=2 —92)— =2n—1 on — 1.
n+ (k ) k7 n +6k—7> n ]

Theorem 4.3. Let k > 3, n > 4(k — 1), and U be an n-vertex k-uniform unicyclic
hypergraph. Then q1(U) > ql(Cgk_Q(m — 2,u9,...,Usk—2)), with equality if and only if
U= Cgk_2(m - 2, U,y ... ,UQk_g).

Proof. Let U be an n-vertex k-uniform unicyclic hypergraph and U 2 C§k72(m—2, U, .. .,

Ugg—2). By Lemmas and we have

a(U) > 4W (U) S5 2n2 — 4n + 12k — 4 + nk — 6k>
1 = = & )
n n

and

q1(CY_o(m —2,us, ... u2_2)) < 2Trmax(Ch_o(m — 2, us, ..., usk_2)) = 2(2n — k — 1).

Since

m2—4 12k — 4 — 6k
n n + kn + nk — 6k Cn—k—1)

k2 — 12k + 4 k2 — 12k +4
:2n—4+k—6—+—2n+k+1:2k—3—6—+

n n
3k —6k+2  (k—2)?

> 2%k —3 — =
=2k =3 2% — 2 kg 0

we have ¢1(U) > ql(C’%’ka(m —2,u9,. .., U2k_2)). dJ
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4.2. The second largest distance Laplacian eigenvalue of k-uniform unicyclic hypergraphs

Lemma 4.4. Letk >3, n > 5(k—1) and U be an n-vertex k-uniform unicyclic hypergraph
and U 2 Cy, . Suppose that P = (vo, f1,v1,...,V4-1, fa,vq) is a diametrical path of U
satisfies f1 is a pendent edge at vi and d > 4. Then 02(U) > 2n — 1.

Proof. Let w € f1\ {vo,v1}. Then we consider the 2 x 2 principal submatrix of L£(U),

denoted by M, indexed by vertices vy and w, where

TI‘U (Uo) -1
-1 Try(w)

M =

Note that Try(vg) = Try(w). Let ¢ be the length of the cycle of U.
Case 1: t > 2. In this case,

Tro(vo) > (k—1)+2(k — 1)+ +d(k—1) = 1+2(n—d(k — 1) — 1)

d(d+1
:(2+)(k—1)+2n—2d(k—1)—3

k—1
:T(d2—3d)+2n—322(k—1)—|—2n—322n+1.

By Lemma [2.1] we have 82(U) > Xo(M) = Try(vg) — 1 > 2n — 1.
Case 2: t =2 and d > 5. In this case,

Tro(ve) > (k= 1)+ 2(k — 1) + -+ d(k — 1) —d + 2(n — d(k — 1) — 1)

1
=d(d2+)(k;—1)—d+2n—2d(k—1)—2
~1
:kT(d2—3d)—d+2n—22d(l€—2)+2n—222n—|—1.

By Lemma [2.1] we have 92(U) > Ao(M) = Try(vg) — 1 > 2n — 1.
Case 3: t =2 and d = 4. If P contains at most one edge of the cycle of U, then

Tro(vo) > (k—1)+2(k — 1) +3(k— 1) +4(k — 1)+ 2(n—4(k — 1) — 1)
—m+2k—1)—2>2n+1.

By Lemma 2.1 we have 92(U) > Ao(M) = Try(ug) — 1 > 2n — 1.
If P contains two edges of the cycle of U and dy(vi) = 2, then

Try(ve) > (k—1) +2(k — 1) +3(k — 1) + 4(k — 1) — 4+ 3(n — 4(k — 1))
=3n—-20k—1)—4>3(k—1)—4+2n>2n+1.

By Lemma [2.1] we have 8>(U) > Xo(M) = Try(vg) — 1 > 2n — 1.
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If P contains two edges of the cycle of U and dy(vi) > 3, then

Try(ve) = (k — 1) +2(k — 1) + 3(k — 1) + 4(k — 1) — 4+ 2(n — 4(k — 1))
=2n+2(k—1)—4>2n.

By Lemma Try(vg) 4+ 1 is an eigenvalue of £(U) and its multiplicity is at least (k —
2)(dU(v1)—1) > 2. Thus 82(U) >2n+1>2n— 1. L]

Lemma 4.5. Let k > 3 and U = Cgk_g(tl,tg,...,tk,Hk+1,Hk+2,...,Hgk_g). If there
exist pairwise distinct 1,7,z € {1,2,...,k} such that t; > 2 and tj,t. > 1, or there exist
distinct i,j € {1,2,...,k} such that t;,t; > 2 and t, =0 for any y € {1,2,...,k}\ {i,5},
then 02(U) > 2n — 1.

Proof. First suppose that t; > 2 and t;,t, > 1 for pairwise distinct 4, j,2 € {1,2,...,k}.
Let v € V(H;) \ {v;}. By Lemma Try(v) + 1 is an eigenvalue of £(U) and its
multiplicity is at least (k — 2)¢; > 2. Since

Trp(v) > (k—1)+2(k—1)+3k —1)+3(k - 1) +2(n—4(k —1) —1) =2n+ k — 3,

we have ©(U) >2n+k—2>2n+1>2n— 1.
Next suppose that t;,t; > 2 and t, =0 fory € {1,2,...,k}\ {4, }. Similarly as above,
we have 02(U) > 2n — 1. O

Lemma 4.6. Letk >3, n > 6(k—1) and U = C’gkfg(tl, toy ooy thy Hip1y Hpgo, oo oy Hyp—g).
If there exist distinct i,j € {1,2,...,k} such that t; > 2, t; =1, and t, = 0 for any
ze€{1,2,...,k}\{4,7}, then O2(U) > 2n — 1.

Proof. Suppose that there exist distinct 4,5 € {1,2,...,k} such that ¢; > 2, t; = 1, and
t. =0 for any z € {1,2,...,k} \ {4,5}. Let w,v € V(Hj)\ {u;}. Then we consider the
2 x 2 principal submatrix of £(U), denoted by M, indexed by vertices v and w, where
. Try(v) -1
-1 Try(w)

Note that Try(v) = Try(w) and
Trp(v) > (k—1)+2(k—1)+2(k—1)+3(n—3k+3—-1) >3n—4k + 1.
By Lemma [2.1] we have 8>(U) > Xo(M) = Try(v) — 1> 3n — 4k > 2n — 1. O

Lemma 4.7. Let k > 3 and U = Cgk_g(tl,tg,... 7tk'7Hk:+17Hk+27---7Hgk7k)- If ti < 1

for 1 <i <k and there are at least four vertices each with exactly one pendent edge in eq,
then we have d2(U) > 2n — 1.
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Proof. Suppose that t; < 1 for 1 <4 < k and there are at least four vertices each with
exactly one pendent edge. Without loss of generality, we may assume that to = 1 and
ts = 1. Let v € V(Hs) \ {uz} and w € V(Hs) \ {us}. By Lemma Try(v) + 1 is
an eigenvalue of £(U) and its multiplicity is at least (k —2) > 1, and Try(w) + 1 is an
eigenvalue of £(U) and its multiplicity is at least (k—2) > 1. Since Try(w) = Try(v) and

Trg(v) > (k—1) +2(k— 1) +3(k = 1) +3(k — 1) + 2(n —4(k — 1) — 1) = 2n + k — 3,
we have ©(U) >2n+k—2>2n+1>2n— 1. O

Theorem 4.8. Let k>3, n>7(k—1) and U be an n-vertex k-uniform unicyclic hyper-
graph. Then 02(U) > 2n — 1, with equality if and only if U = Cé“k,_Q(m —2,ug, ..., U2k—2),

R n
where m = 5.

Proof. By Lemma we have 9 (C%,_,(m —2,ug, ..., us_2)) =2n—1 for n > 7(k - 1).
So it suffices to prove dy(U) > 2n—1for U 2 C%,_o(m—2,us, ..., us—2) and n > 7(k—1).

We first consider the case U = (), ;.. Let s = Lﬁj Let w and v be two vertices in
e1 and eo with degree 1, respectively. Then we consider the 2 x 2 principal submatrix of

L(U), denoted by M, indexed by vertices v and w, where

A Try (v) —2
-2 TI‘U(U}>

Obviously, we have Try(v) = Try(w) and

Trp(v)=(k—1)+2(k—1)+---+s(k—1)
+2k -1 +3k-1)+---+(s+1)(k—1) = (s+1)
s(s+1) s(s+3)

=2 -+ 22

(k—1)— (s +1)

= (k—1)(s>+2s) — (s +1)
>5s(k—1)—(s+1)=2n+s(k—2)—1>2n+s—1.

By Lemma we have 05(U) > \o(M) = Try(v) — 2. Since s = L%J > 3, we have
2n 4+ s —3 > 2n and thus 02(U) > 2n — 1.

In the following, suppose that U 2 C), ;, and the diameter of U is d.

Case 1: d > 4. We choose a diametrical path P = (vg, f1,v1,...,04-1, fa,vq) of U
such that f; is a pendent edge at v;. By Lemma we have 0o(U) > 2n — 1.

Case 2: d = 3.

Subcase 2.1: U = Cgk_2(t1,t2, ey by U1y Ukt 2y -« oy UDk—2).

If U 2 C5_ o(ur,m — 2,us, ..., uk, Ups1, Ugy2, - - -, U2k—2), then by Lemmas
and [4.7, we have 9>(U) > 2n — 1.
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U = C’gk_Q(ul,m — 2,Ug,y .oy Uk, Ukt 1, U2, - - -, U2k—2), then we consider the prin-
cipal submatrix of £L(U), denoted by N, indexed by V(Hz) \ {uz}. Obviously, Try(w) =
2n — 3 for w € V(Ha) \ {uz}. Then

(2n - 2)Ik_1 - Jk—l —2Jk_1 tee —2Jk_1
—2Jk_1 (27”L - Q)Ik_l - Jk—l tee —2Jk_1
N = ]
_2<]k—1 —2Jk_1 tee (2n — 2)Ik_1 — Jk—l
Thus
(M p—2k12 — N|
AN=2n+2)1;_ 1+ Jp1 2Jk_1 cee 2J1_1
B 2J1_1 ()\ —2n + 2)Ik_1 + Jp_1 - 2J1_1
2J1_1 2J1_1 cen ()\ —2n + 2)[;6,1 + Jp_1

= (A—2n+2)m 22\ _2p — k4 3)" (N — 5k + 7).

By Lemma [2.1] we have &(U) > Ao(N) =2n+k —3>2n — 1.

Subcase 2.2: U = C§k_2(H1, U2, ..., Usk_2), where Hy is obtained from e = {uy,wn,
... wi_1} by attaching pendent edges at uy and w; for 1 <i <k —1, and there ezists w;
with dg, (wj) > 2.

First suppose that there exists w; with dp, (w;) > 3 for some 1 < ¢ < k — 1, say
dp, (w1) > 3. Let v € Ny, (w1) \ e. By Lemma 2.7} Try(v) 4 1 is an eigenvalue of L(U)
and its multiplicity is at least (k — 2)(dg, (w1) — 1) > 2. Note that

Trp(v) > (k—1)+2(k —1)4+3(k —1) +3(k —2) +2(n — 4(k — 1)) = 2n+ k — 4.

Thus ©(U) >2n+k—3>2n > 2n — 1.

Next suppose that dp, (w;) < 2 for 1 < i < k — 1 and there is a vertex w; with
dp,(wj) = 2. Let v,w € Ny, (w;) \ e. Then we consider the 2 x 2 principal submatrix of
L(U), denoted by M*, indexed by vertices v and w, where

Try(v) -1
-1 Try(w)

M* =

Note that Try(v) = Try(w) and

Try(v) = (k—1) +2(k — 1) + 3(k — 1) + 3(k — 2) + 3(n — 4k + 4) = 3n — 3k.
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By Lemma [2.1] we have o(U) > Ao(M*) = Try(v) —1=3n—3k— 1> 2n — 1.

Subcase 2.3: U = Cgk_g(tl,tg, ey by U1, Ugt2, - -, Usg—3) OT U = Cgk_g(tl,m, ol
Up— 1 Uy Ukt 15 - - - 5 U2k—2, Lok 1, Uk - - - UBK—3)-

IfU ¢ {C’éfkfg(m — 3, U, ey Uy Ut 1y Ukt 2y -« + , USK—3),s C':],fkfg(ul, m—3,uz, ..., U,
Uk41, Ukt25 - - - aUSk—3)7C§k_3(t1,u2,~--;Uk—lvtkvuk—i-l, oy Ugk—2, bk 1, Uk, - - ., UBK—3) )
then by Lemmas and we have 02(U) > 2n — 1.

If U = Cé“k_?)(ul,m — 3,U3, .+ s Uy Upt 1, Ukt2, - - -, U3k—3), then let v be a pendent

vertex in V(Hsz) \ {u2}. By Lemma Try(v) + 1 is an eigenvalue of £(U) and its
multiplicity is at least (kK — 2)(m — 3) > 2. Since

Tro(v) = (k= 1) +2(k — 1) +3(k — 1) + 3(k — 2) + 2(n — 4(k — 1)) = 2n + k — 4,

we have (U) >2n+k—3 >2n > 2n— 1.

U= C:ﬂfk_?)(m — 3, U2y .+ Uy U1, U125 - - - , Ugk—3), then we consider the principal
submatrix of £(U), denoted by N’, indexed by V(Hy)\ {u1}. Obviously, Try(w) = 2n—3
for w € V(H;) \ {u1}. Then

(2n — 2)[]{,1 - Jk,1 —2,]]{,1 s —2Jk71
N — —2J,_1 2n—2)Ix—1 — Jg—1 -+~ —2Jk1
—2Jk,1 —2Jk,1 s (2n — 2>Ik71 - Jk,1
Thus
L33 — N'|
AN=2n+2)1;_ 1+ Jp1 2Jr_1 cee 2Jk_1
2J1_1 ()\ —2n 4+ 2)Ik_1 + Jp_1 - 2J1_1
2Jk1 2Jk1 o (A=2n+2)g1 + Jp

= (A =2n+2)m =2\ _2n — k4 3)" V(N — Tk +9).

By Lemma 2.1} we have 02(U) > Ao(N') =2n+k —3 > 2n — 1.

U« C’zﬁfk_g(tl,uQ, ey U1y Uy Wkt 1y -+« y U2k—2, T2k 1, Uk, - - -, Ugk—3), then at least
one of t1 > 2 and t9;_1 > 2 holds since n > 7(k — 1). By Lemmas and we have
R(U) >2n—1.

Subcase 2.4: U = C’fk_4(t1, Uy e ey Uk—1, oy U1, Ut 2y -+« Ug—g) OT U = ka_4(t1,
u27"‘7uk717uk7uk’+17"'7u4k/'74)'
U Ok, (t1,ug,. .. Up—1,tk, Ukt1, Ukt2, - - -, Vak—4), then at least one of t; > 2 and

tr > 2 holds since n > 7(k — 1). By Lemmas and we have 02(U) > 2n — 1.
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If U = ka_4(t1,u2, ey UR—1, Uk, Wkt 1, - - -, Ugk—4), then let v be a pendent vertex in

V(Hy) \ {u1}. By Lemma Try(v) 4+ 1 is an eigenvalue of £(U) and its multiplicity is
at least (k —2)(m —4) > 2. Since

Try(v) = (k—1) +4(k — 1) +3(k — 1) + 3(k — 2) + 2(n — 5(k — 1)) = 2n + k — 4,

we have h(U) >2n+k—3 > 2n > 2n — 1. ]
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