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Order Cancellation Law in a Semigroup of Closed Convex Sets

Jerzy Grzybowski* and Hubert Przybycień

Abstract. In this paper we generalize Robinson’s version of an order cancellation law

in which some unbounded subsets of a vector space are cancellative elements. We

introduce the notion of weakly narrow sets in normed spaces, study their properties

and prove the order cancellation law where the canceled set is weakly narrow. Also,

we prove the order cancellation law for closed convex subsets of topological vector

space where the canceled set has bounded Hausdorff-like distance from its recession

cone. We topologically embed the semigroup of closed convex sets sharing a recession

cone having bounded Hausdorff-like distance from it into a topological vector space.

This result extends Bielawski and Tabor’s generalization of R̊adström theorem.

1. Introduction

The order cancellation law or R̊adström cancellation theorem [23, 25], investigated also

in [15, 18, 20], enables an embedding of a semigroup of convex sets into a quotient vector

space called a Minkowski–R̊adström–Hörmander space [12,28]. This space plays a crucial

role in differentiation of nonsmooth functions (quasidifferential calculus of Demyanov and

Rubinov [1, 7, 8, 11, 14, 21]) and in integration and differentiation in the theory of multi-

functions [5,6]. The cancellation by unbounded sets is especially challenging. It is usually

impossible. However, in this paper, we significantly extend the range of applicability of

this law.

To embed a given commutative semigroup (a set with a binary operator of addition

which is associative) of subsets of a vector space into some other vector space, we need

the law of cancellation: A + B = B + C =⇒ A = C. This embedding is very important

in set-valued analysis. Let us recall that the cancellation law holds in the semigroup

B(X) of nonempty bounded closed convex sets in real Hausdorff topological vector space

X, where the addition +̇ is defined by A +̇B = cl(A + B) = cl{a + b : a ∈ A, b ∈
B}. Minkowski studied the semigroup of compact convex subsets of Euclidean spaces,

therefore, the algebraic or vector addition A + B is also called the Minkowski addition.
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In infinite dimentional topological vector spaces, we need to consider A +̇B instead of

A+B. R̊adström [25] applied the cancellation law to embed the convex cone B(X), where

X is a normed vector space, into a normed vector space. Hörmander [19] generalized

the R̊adström’s result to the locally convex spaces and Urbański [28] to the arbitrary

topological vector spaces. However, the order law of cancellation which is applied in the

aforementioned cased is based on the following theorem.

Theorem 1.1. [28, Proposition 2.1] Let X be a Hausdorff topological vector space and

A,B,C ⊆ X. If B is nonempty and bounded and C is closed and convex then cl(A+B) ⊆
cl(B + C) =⇒ A ⊆ C.

In [18] the assumption of closedness of C is weakened. In this paper, we drop the

assumption of boundedness of B.

Since the cancellation law does not hold in the semigroup C(X) of nonempty closed

convex sets, this semigroup cannot be embedded into a vector space. However, Robinson

[26] proved the cancellation law for the family CV (Rn) of nonempty closed convex subsets

of Rn sharing common recession cone V . He also embedded CV (Rn) into a topological

vector space (but not into a normed space). Bielawski and Tabor, [4] restricted the family

CV (X), where X is a normed vector space to such closed convex sets A that the Hausdorff

distance dH(A, V ) is finite. It enabled them to embed restricted CV (X) into a normed

vector space, generalizing in this case the R̊adström’s result [25].

In this paper, we investigate the possibility of cancellation

A+B ⊆ B + C =⇒ A ⊆ C

for some unbounded sets B. In particular, we generalize in Theorems 4.7 and 4.11 the

following Robinson’s result.

Theorem 1.2. [26, Lemma 1] Let X = Rn and A,B,C ⊆ X. If B, C are nonempty

closed and convex and reccB = reccC, then A+B ⊆ B + C =⇒ A ⊆ C.

A subset V of a vector space X is a cone if tV ⊆ V for all t ≥ 0. In Theorem 5.4 we

generalize the following Bielawski–Tabor’s order law of cancellation.

Theorem 1.3. [4, Proposition 1] Let X be a Banach space, V a closed convex cone in X,

dH a Hausdorff metric and CV be a family {A ∈ C(X) : dH(A, V ) <∞}. If A,B,C ∈ CV ,

then cl(A+B) ⊆ cl(B + C) =⇒ A ⊆ C.

Finally, we generalize topologically in Theorem 5.6, Bielawski–Tabor’s embedding the-

orem.
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Theorem 1.4. [4, Theorem 2] Let X be a Banach space, V a closed convex cone in X,

dH a Hausdorff distance and CV = {A ∈ C(X) : dH(A, V ) < ∞}. Then the abstract

convex cone CV can be embedded isometrically and isomorphically as a closed convex cone

into a Banach space.

For completeness by abstract convex cone we understand the triple (S,+, · ), where the

operation of addition of elements of S is associative, commutative and possesses neutral

element 0S and multiplication by non-negative numbers satisfies the following conditions:

(1) 1x = x, (2) 0x = 0S , (3) s(tx) = (st)x, (4) t(x+y) = tx+ ty and (5) (s+ t)x = sx+ tx

for all x, y ∈ S, s, t ≥ 0.

In Section 2 we prove an order cancellation law in an ordered semigroup with an

operator of convergence. This result is applied in Section 5 for convex sets in topological

vector spaces having a certain kind of “finite distance” between a set and its recession

cone.

In Section 3 we give some properties of asymptotic and recession cones in infinite

dimensional spaces. We also present examples of unbounded convex sets with trivial

recession cones and of a recession cone of a sum of sets greater than a sum of recession

cones of summands.

In Section 4 we introduce the notion of narrow unbounded sets. We prove in Theo-

rem 4.7 that in the inclusion cl(A + B) ⊆ cl(B + C) we can cancel a narrow set B with

an asymptotic cone contained in a recession cone of closed convex set C. We also present

properties of addition of narrow sets that help us in Theorem 4.16 to show that the family

of all weakly narrow closed convex subsets of normed vector space sharing a given pointed

recession cone is closed with respect to Minkowski addition.

2. Cancellation law in an ordered semigroup with an operator of convergence

In this section, we prove the order cancellation law for, respectively, bounded and convex

elements in ordered semigroups. The results of this section will be applied in Section 5

where we give a generalization of the Bielawski–Tabor result [4] to topological vector

spaces.

Let Q+
2 be the set of all non-negative dyadic rationals and let us consider a system

S = (S,+, · ,≤, lim), where ‘+’ and ‘ · ’ are binary operations from S × S and Q+
2 × S

into S respectively, ≤ is a partial order on S and lim is an limit operator turning S into

L∗-space (see [13, p. 63]). Specifically,

(1) if a1 = a2 = a3 = · · · = a then limn→∞ an = a,

(2) if limn→∞ an = a then limn→∞ akn = a for every subsequence (akn),
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(3) if an does not converge to a than there exists a subsequence (akn) such that no

subsequence of (akn) converges to a.

Moreover, let the following conditions be satisfied:

(S1) a+ (b+ c) = (a+ b) + c for all a, b, c ∈ S,

(S2) a+ b = b+ a for all a, b ∈ S,

(S3) there exists an element 0 ∈ S such that a+ 0 = a for all a ∈ S,

(S4) if a ≤ b then a+ c ≤ b+ c for all a, b, c ∈ S,

(S5) 1 · a = a for all a ∈ S,

(S6) if a ≤ b then α · a ≤ α · b for all a, b ∈ S, α ∈ Q+
2 ,

(S7) α(β · a) = (αβ) · a for all α, β ∈ Q+
2 , a ∈ S,

(S8) α · (a+ b) = α · a+ α · b for all α ∈ Q+
2 , a, b ∈ S,

(S9) (α+ β) · a ≤ α · a+ β · a for all α, β ∈ Q+
2 , a ∈ S,

(S10) for all sequences (an), (bn) ⊆ S, if limn→∞ an = a, limn→∞ bn = b and an ≤ bn,

∀n ∈ N, then a ≤ b,

(S11) for all sequences (an) ⊆ S and b ∈ S, if limn→∞ an = a then limn→∞(an+b) = a+b.

Definition 2.1. We say that an element a ∈ S is bounded if limn→∞(2−n · a) = 0.

Definition 2.2. We say that an element a ∈ S is convex if (α + β) · a = α · a+ β · a for

all α, β ∈ Q+
2 .

Lemma 2.3. Let S be a semigroup satisfying conditions (S1)–(S11). If a, b, c ∈ S,

limn→∞(2−nb) exists, c is convex and a+ b ≤ b+ c, then

a+ lim
n→∞

2−nb ≤ c+ lim
n→∞

2−nb.

Proof. For k ∈ N, we have

2k · a+ b ≤ a+ a+ · · ·+ a︸ ︷︷ ︸
2k-times

+b ≤ a+ a+ · · ·+ a︸ ︷︷ ︸
(2k−1)-times

+b+ c

≤ a+ a+ · · ·+ a︸ ︷︷ ︸
(2k−2)-times

+b+ c+ c ≤ · · · ≤ b+ c+ c+ · · ·+ c︸ ︷︷ ︸
2k-times

= b+ 2k · c.
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Last equality follows from the convexity of an element c. Multiplying both sides of the

inequality by 2−k and using (S6) and (S7), we obtain a + 2−k · b ≤ 2−k · b + c. Now

by (S11), we obtain a + limn→∞(2−nb) = limk→∞(a + 2−k · b) and c + limn→∞(2−nb) =

limk→∞(c+ 2−k · b). Hence by (S10), we get a+ limn→∞(2−nb) ≤ c+ limn→∞(2−nb).

Theorem 2.4 (Order law of cancellation). Let S be a semigroup satisfying conditions (S1)–

(S11). If a, b, c ∈ S, b is bounded, c is convex and a+ b ≤ b+ c, then a ≤ c.

Proof. The theorem is a direct corollary from Lemma 2.3.

Let Sbc ⊆ S be a subsemigroup of bounded convex elements. If the topology in

Sbc is generated by a uniformity in which the addition is strongly uniformly continuous

then there exists a topological embedding of the semigroup Sbc into a quotient group

S̃bc = Sbc × Sbc/∼, where (a, b) ∼ (c, d) ⇐⇒ a + d = b + c (see [28, Proposition 1.2(i)]

and [16, Proposition 3.5]).

Theorem 2.4 will be applied in the last section of this paper. The following trivial

example shows a semigroup S satisfying all conditions (S1)–(S11) and containing only

convex elements.

Example 2.5. Let S be equal to one of the following sets Q+
2 ∪{∞}, Q2∪{∞}, R+∪{∞}

or R∪{∞}. Let addition be the normal addition and S be ordered by natural order induced

from the reals and 0 · A = {0} for all elements A of S. We define a limit limn→∞ an = a

in usual way. Obviously, the conditions (S1)–(S11) are satisfied. Only the element ∞ is

not bounded and all elements of S are convex.

The next example shows a semigroup S satisfying all conditions (S1)–(S11) and con-

taining unbounded and non-convex elements.

Example 2.6. Let S be the family of all nonempty finite subsets of Q+
2 ∪{∞}, Q2∪{∞},

R+ ∪ {∞} or R ∪ {∞}. Let addition be natural algebraic addition and S be ordered by

inclusion and 0 ·A = {0} for all elements A of S. We define a limit limn→∞An = A if and

only if every neighborhood of A contains all but finite number of sets An and

A ⊆
∞⋂

n0=1

cl

 ⋃
n≥n0

Akn


for every increasing sequence (kn) of integers. It is easy to observe that the conditions (S1)–

(S11) are satisfied. Bounded elements of S are sets not containing the element∞. Convex

elements of S are all sets containing at most one number other than ∞.

Another example is provided by a family of open domains.
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Example 2.7. Let X be a real Hausdorff topological vector space and S∗ be the family of

all open domains of X, that is of all interiors of closed subsets of X, and S = S∗ ∪ {{0}}.
Let addition be defined by A +̈B = int cl(A + B), the family S be ordered by inclusion

and 0 · A = {0}. We define a limit limn→∞An = A if and only if for any neighborhood

U of origin there exists n0 such that An ⊆ A + U , A ⊆ An + U for all n ≥ n0. The

conditions (S1)–(S11) are satisfied. Bounded elements of S are bounded sets. Convex

elements of S are convex sets.

Definition 2.8. A quartet (S,R+,+, · ) satisfying equalities (S1)–(S3), (S5), (S7), (S8),

(α + β)a = αa + βa and 0 · a = 0 for all α, β ≥ 0, a, b, c ∈ S is called an abstract convex

cone.

A family of nonempty compact convex subsets of a topological vector space is a natural

example of an abstract convex cone.

3. Assymptotic and recession cones

Our main results are placed in Sections 4 and 5. Since considered sets in those sections are

unbounded and convex, here we discuss some properties of the recession cone of convex

set.

Definition 3.1. For a Hausdorff topological vector space X and A ⊆ X, the set A∞ =

{x ∈ X | ∃ (xn) ⊆ A,∃ (tn) ⊆ (0,∞), tn → 0, tnxn → x} is called an assymptotic cone of

A. A set reccA = {x ∈ X | ∀ a ∈ A,∀ t ∈ (0,∞), a+ tx ∈ A} is called a recession cone of

A.

A recession cone of a set A does not depend on the topology in X but an asymptotic

cone does. In case of ambiguity about exact topology, i.e., topology τ , weak topology or

norm topology we put, respectively, Aτ∞, A∗∞ or A
‖·‖
∞ . Obviously, a recession cone of a set

is contained in an assymptotic cone of this set. We are going to express assymptotic and

recession cones in terms of Minkowski subtraction.

Definition 3.2. For a vector space X and subsets A,B ⊆ X, the Minkowski difference

of sets A and B is defined by A −̇B = {x ∈ X : x+B ⊆ A}.

The following obvious proposition gives us a useful formula of Minkowski difference of

sets.

Proposition 3.3. If A,B ⊆ X then A −̇B =
⋂
b∈B(A− b).

Let X be a vector space and let A ⊆ 2X be a family of subsets of X. We say that A
is closed under translations if for every A ∈ A and for every x ∈ X, we have x + A ∈ A.
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We also say that A is closed under intersections if for any subfamily {At}t∈T ⊆ A, the

intersection
⋂
t∈T At belongs to A.

The following proposition is an intermediate corollary from Proposition 3.3.

Corollary 3.4. Let X be a vector space and let A ⊆ 2X be a family of subsets of X. If

A is closed under intersections and translations, then A is closed under the Minkowski

difference.

It is well known that reccA = A −̇A for any nonempty convex set A.

Lemma 3.5. Let X be a topological vector space and let A ⊆ X be a closed and convex

set, then A∞ = A −̇A.

Proof. Let u ∈ A∞, x ∈ A. By Definition 3.1 we have u + x = limn→∞(tnxn + x) =

limn→∞(tnxn + (1 − tn)x) ∈ A for some (xn) ⊆ A, (tn) ⊆ R such that tn → 0+. Hence

u+A ⊆ A. Therefore, A∞ ⊆ A −̇A.

On the other hand, we have A −̇A = reccA ⊆ A∞.

Corollary 3.6. Let X be a topological vector space. If a subset A ⊆ X is closed and

convex, then the cone A∞ is also closed and convex.

The corollary follows from the fact that convexity and closedness are preserved under

translation and intersection.

It is well known [27, Theorem 8.4] that if X is finite dimensional normed space and

A ⊆ X is closed convex subset, then the condition A∞ = reccA = {0} implies that the

set A is bounded. Now, we show that this is no longer true in infinite dimensional normed

space. To do this, we need the following two lemmas.

Lemma 3.7. Let X be a separable infinite dimensional normed space. Then there exists

a sequence (fn) ⊆ X∗ such that

(i) ‖fn‖ = 1 for all n ∈ N,

(ii) for any x ∈ X, if fn(x) = 0 for every n ∈ N, then x = 0.

Proof. Let A = {xn | n ∈ N} be a dense and countable set in X. By Hahn–Banach

theorem, there exists a sequence (fn) ⊆ X∗ of continuous linear functionals such that

‖fn‖ = 1 and fn(xn) = ‖xn‖. Take any x ∈ X and suppose that fn(x) = 0 for every

n ∈ N. Let (xnk
) ⊆ A be a sequence such that ‖x − xnk

‖ < 1/k. We have ‖xnk
‖ =

fnk
(xnk

− x) ≤ ‖x− xnk
‖ < 1/k. Hence x = limk→∞ xnk

= 0.

Lemma 3.8. Let X be infinite dimensional a separable normed space, then there exists

A ⊆ X such that A is closed convex unbounded and A −̇A = {0}.
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Proof. Let (fn) ⊆ X∗ be a sequence such as in the proof of Lemma 3.7. Let A := {x ∈
X | |fn(x)| ≤ n, n ∈ N}. The set A is closed and convex. Now, we show that A is not

bounded. Suppose to the contrary that there exists a σ ∈ R such that for any x ∈ A, we

have ‖x‖ ≤ σ. Let us define a functional ξ : X → R, ξ(x) := supn∈N |fn(x)|n−1. It is easy

to see that ξ is some new norm and A = {x ∈ X | ξ(x) ≤ 1} is a unit ball in this norm.

Thus for any x ∈ X, we have x/ξ(x) ∈ A. Hence ‖x/ξ(x)‖ ≤ σ. Then ‖x‖ ≤ σξ(x). Now

take m ∈ N such that m > σ and let u ∈
⋂

1≤j≤m ker fj , u 6= 0, then we have

‖u‖ ≤ σξ(u) = σ sup
n>m
|fn(u)|n−1 ≤ σm−1‖u‖ < ‖u‖

but this is impossible. Hence A is not bounded.

The set A is convex and contains no ray, since A is bounded in some norm. Then

A −̇A = {0} because A is convex and contains no ray.

In the following example, a set A has trivial recession cone, while no linear functional

is bounded on A.

Example 3.9. Let c00 be a space of all sequences of real numbers with finite amount of

nonzero terms. Let τ be any topology in c00 in which all projections on axes of coordinates

are continuous functionals. Let A := conv
⋃∞
n=1([n, 2n]n × {(0, 0, . . .)}). Let Aτ := clτ A.

Let σ be a product topology in c00. Then σ is weaker than τ . Notice that Aσ ∩ (Rn ×
{(0, 0, . . .)}) = conv

⋃n
k=1([k, 2k]k × {(0, 0, . . .)}). Hence Aτ = A. The set A contains

no half-line, and reccA = {0}. However, for any functional f ∈ c∗00, the image f(A) is

unbounded. Hence A is unbounded for any linear topology in c00 in which points can be

separated by continuous linear functionals.

Theorem 3.10. Let X be an infinite dimensional normed space. Then there exists a

subset A ⊆ X such that A is closed convex unbounded and A −̇A = {0}.

Proof. Consider an infinite countable subset Γ ⊂ X of linearly independent vectors. Let

Y = cl span Γ. Since Y is a normed separable infinite dimensional subspace of X, our

theorem follows from Lemma 3.8.

The next theorem shows that in any infinitely dimensional Banach space, the equality

reccA +̇ reccB = recc(A +̇B) is false for some closed convex subsets A and B.

Theorem 3.11. Let X be an infinite dimensional Banach space. Then there exists subsets

A,B ∈ C(X) with trivial reccesion cones such that recc(A +̇B) is a half-line.

Proof. Let X be an infinitely dimensional Banach space. By the Mazur theorem [3], there

exists a closed subspace Y of X having Schauder basis (ei), i = 0, 1, . . .. Moreover (see [9]),

there exists a constant C ≥ 1 such that |xi| ≤ C‖x‖ for all x =
∑∞

j=0 xjej ∈ Y , i = 0, 1, . . ..
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Let A = cl conv{ne0 + 2nnen | n = 0, 1, 2, . . .}, B = cl conv{ne0 − 2nnen | n = 0, 1, 2, . . .}.
Notice that the ray {te0 | t ≥ 0} is contained in A+B. Hence this ray is contained in the

recession cone recc(A+B).

Let us assume that the set A +̇B contains some ray {tv | t ≥ 0}, v 6= 0, where v ∈ X,

v =
∑∞

n=0 vnen. Let y ∈ A+B. Then y =
∑∞

n=0 αn(ne0 +2nnen)+
∑∞

n=0 βn(ne0−2nnen),

where αn, βn ≥ 0,
∑∞

n=0 αn =
∑∞

n=0 βn = 1 and the set {n | max(αn, βn) > 0} is finite.

Notice that

C‖tv − y‖ ≥
∣∣tvn − 2nn(αn − βn)

∣∣ ≥ t|vn| − 2nn

for all n ≥ 1. If vn 6= 0 then ‖tv−y‖ > 1 for all t > (2nn+C)/|vn|. Hence dist(tv, A +̇B) ≥
1 which implies that vn = 0 for all n ≥ 1, and we obtain the equality recc(A +̇B) =

[0,∞)e0.

We know that reccA ∪ reccB ⊆ recc(A +̇B). Does e0 belong to reccA? If yes, then

e0 ∈ A. Assume that there exists y ∈ conv{ne0 + 2nnen | n = 0, 1, 2, . . .} such that

‖e0 − y‖ < 1/(3C). Let y :=
∑∞

n=1 αn · (ne0 + 2nnen). Then

max

(∣∣∣∣∣1−
∞∑
n=1

αnn

∣∣∣∣∣ , sup{(αn2nn) | n ∈ N}

)
≤ C‖e0 − y‖ <

1

3
.

Hence we obtain the inequalities αnn < 1/(3 · 2n), n ≥ 1. Then
∑∞

n=1 αnn < 1/3. But

1− 1

3
<

∣∣∣∣∣1−
∞∑
n=1

αnn

∣∣∣∣∣ ≤ C‖e0 − y‖ <
1

3
.

Hence we obtain a contradiction. Then e0 /∈ A ⊃ reccA. Therefore, the recession cone of

A and, similarly, of B is trivial.

Corollary 3.12. Let X be an infinite dimensional Banach space. Then there exists subsets

A,B ∈ C(X) such that recc(A +̇B) 6= reccA +̇ reccB.

Remark 3.13. Robinson showed in [26] that in finite dimensional spaces a family of closed

convex sets with a fixed common recession cone is closed with respect to Minkowski ad-

dition A +̇B = cl(A + B). Theorem 3.11 shows that in infinite dimensional spaces, even

Hilbert spaces, a family of closed convex sets with fixed common recession cone need

not to be closed with respect to Minkowski addition. In order to obtain such a family

(with common recession cone and closed with respect to Minkowski addition), we need to

introduce a condition expressed not in terms of recession cones.

Remark 3.14. Theorem 3.11 shows that in any Banach space X, we cannot cancel by sets

with trivial recession cone. For example, let A,B ⊆ X be sets from Theorem 3.11. Then

A +̇B +̇ recc(A +̇B) = A +̇B. However, A +̇ recc(A +̇B) 6= A. Hence the condition for

canceling by convex sets in Banach spaces cannot be expressed just in terms of recession

cones.
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If the space X is not reflexive, then we can always find two bounded closed convex sets,

with not closed Minkowski sum. In fact, possibility of finding such two bounded closed

convex sets is equivalent to non-reflexivity of the space X, see [24].

Theorem 3.15. Let X be an infinite dimensional Banach space. Then there exists subsets

A,B ∈ C(X) with trivial reccesion cones such that the sum A+B is not closed.

Proof. Let X be an infinitely dimensional Banach space. Again by the Mazur theorem, we

have a closed subspace Y of X with Schauder basis (ei), i = 0, 1, . . . and a constant C ≥ 1

such that |xi| ≤ C‖x‖ for all x =
∑∞

j=0 xjej ∈ Y , i = 0, 1, . . .. Let A = cl conv{e0/n +

anen | n = 1, 2, . . .}, B = cl conv{e0/n − anen | n = 1, 2, . . .}, an > 2n. Notice that the

origin belongs to the closure of A + B. We are going to prove that the origin does not

belong to A + B. If x =
∑∞

j=0 xjej ∈ A, then x0 ≥ 0. Also x0 ≥ 0 for all x ∈ B. It is

enough to show that x0 > 0 for all x ∈ A. If x ∈ conv{e0/n + anen | n = 1, 2, . . .}, then

there exists a number k > 0 such that xk ≥ 1. Hence for all x ∈ A, we have ‖x‖ ≥ 1/C.

Therefore, the origin does not belong to A. Suppose, y =
∑∞

j=0 yjej ∈ A and y0 = 0.

Then yk > 0 for some k. There exists a sequence (xn) ⊆ conv{e0/n+ anen | n = 1, 2, . . .}
such that xn tends to y. Then xnk tends to yk for all k. We can represent xn as convex

combination xn =
∑∞

j=0 α
n
j (e0/j + ajej). Hence xnk = αnkak tends to yk, and αnk tends to

yk/ak. Therefore, xn0 ≥ αnk/k where αnk/k tends to yk/(kak) > 0.

Notice that

cl(A+B) = cl
(

conv
{e0

n
+ anen,

∣∣∣ n ∈ N
}

+ conv
{e0

n
− anen

∣∣∣ n ∈ N
})

.

Since for all x ∈ conv{e0/n + anen | n = 1, 2, . . .} + conv{e0/n − anen | n = 1, 2, . . .}, we

have −ak ≤ xk ≤ ak, the same holds true for all x ∈ cl(A + B) and k > 0. Similarly,

0 ≤ x0 ≤ 2 for all x ∈ cl(A+B). Therefore, if v belongs to the recc cl(A+B), then v = 0.

Hence both A and B have a trivial recession cone.

4. Order cancellation law in normed spaces

In this section, we generalize the order law of cancellation for closed convex sets with

common recession cone proved by Robinson in [26] for finite dimensional spaces.

Definition 4.1. Let X be a normed space and let A be a subset of X. Let τ be

a linear topology weaker than norm topology. By Bτ
A, we define the set {ξ ∈ X |

there exists (xn) ⊆ A with ‖xn‖ → ∞ and xn/‖xn‖⇀ ξ}, where the symbol “⇀” denotes

the τ -convergence in X.

Obviously, the set Bτ
A is a subset of an asymptotic cone Aτ∞. Also, the cone Aτ∞ is the

smallest cone containing the set Bτ
A. The definition of the set BA can be found in [22]
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for the weak topology τ . We denote by B
‖·‖
A , BA, B∗A the set Bτ

A for, respectively, norm,

weak and *-weak topology in X. We have Bs
A ⊆ BA ⊆ B∗A. The following proposition is

obvious.

Proposition 4.2. Let X be a normed space and let A ⊆ X and τ be a linear topology

weaker than norm topology. Then Bτ
clA = Bτ

A for the closure clA in the norm topology.

In [22] it was shown that reccA = A −̇A = coneBA if the set A is closed and convex.

Now we show the following proposition.

Proposition 4.3. Let X be a normed space and let A ⊆ X be a closed and convex subset

of X. If reccA 6= {0}, then reccA = coneB
‖·‖
A .

Proof. Let ξ ∈ reccA, ξ 6= 0. By Lemma 3.5, there exist sequences (xn) ⊆ A and

(tn) ⊆ R, tn → 0+ such that tnxn → ξ, hence xn/‖xn‖ = (tnxn)/(tn‖xn‖) → ξ/‖ξ‖.
Therefore, ξ/‖ξ‖ ∈ B

‖·‖
A , so reccA ⊆ coneB

‖·‖
A .

Remark 4.4. Let us notice that B
‖·‖
A 6= ∅ implies that reccA = A −̇A 6= {0}. Equivalently,

reccA = {0} implies that B
‖·‖
A = ∅.

Definition 4.5. Let X be a normed space, A ⊆ X and τ be a linear topology weaker than

norm topology. We say that A is τ -narrow if for any sequence (xn) ⊆ A with ‖xn‖ → ∞,

we can choose a subsequence (xnk
) with xnk

/‖xnk
‖ converging in the topology τ to a point

other than the origin.

Every norm-bounded set and every subset of finite dimensional space X is narrow. On

the other hand, some subsets of infinite dimensional space having trivial recession cone

are not narrow, for example, the set A from the proof of Lemma 3.8 and the sets A and

B from the proof of Theorem 3.11.

Let X be infinite dimensional and A ⊂ X. Denote A′ := {x/‖x‖ | x ∈ A}. If the

closure of A′ is sequentially compact in the topology τ (e.g., clA′ is compact in the weak

topology) and A′ can be strictly separated from the origin (by τ -closed hyperplane) then

the set A is τ -narrow.

Consider X = l2, A = {nen | n ∈ N}, then the set clA′ = A′ ∪ {0} is weakly

sequentially compact but A′ cannot be separated from the origin. Any subsequence of

(en) ⊂ A′ converges weakly to 0. On the other hand, if X = l1, A = {ne1 + nen | n ∈ N},
then the set A′ is separated from the origin but clA′ is not weakly compact. Notice that

no subsequence of
(
(e1 + en)/2

)
n
⊂ A′ is convergent. In these two examples, the set A is

not weakly narrow.

The following proposition is an obvious implication of Proposition 4.2.



1292 Jerzy Grzybowski and Hubert Przybycień

Proposition 4.6. Let X be a normed space and let A ⊆ X and τ be a linear topology

weaker than norm topology. Let the set A be τ -narrow. Then the closure clA in the norm

topology is also τ -narrow.

Proof. Let (xk) ⊆ clA be a sequence such that ‖xk‖ tends to ∞. Then xk = ak + uk for

some sequences (ak) ⊆ A and (uk) ⊆ X such that ‖uk‖ tends to 0. Hence ‖ak‖ = ‖xk−uk‖
tends to∞. There exists a subsequence (akl) such that akl/‖akl‖ tends to some point a 6= 0

in the topology τ . We have the difference

xkl
‖xkl‖

− akl
‖akl‖

=
ukl
‖xkl‖

+
akl
‖akl‖

‖akl‖ − ‖xkl‖
‖xkl‖

tending to the origin. Therefore, xkl/‖xkl‖ tends to a 6= 0.

From Definition 4.5, it follows that if a unit ball in X is τ -sequentially compact, then

a set A is τ -narrow if and only if 0 /∈ Bτ
A.

Theorem 4.7. Let X be a normed space and τ be a linear topology in X weaker than

the norm topology. Let A,B,C ⊆ X, C be closed in τ and convex, reccC be pointed,

i.e., reccC ∩ (− reccC) = {0}, B be τ -narrow and Bτ
∞ ⊆ reccC. Then the inclusion

A+B ⊆ B + C implies that A ⊆ C.

Proof. Assume that 0 ∈ B and A = {0}. Then by induction, we can prove that for every

n ∈ N we have 0 ∈ B ⊆ B + C + · · ·+ C︸ ︷︷ ︸
n

= B + nC, hence 0 ∈
⋂
n∈N(B/n + C). Then

there exist bn ∈ B and cn ∈ C such that 0 = bn/n+ cn.

Case 1: The sequence bn/n is norm-bounded. If (bn) is norm-bounded than bn/n tends

to 0 and 0 is the limit of the sequence (cn). If (bn) is not norm-bounded, then applying

the assumption that the set B is τ -narrow, for some subsequence (bnk
) the sequence

bnk
/‖bnk

‖ tends in the topology τ to some b0 ∈ Bτ
∞ \ {0}. The number sequence ‖bnk

‖/nk
is bounded, and contains a subsequence ‖bnkl

‖/nkl converging to t ≥ 0. Hence bnkl
/nkl =

bnkl
/‖bnkl

‖ ·‖bnkl
‖/nkl converges, in the topology τ , to tb0. Then liml→∞ cnkl

= −tb0 ∈ C.

Notice that tb0 ∈ Bτ
∞ ⊆ reccC, and 0 = −tb0 + tb0 ∈ C.

Case 2: The sequence bn/n is not bounded. We may assume that ‖bn/n‖ → ∞ and

write 0 = bn/‖bn‖+ncn/‖bn‖. By assumption there exists a subsequence bnk
/‖bnk

‖ tending

in the topology τ to some b0 6= 0 from Bτ
∞ and, consequently, limk→∞(nkcnk

)/‖bnk
‖ = −b0.

We obtain b0 ∈ Bτ
∞ ⊆ reccC and, by Lemma 3.5, also −b0 ∈ Cτ∞ = reccC which is

impossible, since reccC is pointed.

We just have proved that the theorem holds in the case of 0 ∈ B and A = {0}. In

general case let A + B ⊆ B + C and b ∈ B. Consider any x ∈ A. Then x + (B − b) ⊆
(B − b) + C, and {0}+ (B − b) ⊆ (B − b) + (C − x). The sets {0}, (B − b) and (C − x)
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satisfy assumptions of the theorem in its proved case. Hence 0 ∈ (C − x), and x ∈ C.

Therefore, A ⊆ C.

Lemma 4.8. Let X be a locally convex space. Let B ⊆ X and any A,C ⊆ X such that C

is closed and convex, the inclusion A+B ⊆ B+C implies that A ⊆ C. Then the inclusion

A+B ⊆ cl(B + C) implies that A ⊆ C.

Proof. Notice that the implication A + B ⊆ B + cl(C + U) =⇒ A ⊆ cl(C + U) holds

true for any convex neighborhood U of the origin. Assume that A+ B ⊆ cl(B + C). We

obtain that A+B ⊆ B+C+U ⊆ B+ cl(C+U) and, by the assumptions of the theorem,

A ⊆ cl(C +U) ⊆ C +U +U . Then A+B ⊆ cl(B +C) implies that A is contained in the

intersection of all C + 2U . Therefore, A ⊆ C.

Corollary 4.9. Let X be a normed space. Let τ be a locally convex topology which is equal

to or weaker than the norm topology. Let A,B,C ⊆ X, C be closed in τ and convex, B

be τ -narrow, reccC be pointed and Bτ
∞ ⊆ reccC. Then the inclusion A+B ⊆ clτ (B+C)

implies that A ⊆ C.

A normed space X is said to be a WCF space (see [2]) if it contains a weakly compact

subset K such that X = cl linK.

Corollary 4.10. Let A, B, C be subsets of a dual X∗ to a WCF space X, C be *-weakly

closed and convex, B be nonempty and B∗∞ be asymptotic cone with respect to *-weak

topology. Assume that 0 /∈ B∗B, and B∗∞ ⊆ reccC. If the cone reccC is pointed, then the

inclusion A+B ⊆ cl∗(B + C) implies that A ⊆ C.

Proof. Since X is WCF, by [2, Corollary 2] and Eberlein–Šmulian theorem [29], the unit

ball in X∗ is *-weakly sequentially compact, and B is *-weakly-narrow. Applying Corol-

lary 4.9, we obtain our corollary.

Since every reflexive Banach space X is a dual of a WCF space and its *-weak topology

coincides with the weak topology, the next theorem follows from Corollary 4.10.

Theorem 4.11. Let A, B, C be subsets of a reflexive Banach space X, C be closed

and convex, B be nonempty and B∞ be asymptotic cone with respect to weak topology.

Assume that 0 /∈ BB, B∞ ⊆ reccC = V and V is a pointed cone. Then the inclusion

A+B ⊆ clweak(B + C) implies that A ⊆ C.

The theorem generalizes Robinson’s result [26, Lemma 1] in Rn. The condition 0 /∈ BB

in the theorem is crucial. Without it the theorem is false in every infinite dimensional

Banach space. In Theorem 3.11, we have recc(A +̇B) = [0,∞)e0. Then ([0,∞)e0 +B) +

A ⊆ A +̇B. Yet, ([0,∞)e0 + B) 6⊆ B. The reason is that even though reccA = reccB =

{0} and Bs
A = ∅, we have 0 ∈ BA.
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Proposition 4.12. Let X be a reflexive Banach space. Let B,C ⊆ X, B, C be closed

and convex, (reccB) ∩ (− reccC) = {0} and 0 /∈ BB (B be narrow in the weak topology).

Then the sum B + C is closed.

Proof. Let x ∈ cl(B + C). Then there exist sequences (bn) ⊆ B, (cn) ⊆ C and (un) ⊆ X,

‖un‖ → 0+ such that bn + cn + un = x. First, if ‖bn‖ is bounded then some subsequence

(bnk
) weakly tends to b ∈ B. Hence cnk

tends to x − b ∈ C, and x ∈ B + C. Second, if

‖bn‖ tends to infinity then some subsequence bnk
/‖bnk

‖ weakly tends to some b ∈ reccB,

b 6= 0. Hence cnk
/‖cnk

‖ tends to some −b ∈ reccC, which contradicts the assumption that

the cone V is pointed.

Proposition 4.12 is also a consequence of Dieudonné’s theorem [10].

Proposition 4.13. Let X be a normed vector space. Let B,C ⊆ X, B, C be closed and

convex, reccB = reccC be pointed, and B be weakly-narrow. Then recc cl(B+C) = reccC.

Proof. Let x ∈ recc cl(B+C), x 6= 0. Then b0 + c0 + [0,∞)x ⊆ cl(B+C) for some b0 ∈ B,

c0 ∈ C. There exist sequences (bn) ⊆ B, (cn) ⊆ C and (un) ⊆ X, ‖un‖ → 0+ such that

bn + cn + un = b0 + c0 + nx. Notice that

x =
bn
n

+
cn
n

+
un
n
− b0
n
− c0

n
.

First, if ‖bn‖/n tends to 0, then cn/n tends to x, and x ∈ C∞ = reccC. Second, if

‖bn‖/n tends to β ∈ (0,∞), then some subsequence bnk
/nk tends to βb ∈ reccB, where

bnk
/‖bnk

‖ weakly tends to some point b 6= 0. Hence cnk
/nk tends to x− βb ∈ reccC, and

x ∈ reccB + reccC = reccC.

Third, if ‖bn‖/n tends to infinity, then again some subsequence bnk
/‖bnk

‖ weakly

tends to a nonzero element b ∈ reccB. Notice that also (b0 + c0 − unk
+ nkx− bnk

)/‖bnk
‖

tends to −b while the fraction ‖b0 + c0 − unk
+ nkx − bnk

‖/‖bnk
‖ tends to 1. Then

cnk
/‖cnk

‖ = (b0 + c0 − unk
+ nkx − bnk

)/‖b0 + c0 − unk
+ nkx − bnk

‖ tends to −b and

−b ∈ reccC, which contradicts the assumption that the cone reccC is pointed.

Obviously, the assumption of weak-narrowness of one of the sets in the last proposition

is essential.

Theorem 4.14. Let X be a normed space and τ be a linear topology weaker than the

norm topology. Let subsets B,C ⊆ X be τ -narrow and Bτ
∞ ∩ (−Cτ∞) = {0}. Then the set

cl‖·‖(B + C) is τ -narrow.

Proof. Let a (xk) ⊆ B+C, ‖xk‖ tends to ∞. For some sequences (bk) ⊆ B and (ck) ⊆ C,

we have xk = bk + ck.
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First, assume that the sequence (‖bk‖) is bounded. Hence ‖ck‖ → ∞. For some

subsequence (ckl) terms ckl/‖ckl‖ tend to some c 6= 0 in the topology τ . Also xkl/‖xkl‖ −
ckl/‖ckl‖ = xkl/‖xkl‖−ckl/‖xkl‖+ckl/‖xkl‖−ckl/‖ckl‖ = bkl/‖xkl‖+(‖ckl‖−‖xkl‖)/‖xkl‖·
ckl/‖ckl‖. Since the sequence (‖xkl−ckl‖ = ‖bkl‖) is bounded, a term (‖ckl‖−‖xkl‖)/‖xkl‖
tends to 0. Since ckl/‖ckl‖ is convergent in the topology τ , the sequence xkl/‖xkl‖ −
ckl/‖ckl‖ tends to 0. Then the sequence xkl/‖xkl‖ tends to c 6= 0.

Second, let ‖bk‖ → ∞ and ‖ck‖ → ∞. By assumption there exists a sequence (kl)

such that bkl/‖bkl‖ → b 6= 0, ckl/‖ckl‖ → c 6= 0 and ‖bkl‖/(‖bkl‖ + ‖ckl‖) → t ∈ [0, 1]. If

(‖bkl‖+ ‖ckl‖)/‖xkl‖ → ∞, then

xkl
‖bkl‖+ ‖ckl‖

=
bkl
‖bkl‖

‖bkl‖
‖bkl‖+ ‖ckl‖

+
ckl
‖ckl‖

‖ckl‖
‖bkl‖+ ‖ckl‖

is convergent and tends to 0 = tb + (1 − t)c. Then b = 0 or c = 0 or 0 6= tb = (t − 1)c ∈
Bτ
∞ ∩ (−Cτ∞) which contradicts the assumptions.

Therefore, we have (‖bkl‖+ ‖ckl‖)/‖xkl‖ → r ∈ [1,∞). Then the term

xkl
‖xkl‖

=

(
bkl
‖bkl‖

‖bkl‖
‖bkl‖+ ‖ckl‖

+
ckl
‖ckl‖

‖ckl‖
‖bkl‖+ ‖ckl‖

)
‖bkl‖+ ‖ckl‖
‖xkl‖

tends to r(tb+ (1− t)c) 6= 0.

We have just proved that B +C is τ -narrow. By Proposition 4.6, the set cl‖·‖(B +C)

is τ -narrow.

Corollary 4.15. Let X be a reflexive Banach space. Let B,C ⊆ X be closed and convex

sets sharing a pointed recession cone reccB = reccC. Assume that 0 /∈ BB ∪BC . Then

0 /∈ Bcl(B+C), where cl is the weak closure.

Proof. Notice that for reflexive spaces the unit ball in X is weakly sequentially compact.

Hence the condition 0 /∈ BB ∪ BC implies that B and C are weakly narrow. Since

their asymptotic cones are contained in one pointed recession cone, the assumptions of

Theorem 4.14 are fulfilled for the weak topology τ . Therefore, the set cl‖·‖(B + C) =

cl(B + C) is weakly narrow and 0 /∈ Bcl(B+C).

Theorem 4.16. Let X be a normed vector space and V ⊆ X be a closed convex pointed

cone. Then the family of all weakly narrow closed convex subsets of X sharing the re-

cession cone V with modified Minkowski addition +̇ defined by A +̇B := cl(A + B) and

multiplication by non-negative numbers (we assume 0 · A := V ) is an abstract convex

cone. Moreover, this abstract convex cone has a neutral, with respect to +̇, element V and

satisfies the cancellation law.
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Proof. First, notice that for any two weakly narrow closed convex sets A and B with a

common pointed recession cone V the set cl(A + B) is weakly narrow by Theorem 4.14

and the recession cone of cl(A+B) is equal to V by Proposition 4.13. Then the family of

all weakly narrow closed convex sets is closed with respect to the addition +̇. Checking

conditions for an abstract convex cone is straightforward. The cancellation law in the

family of all weakly narrow closed convex sets follows from Theorem 4.11.

In view of Proposition 4.12, we can formulate the following corollary.

Corollary 4.17. Let X be a reflexive Banach space and V be a closed convex pointed

cone. Then the family of all subsets A ⊆ X sharing the recession cone V and satisfying

the condition 0 /∈ BA with Minkowski addition and multiplication by non-negative numbers

(we assume 0·A := V ) is an abstract convex cone having a neutral element V and satisfying

cancellation law.

Let X be a normed vector space and V ⊆ X be a closed convex pointed cone. Then by

Theorem 4.16, we can embed the family CnV (X) of all weakly narrow closed convex subsets

of X sharing the recession cone V in a Minkowski–R̊adström–Hörmander vector space

(CnV (X))2/∼. Moreover, by [17, Theorem 2.5] if, additionally, X is a reflexive Banach

space and the set {x ∈ V | ‖x‖ = 1} can be strictly separated from the origin then

every quotient class [A,B] ∈ (CnV (X))2/∼ has a minimal representative, i.e., an inclusion-

minimal pair in the family of all pairs (C,D) ∈ [A,B] such that 0 ∈ C.

5. Order cancellation law in topological vector spaces

In this section we prove order cancellation law for topological vector space where we

cancel by closed and convex sets. These results generalize theorems obtained by Tabor

and Bielawski in [4].

Let X be a topological vector space and let V ⊆ X be a closed and convex cone.

By C(X) we denote the family of al nonempty, closed and convex subsets of X and by

B(X) the family of all nonempty, bounded, closed and convex subsets of X. Now let

C0
V (X) = {A ∈ C(X) | V ⊆ reccA} and

CV (X) = {A ∈ C(X) | A ⊆ V +̇B, V ⊆ A +̇B for some B ∈ B(X)}.

We may look at elements of CV (X) as sets of bounded Hausdorff-like distance from

the cone V . The family CV (X) is a subfamily of all ‘bounded’ elements of C0
V (X). For

a sequence (An) ⊆ C0
V (X), we define the limit operator as follows: limn→∞(An) := A ∈

C0
V (X) if and only if for every neighborhood U of zero in X there exists k ∈ N such that

A ⊆ An + U and An ⊆ A+ U for n ≥ k.
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Moreover, the family C0
V (X) with the addition A +̇B = cl(A+B) and the multiplica-

tion by non-negative numbers defined by λA := {λa | a ∈ A}, 0 · A := V is an abstract

convex cone.

Remark 5.1. The algebraic system (C0
V (X), · , +̇,⊆, lim) satisfies the axioms (S1)–(S11).

Now, we prove two lemmas concerning the family CV (X).

Lemma 5.2. For any A ∈ CV (X), we have reccA = V .

Proof. Take any A ∈ CV (X). First, we prove that V ⊆ reccA. Let us observe that for

every n ∈ N, we have V = 1
nV ⊆

1
nA +̇ 1

nB for some B ∈ B(X). Now, take arbitrary

a ∈ A, v ∈ V . For any neighborhood U of the origin, let W be another neighborhood of

the origin such that W +W +W ⊆ U . Let also m ∈ N be large enough that a
m ∈W and

1
mB ⊆W . Then for some a1 ∈ A and b1 ∈ B, we have

a+ v ∈ a+
1

m
a1 +

1

m
b1 +W =

[
1

m
a1 +

(
1− 1

m

)
a

]
+

1

m
a+

1

m
b1 +W

⊆ A+W +W +W ⊆ A+ U.

Hence A+ V ⊆ clA = A. Then V ⊆ reccA.

To prove the inverse inclusion, observe that A ⊆ V +̇B for some B ∈ B(X). Take any

a ∈ A. We have

reccA = recc(A− a) =
⋂
n

A− a
n
⊆
⋂
n

V +̇B − a
n

=
⋂
n

(
V +̇

B − a
n

)
⊆ clV = V,

and the proof is complete.

Lemma 5.3. For any A ∈ CV (X), we have limn→∞ 2−nA = V .

Proof. Let B ∈ B(X) be such that A ⊆ V +̇B, V ⊆ A +̇B. Take any neighborhood U of

zero in X and let W be a balanced neighborhood of zero such that W + W ⊆ U and let

k ∈ N be such that 2−nB ⊆W for n ≥ k. Then we have 2−nA ⊆ 2−n(V +B +W ) ⊆ V +

W +W ⊆ V +U and, analogously, V = 2−nV ⊆ 2−nA+U . Thus limn→∞ 2−nA = V .

The following theorems follow from the above considerations and Section 2.

Theorem 5.4. Let A,B,C ∈ C0
V (X) and suppose that limn→∞ 2−nB exists and is con-

tained in V then the inclusion A +̇B ⊆ B +̇C implies A ⊆ C.

Proof. In order to apply Lemma 2.3, notice that convexity of a closed convex set C implies

the convexity in the sense of Definition 2.2.

The next corollary from Theorem 5.4 and Lemma 5.3 is straightforward.
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Corollary 5.5. Let A,B,C ∈ CV (X). Then the inclusion A +̇B ⊆ B +̇C implies A ⊆ C.

Tabor and Bielawski [4] proved a version of order cancellation law for closed convex

sets having finite Hausdorff distance from a fixed convex cone V in a normed space X.

Corollary 5.5 is another version of order cancellation law which generalizes to topological

spaces a result obtained by Tabor and Bielawski.

In the Cartesian product CV (X) × CV (X), due to cancellation law we can introduce

an equivalence relation ∼ in an usual way:

(A,B) ∼ (C,D) ⇐⇒ A +̇D = B +̇C.

Let C̃V (X) = CV (X) × CV (X)/∼ be the quotient set of the equivalence classes with

respect to ∼. By [A,B] ∈ C̃V (X), we denote the equivalence class of an element (A,B) ∈
CV (X)× CV (X).

The semigroup CV (X) with the addition +̇ and scalar multiplication defined by λA :=

{λa : a ∈ A} for λ > 0 and 0 ·A = V is an abstract convex cone. Thanks to Corollary 5.5,

it can be proved that the quotient set C̃V (X) with addition

[A,B] + [C,D] := [A +̇C,B +̇D]

and scalar multiplication defined by

λ[A,B] :=

[λA, λB] if λ ≥ 0,

[(−λ)B, (−λ)A] if λ ≤ 0

is a real vector space.

Moreover, the function j : CV (X) → C̃V (X) defined by j(A) = [A, V ] is a canonical

embedding which satisfies j(A +̇B) = j(A)+j(B) and j(λA) = λj(A) for allA,B ∈ CV (X)

and λ ≥ 0.

Now, let W be a basis of balanced neighbourhoods of 0 in topological vector space X.

For U ∈ W, we define by WU the set

{(A,B) ∈ (CV (X))2 : A ⊆ B +̇K,B ⊆ A +̇K for some K ∈ C(X),K ⊆ U}.

The family {WU}U∈W forms a basis of uniformity on CV (X). The uniformity induces

a topology in CV (X). Let us denote this topology by τH . The scalar multiplication · and

the addition +̇ in CV (X) are continuous in the topology τH .

We define a basis of neighbourhoods of 0 in the space C̃V (X) as follows. Let U ∈ W
and let

TU = {[A,B] ∈ C̃V (X) : A ⊆ B +̇K,B ⊆ A +̇K for some K ∈ C(X),K ⊆ U}.
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The family {TU}U∈W forms a basis of neighbourhoods of 0 in the space C̃V (X) and defines

a linear topology on the space the space C̃V (X). Denote this topology by σH .

Now, we can express the following theorem which generalizes embedding theorem ob-

tained by Tabor and Bielawski for normed spaces [4].

Theorem 5.6. The canonical mapping j : CV (X) → j(CV (X)) ⊆ C̃V (X) is an isomor-

phic embedding of a topological abstract convex cone (CV (X), +̇, · , τH) into a real topo-

logical vector space (C̃V (X),+, · , σH). Moreover, the canonical mapping j : CV (X) →
j(CV (X)) ⊆ C̃V (X) is a homeomorphism.

The results from this section apply not only to locally convex spaces but also to

topological vector spaces like lp, Lp, 0 < p < 1. In the case of locally convex vector

spaces the introduced topology in CV (X) coincides with ‘Hausdorff’ topology, where sets

of families TA,U := {B ∈ CV (X) | A ⊆ B +̇U,B ⊆ A +̇U}, U ∈ W form basis of

neighborhoods of A ∈ CV (X). In spaces which are not locally convex a problem arises

because belonging B ∈ TA,U does not imply that B1 ∈ TA1,U for all (A1, B1) ∈ [A,B].

Notice that A ⊆ B +̇U =⇒ A +̇C ⊆ B +̇C +̇U , C ∈ CV (X) but having the inclusion

A +̇C ⊆ B +̇C +̇U we may not be able to cancel C, since the set B +̇C +̇U may not be

convex. Then the Minkowski–R̊adström–Hörmander space CV (X) × CV (X)/∼ does not

posses a topology compatible with the topology of neighborhoods TA,U .

6. Conclusions

R̊adström, Hörmander and Urbański embedded a semigroup of bounded closed convex

subsets of a topological vector space into a quotient vector space called a Minkowski–

R̊adström–Hörmander space. Robinson (for all subsets of Euclidean space) and Bielawski

and Tabor (for subsets with finite Hausdorff distance from their recession cone in normed

space) obtained similar results in the case of a semigroup of unbounded closed convex

sets sharing recession cone. The main difficulty was to prove an order cancellation law,

because one needs to cancel unbounded sets.

Robinson’s result cannot be extended directly to infinite dimensional spaces, since the

recession cone of Minkowski sum of two sets need not to be equal to the sum of their

recession cones (see Example 3.9, Corollary 3.12, Remark 3.14). In order to overcome the

difficulty, we introduced the notion of narrow sets which allowed us to extend an order

cancellation law (Theorem 4.7) beyond a semigroup of sets having finite Hausdorff distance

from their recession cone.

In the definition of narrow sets the existence of a norm is essential. We still do not

know whether the notion of narrow sets can be extended to locally convex or metrizable

spaces. Can the property of narrowness be weakened without loosing canceling property?
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Is it possible to introduce a metric or topology in the Minkowski–R̊adström–Hörmander

space obtained by Robinson?

We also extended Bielawski and Tabor result beyond normed space by extending the

idea of finite Hausdorff distance to subsets of any topological vector space.
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[20] K. Kolczyńska-Przybycień and H. Przybycień, A note on cancellation law for p-convex

sets, New Zealand J. Math. 49 (2019), 11–13.
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and M. Soyertem, Some relationships among quasidifferential, weak subdifferential

and exhausters, Optimization 65 (2016), no. 11, 1949–1961.

[22] M. Marinacci and L. Montrucchio, Finitely well-positioned sets, J. Convex Anal. 19

(2012), no. 1, 249–279.
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