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Blow-up in Coupled Solutions for a 4-dimensional Semilinear Elliptic

Kuramoto—Sivashinsky System

Lilia Larbi and Nihed Trabelsi*

Abstract. The existence of singular limit solutions is established for a nonlinear elliptic
Kuramoto—Sivashinsky system with exponential nonlinearity and Navier boundary

conditions, by means of the nonlinear domain decomposition method.

1. Introduction and statement of the result

Generally, the real life phenomena that can be satisfactorily modeled by a single partial
differential equation are very rare. So a system of coupled partial differential equations
is needed to yield a suitable model. For example, the study of the nonlinear system is
important for various phenomena of biology and physics. On the other hand, they present
also some challenging mathematical problems which allowed several researchers as in [9,26]
to be more interested about these systems, moreover to create new theories and methods
to treat them.

Let Q be a bounded open domain in R*. We consider the following elliptic system of
Kuramoto—Sivashinsky type:

% + A2u1 — ’ylAul + o1u; — Al\Vullq = 51f(.1‘, ul,uz) in Q,
(1.1) % + A%uy — yolAug + oguy — Ao|Vug|? = fag(z,ur,up) in Q,
Aui = Aug =up =ug =0 on 0f).

Here ~;, 0;, B; and \; are real constants, i = 1,2, ¢ € [1,4], f,g € C(R* x R x R,R) and
the solutions of are sought in the space W42(R*) x W42(R?).

This model arises in many applications of mathematical physics, which are usually
used to describe some phenomena appearing in physics, engineering and other sciences.
For example, this problems occurs in the study of the static deflection of an elastic plate in
a fluid, in the problem of periodic oscillations and travelling waves in a suspension bridge

and as well as in the micro-electromechanical systems (see [15,17,122,[27]).
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A fundamental goal in the study of boundary value problems as is to determine
whether solutions develop a singularity. The issue of blow-up is important, since it can
have bearing on the physical relevance and validity of the underlying model. However, this
is notoriously difficult question for a wide range of equations such as fourth order equa-
tion like the stationary nonhomogeneous Kuramoto—Sivashinsky equation with a strong

nonlinearity such as e*:
(1.2) A%y — yAu — A\Vul? = plet.

The Kuramoto—Sivashinsky equation was independently obtained by Kuramoto and Suzuki
[14] and by Sivashinsky [24] in the study of a reaction-diffusion system and flame front
propagation. This equation may be also found in the study of 2D Kolmogorov fluid
flows [25]. In [21] the authors investigated equation with Navier boundary condi-
tions when the parameters p, A and 7 tend to 0 and ¢ € [1,4]. In fact, they distinguished
the cases ¢ € [1,4) and ¢ = 4 and they constructed an approximate solution for the interior
problem, and then, by means of the nonlinear decomposition method, infer the existence of
a singular limit solution. For A\ = 0, we refer the reader to [20] where the author considers
the problem, without gradient term. In the same spirit, in |2] the authors considered a
biharmonic system in dimension 4 and with exponential nonlinearity, where singular sets
may also intercept each other. Here, instead, we consider the full system which is the
counterpart of equation , i.e., with diffusive term, represented by Awu, and convection
term, |Vu|?, and with the aim to extend the aforementioned results. Note that these new
terms have significant influence on the existence of a solution, as well as on its asymptotic
behavior. We restrict ¢ € [1,4) and consider the setting in which the gradient term does
not prevail on the biLaplace operator.

More precisely, our main interest is to introduce a rather efficient method to solve the

Kuramoto—Sivashinsky elliptic system given as follows:

A2u; — 1 Aug — M| Vug|? = prerat=u iy Q
(1.3) A’ug — yalug — Ag|Vugl|? = plet=t=8min

Aui=Augs =u; =up =0 on 052,

where € is a bounded domain in R*. Here ¢ € [1,4) and p, 7, &, v; and \;, i = 1,2 are
real parameters. We assume that v,£ € (0,1) such that v+ £ > 1 so in the following, we
have

1_77’17_5 € (0,1).

§ g

We are interested in the study of the existence of solutions with singular limits, i.e., a
solution for which there exists a limit function having n blow-up points (z1, ..., z,) where

uP(z;) = +oo as p — 0.
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1.1. A tour in the literature

Before stating our main result, summarized in Theorem below, we focus on some
known basic results in the field. The system ([1.3) may be seen as generalization of the

equation
(1.4) A%y = 6e™  in RY

Equation (|1.4)) is invariant under translation, rotation, dilation in the Euclidean space and
the Kelvin transform. In [16], Lin proved the following important classification result of
finite-mass solutions of equation (1.4]).

Theorem 1.1. [16] Let u be a solution of (1.4)), satisfying the finite-mass condition

(1.5) / et dr < oo,
R4

and |u(z)| = o(|z|?) at co. Then there exists some point 2° € R* such that u is radially

symmetric about x° and
2\

. 1+ 2|z — 292

u(z) =1

This result is decisive for solving completely (1.4]) under (1.5)), because it reduces the
problem to a simple ODE problem. In [29], Wei and Ye constructed a nonradial solution
of Liouville equation (|1.4]) under (1.5)) with the following asymptotic behavior:

k
u(z) = — Zaj(xj - x9)2 —aln|z|+co+o(l), || >1 and / M) dp =
=1 R4

40

3

for each fixed 2° € R*, 1 <k <4, a € (1 —k/4,2) and a; >0 for 1 < j < k.
In dimension 4, other authors were motivated by similar problems, we refer the reader
to [3,/5,/10,/11]. Wei in [28] studied the behavior of solutions of the nonlinear eigenvalue

problem in R*:

Ay = \f(u) in Q,
Au=u=0 on 0.

(1.6)

When f(u) = e, originates in the context of conformal geometry, by prescribing
the so-called @-curvature on 4-dimensional Riemannian manifolds. For more details and
background material, we refer to |18/12,/19] for a @-curvature problem on 2-dimensional
Riemannian manifolds for a nonlinearity polynomial function. Before stating the result

of 28], we will introduce some notations.
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Let G(z,2") defined over Q x Q be the Green function associated to the bi-laplacian

operator with Navier boundary conditions, which is the solution of
A%G(z,2') = 64720,—,  in Q,
AG(z,2') =G(z,2) =0 on 00

and denote by H(z, 2") := G(z, 2/)+81n |z2—2'| its regular part. Consider now the functional
E defined on the set {(z1,...,2m) € Q™;2; # z; for all 1 <i# j < m} by

m

E(z1,...,2m) = ZH(zj, 2j) + Z G(zj,21),

j=1 J#

and denote by u* the function defined on Q\ {z1,...,2n} by
m
u*(z) == ZG(Z, ;).
j=1
We recall that a critical point is called nondegenerate when the Hessian matrix com-

puted in this point is nonzero. In [28], the author proved the following result.

Theorem 1.2. [28] Let Q be a regular bounded convex domain in R* and f be a smooth

nonnegative increasing function such that
e “flu) > 1 asu— +oo.

For uy solution of (L.6), denote by Xy = X [, f(ux) dz. Then there are only three possi-

bilities:
(i) The {2} accumulate to 0, then ||uyl/Le@) — 0 as A — 0.
(ii) The {XA} accumulate to +oo, then uy(x) — 400 for all z € Q as A — 0.

(iii) The {£)} accumulate to 64m>m for some positive integer m, then the limiting func-
tion uw* = limy_ouy has m blow-up points, {z1,...,2m}, i.e., there exists a set
S:={z1,...,2m} C Q such that (ux(x))x has a limit for x € Q\S, while uyg — +0c.

Moreover, (z1,...,2m) is a critical point of E.
In [5], the authors considered the following problem
A%y = ple*  in Q,
(1.7)
u=Au=0 on Jf.

They constructed a non-minimal solution with singular limit as the parameter p tends to

0. Their results can be stated as follows:
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Theorem 1.3. [5] Let Q be a regular open subset of R* and z1,...,2z, € Q be given
points. Assume that (z1,...,2m) is a nondegenerate critical point of E, then there exist
po >0 and (up),e(0,0,) @ 0ne parameter family of solutions of (1.7)), such that

. * . 4,0!
/1)1_1%% =u" inCol(Q\{z1,..., Zm}).

In dimension 2, the asymptotic behavior of the analogous problem
(1.8) —Au=p?" in QCR? wu=0 ondN

has been studied by Liouville in [18]. He gave a global representation for all solutions
of (1.8) which are defined in R2. It is well known that as the parameter p tends to 0,
non-minimal solutions exist and they have singular limits. In [6], Baraket and Pacard

proved

Theorem 1.4. [6] Let Q be a reqular open subset of R? and z1,. .., 2, € Q. Assume that

(21,...,2m) is a nondegenerate critical point of the function

F:(z1,...,2m) €eC"— Zh(zj,zj) + Zg(zj,zl),

J J#l

then there exist pg > 0 and (Up)pe( a one parameter family of solutions of (1.8)) such

that

pro)

: * . 2,
;gr(l)up:u ::z;g(-,zj) in Co. (Q\ {z1,...,2m})-
=

Here g is the Green’s function of —A in R? defined as the solution of

—Ag(z,7') = 87d,— in Q,
g(z,2)=0 on 09,

and h is its reqular part defined by
h(z,2') = g(z,7) +4In|z — 2/|.

Some generalizations can be found in [|4}|7,/13].
In this paper, given € > 0 and 0,y = max(y,A), A := \;, v :=;, i = 1,2, assume that
g, 7 and \ satisfy

1+p/2

(A1) if 0 <€ < 0., then T

e*—=0asoyy—0forany pe (1,5—-¢),1<qg<4

(A2) if 0 < € < 04, then 0,1;;\5/26*5 — 0 as o,y — 0 for any 6 € (O,min{1,4 —

—1 —1 ’
Q>%a%})a 1 §q<4
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We prove the following results.

Theorem 1.5. Let Q be a reqular bounded domain of R*, ¢ > 0 satisfying (A1)-(A2) and
21y, 2m € 0 be given distinct points. Let moreover p € {1,...,m} and suppose that

(21,1 2p, ..., 2m) s a nondegenerate critical point of the function

1-¢Z 1—y & 1—ny1—¢ 7RI

7= j=p+1 7 i=1,j=p+1
then there exist vo and & in (0,1) such that for all v € (y0,1) and & € (§o,1), there exist
po > 0 and ( 971,)\1 5’727/\2
solutions of (|L.3] -, such that

)0<p<p0,0<7i<%70<)\i</\0, 1 = 1,2, a one parameter family of

. A
Fl)li% uf "t = ZG (zi,-) in Cloc (Q\{z1,...,2}),
vy1—0
)\1—>0

m
lim uf7272 = 1 Z Glz,) inCEY(Q\ {z Zm})
p—0 2 *5 7y loc p+ly---r*my)-
v2—0 i=p+1
)\2%0

To facilitate the presentation, we will look at the special case where we have only two

singular points.

Theorem 1.6. Let Q be a reqular bounded domain of R*, ¢ > 0 satisfying (A1)-(A2) and
21,22 €  be given distinct points. Suppose that (z1,z2) is a nondegenerate critical point
of the function

F(21,22) = 12_,Y§H(21,2’1) + TH(Z% z2) + Tl;fG(ZLZ%

then there exist vy and & in (0,1) such that for all v € (y0,1) and £ € (§o,1), there exist
po > 0 and ( ’”1’)‘1 572’)‘2
solutions of -, such that

)0<p<p070<7i<7070<)\i</\0, 1 = 1,2, a one parameter family of

. 1

})I_I}r(l) u’fm”\l — §G(zl>‘) n Cfoff(Q \ {z1}),
0

A0

1
lim uf?™ = ZG(z,-) in CLY(Q\ {z2}).
p—0 f

724)0

)\24)0

Note that Theorem is a generalisation of Theorem We will only prove Theo-
rem where we have only two singular points.

We now briefly describe the plan of the paper. In Section [2] we prove Theorem
motivated by the techniques of Baraket et al. [5]. In Subsection we introduce and
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recall some weighted Holder spaces, the linearized operators and the harmonic extensions
which are crucial in the following sections and moreover we compute the first approximate
solution of in a large ball using the appropriate transformation. We also recall
some known results about the biLaplace operator in weighted spaces. In Subsection
we study a nonlinear interior problem for which we prove the existence of an infinite
dimensional family of solutions of defined on a large ball and close to the first
approximation of the solution. In Subsection we prove the existence of an infinite
dimensional family of solutions of the exterior problem of , i.e., far from of the
singularities with arbitrary data on the edges. Finally in Subsection [2.4] with a suitable
choice of these data, we gather the solutions obtained in the previous sections via a
nonlinear version of the Cauchy data matching in order to find global solutions of

on the whole domain €.

2. Proof of Theorem

2.1. Construction of the approximate solution

We denote by e the smallest positive parameter satisfying

4 384t
P =1+t
Let
1+¢&?
=4ln ———
ue(z) = 4l 5
which is a solution of
(2.1) A%y = ple* in R
Hence for all 7 > 0, the function
(14 €?)
(22) ver(®) =4 o e

is also solution of ([2.1).

2.1.1. Some results on the operators to be inverted and their appropriate spaces

First we introduce some definitions and notations of the appropriate functional spaces
which are weighted Holder spaces that we will need in order to invert the linearized

operator L defined below.
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Definition 2.1. Given k € N, o € (0,1), 1 € R and |z| = r, the weighted Holder space
CI*(R%) is defined as the space of all functions w € C>*(R*) for which the norm

loc
||1U||C/Ij,a(R4) = ||wHCk«‘l(§1(0)) + ili{l) ((1 + ’I“Q)—M/QH’LU(T . )HC’“’O‘(El(O)\BUQ(O)))
is finite.

Definition 2.2. Given 7 > 1, k € N, a € (0,1) and p € R, the weighted Hélder space is

defined as the space of all functions w € C{Zf‘ (R*) for which the norm

lllepe g,y = lwleneqmo) + sup_ (el lese @ ons, .0)
is finite.

Definition 2.3. We set B} = B \ {0}, given k € N, o € (0,1) and x € R, the weighted
Hélder space Cj®(BY) is defined as the space of all functions w € C}>*(B7) for which the

norm

Il iy = 58, Ol lene @onm0)

is finite.

We define the linear fourth order elliptic operator L by

384
(1 +7r2)t
which corresponds to the linearization of about the radial symmetric solution uz—1 =1
defined by (2.2). When k > 2, we let [Cﬁ’a (€2)]o to be the subspace of functions w € Cﬁ’a(ﬁ)
satisfying Aw = w = 0 on 0.

L:=A%—

Proposition 2.4. [5] All bounded solution of Lw = 0 on R* are linear combinations of

1— |22 82;
®o(2) FuEE and  ¢i(z) uEE

fori=1,....4.

Moreover, for u> 1, ¢ Z, then L: Cy™(R*) — C2f4(R4) is surjective.

In the following, we denote a right inverse of I by G,,. Similarly, using the fact that
any bounded bi-harmonic solution on R? is constant, we claim
Proposition 2.5. [5| Let § > 0, § ¢ Z. Then A2 is surjective from Cy®(R*) to C3-% (R*).

We denote by Ks: Cgf4(R4) — C?’Q(R‘l) a right inverse of A2 for § > 0, 6 ¢ Z.

Finally, we consider punctured domains. Given z1 # 2o € ), we define z := (z1, 22)
and Q' (z) := Q\ {21, 2%}. Let ro > 0 be small such that B, (%;) are disjoint and contained
in . For all r € (0,rp), we define

2
o, =0\|JBG)
=1
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Definition 2.6. Let £ € R, a € (0,1) and v € R the weighted Holder space C’,f’a(ﬁ* (%))
is defined as the space of all functions w € Cl%(Q7(2)) for which the norm

loc
2

lwllepe @ @) = 10lena@,, n@ + D 512 (WG +7)leee@uon510)
Z:1 0<'I’S7‘0/2

is finite. Furthermore, for £ > 2, we denote by [C’,f’a(ﬁ* (E))]O the space of all functions

w € CP(Q" (z)) satisfying Aw = w = 0 on €.
We recall the following result.

Proposition 2.7. [5] Let v < 0, v ¢ Z. Then A? is surjective from [Cf’a(ﬁ*(i))]o to
C,°(@(2)).

We denote by K, : Co%,(Q7(z)) — [Cﬁ’a(ﬁ* (z))], aright inverse of A for v < 0, v ¢ Z.

Before proceeding to the different stages of the construction of the solution to the
problem we will briefly explain the purpose of the technique followed: First, before
building an approximate solution for the problem, we perform a suitable transformation
in order to work in a larger ball; then, we will build an exact solution of our problem
inside small balls centered in singularities with arbitrary data on the edge of each small
ball, in order to give a certain degree of freedom to the edge data. Next, we build an exact
solutions of the problem outside the balls with always arbitrary data on the edge of the
balls and finally, with a suitable choice of these data at the edges, we gather interior and

exterior solutions in order to obtain a global solution on the whole domain 2.

2.1.2. Ansatz and first estimates
For all ¢ > 1, we denote by &, »: Cg’a(EU(O)) — CS’Q(R‘l) the extension operator defined
by

o (f)(2) =
o (f)(2)

S~

(2.3) (ZZ for |z| < o,

X(%)f(aé) for |z| > 0.

Here x is a cut-off function over R, which is equal to 1 for ¢ < 1 and equal to 0 for ¢t > 2.
It is easy to check that there exists a constant ¢ := ¢(u) > 0 independent of o, such
that

(2.4) 160 (@)llo.o gy < Elwllege s, (0))-

For all 7;, Aj,e,7 > 0 and ~, £ € (0,1), we define

=1 y+E-1 TTe

. . 1/2 y1/2 172 . .
Te 1= T, ) ‘= INAX (72- AT e / ,E 7, & ) and R.:= R\, = —
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Here, we are interested in the study of the system (1.3)) near B,_(z1), namely

A2U1 —mAu — M |Vu|? = P4€W1+(1_7)u2 in Brs(zl),

(2.5) ) A )
A Ug — ’YQA’LLQ - /\2’VU2|Q =p €§u2+( —Hu in B,«E (zl)

Using the following transformation

8 4 14 &2
v1(z) = w1 (;z) + ;lns - rylnT(;_E) and  wva(2) = ug <§z) ,

the previous system can be written as
(2.6)

2 4—
A%v; — (;) Avy — M (;) ! Vo] = 24701t (1=7)v2 in Bg,_(z1),

+E-1y goyte—1

2 i—q 9d(F5—) 85—

A%vy — 9 (;) Avy — Ao (;) [Vg|? =24 - 71571) et =8 i By (21).

(T(l + 62))4( ¥

Here 7 > 0 is a constant which will be fixed later. We denote by @ = u.—,—1, we look for

a solution of (2.6)) of the form

1 1-— |
u(2) = ~T(z — 21) — — LGz, 2) — % +hl(2),

2
-2
N

va(2) = 2G(z, 29) + hi(2),

this amounts to solve the system

384 1 1
1 99% | oahl+(Q-mhd _ 1
L (14 r2)t [e ' 2=l 1}
€\2 1 1—»~ .
-) Al-u———@G h
+(2) <7u O + 1)
e\4-¢ 1 1-—x Nk
A= —— ——G h
(2.7) A (T) \ (,yu p: (2, 22) + 1> ;
384C.35 ) (1-9(1-) n
A’hy = Lﬂ,g)egh%—i_[I_TW}G(z,zz)-i'(l—f)(—%-l—h%)
(1 + 7“2)4 ¥
€\2 1 1 eN4d—q 1 1 q

in BRE(Zl)7 where r = |z _ Zl| and Cg _ [T(l —|—52)]4(17:\:7§)‘

For ¢ € [1,4), we fix p € (1,5 —¢) and § € (0,min{1,4 — q,%ﬁfl,%&l}). To
find a solution of (2.7)), it is enough to find a fixed point (hi,hl) in a small ball of
Cu®(RY) x C5*(R*) which solves the system

(2'8) h% = g,u © €H,R5 © ﬂ(h%a h%)7 h% =Kso 567Rs © E(h%v h%)v
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where
384 1 L
Lply— 9% [ oahi+(l-mhy _ pl
Ti(hy, hy) VT [6 ! 2 —yhy 1}
€\ 2 1. 1—4 )
tm (T) A (7“ ~E G(Z7Z2)+h1>
£\4¢ 1 1—x " q
e o =t
384C, 68(7+§71) 1 A=90=v) Iny 21
E(h%, h%) = 5—(1_5) §h2+|:1ij| G(Z,ZQ)+(17§) (7T+h1)
(1+r2)" >
€\2 1 1 eN4—q 1 . q
o (5) A (F6ea) 4 1) + 20 (5) )9 (G600 + 1)

We denote by N (= M. ;) and M (= M, ) the nonlinear operators appearing on the
right-hand side of equation ([2.8)).

Lemma 2.8. Given k > 0, there exist €, > 0, ¢, > 0 and vy € (0,1) such that for all
€c (0a6H)7 e (707 1); IS (1>5 - q) and 0 € (Oamin {174 -9, %5_17 %6_1});
||N(O’O)||Cﬁ’a(R4) < Cn?“? HM(QO)HC(‘;’O‘(RQ < C,J?,
A (R B) = AL k) oy < exr2l0] = By + el = DI = Kl gt e
and

HM(h%, h%) - M(k%, k%)Hcg»&(w) < chgH(h%u h%) - (k%, k%)”aﬁ«“(w)xcéa(w)v

where [[(d,13) = (k% K8) gt oy ety = I = bllgte sy + 103 = Kllgae gy for al
(h},hb), (K1, k) € C(RY) x CE*(RY) satisfying

(2-9) ||(h%vh%)”q‘;a(w)xc?a(w) < 20/#"?’ H(k%, k%)”eﬁva(w)xcg’a(mﬂ < 26%7@'

Proof. We have

4—p £)? Ad—pn
sup 1|73 (0,0)] < eyt () sup 7
r<Re T r<Re

e\4—¢ .
+ e (—) sup rA—H
T r<R.

1 1—7
A <u+ —G(z, 22)> ’
Y v
1 1-—
\Y (u - JG(Z, z2)>
Y 8ts
g 2 4— 2+T2 & 2 4— )
<cem (;) rs;}gar “7(1 P + ckm1 (;) rsgu}g)ar Hop
q 4—q

e\ 4—¢ r 15
() st g e (7
+C/< 1 - TSSU}E)ET (1+T2)q+cn 1 -

q

sup pA—Hp—a
r<Re

£\2 _ €\2 _
< e <—> sup 27 + com (—) sup r27H
T TSR& T T‘SRE

e\4-q rd €\4-¢
+ c A (7) sup r* P —— 4+ e\ (7> sup rirq,
i T TSFIE)E (1 + T2)q " T TSII%
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Taking into account that for 7 very large we have (1 +r2)™? ~ r=28 we obtain

sup 77| T1(0,0)] < 2v1€? sup 727 + 206?77 sup I
r<Re¢ r<Re r<Re
< ey max{etr2F €2} + e A max{etriTrT 179}

2

< c,Ty.

Making use of Proposition together with (2.4), for p € (1,5 — q), we get that there

exists ¢g such that
(2.10) IV (0, 0)l gt ey < cur?
for the second estimate, we have

sup r4_6\7'2(0, 0)]

r<Re
384C, ES(W+§71) 1-9(1-v Iny
- G ) EE RS E
rshe (1+r2)" 5
2 1 4—q 1 q
)| on e )
T/ r<R. 3 T <R ¢
+£-1 2 4—q
< e sup 38408 () + eumo (E) sup 7270 + Ao <£) sup r* 979,
r<R. T r<R. T r<R.
where S(r) = %.
(1+r2)4 ¥

If4—6+8(6—1)y~ 1 <0, then S is bounded on R;. If 4 — § +8(£ — 1)y~ > 0, then

SUp[o,y, /ey 9(1r) = S(re/e). Using the same argument as above, we get

IM(0,0) 10 (RY)

(2.11) B(HE) 445 4—5+48(6—1)y 1 §,.2-8 §,.4-6 2
< ey (max {5 v, it opaot8(E-1)y }+’Y25 [ P Vo e _q> < gz

Now, we recall an important result that plays a center role in our estimates see for

example [23] and references therein:

Lemma 2.9. Given x and y two reals numbers, x > 0, ¢ > 1 and for all small n > 0,

there exists a positive constant C;, such that
||z + 97 — 29| < (1+m)gz? y| + Cyly|*.

Recall the following conditions:

1+p/2

(A1) if 0 <€ < 0, ), then T

e*—0asoyy—0forany pe (1,5-¢),1<qg<4.
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. 1+6/2 _ .
(A2) if 0 < € < 04, then o t\/ 0 5 0 as oyx — 0 for any 0 € (O,m1n{1,4—
yH+E—1 y+E-1
g L LY <

To derive the third estimate, for h;, k;, i = 1,2, verifying (2.9, it is necessary to
consider condition (A1). Then, we have
sup P Ta(hy, hy) = Ta(ky, k)|
384r4—H
< ¢, sup

Y (@Mt mRs gt — 1) = (RO g 1))

(1u— 1;6'(2 22)+h > A (iu— %G(z,zz) +k}>D

v 7€
_ B 1 1—x a 1. 1—x
+ e sup 74 ”<‘V<UGZ,Z +h1> 'V(UGZ,Z +k1)
1 p p: (z,22) + Iy 5 e (2,22) + Ky

r<R. Y

>

+ coy1e? sup riH ‘
r<Re

)

38474~ H
< ¢, sup "

1 1,2 1_ g1 2 4= -
e W(V [(h1)? = (k)| + (1 = y)[hgy — k3|) + come TSSUIIi r ARy — k)

q

1 1-
+ cehe? ™9 sup rtH ( ’V (u - 76'(,2 z9) + ki +hi — k%)
1 1-—
— ’V (u — T’YG(Z,ZQ) + k%)

r<R. y €
q
¥ ¥ ) '

Again, making use of Lemma and recall that a functions w in Cﬁ’a(R‘l) are bounded
by a constant times (1 —I—TQ)“/ 2 and have their /-th partial derivatives that are bounded by
(142072 for t =1,... . k+a. (ae. |Viw| < cnr“_e||w]\cﬁ,a(R4), (1472)B=0/2  pp—t
for r very large) and finally recalling that

141 2 1 4.1 2
(R, hz)Hcﬁva(W)Xcgva(RAl) <2cerz, (K, kz)Hcﬁ»a(RﬂXc;’a(w) < 21z,
we deduce that

sup 74T (b} ) = Ti (k] )|

< ¢, sup riH(y? 2“(||h1||c4 ot ||k1||c4 o)
r<R.

1 = kgt + (1= 7)1 — K s

+epmie® sup 2 Ay — ke

r<R.
11— -t
+ ceAie? ™9 sup rtH ’V (u— JG(Z,ZQ) + k‘%)
r<Re Y ¥
< cu(2 (10 g + IRl gg) 1Y — K lgne + (1= )AL = Kllgu) + cumae® R2IAL — Kl gpe

+ e hie ™ sup (VT 4 VG2, 22) [T + [VEL 9T + [VRLTTY) V(R — k1)
r<R.

< e (P (IR llgse + I lgso) 1B = Kllgan + (@ =S — Kllga) + cxme® R2IRS — Kl
+exhiet (R REI (2L 4 R20)) 0 — Rl

< exr?[[h] — kgt + el =B — Kllgao + camr?llt — K[ gso
e hrd a1 (e 1 — kg

. kmq—l) Ok

c4a
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Note that in the estimates above we made use of Va(r) ~ r~! and |V!G(z, 2)| < c|z—2|~*

for ¢ > 1. Moreover, the estimates

el H2 for ¢ > max(}\,7),

Cur2 e < Qe AT 2671 for X > max(e, ),

ey TH2eH for 4 > max(e, )

together with condition (A1), yield )\17"?7(1[1 + (r§+“5_“)q_1] <72

Making use of Proposition together with (2.4) and using the condition (Al) for
€ (1,5 —q), we conclude that

(2.12) ||N(h%a h%) —./\/’(k:%, k%) Hcﬁ»a(w) < CNTth% _k% Hcﬁﬁa(w) +ex(1=7) ”h% _k‘% ||c§va(]R4)~
Similarly we get the estimate for M, then

sup 70| To(hi, hy) — Ta(ki, k)|

r<R.
ga+E—1
< c. sup T4_5384C€5 N (1_%)%722)’egh;m_g)(_%uh}) _egkéﬁ-(l—f)(—“‘%ﬁ-k{)‘
~ <R (147245
+ coy2e? sup 0 A(RL — k)|
r<R.
1 1 1 1
+ cedoe?™1 sup 7470 (‘V (G(z,zz) + h%) - ‘V (G(z,zz) + k%) >
r<R. £ €
4-5

ytE—1 r
< e3840 sup —————¢ (€llhg — kzllere + (1= &)[Ihg — Killcse)
r<R. (1472)*5

+ Cn'72€2Rg”hé - k% ”C(‘;""

+exdoe®™ T sup 170 (|VG(2,29)| 7" + [ Vhg 97! 4 [VE3 |71 [V (R — k3))|
r<R.
B 4-65
< ¢,.384C.&8 = sup
r<R: (14 12)
+ a2 B2 — kbl gnee + udaet =1 (RE 4 RS-0 (1L 4 [B4)120)) b — K gse
S5

4,a
Cy

(€llhz = Kallae + (1= €)[Ih] = killese)

418
>

gate—1 4=0
< ¢,384C.e” ~ sup e
2\2 5

r<R. (14 12)

+ el = Blgse + edar [+ (12001 4 = K} s

(€llnz = Kallgae + (1= €)[Ih1 = killese)

Note that the estimates
cpet0/2 for e > max(\, ),
cur2T0e™ < Q ¢ A28 for A > max(e, ),

Y
ey /2670 for 4 > max(e, \)

™o

together with condition (A2), yield Aora 4 [1+ (r?+55_5)q_1] <r2
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We conclude that
(2.13) [ M(BL h3) — ML B oty < er2lhh 1) = (6 K)ot yuctoe. O

Reducing ¢, if necessary, we can assume that ¢,r2 < 1/2 for all ¢ € (0,e,). There

exists also vg € (0, 1) such that ¢, (1 —+) < 1/2 for all v € (99, 1). Therefore (2.10)—(2.13))
are enough to show that

(h1,hy) = (N(h1, hy), M(hi, hy))
is a contraction from the ball

{(h},h}) € CL*(RY) x C3™(RY) : ||(h], hd) < 2¢,r2}

HCﬁ’“(R‘*)xC?’“(R‘*)

into itself and hence a unique fixed point (hi, h}) exists in this set, which is a solution of
(2.8). Hence we have shown the following proposition.

Proposition 2.10. Given k > 0, there exist e,, > 0, ¢, > 0 and v € (0,1) such that for
alle € (0,ex), v € (Y0, 1), there exists a unique (h}, h}) := (hi _
(2.8)) such that

1 .
e P2 vy, SOlUtion of

”(h%? h%)HCﬁ’O‘(R‘l)xC?"’(R‘l) < 20/@7“?-
Hence
1_ 1—7 | 1
v1(z) = -u(z —2z1) — ——G(z,2 — 4+ hy(2),
1(2) 7( 1) p: (2, 22) 1(2)
1
v2(2) == EG(ZVZQ) + hy(2)

solve (2.5)) in Bgr_(z1).
Similarly, we get also

Proposition 2.11. Given k > 0, there exist €, > 0, ¢,; > 0 and & € (0,1) such that for
alle € (0,ex), £ € (&0,1), there exists a unique (h3, h3) := (h?
(2.8)) such that

2 .
787’)/17A17 h27a7’}/27>\2) SOZUtZOTL Of

H(h% h%)”cgya(RgXCﬁA(sz) < 20,.;7“?.

Hence

m@%ziwaﬂ+hﬂ@,

solve (2.5)) in Bg_(z2).
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2.1.3. Bi-harmonic extensions

Next, we will study the properties of interior and exterior bi-harmonic extensions. Given
(0, 1), (3,1) € C*(S3) x €2*(S3), where S3 is the three-dimensional unit sphere, we
define respectively H™ = H" (o 4. ) = H:anfﬁ to be the solution of

A2H™ =0 in B(0),
HM™ = on 9B;(0),
AH™ =+ on 0B;(0),

and H® = H(5 ;) = H;X:Z to be the solution of

A2H™ =0 in R*\ B1(0),
H™ =& on 8By(0),

AH®* =4 on 0B1(0),
which decays at infinity.

Definition 2.12. Given k € N, o € (0,1) and v € R, we define the space Ci*®(R* — B;(0))
o4 _ B (0)) for which the following norm

as the space of functions w € C, .

lllegmsyop = 500 (10 lebe 5, 0)-51 0p)
is finite.

We denote by ey, ...,es the coordinate functions on S3.

Lemma 2.13. [3] Assume that

(2.14) / (8p — ) dvgs =0 and / (1290 —)epdvgs =0 forl=1,... 4.
S3 S3
Then there exists ¢ > 0 such that

1HZ et 32 0y < cllellcasey + [¥llezass))-

Moreover there exists ¢ > 0 such that if
(2.15) Y dugs =0,
S3
then
VS et iy < (1B leraqse) + [Flezase).
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If F C L?(S?) is a subspace of L?(S%), we denote by F'* the subspace of all elements

which are orthogonal to 1,eq,...,es. We will need the following result.

Lemma 2.14. [3] The mapping

P - C4,a(53)J_ X CQ,a(S:S)J_ N C3,a(83)J_ X Cl,a(sB)J_
(@,0) — (On(Hyy, — HZY), 0n(AHZy, — AHZY))

s an isomorphism.

2.2. The nonlinear interior problem

Here, we look for a solution of the following system as in Section 2.1.2] we will just add

the interior harmonic extension and the perturbation term v;, i = 1,2,

2 4
6) Avy — N ( ) ! V|7 = 24701 F(=7)vz in Bg_(21),

g
T T

A%y — (

4(7+§—1) 8(W+s—1
° Evat (1=

(r(1 4 £2)) 105

Given ! := (p1,pd) € (CH*(5%))? and ! = (Yi,¥d) € (C>¥(S?))? such that (o}, i)
and (3, 13) are satisfying (2.14). We write for z € Bg_(z1) the following system

in Bg_(z1).

A2y, — (6>2Av2 W ( )H V[t = 242

g
T T

1 1-— €z In in z—z
vi(z) = —u(z — z1) — JG (—,22> _ny + h%(z) + H; 6.1 <g0%, }; 1) —1—1)%(2*),

v 7€ T v R,
1 £z - Z2—z
va(z) = EG (7722) +hy(2) + Hy' (@%Jﬂ%; Rl> +v3(2).
€
Using the fact that H™ is is bi-harmonic and the fact that 24e* = %, this amounts
to solve the system
(2.16)
Lo! = (13542)4 [ev<h%+Hi"“+v%>+<1—v><h§+H;““+v;> ol = 1}
5 r
£\2 11— 1 int,1 1
+m (;) A ;ufiyg G(z,22) + hi + H{ + v
4—q 1 1-— . q
Y (5) v <u— T”G(z,,@) +hl 4+ gt +vi>‘ ~ A%l
T v
3840 68(’Y+§71) 1 int,1 1 A-=9A—v) In~ 1 int,1 1
A2yl — < (£ (hd+H +o3)+ [1- C=00=D | Gz, 20) 4 (1-) (— 122 4]+ HIO o)
(172"
€)?2 1 1 int,1 1
+ 72 <;> A gG(z, 29) +hy+ Hy " + vy
4—q 1 . q
0 (2) | <£G(Z,22) + hy + Hy +v5)‘ - ARy,
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—y—¢
where C. = [r(1 + ¢2)]* 1579,
Fix pe (1,5—¢) and 0 € (O,min {1,4—q, 7+§71, %&1}) To find a solution of (2.16|),
it is enough to find a fixed point (vi,v3) in a small ball of Cﬁ’a (R*) x C?’Q(R‘l) solutions of

(2'17) U% = gu o {,u,RE o ¥y (”U%, U%)? U% =Kso 55,35 o §R?(U%v v%)

Here &, g, is defined in (2.3)), G, and s are defined after Propositions and and

384 1 int, 1, 1 1 int,1 1
%1(0%71)%) = - |:€7(h1+H1 Fvp)+(A=y)(ha+Hy ™ Hvy) _ *yv% _ 1:|
y(1+r2)4
2 1 1-—
+m <£> A( u—iG(z 22)+h1+Hmt1—i—v%>
T gl 83
A 1 1—v 1 e, 1)|” 2p1
+)\1<—> v< TGz, ) + b+ H™ b)) - AR,
- 5 y: (2,22) + Iy 1 1 1
11 3840558(%5_1) E(hy+HP o)+ [1- C=00=D ] Gz 20) 4+ (1-€) (— 22 4 hl 4 HP o))
Ra(vg,v9) = ————qge 272 T B ” o
(14r2)"
£\2 1 int,1 1
+ v (;) A gG(z ,29) 4+ hd + HY' vl

SO

We denote by R (= N&W}’w}
ing on the right-hand side of the two equations in (2.17)).

Given k > 0 (whose value will be fixed later on). We further assume that the functions
(goj,w ) € (CH™ x C2) for j € {1,2} satisfy

1 q
\Y <§G(z 29) + h} —l—Hmtl —1—11%)’ N

)and by T (= Temw}-,w}) the nonlinear operators appear-

(2.18) ||<pjl-||c4,a(33) < m“? and ||¢]1~ch,a(33) < m“?.
Then we have the following result.

Lemma 2.15. Let o' = (o}, ) € (C*(5%))? and ' := (¢i,¥d) € (C*>%(S?))? such
that (o}, v1) and (¢3,4d) satisfy @.14) and 2.18). Given k > 0, there exist &, > 0
and ¢, > 0 and v € (0,1) such that for all € € (0,e4), v € (70,1), p € (1,5 —q) and

: el yHe—1
o€ (O,mln {1,4 —q, %, %}),

||N(0a0)Hcﬁ7a(R4) < cﬁrg, ||T(070)||c§’a(]1g4) < C,J’g,
INGoh, )~ R0 )l ey < ewr?lod — hlggoen + enlt = )leh — Bl s

and

(b, 08) = T ) gty < exr2(ohvd) = () ot oy oy

provided (vi,vd), (t1,t1) € C4Q(R4) X C4Q(R4) satisfying

(2.19) H(’U%?U%)Hcﬁ»a(Rﬂxc;’a(Rﬂ < QC,J’S, H(t%vt%)”cﬁ"‘(]}y)xcgva([[@) < 20,47“2.
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Proof. The first estimate follows from the result of Lemma [2.13] together with the assump-
tion on the norms of ; and v;. Indeed, we have

7 i)
23 \ R ) lleso @051 (0)

for all r < R./2. Then by (2.18), we get ||Hm1 W(

< Cr*RZ (0] lleaa(ssy + 195 llcza(se))

MeseBy0)—B10)) < cre?r?.

On the other hand,

sup 7‘4_"|§Rl (0,0)]
r<Re

4_ i .
< sup AT ‘e’Y(hi+H{“t’1)+(1f’7)(h§+H;“t71) ~ 1’
~ U<k (1 +r2)t

2 1 1— .
+ ¢ sup 7 Fy (E> A ( U — %G(z,@) +hi + Hint’l)‘
T

r<R. Y Y
4—q 1 1— 4
+ ¢, sup riH [)\1 <E> \Y < u— 7G(z 22) +hi + Hlnt 1)’ — \Aghﬂ]
r<R. T ol €
384754~

< ¢ sup ——————(y|hd + H"™' 4+ (1 + ) |hd + HY™
_RTSEEV(PFT)(’V! |+ (1 +9)|hy + Hy™ )

£)? 4 2 +1° —2 2 1
+c <7> sup r “(—I—Cr + cke® + |Ah
g A CTCEr i

4—q rd
+ ¢ sup A ( ) <—|—C7‘_q+52qrq+ Vh1q>—A2h1]
s e o (5 (e V) - 1A%
3847”4_“ 1 2 int,1
<o sup gt [V Wil my + PV g )
5|1 2 t,1
+ (1 =) (T ||h2”c§va(]1{4) HHID I 40(31))}
+ 2ceyr max{elr2H €2} + coneri T + cemrZ|| bl | pra R4)
+ 2c, A max{etrdrTa 179} 4 N etrdTrTa
—u(q—1), A—pt+(u—1)q| 11 1
+ e M) pdopt )q||h1”g;§,a(R4) +cﬁ||h1HC3,a(R4)
3847"4_“ 1 2 int,1
< e sup — o [V I g oy + I g )
5 t,1
+ (1 - 'Y) (T ||h%”c§va(]1g4) 2HHID H 40( 1))}
+ 2,y max{e"r?7H €2} + comiefri T 4 coyir?||hi [l g.e R4)
+ 2c, A max{etrdra 179} e Nttt

+ cﬁz\lrg_q(r?r“a_“)q_l + C“Hh%”(zﬁ’a RA)
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Making use of Proposition together with (2.4) and using the condition (A1) for u €
(1,5 — q), we get that there exists ¢, > 0 such that

(2.20) IR(0,0)ll ¢t gy < et
For the second estimate, we have

sup r4_5|$%2(0, 0)|
r<Re

8(’Y+§—1) A .
384C.c™ 1 ity [ 0=00-1) ey (1 _in gt
< Cx Sup E—M 4—5e§(h2+H2 )+[1 6 ]G(Z,Z2)+(1 f)(hl - +H )

r<Re (1+7’2)4 5

_ €\2
+ ¢, sup r 572 (—)
r<R. T

A (26’(2 29) + hd + HI™ 1> ‘

q
+ ¢ sup 770 (g GZ 22) +hy+ Hy™' )| — |A%h|
2 2
r<Re
384C.e5C 5
int.1
< ¢x sup ﬁ’fﬁl 6( (T(SHh%Hcgﬂ +7“2||H§nt ||c§°‘)

r<Re (1_;'_712) T
int,1
+ (= Ml gse + 2| gs) +1)
+ et (B2 + 2 B9) + a1 e
-MMﬁW<w6q+mwwﬁ+mwm4““1cmwwm)+mmmm

+E—1
384C." ) int 1
< o sup L (0 B s + P )
r<Re (1+T2) 5
1 2| grint,1
+ (U= Ml gse + P2 H | gs) +1)

+ w2 (7270 + 00 ol gl

+ o (6 4—6— q+€6r4 5+q+max{€ (1=a),. 4 d+(0-1)g 4— q}HhQHq4a> +CI<Hh2HC4a
Using the same argument as above, we get
(2.21) 1(0,0)ll 0 gy < Cr?
To derive the third estimate, for (vi,vd), (t1,t}) verifying (2.19), we have

sup 77 |Ry (v, v3) — Ru (41, 83))]

r<Re

384y4—H
< ¢ sup

| o (L (S ) ]

B HT )+ (=) A +HY Y 45) |y
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2 1 1— .
+ cem <E> sup rHIA < u— 7G(z z) + hi + Hint’l + v%)
T Y

r<Re ’75
1-—
—A< u—iG(z z2)+h1+H‘“”+t1> ‘
g v
4- 11— ‘
+ ce <£> ! sup 7’4“< ’V (u— 7G(z 29) + hi + Hmt '+ vl>
T r<R. 0 v
- ‘V <1u— 1;6‘(2,22) + bl + HM 4 ti) q)
Y 2l
3ArtH 1,2 1,1 2 4 1,1
< ¢, SUp ——————— vy)® — (¢ 4+ (1 =) |vs — t5]) + cey1e” sup r* H*|A(vy — ¢
KTSEE ~(1 + 2 (7 |(v1) ()" + ( ¥)|va 2’) w1 rgflél |A(vy Dl
1 1-— g
+ oA sup r4_”< ‘V ( u— 7G(z 2) + R + Hlnt Tt pol - t%)
r<Re v 75

_ ‘v <1u - 1_77(;(2:, 2) 4+ hi + H™' + t}) ‘q > :
g 23
Using Lemma [2.9| and the fact that a functions w in Ck "*(R*) are bounded by a constant
times (1 —H"Q)“/ 2 and have their /-th partial derivatives that are bounded by (1+72)#=0/2,
for 0 =1,....k+a (ae |[Viw| < c,{r“JHwHCE@(W), (1+472)B=0/2 o =L for r very large)
and provided (hi,hd) € ij’a(]R‘l) X C?’Q(R‘l) satisfy (2.9), we obtain

sup 4Ry (vf, vy) — Ru(t, 1)

r<Re

384rd=r
< o (22 (o e+ [ ae ) |0 — ] s+ (1 — )P[0 — 2] s
< e sp —m gy (7' (Iof lgge + Il gge) 0 = Alge + (1= 17103~ Blse)

+ Crﬂ/lr?”v% - t%“cﬁ’a

R . -1
+ Mg sup 7’4“( ‘V <u — 7G(z, z9) + hi + H, L t%)
r<R. ol 0%
#1901 = ) 19 - )
38474~ 2 2 1 1 1 1 5,01 1
< ¢ sup ———— (v*r<H(||v o+t o)l — ¢ o+ (1 =) vy — ¢ o
< sup g (P12 (ol + Ieblge)lof — g + (1= )1} = )

+ C,{}q?”?”ll% - t%“cfio‘

1 q—1 1— q—1
+ cxhe? ™ sup A [ (,y) [Valtt — (7;) IVG(z, )|

r<Re
+|VHP T 4 VA + [V + Vi |17 [V (0] — 1))
384741, 2
< oo 1" o 4 1] aa ] aa + (1 — )7 — 3] aa
_cﬁrs;lgﬂ(Hﬂ)Ll(v (HUIHC4 +||1||C4 )lvt — tllgae 4 (1 =)oy = ta]ls )

+ C,{Vﬂ“?”@% - t%“cfia
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T oI [RIT 4 R0 phatrai (1|4 el 4 fod[200)] o) - th s
W i W

38474=H 5
< ex sup gy (7 (tllgge + I lege) ot = Hllgge + (@ = )r'llv3 — 3l cpe)

+ CN%T‘?HU% — t% Hcﬁ,a 4+ cu (rﬁ_q + r§+q + r;l—q (r§+“5_“)q_l) Hv% — t% Hcﬁ,a.

Making use of Proposition together with (2.4) and using the condition (A1) for
€ (1,5 — q), we conclude that there exists ¢, > 0 such that

(2.22) ||N(U%7U1) - N(t%at%)ncﬁ’a(w) < Cﬂ‘?”“% - t%”cﬁ»a(w) + (1 — 'Y)HU% - t%”e(‘;a(w)-
Similarly we get the estimate for
(2.23) ||T(U%a Ul) - T(t%, t%)”e;"a(w) < CKT?H(ULU%) - (t%,t%)”aﬁ»a(w)xcﬁva(w)' O

Reducing ¢, if necessary, we can assume that c,r2 < 1/2 for all ¢ € (0,&;). There

exists also v € (0, 1) such that ¢, (1—=) < 1/2 for all v € (0, 1). Therefore (2.20), (2.21)),
(2.22)) and (2.23) are enough to show that

(v1,v3) = (N(vg,v3), T(v],v3))
is a contraction from the ball

47 .
{(v%,v%) IS Cﬁ’a(R4) x Cy “(RY) : H(v%’U%)||Cﬁ’“(R4)xC§’“(R4) < QC,J‘S}

into itself and hence a unique fixed point (vi,vi) exists in this set. This fixed point is a

solution of ([2.17]).

We may summarize the result obtained as follows.

Proposition 2.16. Given k > 0, there existe, > 0, ¢, > 0 and vy € (0, 1) such that for all
e €(0,e4), v € (70,1), for all T in some fized compact subset of [t~,71] C (0,00) and for

¢ and ¢ satisfying [2.14) and (2.18)), there exists a unique (vi,vd) := (V1o m 00 V2,6, m0.00)
solution of (2.17) such that

H(,U%’v%)HCﬁ’Q(R‘I)XC?’O‘(RAl) < 2657’3.
Hence

1 1-— € 1 ; -
n(e) = T =) = G (Tom) - T bl () + (ﬁ, 5 ) +ol(2),

Y ¥ R,
1 €z in z— 21
n(e) = 3G (o) + )+ 1 (ki S ) + b

solve (2.6) in Bg_(z1).
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Similarly, we prove

Proposition 2.17. Given k > 0, there existe,, > 0, ¢, > 0 and &y € (0, 1) such that for all
e € (0,ex), € € (&0,1), for all T in some fized compact subset of [r~,77] C (0,00) and for

¢ and ¢ satisfying (2.14) and [2.18), there exists a unique (v},v3) := (V1 1o V2e.m 0
solution of (2.17) such that

2,2 2
H(’UhUQ)Hc(‘;lva(RﬂXcﬁ;a(Rg < 21

1 €z in z—z
v1(z) := =G <7 21) +hi(z) + H) 62 (901, % Rz) + 0 (2),
€

~
vo(z) = i_u(z — 29) — 17§.€G (%7Z1> 155 + h3(2) +Hént2 <9027 3; ZRE ) +v3(2)

solve (2.6 in Br_(z2).
Remark also that the functions v%, v%, v% and v% obtained in the above propositions,
depend continuously on the parameter 7.
2.3. The nonlinear exterior problem

Given z := (Z1,%2) € Q2 close to z = (21,22), n := (n1,7m2) € R? close to 0, @, :=
(21, 21) € (CH(S%)%, o = ($5,83) € (CH(S9))%, by = (¥1,47) € (C**(S7))* and
(

¥y = (04, 43) € (C2(5%))? satisfying (Z.15), define
wi(z) = 7"71 (2,21 +ZXTQ et< 1¢1; . >,
2

~ 1+ ex z—%
a(2) = T2 ) )43 e a7 052 2)).
=1 Te

Here x;, is a cut-off function identically equal to 1 in B,/ (0) and identically equal to 0
outside By, (0). We would like to find a solution of the system

A2y — Y1 AUy — A\ |V ]? = /C,Zlewﬁ(lf“v)uz7

(2.24)
A2u2 - ’YQAUQ - )\Q‘VUQP = p4e£u2+(1_£)ul

in the domain Q,_(z) := Q,_\ {(Z1,22)} with uy = Wy + 0; a perturbation of Wy, k = 1, 2.

This amounts to solve in Q,_(z),

A%y = ple @I @2402) 4o Ay +T1) + M|V (@ + 1) ]9 — A%,

(2.25) A o o .
A5y = P & (W2+02)+(1=E)(w1+01) 4 Yo A(Wa + Ta) 4 Ao| V(g + )¢ — A2,



1186 Lilia Larbi and Nihed Trabelsi

For all o € (0,79/2) and all z = (21, 22) € Q2 such that ||z — z|| < 79/2, where
z = (21, z3), we denote by &,5: Co*(Q(2)) — Co*(Q7(Z)) the extension operator defined
by

&alf)=f in Q(z),
&z(E +2) =X(E)FE +od) in Be(Z)\ Bopal3), V1< <2,
ga,i(f) =0 in BU/Z(gl) U Bo/2(g2)'

Here X is a cut-off function over R which is equal to 1 for ¢ > 1 and equal to 0 for ¢t < 1/2.

Obviously, there exists a constant ¢ = ¢(v) > 0 only depending on v such that
(2.26) |6z () lcge @ @y < Ellleg, @y-

We fix v € (—1,0). In order to solve (2.25), it is enough to find (¥1,72) € (Co* (X (2)))?

solution of
(2.27) 51 = ,El, e} g,«E"Z‘ o) §1(61, 52) and 52 = ﬁl, 9} gTE”Z* 9] §2<171, 52),

where

S1(B1,Tp) = pte? O FIIFENE@IR) g A(@) 4+ B1) + M| V(@1 + T)|? — A%,

Sa(V1,2) = ptetP2FPITU—OWHT) 4y N(w@y + Tp) + AoV (W2 + T2) |1 — A%

We denote by

N(@1,7) =K, 0 gr's,z 0 S1(T1,T2) and M(%,02) = K, o gﬂs,i 0 So(T1, Ta).

Given x > 0 (whose value will be fixed later on), we further assume that for i,j € {1,2}

the functions @;, 1;;, the parameters 7; and the point z = (27, z2) satisfy

(2.28) B lleae(ssy < w2, [Wkllcamssy < w72,
(2.29) Ini| < k2, |Z — zi| < ke

Then, the following result holds.
Lemma 2.18. Under the above assumptions, there exists a constant ¢, > 0 such that
INV(O, O)HCl‘fﬂ(ﬁ*(E)) < cur?, HM(OaO)Hcg!a(ﬁ*(z)) < el
HN@LT&) - N@L%)Hcg!a(ﬁ*(z)) < Cnrg"@h@) - (5,175/2)“@3’0‘@*(2)))2
and
[M(v1,02) — M@iv%)”a}‘*(ﬁ*(g)) < Cﬂ‘?”(ma@) - (%v%)”(cﬁ’a@*(g)))za
provided (vy,02,70],0h) € (C,il’o‘(ﬁ*(i)))4 satisfy

~ ~

(2.30) ||(51,52)||(03,a@*(2)))2 < 2c.r  and H(Ul’v2)||(cﬁ’“(ﬁ*(’i)))2 < 2,72
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Proof. As for the interior problem, the proof of the two first estimates follows from the
asymptotic behavior of H®*' together with the assumption on the norm of boundary
data cE; and 1;; given by . Indeed, let ¢, be a constant depending only on k, by
Lemma [2.13

€

(2:31) o (5,05 228 | < cutr,
On the other hand,
gl (0, O) = p4ewwl+(1_’71)‘7"2 + ’ylAVT/l + Al‘v{iﬁ‘q — AQVT/'l

and

52(0, 0) = ,0466‘%2—’_(1_5)%1 + ’)/QA{AVIQ + )\Q‘V‘%}2|q — AQ{X/Q.

We will estimate S1(0,0) in different sub-regions of " (2).
e In B, /2(21) \ Br.(21), we have xpy(z — 21) = 1, xro(z — Z2) = 0 and A?w; = 0, so
that
51(0,0) = pte™1H1I=1W2 Lo Ay + A |V |9

We denote

IV, XroJw = VXrg - w4 X - Vo, [A, XpoJw = wAXy, + XrgAw + 2V X, - Vw,
(A% xpolw = wA% X, + 2AwA X, + AV (Aw) - Vxr,

4 82)(7‘ 82’[1)
+4Vw - V(Axr,) +4 Z az.azo- 020z;"
Qg=1 T

Then

o GER)+HE (810152 ) | (- [ 6 2+ B (54,0452 )]

1

1 ) .
A(MEMGm) ¢ ar (ot ) )|

151(0,0)] < cpe

+ M1

£
1 ) e
v( TG ) 4 HE <so%, 1,2 ))
Y Te

~ _ _g(1=7)(+ng) 1
§C,{E4|Z—Z1|78(1+m)‘2—22‘ 8 £ 2 Tem +"71‘Z_

q

+ CN)\l

’51’72

+ cﬁfylrg’|z — 271|73 +egAi|lz =z T+ cHAlrg’q\z — 31]72‘1
+m

- 1 - -
< cxetlz — 7| 8(1+m) 4 Ck 1 |z — 21|72 + cH71r§|z T

+ ez =217+ c,i/\lrg’q|z — 31|72q.
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Hence, for v € (—1,0), g € [1,4) and n; small enough, we get

151(0,0)ll o

(Bry/2(21))
< sup  r7751(0,0)]
TESTSTO/Q
4 1+ _ _
<cpet sup V4 eem L osup 12 Y 4eemrs osup Y
re<r<ro/2 v re<r<rg/2 re<r<rg/2

+ ¢l sup r4_”_q+cﬁ)\1rg’q sup rivH

Tg<r<7‘0/2 re<r<ro/2
4—p—2 4—
< et + e + et + et + cedy max {r29(rg /2)1 V2 plTv T

< c,{rg.

e In By (1) \ By, /2(21), using the estimate (2.31) and taking into account that
A%G(2,71) = 0, then we have

151(0,0)] < }CH5467V~V1+(1_7)V~V2 + k1 AWL + A [ VW |7 — A2v~vl’

< 0564‘2’ _ gl‘—8(1+771)
2 ~
1+ ~ ~ x
+ M < Wm|AG(z,z1)| +Z [A, X (2 — Z5) ] HT < 1,71117 > D
6
q

=1

2
1+ _ . ~ -z
AVG(5) + 3V (= - )] ( R i )

i=1 Te

+ Cn>\1

2

+tew Y

i=1

8% (e = Z0E (71,31 ~>‘

o 1+ _ i
§0K54|z—21| 8(1""71)—1—6,(”71 m|z—zl| 2—{—0,{717“?\2—21] 3

+egAlz =z 7T+ c,{)\lr?q\z — 31]_2‘1.
Hence, for v € (—1,0), ¢ € [1,4) and n; small enough, we get

sup r4*”|§1 (0,0)]

ro/2<r<rg

”51(0 O)HCO‘”‘ (Bro(21)=Bry/2(%1)) =

< 0554 + cxy1 + c,{fylr:)’ + ce M
+ ¢ A1 max {7“3‘17“4 v 2q q(ro/2)4_”_2q}

< c,{rg.

Similarly, for v € (—1,0) and 73 small enough, we can prove the same result for Zo.
eIn O — (BTO (z1) U By, (52)), we have X, (z —21) = 0, Xr, (2 — Z2) = 0 and A%w; = 0.
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Thus

150(0,0)] < eneter (50 -1 (HE2) )

1 1 ‘
TN AG(2,30) + el

+ ~
+enm 77’1 VG(z, %)

1+n1)

- 1+ — -
§0K54]z—z1| 8( + k1 m!z—zll 2+c,£)\1\z—z1] q,

So for v € (—1,0), we have

51(0,0)]] o0 (= .\ < 4=v15,(0,0
151.(0, ”k&A(Q—Uilekn)“i;gr 151(0,0)]
4 —4—v 1+m 2—v 4—v—q
<cke supr +cem sup r + A1 sup r
r>1r0 v r>1ro r>1r0

< 0554 + 1 + A1 < c,{rg.
Then with the previous three steps, we conclude that
3 2
15100, 0)lco.o, @, @) < w7
Making use of Proposition together with (2.26)), we conclude that
IN(0,0)llgae 7 ) < cer?  and IM(0,0)llgae i ) < cxr.

For the proof of the third estimate, let 71, U2, ¥} and ¥, € Cp’*(Q") satisfy (2.30)), using
Lemma [2.9|and the fact that for all w € C®(Q" (%)), there exists ¢ > 0 such that |Viw| <
cr”_i\|w||c4,a(§*®), i>1, we get

sup 47|81 (31, %2) — S1(31, )|

T‘Gﬁrs
< sup 7“4*”0,@5467@1*(1*7)@2‘6751”1*7)52 - 675’1+(1—w)’6§| + sup Ve |A®@ — 7))
reﬁ% reﬁrs
+ sup Ve (Vo + VO T+ [V - VI 9T V(0 — 97))
T‘Eﬁrs
~_ 8= Q4mg) ~
< exet sup 1|z = 7SI — 5 (o =W+ (1= )| — T)
reQy,
+ ¢yt sup THV|A@ — )
’I“Eﬁra
+epM sup PV (Va7 4+ |V + |V |1 V(@ - )|
T‘Eﬁra

< et sup r4_”r_8(1+’71)(

uy v [[0r = Bl ey + (1= 1)1 [[02 = Bll gt ig7y)
TGQTE
+ Cxy1 sup 2|y — 5iHc,‘va‘(ﬁ*)
T‘EQrg
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2 -1
_ 1+ ~ « ~ 2=z |?
+CK,>\]. sup T4 V|: v anG(Z Zl) Z[vaXm(z —Zi )] e ! ( 17’¢1a Z)
reQr, v i=1 Te
+r'f*17~<”*1><q*1>(u'51||g; oy P ||q4a(Q ))] 101 = Bl gt @y
< CK54T5_4(||1~)1 - 5/1||C§,a(§*) + [[v2 = ||c4a )) + cemllvr — 5i||c§va(ﬁ*)

+ceAr | sup #4704+ r30D sup #5720 |17y — 5’1||C;;,a(§*)
rEﬁrE reﬁrs

+ 2e, A 720 gup 3D 7 —v1HC4a a)
TGQT‘E
4, —4 (> ~ ~
< ke (||Ul - Ul”e;}’a@*) + [[v2 — U/2||c§«a(§*)) +exmllon — UiHcl‘fva(ﬁ*)
+ e (1+ max{r2*td 31} 4 max{r?+q+”(q_1),rg(q_l)}) lon — 01 ||Cg,a(§*).
So, for 71 small enough and using the estimate ([2.26]), there exists ¢, (depending on k)
such that

(232) W@, 52) =N @ ) eger y < 02 (19 =T loge @ oy + 12— lgeoar )

Similarly we can use the same argument to prove
(2.33) ||M(51752)*M(5/17%)Hc40‘ O (%) < CuT: (||Ul Ul“o‘*a )+||U2 U2||C4a Q'@ )))
O

Reducing ¢, if necessary, we can assume that ¢,r2 < 1/2 for all € € (0,¢,). Then,
(2.32)) and (2.33) are enough to show that

(01, 2) = (N1, Ta), M(1, B))

is a contraction from the ball
-~ o 2 ~ - _
{(Ulav2) € (Cé’ (R4)) : H(U1,U2)H(C§,a(R4))z < 2057"52}

into itself. Hence there exists a unique fixed point (01, 2) in this set, which is a solution

of (2.27). Applying a fixed point theorem for contraction mappings, we conclude that

Proposition 2.19. Given k > 0, there exists €, > 0 (depending on k) such that for
any € € (0,e4), ni and z; satisfying (2.29) and functions @; and 1’/;; satisfying (2.15)) and

(2.28)), there exists a unique (v1,v2) (= @1,5,771,2,@3@’52,5,772,2,@;,{/7;)) solution of (2.27)) so
that for (vi,ve) defined by

1+ 2
0(2) = MG T 4 S Koz — TH (mw
=1

Y

z>+vl( );

Te

2 ~
UQ(Z) = 1 ZUQG(Z,§2) + ZXT'O(Z — Zz ( ¢2, ) —1—2}2( )
i=1 Te
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solve (2.24)) in Q,_(z). In addition, we have

H(vl,vg)H o (3))2 <26,irg

2.4. The nonlinear Cauchy-data matching

We will gather the results of the previous sections. Using the previous notations, assume

that z := (21, 22) € Q? are given close to z := (21, 22). Assume also that
T = (7-177-2) S [7-1_’7-;_] x [7-2_¢7-2+] - (07 00)2

are given (the values of 7,~ and Tl+, [ = 1,2, will be fixed later). First, we consider some
set of boundary data ¢’ := (¢},ph) € (C*(S%))? and ' = (i, 98) € (C>*(S%))%
Given ¢ € (0,e,) and according to the results of Propositions and we can find
Uint := (Uint,1, Uint,2) & solution of in B,_(z1) U By_(22), which can be decomposed as

%U/s 1 (z — 2/1) - 177’)/G(Z 2/2) hl')/ + hl(i(zs Zl))

Uing,1(2) == —i—vl( H G zl)) —|—Hint1(g01, 1, 2- Zl) in B,_(z1),

Te Te

*G(Z % )+h2( (z z2))+v (R 2(z— 22))+Hmt2<g01,¢)1, - ) in Brg(zQ)

and
1G(Z zg)—i-hl(M) + v ( (z z1)) +H1nt 1(()0%7 1’zrjl) in B,.(%),
uing2(2) = § Fuen (2 - %) — SEG(,7) - B +h2(@)
+v3 ( (z zz)) +Hmt2((,027 27zr:2) in BTE(§2)’

where for ,j € {1,2}, R. = 7;“= and the functions hé and U;- satisfy
131 2 2 12
[(P1, h2)||(;ﬁ’“(R4)Xcglﬂa(R4) < 2¢grZ, | (hT, h2)||Cﬁ’a(]R4) che(Re) < 20,.C
and
1,1 2 2.2 2
H(UhUQ)Hcﬁv&(w)Xc;’a(Rél) < 2¢x7%, H(Ul)U2)Hcﬁ»ﬂ(R4)xc§va(R4) < 2c47%

Similarly, given some boundary data @; € Ch (83, zbv; € C?9(S3) satisfying (2.15)),
(n1,m2) € R? satisfying (2.29)), provided € € (0, ), by Proposition we find a solution
Uext = (Uext,1, Uext,2) Of ([2.5)) in Q\ (B,.(21) U B,.(22)) which can be decomposed as

1+ ZoEN) -
Uext,l(z) = 7’1 Z 21 Z XTo Hth ( 17¢17 7'> —|—’U1(Z),

v i=1,2 Te

1+ 72 - ~ ~ Z— 2
Uext,2(2) = : G(2,%2) + Y Xrolz — Z)HS™ <?0"‘ ¥ :
i=1,2

) + U2(2)

Te
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with 1,75 € Cp®(Q(2)) satisfying
1@ %)l ey < 272

It remains to determine the parameters and the boundary data in such a way that
the function which is equal to uing in By (21) U By_(22) and to texs in Q,_(z) is a smooth
function. This amounts to find the boundary data and the parameters so that, for each
i1=1,2,

Uint,; = Uext, i, aruint,i = a7“uext,i7

(2.34)
Auint,i = Auext,ia arAuint,i = a7"Auext,i

on 0B,_(z1) and 0B,_(z2).

In other words, here we try to match the interior and exterior solutions obtained in the
previous sections as well as their normal derivatives on the boundary of each small ball
for the equations u; and us respectively by choosing the suitable data at the boundaries.

Suppose that is verified, this provides that for each ¢ small enough u, € C*®
(which is obtained by matching together the functions uin; and the function wuey), a weak
solution of our system and elliptic regularity theory implies that this solution is in fact
smooth. That will complete the proof since as € tends to 0, the sequence of solutions we
have obtained satisfies the required singular limit behavior, namely, u. strongly converges
to G(-,z).

Before we proceed, the following remarks are due. First it will be convenient to observe

that the function u. r, can be expanded as

g2, 2
Uer(2) = —4InT; —8In|z| + O < ‘ ‘12 ) on 0B,_(z).
z
e For z on 0B,_(Z1), we have
(Uing,1 — Uext,1)(2)
4 8 ~ 1- ~ 1 — 7
=——1Inm + ﬂln\z —z1| = JG(Z,ZQ) -2 +h <R;Z Zl)
g gl 23 gl re
(2.35) z— 7 i z—Z 4 22
+U% (Rc} 1) +Hint71 (90%a %a 1> - Hth (9017 %a 1)
Te Te Te
L+m ~ ey 2
_ H(Z’Z1)+O<|z—51|2 + O(r2).

Next, even though all functions are defined on 9B, _(z1) in (2.34), it will be more

convenient to solve on S the following set of equations

(2.36) (Uint,1 — Uext,1)(Z1 +72-) =0, Or (Uint,1 — Uext,1)(Z1 +72-) =0,
' =0.

A(Uing1 — Uext1)(Z1 +7e-) =0  and  OpA(Uing,1 — Uext,1)(Z1 + 12 +)
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Since the boundary data are chosen to satisfy ([2.14) or (2.15]), we decompose
1,1 1,1
901:90%04‘@%14‘% ) 1?]%:8@%,04‘12@%,14‘% )
s 1,1
o1 = 9010+<P11+901 ) w%:wil"i_wl, 5

where 1 0 Co“% 0 € Eg =R are constant on 53, gpil, Qiil, 1;%1 belong to E; = Span{ey, ea,
es, eq} and <,01 o @i -, lbi’L, J}J‘ are L%(S3) orthogonal to Ey and E;.

Using (]2 , we have for z € S5,
(Uint,1 — Uext,1)(Z1 + 72)
4 81 1 U 1—v ,, . -
=——Inm + —In(relz]) — — <H(z1,z1) + G(zl,z2)>
v v 0! £

h’l mn eX
= = H el ol 2) — HPEL 0L ) - TG ) + 002)

Then, the projection of the set equations (2.36) over Eq will yield

—4In7y + 8nyInre — Iny + vl 0~ Y31 o—&1(z1,2) + O(Tg) 0,
(2,37 8 + 2vp1 o + 29@1 o + O(r2) =0,
16m; + 8y g + O(r) =0,
=321 + O(r?) = 0,
where

The system (2.37)) can be simply written as

m=002), ¢iy=002), $io=0(%) and [4ln7+Iny+E1(31,2)] = O(2).

nre

We are now in a position to define 7; and 7;". In fact, according to the above analysis,
as ¢ tends to 0, we expect that z; will converge to z; for i € {1,2} and 7, will converge to
7] satisfying

Alnt{ = —Iny — & (%1, 2).

Hence it is enough to choose 7, and 7'1+ in such a way that
4In(r]) < —Iny — &1(21,2) < 4In(77).

Consider now the projection of (2.36)) over E;. Give a smooth function f defined in
Q, we identify its gradient Vf = (9, f, ..., 0z, f) with the element of E; as

4
i=1
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With these notations in mind, we obtain the system of equations
ol =Pl -2 Va(ED) + 063 —0,
3ok + 351 + 50 — 2 VE(ELD + 00 =0,
1590%,1 @1 17— 7/)1 |+ 0(r?) =0,
1580%,1 +15p1 1 + Iwil +0(r?) =0,
which can be simplified as follows
Pl1=0072), Ul =002), @l1=002), ¥, =002 and V&(,2)=0(2).

Finally, we consider the projection onto L?(S3)+. This is the step in the proof which
makes use of the nondegeneracy condition assumed on the critical point of the functional
F, see also Remark at the end of the section. This assumption is needed in order to
obtain the order 72 in the following estimates. For more details on this condition, we refer

the reader to [5]. This yields the system

SO% —p T O(Tg) =0,

8 (Hlnl J_fl/)% + H;}(Flflzi’L) + O(T&?) - 07
A3 o =

OA(HG s gpos = HGE ) +002) =0

Applying Lemma [2.14] this last system can be rewritten as
1,1 ~1,1 1,1 1,1
Y1 = O(r?), Y1 = O(Tg)a Yy = O(r?) and ¢ = O(r?).
If we define the parameter t; € R by

tl =

T [4ln7'1 —|—ln'y—|—€1(51,2)],

then the systems found by projecting (2.36) gather in this equality

_ Tl Se o~ ~ 1,1 1,1 71,0
(238) Tglz(tlanh%@io?90%70790%,17¢%717¢%717V51(217Z)a901 1 7’(/}1 7¢1 ):Ol(T§>

As usual, the terms O;(r?) depend nonlinearly on all the variables on the left side, but

are bounded (in the appropriate norm) by a constant (independent of ¢ and k) times 72,

provided € € (0, &).
z—21 imt,1 (1 1 221
H )
" > + 11, <<P2> 2 )

e On the other hand, on 0B,_(z1), we have
7 (218 57 ) 4o (RESD) 1 0
Te Te

(Uint,2 — Uext,2)(2) = —%G(Z, %) + hy <R§
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In the same manner as above, we will solve on S? the following system

(239) (Uint,2 - ueXt,?)(gl + 7 ) = 0, 8T(uint,2 — uextz)(gl +re- ) — 07
0

A(uint,Q - uext,Q)(gl +7e- ) =0 and arA(Uint,2 - uext,2)(zl +7e - ) =

We decompose

1L

03 = 9020+<P21+902 ) w%:&Pio‘f‘lQ@%,erz ;
1l 1 ~1,1
Py = 8020+<P21+<P2 ; w%=w%,1+w2’,

Ll ~1,1 1,1 71,1
where ¢3 0 &5 0 € Eo, 802 1 802 171/12 1 € IE1 and @y, @37, 1y, Py’ belong to (L2(S%)*
Projecting the set of equations (|2 over Eq, we get

P20~ Poo+ O(r2)
205 o + 205 o + O(r2)
8905,0 +0(r2) =

)

0
0,
0

From the L2-projection of (2.39)) over Ei, we obtain the system of equations

‘P @214'07“

) =

351 + 355, + %14‘07"2): ;
159021 39021 ¢21+07“)
) =

(
(
(
15051 + 15¢5 + ¢21 +0(r?

Finally, we consider the L2-projection onto (L?(S%))*. This yields the system

L
o Soé +0(7§):07
On(HIL 10— HEL 510) +0(2) =0,
ST or -0
6A(Hl1l¢%L H~1LJ%L)+O(T§):0

Using Lemma [2.14] again, the above system can be rewritten as
1,1 ~1,1 1,1 1,1
%) = O(T?)v P2 = O(T?)a % = O(T?) and 1/}2 = O(T?)
Then, the systems found by projecting ([2.39) gather in this equality

1 ~1 1 ~1 71 1,1 71,1\ 2
(%02,07902,07902,1,@2,1»%,1,802 7(;02 77;[)2 )y V2 )_O(Ts)
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e On 0B,_(z2), we have

z — z— z
(Uint,1 — Uext,1)(2) = ?G(z zZ1) + h2 <R2 . ) + Hmt2 <<p%, %7 102>
€

£

- (B3 2 ) et (RE2) w002,
Te Te

Next, even though all functions are defined on 0B,_(z2) in (2.34)), it will be more convenient

to solve on S the following set of equations

(2 40) (uint,l - uext,l)(zQ +re- ) = 07 81”(Uint;,1 - uext,l)(%é +re- ) = 07
. A(uin‘c,l - Uext,l)(zZ +7re- ) =0 and arA(Uint,l - uext,l)(zQ +7e- ) =0.

We decompose

2,1
Pl =lot+ @l +or, YT =80T+ 1207 + 9,
~21 T2 _ 9.1

o1 = 9010+<P11+901 Y7 =wi1+w1’ ;
where 80%,07 ino € Eo, @%,17 45%,17 @Zil € By = ker(Ags + 1) = Span{ey, 2, e3,e4} and gp?’J‘,
~2.1 2,1 72,1
@y, w1, ¥ belong to (L2(S%))L.

Projecting the set of equations (2.40) over Eg, we get

@%,0 — %10+ O(r?) =0,
207 o + 2070 + O(r2) = 0,
8plo+O(r?) =0.

From the L2-projection of (2.40)) over E1, we obtain the system of equations

©1,1 @1,1 +0(r?) =0,

3011 381, + 1/)11+(9(7’) 0,
155011—38011 %Z%1+O(7“§) =0,
159011+159011+ 77Z’11‘|‘0(7“) 0.

Finally, we consider the L2-projection onto (L?(S%))+. This yields the system

¥1 ¥1 —I—O(T’?):O,

Or (Hm 71/11 _H~2L7{[}?L) +O(T§) =0,
PPt — 9Pt + 0(r2) =0,

Oy A(H —H~M 1) +0(r?) =0.

"p1 wl
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Applying Lemma [2.14] this last system can be written as
2,1 ~2,1 2,1 2,1
1 = 0(7“3)7 ¥1 = O(T?), ¢1 = O(TE) and 1/’1 = O(T?)
Then, the systems found by projecting ([2.40)) gather in this equality

2 ~2 2 ~2 T2 21 ~21 21 721\ 2
(@1,07801,07601,1,901,171/’1,1’901 R )—O(Ts)'

e Similarly, in 0B,_(Z2) when ¢ tends to 0, we expect that za converges to zo and 7
converges to 75 satisfying
dInty = —In& — &(%2,2).

So we choose 7, and 7, to satisfy
4In(ry ) < —Iné — E9(%2,2) < 4In(ry)),

where )
& 7) = H(-, %)+ *—6(- 30)

Using the decomposition Eg @ Ey @ (L?(S3))*,

2,1 2,1
05 = %0%,0 + @%,1 +oyT, s = &P%,o + 12@%,1 + ¢y,

- ~ ~ ~2. 1 7 s 72,1
Gy =00+ Poq + 85, U=, +vy

We can prove that

(Uint,2 — Uext,2)(Z2 + 12 +) =0, Or (Uing,2 — Uext,2) (22 + 72 -) = 0,
=0

A(uint,Q - uext,Q)(zZ +7re- ) =0 and 87‘A(Uint,2 - uext,Z)(22 +7re- )
near S3 yield to
~ 9 9 S~ o~ 21 ~21 2,1 2.1
(241) Ta2 - (t27 2, ()O%O? 90%,07 90%717 ¢§717w%717 vg2(227 Z)a Py Py 1/}2 7¢2 ) - OQ(T\?)v

where
to 1=

s [4 InTo +In& + E(z2, z)]

Finally, recall that d = r.(z — z), in addition the previous systems can be written as
(d,ti,m,@i,@’i,wi,%,ﬁ&) = O(r?).

Combining and , we have

(2.42) T. = (I7,12) = (01(r2), 02(r2)) = O(r2).

Then the nonlinear mapping which appears on the right-hand side of (2.42)) is contin-

uous and compact. In addition, reducing ¢, if necessary, this nonlinear mapping sends
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the ball of radius x72 (for the natural product norm) into itself, provided & is fixed large
enough. Applying Schauder’s fixed point theorem in the ball of radius x72 in the product
space where the entries live, (now 7 is fixed and 7 = 7,;), we obtain the existence of a

solution of equation ([2.42)).
This completes the proof of Theorem [1.6]

Remark 2.20. In order to inverse problem (2.38]) and (2.41]), we remark that the fact that
z; is a nondegenerate critical point of &(-,z), ¢ € {1,2}, is equivalent to say that (z1, 22)
is a nondegenerate critical point of the function F defined by

1-¢ RN

F(z1,22) = WH(ZLZI) + TH(Z% z2) + R (21, 22).

Indeed, we have

OF oOF
VF(z21,22) = (821(21’22)’ . (21,2‘2)>
On the other hand, & (z,z) = H(z,21) + 1_T'YG(,Z,EQ) and &s(z,z) = H(z,z2) +
%G(z,%), then

08, OH e a
E(zl7z) - 5(217’21) + Tai(zlwzé) - 8721(21722)

and
o0& 0H 1-£0G oF
Sea) = G )+ T ) = ().
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