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An Extension of a Depth Inequality of Auslander

Olgur Celikbas, Uyen Le and Hiroki Matsui*

Abstract. In this paper, we consider a depth inequality of Auslander which holds for

finitely generated Tor-rigid modules over commutative Noetherian local rings. We

raise the question of whether such a depth inequality can be extended for n-Tor-rigid

modules, and obtain an affirmative answer for 2-Tor-rigid modules that are generically

free. Furthermore, in the appendix, we use Dao’s eta function and determine new

classes of Tor-rigid modules over hypersurfaces that are quotient of unramified regular

local rings.

1. Introduction

Throughout this paper, R denotes a commutative Noetherian local ring with unique max-

imal ideal m and residue field k, and all R-modules are assumed to be finitely generated.

In this paper we are concerned with the following theorem of Auslander [2], where

depthR(a,M) denotes the a-depth of M ; see 2.3 and 2.7 for definitions and details.

Theorem 1.1. (Auslander [2]) Let R be a local ring, a be an ideal of R, and let M be a

nonzero Tor-rigid R-module. Then it follows that depthR(a,M) ≤ depthR(a, R).

Our purpose is to investigate to what extent one can generalize Auslander’s inequality

stated in Theorem 1.1. Prior to stating our main result, we discuss some history and

motivation concerning the conclusion, as well as the hypotheses, of Theorem 1.1.

The depth inequality in Theorem 1.1 is a consequence of a result of Auslander [2, 4.3]

which states that, if M is a Tor-rigid module over a local ring R, then each non zero-

divisor on M is also a non zero-divisor on R, that is, the set of all associated primes of M

contains that of R. As the celebrated work of Auslander [2] and Lichtenbaum [37] shows

that modules over regular local rings are Tor-rigid, the conclusion of Theorem 1.1 holds

over each regular local ring; see 2.7(i). Auslander considered the question whether the

same conclusion holds for modules of finite projective dimension and asked if each module
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of finite projective dimension must be Tor-rigid; this yielded a conjecture known as the

Auslander’s zero divisor conjecture which claims that, for modules M of finite projective

dimension, each non zero-divisor on M is also a non zero-divisor on the ring considered.

This conjecture, due to the new intersection theorem established by Roberts, is now a

theorem; see [44, 6.2.3, 13.4.1] for the details. The query whether or not modules of finite

projective dimension are Tor-rigid also came known as the rigidity conjecture; this was

formulated by Peskine and Szpiro [43] who made significant contributions and established

the conjecture for torsion modules of projective dimension two; see also [12, 3.1]. The

rigidity conjecture did not fare long: Heitmann [27] constructed a torsion-free module of

projective dimension two that is not Tor-rigid. However, the rigidity conjecture remains

open over complete intersections of codimension at least two, even over those that are one-

dimensional domains; see [12, 3.2, 3.3] and [16, 4.2]. There are other questions studied in

the literature which are related to Theorem 1.1 including the superheight conjecture; see,

for example, [6].

Tor-rigidity, a subject of investigation in commutative algebra, is a delicate assumption

in Theorem 1.1. In general, over non-regular local rings, it is very difficult to check if a

given module is Tor-rigid. The work of Lichtenbaum [37, Theorem 3], along with that

of Huneke and Wiegand [34, 1.9], imply that modules of finite projective dimension over

hypersurfaces (that are quotient of unramified regular rings) are Tor-rigid; see 2.7(ii). A

noteworthy development in this direction has been the utilization of the theta function

in the study of Tor-rigidity; the theta function was introduced by Hochster [32] and

subsequently used by Dao [15] to generalize the aforementioned fact on Tor-rigidity over

hypersurfaces. A consequence of Dao’s result is that modules over even dimensional simple

hypersurface singularities satisfy the depth inequality stated in Theorem 1.1; see A.2(i).

As our results rely upon Tor-rigidity, in Appendix A, we discuss the theta function and

also consider a generalization of it to determine new classes of n-Tor-rigid modules over

complete intersections that are quotient of unramified regular local rings.

The depth inequality stated in Theorem 1.1 can fail in general, even over complete

intersection rings as we see next:

Example 1.2. Let R = C[[x1, . . . , xn, y1, . . . , yn]]/(x1y1, . . . , xnyn), M = R/(y1, . . . , yn),

and let a be the ideal of R generated by x1, . . . , xn. Then it follows that R is a com-

plete intersection of codimension and dimension n. Moreover, depthR(a, R) = 0 < n =

depthR(a,M) so that the depth inequality stated in Theorem 1.1 fails. Note that M

is not Tor-rigid: for example, there is an R-module N such that TorRn (M,N) = 0 6=
TorRn+1(M,N); see [35, 4.1].

Observe that, for the R-module M in Example 1.2, it follows that depthR(a,M) ≤
depthR(a, R) + n. Also, M ∼= Ωn

RN for some R-module N , where N is (n + 1)-Tor-rigid
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because modules over complete intersection rings of codimension c are (c+1)-Tor-rigid [42,

1.6]. Motivated by these facts, we raise the following question.

Question 1.3. Let R be a local ring, M be a nonzero R-module, and let a be an ideal of

R. Assume M ∼= Ωn
RN for some n ≥ 0 and some R-module N which is (n+ 1)-Tor-rigid.

Then does it follow that depthR(a,M) ≤ depthR(a, R) + n?

Note that, due to Theorem 1.1, Question 1.3 is true in case n = 0; see also 2.7. The

question is also true if R is a complete intersection ring of codimension c and n equals

c; see 3.2. The main purpose of this paper is to study Question 1.3 for the case where

n = 1. For that case we are able to obtain an affirmative answer to the question under

mild conditions. More precisely, we prove

Theorem 1.4. Let R be a local ring, a be an ideal of R, and let M be a nonzero R-module

such that M ∼= ΩRN for some R-module N which is 2-Tor-rigid and generically free (e.g.,

R is reduced). If depthR(a, R) ≥ 1, then it follows that depthR(a,M) ≤ depthR(a, R) + 1.

The special case of Theorem 1.1 and Theorem 1.4, where the maximal ideal is consid-

ered, is also worth discussing. Note, if a local ring R is not Cohen–Macaulay, then Theo-

rem 1.1 implies that each maximal Cohen–Macaulay R-module is not Tor-rigid. Therefore,

Theorem 1.1 is also related to another important conjecture known as the Small Cohen–

Macaulay modules conjecture [31]; this conjecture predicts that each complete local ring

admits a maximal Cohen–Macaulay module. For example, there are two-dimensional non-

complete local domains R such that depthR(M) ≤ 1 = depth(R) for each R-module M ;

see [31, page 11].

Theorem 1.1 produces several classes of modules that are not Tor-rigid over local rings

of dimension at most three; see [47, 4.8]. For example, by results of Hochster [30, 5.4,

5.6, 5.9], there are three-dimensional non-Cohen–Macaulay local rings that admit max-

imal Cohen–Macaulay modules; these modules are not Tor-rigid by Theorem 1.1. In

Appendix B we give a similar example concerning Theorem 1.4 where the ring consid-

ered is four-dimensional. These examples should indicate that the problem of extending

Theorem 1.1 is subtle over many rings, even over those that appear in nature.

Let us note that Theorem 1.4 follows as a consequence of our main result, namely

Theorem 3.3; see Corollary 3.4. Let us also note that Theorem 3.3 exploits the notion

of Tor-rigidity developed by Auslander, and establishes a depth inequality that is more

general from the one stated in Theorem 1.4.

The key ingredient for the proof of Theorem 3.3, and hence for the proof of Theo-

rem 1.4, is Proposition 2.8 which yields the existence of a certain short exact sequence

involving the syzygy modules. We should point out that Proposition 2.8 corroborates a
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result of Herzog and Popescu [29, 2.1] and of Takahashi [45, 2.2], and it is proved at the

end of Section 4; see also Corollary 4.4.

As our results rely upon Tor-rigidity, in Appendix A, we use Dao’s eta function and

show that modules that are eventually periodic of odd period are c-Tor-rigid over complete

intersection rings (that are quotient of unramified regular local rings) of codimension c.

2. Preliminaries

In this section we record several preliminary definitions and results that are used in the

paper.

2.1. Let R be a ring and let M and N be R-modules. If M ⊕ F ∼= N ⊕G for some free

R-modules F and G, then M and N are said to be stably isomorphic. As it does not

affect our arguments, we do not separate isomorphic and stably isomorphic modules.

2.2. Let R be a ring and let M be an R-module. Given an integer n ≥ 1, we denote by

Ωn
RM the nth syzygy of M , namely, the image of the nth differential map in a minimal

free resolution of M . As a convention, we set Ω0
RM = M and Ω1

RM = ΩRM .

The transpose TrM of M is the cokernel of f∗ = HomR(f,R), where F1
f−→ F0 →

M → 0 is a part of a minimal free resolution of M ; see [3, 12.3].

Note that the transpose and the syzygy of M are uniquely determined up to isomor-

phism, since so is a minimal free resolution of M .

2.3. Let R be a ring, M be an R-module, and let a be an ideal of R. If aM 6= M , then

the a-depth of M (or the grade of a on M), denoted by depthR(a,M), is defined to be

the common length of maximal M -regular sequences in a; see [7, 1.2.6]. In case aM = M ,

then we set depthR(a,M) = ∞ (in particular, we have depthR(a, 0) = ∞). Although

we write depthR(a, R) throughout the paper, we note that depthR(a, R) is nothing but

the height of the ideal a in case R is a Cohen–Macaulay ring. Furthermore, we set

depthR(M) = depthR(m,M).

The following basic facts play an important role in the proofs of Proposition 2.10 and

Theorem 3.3.

(i) depthR(a,M) = inf{depthRp
(Mp) | p ∈ V(a)}; see [7, 1.2.10(a)].

(ii) depthR(a, R) = inf{i ∈ Z : ExtiR(R/a, R) 6= 0}; see [7, 1.2.10(e)].

(iii) depthR(a,M/xM) = depthR(a,M)− n if x ⊆ a is a regular sequence of length n on

M ; see [7, 1.2.10(d)].
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2.4. Let R be a ring, M be an R-module, and let n ≥ 1 be an integer. Then M is said

to satisfy (S̃n) if depthRp
(Mp) ≥ min{n,depth(Rp)} for all p ∈ SuppR(M). Note that, if

R is Cohen–Macaulay, then M satisfies (S̃n) if and only if M satisfies Serre’s condition

(Sn); see, for example, [23, page 3].

We make use of the following properties in the proof of Proposition 2.8 and Corol-

lary 3.10. Note that, if n ≥ 0, then X̃n(R) denotes the set of all prime ideals p of R such

that depth(Rp) ≤ n.

2.5. Let R be a ring, M be a nonzero R-module, and let n ≥ 1 be an integer.

(i) If ExtiR(M,R) = 0 for all i = 1, . . . , n, then it follows that Ωn
R Tr Ωn

RM
∼= TrM and

so TrM is an nth syzygy module; see [3, 2.17].

(ii) If M is an nth syzygy module, then M satisfies (S̃n) so that each R-regular sequence

of length at most n is also M -regular; see [3, 4.25] and [39, Proposition 2].

(iii) If M is locally free on X̃n−1(R) and M satisfies (S̃n), then it follows that M = Ωn
RN

for some R-module N , where ExtiR(N,R) = 0 for all i = 1, . . . , n; see [3, 2.17 and

4.25].

2.6. Let R be a ring and let M be an R-module. The complexity cxR(M) of M is the

smallest integer r ≥ 0 such that the nth Betti number of M is bounded by a polynomial

in n of degree r − 1 for all n ≥ 0; see [4, 3.1].

It follows that cxR(M) = 0 if and only if pdR(M) < ∞, and cxR(M) ≤ 1 if and only

if M has bounded Betti numbers. Moreover, if R is a complete intersection, then cxR(M)

cannot exceed the codimension of R; see, for example, [5, 5.6].

2.7. Let R be a ring, M be an R-module, and let n ≥ 1 be an integer. Then M is said

to be n-Tor-rigid provided that the following condition holds: if TorRi (M,N) = 0 for all

i = t + 1, . . . , t + n for some R-module N and some integer t ≥ 0, then it follows that

TorRi (M,N) = 0 for all i ≥ t + 1. The n = 1 case of this definition is known as the

Tor-rigidity [2]: M is said to be Tor-rigid if it is 1-Tor-rigid.

Tor-rigidity is a subtle property, but examples of such modules are abundant in the

literature. Here we record a few examples and refer the reader to [18] for further details

and examples.

(i) (see [2, 2.2] and [37, Corollary 1]) If R is regular, then each R-module is Tor-rigid.

(ii) (see [33, 2.4] and [37, Theorem 3]) If R is a hypersurface, that is a quotient of an

unramified regular local ring, then each R-module that has finite length, or has finite

projective dimension, is Tor-rigid.
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(iii) (see [42, 1.6]) If R is a complete intersection of codimension c, then each R-module

is (c+ 1)-Tor-rigid. Therefore, if c = 1, then each R-module is 2-Tor-rigid.

(iv) Let R be a complete intersection ring of positive codimension c such that R̂ = S/(x)

for some unramified regular local ring (S, n) and some S-regular sequence x ⊆ n2

of length c. Each R-module that has complexity strictly less than c is c-Tor-rigid.

Therefore, if c = 2, then each R-module that has bounded Betti numbers is 2-Tor-

rigid; see [14, 6.8].

(v) (see [8, Theorem 5(ii)]) If I is a Burch ideal of R, i.e., if mI 6= m(I : m), then R/I

is 2-Tor-rigid.

(vi) (see [36, page 316]) If M is nonzero such that depthR(M) ≥ 1, then mM is 2-Tor-

rigid.

The key ingredient of our argument is the following result; it allows us to tackle the

problem on hand by using the Tor-rigidity property; see 2.7.

Proposition 2.8. Let R be a local ring, N a nonzero R-module, and let M = Ωn
RN for

some n ≥ 1. Assume there is an R-regular sequence x = x1, . . . , xn of length n such that

x · Ext1R(N,ΩRN) = 0. Then there is a short exact sequence of R-modules

(2.1) 0 −→ F −→
n⊕
i=0

(Ωi+n−1
R N)⊕(ni) −→ Ωn−1

R (M/xM) −→ 0,

where F is free.

The proof of Proposition 2.8 is quite involved, and hence it is deferred to Section 4.

Here we record an important consequence of the proposition which is used later in the

sequel.

Corollary 2.9. Let R be a local ring, N a nonzero R-module, and let M = Ωn
RN for

some n ≥ 1. Assume the following conditions hold:

(i) N is (n+ 1)-Tor-rigid.

(ii) x · Ext1R(N,ΩRN) = 0 for some R-regular sequence x of length n.

Then it follows that Ωn−1
R (M/xM) is Tor-rigid.

Proof. Note, since N is (n+ 1)-Tor-rigid, it follows that
⊕n

i=0(Ω
i+n−1
R N)⊕(ni) is Tor-rigid;

see 2.7. Therefore, we conclude by (2.1) that Ωn−1
R (M/xM) is Tor-rigid.

Proposition 2.10. Let R be a local ring, M and N be R-modules, a be a proper ideal of

R, and let n ≥ 1. Assume the following conditions hold:
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(i) M satisfies (S̃n).

(ii) depthR(a, R) ≥ n.

(iii) N is locally free on X̃n−1(R).

Then there is a sequence x ⊆ a of length n such that x ·Ext1R(N,ΩRN) = 0, and x is both

R and M -regular.

Proof. We have, by assumption, that depthR(a, R) = inf{depth(Rp) | p ∈ V(a)} ≥ n; see

2.3(i). Hence, for each q ∈ V(a), it follows that depth(Rq) ≥ n.

Set b = AnnR(Ext1R(N,ΩRN)). If q ∈ V(b), then we have depth(Rq) ≥ n: otherwise,

q ∈ X̃n−1(R) and hence Ext1R(N,ΩRN)q = 0 since N is locally free on X̃n−1(R). There-

fore, if q ∈ V(a)∪V(b), then it follows that depth(Rq) ≥ n. Furthermore, if q ∈ V(a)∪V(b),

then we have depthRq
(Mq) ≥ n since M satisfies (S̃n) and depth(Rq) ≥ n. Consequently,

we use 2.3(i) and [7, 1.2.10(c)], and obtain

(2.2) depthR(a ∩ b,M ⊕R) = inf{depthR(a,M ⊕R),depthR(b,M ⊕R)} ≥ n.

Now, by using (2.2), we can choose a sequence x ⊆ a∩b ⊆ a of length n, as claimed.

The next result is known for the case where r = 0; see, for example, [10, 3.4].

Lemma 2.11. Let R be a local ring, A and B be R-modules with A 6= 0, and let m ≥ 1,

r ≥ 0 be integers. Assume Tr Ωm
RB is an rth syzygy module. Assume further Ωr

RA is

Tor-rigid. If ExtmR (B,A) = 0, then it follows that ExtmR (B,R) = 0.

Proof. Assume ExtmR (B,A) = 0, and consider the four term exact sequence that follows

from [3, 2.8(b)]:

(2.3) TorR2 (Tr Ωm
RB,A)→ ExtmR (B,R)⊗R A→ ExtmR (B,A)→ TorR1 (Tr Ωm

RB,A)→ 0.

Note that, as ExtmR (B,A) vanishes, so does TorR1 (Tr Ωm
RB,A) by (2.3). Also, due to the hy-

pothesis, it follows that Tr Ωm
RB
∼= Ωr

RX for someR-moduleX. So, since TorR1 (Tr Ωm
RB,A)

∼= TorR1 (X,Ωr
RA) and Ωr

RA is Tor-rigid, we conclude that TorR2 (Tr Ωm
RB,A) = 0. Hence,

as A 6= 0, (2.3) implies the claim.

3. Main result and its corollaries

In this section we prove the main result of this paper, namely Theorem 3.3. Prior to that,

we note that Question 1.3 is true in case the ring in question is a complete intersection of

codimension c and the integer n considered equals c; this fact has been explained to us by

Shunsuke Takagi.
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3.1. Let R be a ring such that R = S/(x) for some local ring (S, n) and some S-regular

sequence x ⊆ n of length c. Assume the depth inequality depthS(b, N) ≤ depthS(b, S)

holds for each ideal b of S and for each S-module N . Let M be an R-module and let a

be an ideal of R. Then a = b/(x) for some ideal b of S. Now, it follows depthR(a,M) =

depthS(b,M) ≤ depthS(b, S) = depthS(b, R) + c = depthR(a, R) + c.

Recall that each module is Tor-rigid over a regular local ring; see 2.7(i). Therefore, we

obtain:

3.2. Let R be a complete intersection ring of codimension c, M be an R-module, and

let a be an ideal of R. Then it follows from Theorem 1.1 and 3.1 that depthR(a,M) ≤
depthR(a, R) + c. Note that this depth inequality is sharp; see Example 1.2.

Next we state and prove Theorem 3.3. We should note that the case where n = 0 of

the theorem is nothing but Theorem 1.1. In other words, Theorem 3.3 yields an extension

of Theorem 1.1.

Theorem 3.3. Let R be a local ring, N be an R-module, and let a be an ideal of R.

Set M = Ωn
RN for some integer n ≥ 0 and m = depthR(a, R). Assume the following

conditions hold:

(i) M 6= 0 and m ≥ n.

(ii) N is (n+ 1)-Tor-rigid.

If n ≥ 1, we further assume

(iii) N is locally free on X̃n−1(R).

(iv) Tr Ωm
R (R/a) is an (n− 1)st syzygy module.

Then it follows that depthR(a,M) ≤ m+ n.

Proof. Note that there is nothing to prove if a = 0, or a = R, or depthR(a,M) ≤ n; see

2.3. Note also that the case where n = 0 follows from Theorem 1.1. Hence we may assume

a is a proper ideal and depthR(a,M) > n ≥ 1.

As M is an nth syzygy module, we see that M satisfies (S̃n); see 2.5(ii). There-

fore, since N is locally free on X̃n−1(R) and depthR(a, R) ≥ n, it follows from Proposi-

tion 2.10 that there exists a sequence x ⊆ a of length n which is both R and M -regular

and x · Ext1R(N,ΩR(N)) = 0. Now, as N is (n + 1)-Tor-rigid, Corollary 2.9 shows that

Ωn−1
R (M/xM) is Tor-rigid.

Let h = depthR(a,M/xM) and suppose h > m. It follows that ExtmR (R/a,M/xM) =

0; see 2.3(ii). Now, letting A = M/xM , B = R/a and r = n − 1, we conclude from
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Lemma 2.11 that ExtmR (R/a, R) = 0. This yields a contradiction since m = depthR(a, R);

see 2.3(ii). Therefore, we have that h ≤ m. This establishes the required inequality since

h = depthR(a,M)− n; see 2.3(iii).

Next we proceed to obtain several consequences of Theorem 3.3. First we separate the

case where n = 1, which is nothing but Theorem 1.4 advertised in the introduction.

Corollary 3.4. Let R be a local ring, and let a be an ideal of R such that depthR(a, R) ≥ 1.

Set M = ΩRN for some R-module N , where N is 2-Tor-rigid and generically free. If

M 6= 0, then it follows that depthR(a,M) ≤ depthR(a, R) + 1.

Corollary 3.5. Let R be a local complete intersection ring of codimension c such that

R̂ = S/(x) for some unramified regular ring (S, n) and some S-regular sequence x ⊆ n2 of

length c, where c ≤ 2. Let M be a nonzero R-module, and let a be an ideal of R. Assume

M is generically free and torsion-free. Assume further M has bounded Betti numbers.

Then it follows that depthR(a,M) ≤ depthR(a, R) + 1.

Proof. Note that, as R is Cohen–Macaulay, M is generically free and torsion-free, we have

that M ∼= ΩRN for some R-module N . Since M has bounded Betti numbers, so does

N . Hence it follows that N is 2-Tor-rigid; see 2.7(iv). Furthermore, N is generically free

because M is generically free. Thus the result follows from Corollary 3.4.

Corollary 3.6. Let R be a local ring and let a be an ideal of R such that depthR(a, R) ≥ 1.

Let N be a nonzero R-module such that N is generically free and depthR(N) ≥ 1. If

M = ΩR(mN) 6= 0, then it follows that depthR(a,M) ≤ depthR(a, R) + 1.

Proof. Note that we may assume R is not Artinian. Hence, mN is generically free. More-

over, mN is 2-Tor-rigid; see 2.7(iv). Therefore, the claim follows from Corollary 3.4.

Corollary 3.7. Let R be a local ring, a be an ideal of R and let b be a Burch ideal of

R. Assume depthR(a, R) ≥ 1 and depthR(b, R) ≥ 1. Then it follows that depthR(a, b) ≤
depthR(a, R) + 1.

Proof. Note that b = ΩRN , where N = R/b is 2-Tor-rigid; see 2.7(v). Moreover, N

is generically free since depthR(b, R) ≥ 1; see 2.3(i). Hence, the result follows from

Corollary 3.4.

It is known that integrally closed ideals are Burch over local rings that have positive

depth; see [19, 2.2(3) and (4)]. Therefore, Corollary 3.7 yields

Corollary 3.8. Let R be a local ring, and let a and b be ideals of R. Assume depthR(a, R)

≥ 1 and depthR(b, R) ≥ 1. If b is integrally closed, then it follows that depthR(a, b) ≤
depthR(a, R) + 1.
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In the following corollaries, we show that condition (iv) of Theorem 3.3 holds if a is a

Cohen–Macaulay ideal, i.e., R/a is a Cohen–Macaulay ring.

Corollary 3.9. Let R be a Gorenstein local ring, N be an R-module, and let a be an ideal

of R. Set M = Ωn
RN for some integer n ≥ 1 and m = depthR(a, R). Assume the following

conditions hold:

(i) a is a Cohen–Macaulay ideal.

(ii) M 6= 0 and m ≥ n.

(iii) N is locally free on X̃n−1(R).

(iv) N is (n+ 1)-Tor-rigid.

Then it follows that depthR(a,M) ≤ m+ n.

Proof. Note that, as R/a is a Cohen–Macaulay ring, it follows depth(R/a) = dim(R) −
m, and also ExtiR(R/a, R) = 0 for i 6= m by the local duality theorem; see [7, 3.5.8].

Therefore, Tr Ωm
R (R/a) is an (n − 1)st syzygy module since ExtiR(R/a, R) = 0 for all

i = m + 1, . . . ,m + n − 1; see 2.5(i). Now, since all the hypotheses of Theorem 3.3 hold,

the required depth inequality follows from Theorem 3.3.

The next corollary corroborates Corollary 3.5.

Corollary 3.10. Let R be a local complete intersection ring of codimension c such that

R̂ = S/(x) for some unramified regular ring (S, n) and some S-regular sequence x ⊆ n2 of

length c, where c ≥ 2. Let M be a nonzero R-module, and let a be an ideal of R. Assume

the following hold:

(i) a is a Cohen–Macaulay ideal such that depth(a, R) ≥ c− 1.

(ii) cxR(M) < c.

(iii) M satisfies (S̃c−1).

(iv) M is locally free on X̃c−2(R).

Then it follows that depthR(a,M) ≤ depthR(a, R) + c− 1.

Proof. Note that, by 2.5(iii), we have M = Ωc−1
R N for some R-module N , where the

module N satisfies ExtiR(N,R) = 0 for all i = 1, . . . , c− 1. Let p ∈ X̃c−2(R). Then, since

M is locally free on X̃c−2(R), it follows pdRp
(Np) ≤ c − 1. As ExtiR(N,R) = 0 for all

i = 1, . . . , c−1, we conclude that Np is free. This shows that N is locally free on X̃c−2(R).

Furthermore, as cxR(N) = cxR(M) < c, it follows that N is c-Tor-rigid; see 2.7(iv). Hence

the result follows from Corollary 3.9 by setting n = c− 1.
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Remark 3.11. Let us note that, if c = 2 in Corollary 3.10, then the Cohen–Macaulay

assumption on the ideal a is not needed due to Corollary 3.5. Moreover, the assumption

cxR(M) < c in Corollary 3.10 implies the vanishing of the eta function if R is an isolated

singularity; in this case M would be a c-Tor-rigid module; see [14, 6.3 and 6.8]. In the

appendix we recall the definition of the eta function and discuss some of its applications

that are related to our results.

4. Proof of Proposition 2.8

In this section we prove Proposition 2.8. For its proof we need some basic facts which we

recall next for the convenience of the reader; see, for example, [38, 1.2, 1.4 and 3.2].

4.1. Let R be a ring, x ∈ R and let A, B and C be R-modules. Set σ = (0→ A
f−→ B

g−→
C → 0) ∈ Ext1R(C,A).

(i) The connecting homomorphism HomR(C,C) → Ext1R(C,A) is given by the rule

γ 7→ E, where E = (0→ A→ Z → C → 0) is the short exact sequence obtained by

the following pull-back diagram:

0 // A
f // B

g //

PB

C // 0

0 // A // Z //

OO

C //

γ

OO

0.

(ii) The multiplication homomorphism A
x−→ A induces a homomorphism Ext1R(C,A)

x−→
Ext1R(C,A) which sends σ to σ′, where σ′ = (0 → A → W → C → 0) is the short

exact sequence obtained by the following push-out diagram:

0 // A
f //

x
��

PO

B
g //

��

C // 0

0 // A //

��

W //

��

C // 0

A/xA

��

A/xA

��
0 0.

Therefore, it follows that σ′ ∈ x · Ext1R(C,A).

Moreover, the diagram above induces the following commutative diagram where the
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leftmost square is a pushout square:

0 // ΩRA //

x

��
PO

ΩRB //

��

ΩRC // 0

0 // ΩRA // ΩRW // ΩRC // 0.

Therefore, it follows that the bottom short exact sequence 0 → ΩRA → ΩRW →
ΩRC → 0 belongs to x · Ext1R(ΩRC,ΩRA).

(iii) The multiplication homomorphism C
x−→ C induces a homomorphism Ext1R(C,A)

x−→
Ext1R(C,A) which sends σ to σ′′, where σ′′ = (0 → A → V → C → 0) is the short

exact sequence obtained by the following pull-back diagram:

0 0

C/xC

OO

C/xC

OO

0 // A
f // B

g //

OO

PB

C //

OO

0

0 // A // V //

OO

C //

x

OO

0.

Therefore, it follows that σ′′ ∈ x · Ext1R(C,A).

Lemma 4.2. Let R be a ring, x ∈ R and let N be an R-module. Then the following are

equivalent.

(i) The multiplication map N
x−→ N factors through a free R-module.

(ii) x · ExtiR(N,−) = 0 for each i ≥ 1.

(iii) x · Ext1R(N,ΩRN) = 0.

Furthermore, if one of these equivalent conditions holds and x is a non zero-divisor on N ,

then there is an isomorphism ΩR(N/xN) ∼= N ⊕ ΩRN .

Proof. Note that the implication (ii) ⇒ (iii) is trivial. Hence we show (i) ⇒ (ii) and (iii)

⇒ (i).

To establish (i) ⇒ (ii), we assume N
x−→ N factors through a free R-module F , i.e.,

there exist R-module homomorphisms f and g such that N
f−→ F

g−→ N , where gf =

x · 1N . Now let X be an R-module and n ≥ 1 be an integer. Then f and g induce R-

module homomorphisms f∗ and g∗ such that ExtnR(N,X)
g∗−→ ExtnR(F,X)

f∗−→ ExtnR(N,X),
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where f∗g∗ = x · 1ExtnR(N,X). As ExtnR(F,X) vanishes, we conclude that f∗g∗ = 0, i.e.,

x · ExtnR(N,X) = 0. This proves the implication (i) ⇒ (ii).

Next consider the syzygy exact sequence E = (0 → ΩRN → G
p−→ N → 0), where

G is free. This induces the exact sequence 0 → HomR(N,ΩRN) → HomR(N,G)
p∗−→

HomR(N,N)→ Ext1R(N,ΩRN). Note that 1N 7→ E under the connecting homomorphism

HomR(N,N) → Ext1R(N,ΩRN); see 4.1(i). So the image of the map N
x−→ N under the

connecting homomorphism belongs to x · Ext1R(N,ΩRN).

Now assume x ·Ext1R(N,ΩRN) = 0. Then the multiplication map N
x−→ N is in im(p∗),

and hence it factors through the free module G. Consequently, (iii) ⇒ (i) follows.

Next assume x is a non zero-divisor on N . Then we consider the multiplication map

N
x−→ N and make use of 4.1(iii) with the exact sequence E, and obtain short exact

sequences of R-modules:

E1 = (0→ V → G→ N/xN → 0)

and

E2 = (0→ ΩRN → V → N → 0) ∈ x · Ext1R(N,ΩRN) = 0.

Now E2 splits so that E1 yields the isomorphism ΩR(N/xN) ∼= V ∼= N ⊕ ΩRN , as

required.

Next we use Lemma 4.2 and give a proof of Proposition 2.8. We also need the following

fact.

4.3. Let R be a local ring and let 0 → A → B → C → 0 be a short exact sequence of

R-modules. Then there is a short exact sequence 0→ ΩRC → A⊕H → B → 0, where H

is a free R-module; see, for example, [21, 2.2]. Therefore, if A is free, then ΩRC ∼= ΩRB.

Proof of Proposition 2.8. Note that, since x is R-regular and M is an nth syzygy module,

we see that x is also M -regular; see 2.5(ii). We proceed by induction on n. First assume

n = 1.

As in the proof of Lemma 4.2, we look at the syzygy exact sequence E = (0→ ΩRN →
F → N → 0), where F is free. Then, by using the multiplication map M

x1−→ M and

4.1(ii), we obtain short exact sequences of R-modules of the form

E1 = (0→ F →W →M/xM → 0)

and

E2 = (0→ ΩRN →W → N → 0) ∈ x1 · Ext1R(N,ΩRN) = 0.

Now E2 splits, and hence E1 yields the required short exact sequence.
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Next we assume n > 1, and set N ′ = N ⊕ΩRN , M ′ = Ωn−1
R N ′ ∼= Ωn−1

R N ⊕Ωn
RN , and

x′ = x1, . . . , xn−1. Note that it follows

Ext1R(N ′,ΩRN
′) = Ext1R(N,ΩRN)⊕ Ext1R(N,Ω2

RN)

⊕ Ext2R(N,ΩRN)⊕ Ext2R(N,Ω2
RN).

(4.1)

As x · Ext1R(N,ΩRN) = 0, we see from Lemma 4.2 that x · ExtiR(N,−) = 0 for all

i ≥ 1. Therefore, by (4.1), we conclude that x, and hence x′ annihilates the module

Ext1R(N ′,ΩRN
′). Thus the following short exact sequence exists due to the induction

hypothesis:

(4.2) 0→ F ′ →
n−1⊕
i=0

Ωi+n−2
R (N ′)⊕(n−1

i ) → Ωn−2
R (M ′/x′M ′)→ 0,

where F ′ is a free R-module. Furthermore, as M ′ = Ωn−1
R N ′, we use 4.3 along with (4.2)

and obtain

(4.3) Ωn−1
R (M ′/x′M ′) ∼=

n−1⊕
i=0

Ωi
R(M ′)⊕(n−1

i ).

Recall that M = Ωn
RN . Hence there is a short exact sequence 0 → M → F →

Ωn−1
R N → 0 for some free R-module F . It follows, since x′ is R-regular, that x′ is Ωn−1

R N -

regular; see 2.5(ii). So we have a short exact sequence of the form

0→M/x′M
α−→ F/x′F → Ωn−1

R N/x′Ωn−1
R N → 0.

We take the pushout of α and the injective map M/x′M
xn−→ M/x′M , and obtain the

following commutative diagram:

0

��

0

��
0 //M/x′M

α //

xn

��
PO

F/x′F //

��

Ωn−1
R (N)/x′Ωn−1

R (N) // 0

0 //M/x′M //

��

W //

��

Ωn−1
R (N)/x′Ωn−1

R (N) // 0

M/xM

��

M/xM

��
0 0.

(4.4)

Note that the short exact sequence

0→ Ωn−1
R (M/x′M)→ Ωn−1

R W → Ωn−1
R (Ωn−1

R N/x′Ωn−1
R N)→ 0
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belongs to xn · Ext1
(
Ωn−1
R (Ωn−1

R N/x′Ωn−1
R N),Ωn−1

R (M/x′M)
)
; see (4.4) and 4.1(ii).

Next note that we have the following isomorphisms

(4.5) Ext1R(Ωn−1
R (M ′/x′M ′),−) ∼=

n−1⊕
i=0

Exti+1
R (M ′,−)⊕(n−1

i ) ∼=
2n⊕
i=n

ExtiR(N,−)⊕r(i),

where r(i) is a positive integer depending on i. The first isomorphism in (4.5) is due to

(4.3), while the second one follows from the fact that M ′ ∼= Ωn−1
R N ⊕ Ωn

RN .

Recall that Ωn−1
R N is a direct summand of M ′. Therefore, Ωn−1

R (Ωn−1
R N/x′Ωn−1

R N) is a

direct summand of Ωn−1
R (M ′/x′M ′). This implies that Ext1

(
Ωn−1
R (Ωn−1

R N/x′Ωn−1
R N),−

)
is a direct summand of

⊕2n
i=n ExtiR(N,−)⊕r(i); see (4.5). It follows, since x·ExtiR(N,−) = 0

for all i ≥ 1, that xn annihilates each direct summand of ExtiR(N,−) for each i ≥ 1; in

particular, we conclude that xn·Ext1R
(
Ωn−1
R (Ωn−1

R N/x′Ωn−1
R N),Ωn−1

R (M/x′M)
)

= 0. This

implies that the bottom short exact sequence in (4.4) splits so that we have the following

isomorphism

(4.6) Ωn−1
R W ∼= Ωn−1

R (M/x′M)⊕ Ωn−1
R (Ωn−1

R N/x′Ωn−1
R N).

Recall that, by (4.4), we have a short exact sequence 0→ F/x′F →W →M/xM → 0.

Hence, by taking syzygy and using (4.6), we obtain the exact sequence

(4.7)

0→ Ωn−1
R (F/x′F )→ Ωn−1

R (M/x′M)⊕ Ωn−1
R (Ωn−1

R N/x′Ωn−1
R N)→ Ωn−1

R (M/xM)→ 0.

The minimal free resolution F• of F/x′F is of the form 0 → F → F⊕n−1 → · · · →
F⊕n−1 → F → 0 since Hi(F• ⊗R K(x′;R)) = TorRi (F,R/x′R) = 0 for all i ≥ 0, where

K(x′;R) is the Koszul complex of R with respect to x′. Therefore, it follows that

(4.8) Ωn−1
R (F/x′F ) ∼= F.

We have the following isomorphisms about the middle module in the short exact se-

quence (4.7):

Ωn−1
R (M/x′M)⊕ Ωn−1

R (Ωn−1
R N/x′Ωn−1

R N)

∼= Ωn−1
R (M ′/x′M ′) ∼=

n−1⊕
i=0

Ωi
R(M ′)⊕(n−1

i ) ∼=
n−1⊕
i=0

(Ωi+n−1
R N ⊕ Ωi+n

R N)⊕(n−1
i )

∼=

[
n−1⊕
i=0

(Ωi+n−1
R N)⊕(n−1

i )

]
⊕

[
n⊕
i=1

(Ωi+n−1
R N)⊕(n−1

i−1)

]

∼=
[
(Ωn−1

R N)⊕(n0)
]
⊕

[
n−1⊕
i=1

(Ωi+n−1
R N)⊕(ni)

]
⊕
[
(Ω2n−1

R N)⊕(nn)
]

∼=
n⊕
i=0

(Ωi+n−1
R N)⊕(ni).

(4.9)
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Since M ′ ∼= Ωn−1
R N ⊕ Ωn

RN = Ωn−1
R N ⊕M , the first and the third isomorphisms in (4.9)

follow, while the second isomorphism is nothing but (4.3). The other isomorphisms are

elementary.

Now, in view of (4.8) and (4.9), we conclude that the short exact sequence in (4.7)

is the required one. This completes the induction argument and hence the proof of the

proposition.

We end this section with a consequence of Proposition 2.8 which corroborates [29, 2.1]

and [45, 2.2].

Corollary 4.4. Let R be a local ring, N a nonzero R-module, and let M = Ωn
RN for

some n ≥ 1. Assume there is an R-regular sequence x = x1, . . . , xn of length n such that

x · Ext1R(N,ΩRN) = 0. Then the following isomorphism holds:

Ωn
R(M/xM) ∼=

n⊕
i=0

Ωi
R(M)⊕(ni).

Proof. It follows from Proposition 2.8 that we have the following short exact sequence

0 −→ F −→
n⊕
i=0

(Ωi+n−1
R N)⊕(ni) −→ Ωn−1

R (M/xM) −→ 0,

where M = Ωn
RN . Therefore 4.3 yields the short exact sequence

0 −→ ΩR(Ωn−1
R (M/xM)) −→ F ⊕G −→

n⊕
i=0

(Ωi+n−1
R N)⊕(ni) −→ 0,

where G is a free R-module. Hence, we conclude that

Ωn
R(M/xM) ∼= ΩR

(
n⊕
i=0

(Ωi+n−1
R N)

)⊕(ni)
∼=

n⊕
i=0

(Ωi+n
R N)⊕(ni) ∼=

n⊕
i=0

Ωi
R(M)⊕(ni).

A. On Tor-rigid modules over complete intersection rings

It is known that a module of finite projective dimension over a local ring is not necessarily

Tor-rigid; see [27]. On the other hand, if the ring considered is a hypersurface that is

quotient of an unramified regular local ring, then each R-module that has finite projective

dimension turns out to be Tor-rigid; see 2.7(ii). This result was generalized by Dao by

using the theta function θR(−,−); more precisely, Dao proved that, if R is a hypersurface

as before and M and N are R-modules such that θR(M,N) = 0, then the pair (M,N) is

Tor-rigid, where θR(M,N) = lengthR(TorR2n(M,N))− lengthR(TorR2n−1(M,N)) for n� 0;

see [15, 2.1] for the details. It should be noted that this function has been initially defined

by Hochster [32] to study the direct summand conjecture, which is now a theorem [1].
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The theta function is a natural extension of Serre’s intersection multiplicity and it has

been proved to be a very useful tool to study Tor-rigidity and other subtle problems. For

example, Gabber [24] conjectured that the Picard group of the punctured spectrum of a

complete intersection ring of dimension three is torsion-free; see also [13]. Dao [16] proved

Gabber’s aforementioned conjecture for the hypersurface case by using techniques that

rely upon the usage of the theta function. More on the history, conjectures, applications,

and results concerning the theta function can be found in the survey article [18] and also

in [11,17,20,40,41,46].

In this section we obtain another generalization of the fact that modules of finite

projective dimension are Tor-rigid over hypersurfaces. We observe that modules that are

eventually periodic of odd period are Tor-rigid over hypersurfaces that are quotient of

unramified regular local rings. In fact, we show that such periodic modules are c-Tor-

rigid over complete intersections of codimension c; see A.4. In particular, we conclude

that modules that are eventually periodic of odd period satisfy the depth inequality of

Theorem 1.1; see A.5.

The main tool we use in this section is the eta function ηR(−,−) introduced by Dao [14].

We recall its definition next but first let us note that the eta function is an extension of

the theta function discussed previously. In fact, the eta function equals, under some mild

conditions, to Serre’s intersection multiplicity over regular rings, to two times the theta

function over hypersurface rings, and to a constant factor of a notion of Gulliksen over

complete intersection rings; see [14, 4.4] for the details. We also refer the interested reader

to [9] for a function which is defined in terms of the Ext functor and which is analogous

to the eta function.

Throughout, R denotes a local complete intersection ring such that the m-adic com-

pletion R̂ of R is of the form S/(x) for some unramified (or equi-characteristic) regular

ring (S, n) and some S-regular sequence x ⊆ n2 of length c, where c ≥ 1. Note that this

setup does not necessarily imply that R itself can be expressed as such a quotient; see [28].

A.1. (see [14, 4.2, 4.3(1), 5.4]; see also [9, 3.3]) Let M and N be R-modules such that

TorRi (M,N) has finite length for all i� 0. Set

f = inf{s : lengthR(TorRi (M,N)) <∞ for all i ≥ s}.

Then the eta function ηR(M,N) is defined as follows:

ηR(M,N) = lim
n→∞

∑n
i=f (−1)i lengthR(TorRi (M,N))

nc
.

In the following we collect some properties of the eta function.

A.2. Let M and N be R-modules.
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(i) If ηR(M,N) = 0, then the pair (M,N) is c-Tor-rigid; see 2.7 and [14, 6.3]. For

example, if c = 1 and R is a simple hypersurface singularity of even dimension, then

it follows that ηR(M,N) = 0 for all R-modules M and N so that each module is

Tor-rigid over R; see [14, 4.4] and [17, 3.16].

(ii) The eta function is additive whenever it is defined. If 0→M ′ →M →M ′′ → 0 is a

short exact sequence of R-modules such that TorRi (M ′, N) and TorRi (M ′′, N) have

finite length for all i� 0, then it follows that ηR(M,N) = ηR(M ′, N) +ηR(M ′′, N);

see [14, 4.3(2)].

We proceed to observe that modules that are eventually periodic of odd period are

c-Tor-rigid over R. Note that this property is not true for eventually periodic modules of

even period; when c = 1, modules over R are eventually periodic of period two [22], but

they are not necessarily Tor-rigid, in general.

A.3. Let N be an R-module such that N is eventually periodic of odd period, i.e.,

Ωn
RN

∼= Ωn+q
R N for some odd integer q and for all n � 0. If X is an R-module and

TorRi (N,X) has finite length for all i� 0, then the pair (N,X) is c-Tor-rigid over R.

To see this, first note that ηR(N,X) is well-defined; see A.2. Moreover, for n� 0, the

following equalities hold:

ηR(N,X) = (−1)nηR(Ωn
RN,X) = (−1)nηR(Ωn+q

R N,X)

= (−1)n(−1)n+qηR(N,X) = −ηR(N,X).

Here, the first and third equalities are due to A.2(ii), while the second one follows by

the hypothesis. Consequently, we conclude ηR(N,X) = 0, and this implies that the pair

(N,X) is c-Tor-rigid; see A.2(i).

A.4. Let N be an R-module such that Ωn
RN
∼= Ωn+q

R N for some odd integer q and for all

n� 0. Then it follows that N is c-Tor-rigid.

To see this, let X be an R-module with TorR1 (N,X) = · · · = TorRc (N,X) = 0. We set

r = dimR(N ⊗R X) and proceed by induction on r to show that TorRi (N,X) = 0 for all

i ≥ 1.

If r ≤ 0, then the claim follows from A.3. So we assume r ≥ 1, and pick p ∈
SuppR(N ⊗R X) such that p 6= m. Note that Ωn

Rp
Np
∼= Ωn+q

Rp
Np for all n � 0. Then

it follows by the induction hypothesis that TorRi (N,X)p = 0 for all i ≥ 1. This shows that

TorRi (N,X) has finite length for all i ≥ 1. Hence, by A.3, the pair (N,X) is c-Tor-rigid

over R. Thus, as TorR1 (N,X) = · · · = TorRc (N,X) = 0, we conclude that TorRi (N,X)

vanishes for each i ≥ 1, as claimed.

A.5. Let R be a hypersurface ring, a be an ideal of R, and let N be an R-module.
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(i) Let N be an R-module which is eventually periodic of odd period. Then N is neces-

sarily eventually periodic of period one as it is already eventually periodic of period

two. Then it follows that N is Tor-rigid and hence depthR(a, N) ≤ depthR(a, R);

see Theorem 1.1 and A.4.

(ii) If ΩRN ∼= M ⊕ ΩRM for some R-module M , then it follows from part (i) that N

is Tor-rigid over R and hence depthR(a, N) ≤ depthR(a, R): this is because M is

eventually periodic of period at most two [22] and hence N is eventually periodic of

period one.

If R is hypersurface, then it is clear that modules of the form M ⊕ΩRM are Tor-rigid

over R; see 2.7(ii). On the other hand, the fact that modules as in A.5(ii) are Tor-rigid over

R seems interesting to us since a module over a hypersurface ring need not be Tor-rigid

in general, even if its syzygy module is Tor-rigid.

B. An example about Tor-rigidity

In this section we give an example of a ring and modules that do not satisfy the hypotheses

of Theorem 1.4. Let us note that the ring we construct is a four-dimensional local domain

that is not Cohen–Macaulay.

Example B.1. Let k be an algebraically closed field, R = k[x1, x2, x3]/(x
3
1 + x32 + x33),

and let S = k[y1, y2, y3]. Then R and S are standard graded rings of dimension 2 and 3,

respectively. Moreover, both R and S are Cohen–Macaulay.

Let T = R#S =
⊕

n≥0Rn ⊗k Sn, the Segre product of R and S, which is a subring of

R⊗k S. Then T is a graded normal domain; see [25, Remark 4.0.3(v)]. Set M = R(1)#S,

where R(1) is the graded shift of R by one, that is, R(1)n = Rn+1 for each n ≥ 0. Then

it follows that dim(T ) = 4 and depth(T ) = 2; see [25, 4.1.5 and 4.2.3] (note depth is

computed here for the graded ring by using local cohomology in view of the fact that

the a-invariants of R and S are 0 and −3, respectively). Then we see from [25, 4.4.13]

that M is a small (that is, finitely generated) maximal Cohen–Macaulay T -module, i.e.,

depthT (M) = 4.

Set f = x31 + x32 + x33 ∈ k[x1, x2, x3]. Then one can check that

T ∼=
(
k[x1, x2, x3]#k[y1, y2, y3]

)
/(f ⊗ k[y1, y2, y3]3)

∼= k[xiyj | 1 ≤ i, j ≤ 3]/(fy31, fy
2
1y2, fy

2
1y3, fy1y

2
2, fy1y2y3, fy1y

2
3, fy

3
2, fy

2
2y3, fy2y

2
3, fy

3
3).

Note, as R(1) = Rx1 + Rx2 + Rx3, it follows that M = Tx1 + Tx2 + Tx3. So y1M =

Ty1x1+Ty1x2+Ty1x3, and hence there is an injective map M → T given by multiplication

by y1 as y1x1, y1x2, and y1x3 are elements of T . This implies that M ∼= y1M and M is
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isomorphic to an ideal of T . Therefore M is a torsion-free T -module so that M ∼= ΩT (N)

for some T -module N .

Next we consider the complete local ring T̂ , which is obtained by taking the completion

of T at its graded maximal ideal T+. Note that dim(T̂ ) = 4, depth(T̂ ) = 2, M̂ ∼=
Ω
T̂

(N̂), and M̂ is a small maximal Cohen–Macaulay T̂ -module. Note also that, since M

is generically free over T , we deduce that M̂ is generically free over T̂ . Moreover, if a is

the maximal ideal of T̂ , then we have

depth
T̂

(a, M̂) = 4 > 3 = depth
T̂

(a, T̂ ) + 1.

Therefore we conclude from Theorem 1.1 that M̂ is not Tor-rigid over T̂ , and conclude

from Theorem 1.4 that N̂ is not 2-Tor-rigid over T̂ ; see also Theorem 3.3.

Next we give an explicit description of T , M and N .

Note that k[xiyj | 1 ≤ i, j ≤ 3] ∼= k[zij | 1 ≤ i, j ≤ 3]/I. Here the isomorphism is

given by xiyj ↔ zij , and I is the ideal generated by 2-minors of the matrix
(
z11 z12 z13
z21 z22 z23
z31 z32 z33

)
.

Therefore

T ∼= k[zij | 1 ≤ i, j ≤ 3]/J,

where J is the ideal generated by

z311 + z321 + z331, z211z12 + z221z22 + z231z32, z211z13 + z221z23 + z231z33,

z11z
2
12 + z21z

2
22 + z31z

2
32, z11z12z13 + z21z22z23 + z31z32z33, z11z

2
13 + z21z

2
23 + z31z

2
33,

z312 + z322 + z332, z212z13 + z222z23 + z232z33, z12z
2
13 + z22z

2
23 + z32z

2
33, z313 + z323 + z333,

z11z22 − z21z12, z11z23 − z21z13, z12z23 − z22z13, z11z32 − z31z12,

z11z33 − z31z13, z12z33 − z32z13, z21z32 − z31z22, z21z33 − z31z23, z22z33 − z32z23.

Note that the T -module M is given by a presentation

T⊕15
A−→ T⊕3 →M → 0,

where A can be computed by Macaulay2 [26] as follows: z23 z22 z21 z13 z12 z11 0 0 0 z233 z32z33 z31z33 z232 z31z32 z231

−z33 −z32 −z31 0 0 0 z13 z12 z11 z223 z22z23 z21z23 z222 z21z22 z221

0 0 0 −z33 −z32 −z31 −z23 −z22 −z21 z213 z12z13 z11z13 z212 z11z12 z211

.
Similarly N is given by a presentation

T⊕3
B−→ T⊕3 → N → 0,

where B can be computed by Macaulay2 [26] as follows:
z33 z23 z13

z32 z22 z12

z31 z21 z11

 .
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