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Uniform Stabilization for a Semilinear Wave Equation with Variable

Coefficients and Nonlinear Boundary Conditions

El-Hadi Kamel*, Abdelhamid Ainouz and Ammar Khemmoudj

Abstract. The uniform stabilization of a semilinear wave equation with variable coef-

ficients and nonlinear boundary conditions is considered. The uniform decay rate is

established by the Riemannian geometry method.

1. Introduction

Let Ω be an open bounded domain in Rn with a smooth boundary Γ. We assume that

Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are closed subsets of Γ with Γ0 ∩ Γ1 = ∅. Moreover, we

assume meas(Γ1) 6= 0, where meas denotes the (n− 1)-dimensional Hausdorff measure.

Consider the following problem

(1.1)



u′′ +Au+ f1(u, x) = 0 in Ω× (0,+∞),

u(x, t) = 0 on Γ0 × (0,+∞),

∂u
∂νA

(x, t) = −f2(u, x)− c3(x)u′ on Γ1 × (0,+∞),

u(x, 0) = u0, u′(x, 0) = u1(x) in Ω,

where

Au = −div(A(x)∇u), x = [x1, . . . , xn],

A = (aij) is a matrix function, aij = aji are C∞ functions in Rn, ν is the unit normal of

Γ pointing toward the exterior of Ω and νA = Aν.

Assumptions.

(A1) We suppose that the second-order differential operator A satisfies the uniform ellip-

ticity condition

n∑
i,j=1

aij(x)ξiξj > λ

n∑
i,j=1

ξ2
i , x ∈ Ω, 0 6= ξ = (ξ1, ξ2, . . . , ξn)T ∈ Rn
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for some constant λ > 0 and assume further that

(1.2)
n∑

i,j=1

aij(x)ξiξj > 0, x ∈ Rn, 0 6= ξ = (ξ1, ξ2, . . . , ξn)T ∈ Rn.

(A2) We assume

(1.3) c3(x) ∈ L∞(Γ1), c3(x) ≥ c0 > 0 a.e. in Γ1.

(A3) Let f1 : R× Ω→ R be a continuous function in R× Ω and differentiable in its first

variable such that

|f1(u, y)| ≤ c1(|u|ρ+1 + |u|+ 1),

∣∣∣∣∂f1

∂u
(u, y)

∣∣∣∣ ≤ c1(|u|ρ + 1) and f1(0, y) = 0,

where

c1 > 0, 0 < ρ <∞ if n = 2 and 0 < ρ <
2

n− 2
if n ≥ 3.

We also assume that

F1(u, y) ≥ 0,(1.4)

∃ η1 > 0 : (1 + η1)F1(u, y) ≤ f1(u, y)u,(1.5)

where

F1(z, y) =

∫ z

0
f1(s, y) ds.

(A4) Let f2 : R× Ω→ R be a continuous function in R× Ω and differentiable in its first

variable such that

|f2(u, y)| ≤ c2(|u|q−1 + |u|+ 1) and f2(0, y) = 0,

where c2 > 0, 3/2 ≤ q < ∞ if n = 2, and 3/2 < q < (2n − 3)/(n − 2) if n ≥ 3. We

also assume that

F2(u, y) ≥ 0,(1.6)

∃ η2 > 0 : (1 + η2)F2(u, y) ≤ f2(u, y)u,(1.7)

where

F2(z, y) =

∫ z

0
f2(s, y) ds.

The problems of control and stabilization of the wave equations have been studied

by several authors when A ≡ I. For the internal stabilization, Y. You proved in [28],

the energy decay and the exact controllability for the Petrovsky equation with linear
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and nonlinear damping. See also [6], where the author studied the decay estimate of

the wave equation with a local degenerate linear dissipation in a bounded domain. For

the case of nonlinear damping, we have also numerous writing, as [13] of I. Lasiecka and

D. Toundykov, the authors proved the energy decay rates for the semilinear wave equation

with nonlinear localized damping and source terms, or S. Berrimi and S. A. Messaoudi

in [1] about the exponential Decay of solutions to a viscoelastic equation with nonlinear

localized damping.

Regarding the boundary stabilization, when the boundary conditions are linear, we

may mention among the achieved results, the works [9,25]. When the boundary conditions

are nonlinear, many results have also been obtained, see for instance [7, 10–12,29].

Concerning the wave equations with memory term, the stabilization and exponential

decay were studied by many writers for viscoelastic wave equations, see for instance [1,2,

4, 8, 21].

As regards the controllability and stabilization of the wave equations with variable

coefficients by using the Riemannian geometry method, this method is introduced by P.-

F. Yao in [27], the author established the observability inequality for exact controllability

of wave equations with variable coefficients by the Riemannian geometry method under

some geometric conditions for the Dirichlet problem and for the Neumann problem and

presented a number of nontrivial examples to verify the observability inequality. Then,

many authors followed the study of stabilization using the Riemannian geometry method

for more generalized cases, see for instance [2, 3, 5, 16,17,19,20].

Our main goal is to prove the uniform stabilization for a semilinear wave equation with

variable coefficients and nonlinear boundary conditions f2(u, x), by considering a boundary

feedback c3(x)u′, i.e., we establish under Assumptions (A1)–(A4) that the energy associ-

ated to problem (1.1) is convergent exponentially to 0 when t → ∞ (see Theorem 3.2).

To do this, we combine the Riemannian geometry method, developed by P.-F. Yao [27]

and the method developed by I. Lasiecka in [11] and then by I. Lasiecka and D. Tataru

in [12], and we finally complete the proof of Theorem 3.2 by using the semi group theory.

This paper is organized as follows: In Section 2, we present the definitions and no-

tations on Riemannian geometry. We state the main result in Section 3 and prove it in

Section 4.

2. Notations on Riemannian geometry

All definitions and notations are standard and classical in literature, see [26,27]. Define

G(x) = [A(x)]−1 = (gij(x)), i, j = 1, . . . , n, x ∈ Rn.

For each x ∈ Rn, we define the inner product and the norm on the tangent space
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Rnx = Rn by

g(X,Y ) = (X,Y )g =

n∑
i,j=1

gij(x)αiβj , |X|g = (X,X)1/2
g , ∀X =

n∑
i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
.

It is easily checked from (1.2) that (Rn, g) is a Riemannian manifold with the Riemannian

metric g.

Denote by ∇0f and div0(X) the gradient of f and the divergence of X in the Euclidean

metric, respectively, where

(2.1) ∇0f =
n∑
i=1

∂f

∂xi

∂

∂xi
and div0(X) =

n∑
i=1

∂αi(x)

∂xi
.

Define the gradient ∇gf of f in the Riemannian metric g, via the Riesz representation

theorem, by

(2.2) X(f) = 〈∇gf,X〉g, f ∈ C1(Ω),

where X is a vector field on the manifold (Rn, g). The next lemma (see [27, Lemma 2.1])

will be used to prove many results in this paper.

Lemma 2.1. Let X = [x1, . . . , xn] be the natural coordinate system in Rn. Let f, h ∈
C1(Ω). Finally, let H, X be vector fields. Then, with reference to the above notation, we

have

〈H(x), A(x)X(x)〉g = H(x) ·X(x), x ∈ Rn,(2.3)

∇gf(x) =
n∑
i=1

 n∑
j=1

aij(x)
∂f

∂xi

 = A(x)∇0f, x ∈ Rn.(2.4)

If X =
∑n

i=1 ξi
∂
∂xi

, then by (2.2) and (2.4),

X(f) = 〈∇gf,X〉g = 〈A(x)∇0f,X〉g = ∇0f ·X =

n∑
i=1

ξi
∂f

∂xi
,

by (2.2)–(2.4),

〈∇gf,∇gh〉g = ∇gf(h) = 〈A(x)∇0f,∇gh〉g
= ∇0f · ∇gh = ∇0fA(x)∇0h, x ∈ Rn.

(2.5)

If H is a vector field on (Rn, g),

〈∇gf,∇g(H(f))〉g = DH〈∇gf,∇gf〉g +
1

2
div0(|∇gf |2gH)(x)

− 1

2
(|∇gf |2g(x))(div0H)(x), x ∈ Rn,

(2.6)
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where DH is the covariant differential. By (1.1), (2.1) and (2.4),

A = −
n∑
i=1

∂

∂xi

 n∑
j=1

aij(x)
∂u

∂xj

 = −div0(A(x)∇0u) = −div0(∇gu), u ∈ C2(Ω).

Let H be a vector field on (Rn, g). The covariant differential DH of H determines a

bilinear form on Rnx × Rnx, for each x ∈ Rn, defined by

DH(Y,X) = 〈DXH,Y 〉g, ∀X,Y ∈ Rnx,

where D and DXH are the Levi-Civita connection in the Riemannian metric g and the

covariant derivative of H with respect to X respectively.

In order to obtain the uniform stabilization of problem (1.1), we need the following

assumption.

(A5) There exists a vector field H on the Riemannian manifold (Rn, g) such that

(2.7) DH(X,X) ≥ b|X|2g, ∀X ∈ Rnx, x ∈ Ω

for some b > 0. We also assume that H satisfies

H · ν

≤ 0 if x ∈ Γ0,

≥ δ > 0 if x ∈ Γ1

for some positive δ.

Remark 2.2. The existence of a vector field satisfying Assumption (A5) has been proven

in [27], where some examples are given. In particular, for A = I, we can take H = x−x0.

Figure 2.1 represents an example of a domain Ω satisfying the above conditions.

Γ1

Ω

Γ0

Figure 2.1

Let H be a vector field on Rn and f ∈ C1(Ω). Then, from [27], we have the formula

for divergence in the Euclidean metric

(2.8) div0(fH) = f div0(H) +H(f)

and

(2.9)

∫
Ω

div0(H) dx =

∫
Γ
H · ν dσ.
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3. Main result

In the sequel, we denote Q = Ω× ]0, T [ , Σ = Γ× ]0, T [ , Σi = Γi× ]0, T [ , i = 0, 1 and

‖u‖pLp(Ω) =
∫

Ω u
p dx for 1 ≤ p <∞. Set

H1
Γ0

(Ω) =
{
u ∈ H1(Ω);u|Γ0

= 0
}
,

and consider the Hilbert space

H = H1
Γ0

(Ω)× L2(Ω)

equipped with the inner product

〈U, V 〉H =

∫
Ω
〈∇gu1,∇gv1〉g dx+

∫
Ω
u2v2 dx,

where U = ( u1
u2 ), V = ( v1

v2 ).

Multiplying the first equation in problem (1.1) by u′ and using Green’s formula, we

obtain

d

dt

{
1

2
‖u′‖2L2(Ω) +

1

2

∫
Ω
|∇gu|2g dx+

∫
Ω
F1(u, x) dx+

∫
Γ1

F2(u, x) dσ

}
= −c3(x)‖u′‖2L2(Γ1) = E′(t).

(3.1)

Then the energy E is defined by

E(t) =
1

2

{
‖u′‖2L2(Ω) +

∫
Ω
|∇gu|2g dxdσ

}
+

∫
Ω
F1(u, x) dx+

∫
Γ1

F2(u, x) dx.

Integrating (3.1) over (0, t), we have

(3.2) E(t)− E(0) = −c3(x)

∫ t

0
‖u′‖2L2(Γ1) ds ≤ 0, ∀ t > 0.

Therefore, the energy is a decreasing function of time.

Theorem 3.1. Under Assumptions (A1)–(A4), we suppose that f1(u, x) and f2(u, x) are

Lipschitz continuous on u. Then, for each initial data (u0, u1) ∈ H, problem (1.1) has a

unique solution u such that

(u, u′) ∈ C(0, T ;H1
Γ0

(Ω))× C(0, T ;L2(Ω)).

Theorem 3.1 can be proven by using Faedo Galerkin method (cf. J. L. Lions [18]). Our

stability result is as follows.

Theorem 3.2. Assume that Assumptions (A1)–(A4) are fulfilled. Let u be the solution

of problem (1.1). Let H be a vector field on (Rn, g) satisfying Assumption (A5). Then,

for every constant M > 1, there exists a constant w > 0 such that

E(t) ≤Me−wtE(0), ∀ t ≥ 0.
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4. Proof of main result

In this section we will prove Theorem 3.2 by several steps, to do this, we need to state

some results.

Lemma 4.1. [27, Proposition 2.1, Part 1] Let u be a solution of the following problem

(4.1) u′′ +Au+ f1(u, x) = 0 in Ω× (0,+∞).

Let H be a vector field in Ω. Then∫ T

0

∫
Γ

∂u

∂νA
H(u) dσdt+

1

2

∫ T

0

∫
Γ
(|u′|2 − |∇gu|2g)H · ν dσdt

=

∫
Ω
u′H(u)

∣∣T
0

+

∫ T

0

∫
Ω
DH(∇gu,∇gu) dxdt

+
1

2

∫ T

0

∫
Ω

(|u′|2 − |∇gu|2g) div0H dxdt+

∫ T

0

∫
Ω
f1(u, x)H(u) dxdt.

(4.2)

Proof. We multiply (4.2) by H(u) and integrate in Ω, we obtain∫
Ω
u′′H(u) dx+

∫
Ω
AuH(u) dx+

∫
Ω
f1(u, x)H(u) dx = 0.

Using Green’s formula and Lemma 2.1, parts (2.4), (2.5) and (2.6), we obtain∫
Ω
AuH(u) dx =

∫
Ω

n∑
i,j=1

aij(x)
∂u

∂xj

∂

xi
(H(u)) dx−

∫
Γ

∂u

∂νA
H(u) dσ

=

∫
Ω
∇gu(H(u)) dx−

∫
Γ

∂u

∂νA
H(u) dσ

=

∫
Ω
〈∇gu,∇g(H(u))〉g dx−

∫
Γ

∂u

∂νA
H(u) dσ

=

∫ T

0

∫
Ω
DH(∇gu,∇gu) dxdt+

1

2

∫ T

0

∫
Γ
|∇gu|2gH · v dσdt

−
∫

Γ

∂u

∂νA
H(u) dσ − 1

2

∫ T

0

∫
Ω
|∇gu|2g div0(H) dxdt.

(4.3)

On the other hand, integrating by parts and taking into account (2.8), we deduce∫
Ω
u′′H(u) dx =

∫
Ω
u′H(u)

∣∣T
0
dx−

∫
Ω

∫ T

0
u′H(u′) dtdx

= (u′, H(u))
∣∣T
0
dx− 1

2

∫
Ω

∫ T

0
H((u′)2) dxdt

= (u′, H(u))
∣∣T
0
dx+

1

2

∫ T

0

∫
Ω

(u′)2 div0(H) dxdt

− 1

2

∫ T

0

∫
Γ
(u′)2H · v dσdt.

(4.4)

Equations (4.4) and (4.3), together with (4.1), yield (4.2).
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Lemma 4.2. Let u be a solution of the problem (1.1) and P ∈ C2(Ω). Then∫ T

0

∫
Ω
P (|u′|2 − |∇gu|2g) dxdt

= (u′, uP )
∣∣T
0

+
1

2

∫ T

0

∫
Ω
u2AP dxdt+

1

2

∫ T

0

∫
Γ1

u2∇gP · v dσdt

+

∫ T

0

∫
Γ1

f2(u, x)uP dσdt−
∫ T

0

∫
Γ1

c3(x)u′uP dσdt+

∫ T

0

∫
Ω
f1(u, x)uP dxdt.

(4.5)

Proof. [27, Proposition 2.1, Part 2] From Lemma 2.1, we have

(4.6) AP = −
n∑
i=1

∂

∂xi

 n∑
j=1

aij(x)
∂P

∂xj

 = div0(A(x)∇0P ).

From (4.6) and formula (2.8), we obtain

〈∇gu,∇g(Pu)〉g(x) = P |∇gu|2g(x) + u〈∇gu,∇gP 〉g(x)

= P |∇gu|2g +
1

2
∇gP (u2)

= P |∇gu|2g +
1

2
div0(u2∇gP ) +

1

2
u2AP.

(4.7)

It follows from (4.1), (2.9), (4.7) and Green’s formula that

(u′, uP )
∣∣T
0

=

∫ T

0
[(utt, uP ) + (u′, u′P )] dt

=

∫ T

0

[
(−A− f1(u, x), uP ) + (u′, u′P )

]
dt

=

∫ T

0

∫
Ω

[
− 〈∇gu,∇g(uP )〉g − f1(u, x)uP + |u′|2P

]
dxdt

−
∫ T

0

∫
Γ1

f2(u, x)uP dσdt+

∫ T

0

∫
Γ1

c3(x)u′uP dσdt

=

∫ T

0

∫
Ω
P (|u′|2 − |∇gu|2g) dxdt−

∫ T

0

∫
Γ1

f2(u, x)uP dσdt

− 1

2

∫ T

0

∫
Ω
u2AP dxdt− 1

2

∫ T

0

∫
Γ1

u2∇gP · v dσdt

−
∫ T

0

∫
Ω
f1(u, x)uP dxdt+

∫ T

0

∫
Γ1

c3(x)u′uP dσdt.

(4.8)

Equation (4.5) follows from (4.8).

First, we deal with the value of |∇gu|2g and H(u) on the boundary Γ (see [15,27]). For

x ∈ Γ, the vector ∇gu has the decomposition into a direct sum in (Rnx, g) as

(4.9) ∇gu(x) =

〈
∇gu(x),

νA(x)

|νA|g

〉
g

νA(x)

|νA|g
+∇gτu,
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where ∇gτu is the tangential gradient. It follows from (4.9) that

|∇gu|2g = ∇gu(u) =
1

|νA(x)|2g
〈∇gu(x), νA(x)〉2g + |∇gτu|2g

=
1

|νA|2g

(
∂u

∂νA

)2

+ |∇gτu|2g.
(4.10)

Similarly, H can be written as

H(u) = 〈∇gu,H〉g =
H(x) · ν(x)

|νA(x)|2g

(
∂u

∂νA

)
+ 〈∇gτu,H〉g.

Now, substituting P = 1
2 div0H in (4.5), we obtain

1

2

∫ T

0

∫
Ω

div0H(|u′|2 − |∇gu|2g) dxdt

=
1

2
(u′, udiv0H)

∣∣T
0

+
1

4

∫ T

0

∫
Ω
u2Adiv0H dxdt

+
1

4

∫ T

0

∫
Γ1

u2∇g div0H · ν dσdt+
1

2

∫ T

0

∫
Γ1

f2(u, x)udiv0H dσdt

− 1

2

∫ T

0

∫
Γ1

c3(x)u′u div0H dσdt+
1

2

∫ T

0

∫
Ω
f1(u, x)udiv0H dxdt.

(4.11)

Combining (4.11) with Lemma 4.1, we infer

1

2

∫ T

0

∫
Γ1

(|u′|2 − |∇gu|2g)H · ν dσdt

=

∫
Ω
u′H(u)

∣∣T
0

+
1

2
(u′, udiv0H)

∣∣T
0

+

∫ T

0

∫
Ω
f1(u, x)H(u) dxdt

+
1

2

∫ T

0

∫
Ω
f1(u, x)udiv0H dxdt+

1

4

∫ T

0

∫
Ω
u2Adiv0H dxdt

+
1

4

∫ T

0

∫
Γ1

u2∇g div0H · ν dσdt+

∫ T

0

∫
Γ1

f2(u, x)H(u) dσdt

+
1

2

∫ T

0

∫
Γ1

f2(u, x)udiv0H dσdt−
∫ T

0

∫
Γ1

c3(x)u′H(u) dσdt

− 1

2

∫ T

0

∫
Γ1

c3(x)u′udiv0H dσdt+

∫ T

0

∫
Ω
DH(∇gu,∇gu) dxdt.

(4.12)

Now, we estimate the terms of the right-hand side of (4.12), by Cauchy–Schwarz inequality,

we have

(4.13)

∫
Ω
u′H(u)

∣∣T
0

+
1

2
(u′, udiv0H)

∣∣T
0
≤ C[E(0) + E(T )]
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and ∣∣∣∣14
∫ T

0

∫
Ω
u2Adiv0H dxdt+

1

4

∫ T

0

∫
Γ1

u2∇g div0H · ν dσdt
∣∣∣∣

≤ C
∫ T

0

∫
Ω
u2 dxdt+ C

∫ T

0

∫
Γ1

u2 dσdt,

(4.14)

where C will denote various positive constant which may be different at different occur-

rences.

Using Cauchy–Schwartz inequality and Assumption (A4), we have∣∣∣∣∫ T

0

∫
Γ1

c3(x)u′H(u) dσdt

∣∣∣∣
≤ C

[∫ T

0

∫
Γ1

c3(x)|∇gu|2g dσdt+

∫ T

0

∫
Γ1

c3(x)|u′|2 dσdt
]
,

(4.15)

∣∣∣∣12
∫ T

0

∫
Γ1

c3(x)u′u div0H dσdt

∣∣∣∣
≤ C

[∫ T

0

∫
Γ1

c3(x)|u|2 dσdt+

∫ T

0

∫
Γ1

c3(x)|u′|2 dσdt
]
,

(4.16)

∣∣∣∣∫ T

0

∫
Γ1

f2(u, x)H(u) dσdt

∣∣∣∣
≤ C

[∫ T

0

∫
Γ1

|∇gu|2g dσdt+

∫ T

0

∫
Γ1

(|u|2(q−1) + |u|2 + 1) dσdt

](4.17)

and

(4.18)

∣∣∣∣12
∫ T

0

∫
Γ1

f2(u, x)udiv0H dσdt

∣∣∣∣ ≤ C [∫ T

0

∫
Γ1

(|u|2(q−1) + |u|2 + 1) dσdt

]
.

Using Cauchy–Schwartz inequality, the inequality ab ≤ εa2 + 1
4εb

2, a, b, ε > 0 and

Assumption (A3), we infer∣∣∣∣∫ T

0

∫
Ω
f1(u, x)H(u) dxdt

∣∣∣∣
≤ ε

∫ T

0

∫
Ω
|∇gu|2g dxdt+

C

4ε

∫ T

0

∫
Ω

(|u|2(ρ+1) + |u|2 + 1) dxdt

(4.19)

and ∣∣∣∣12
∫ T

0

∫
Ω
f1(u, x)udiv0H dxdt

∣∣∣∣
≤ ε

∫ T

0

∫
Ω
|∇gu|2g dxdt+

C

4ε

∫ T

0

∫
Ω

(|u|2(ρ+1) + |u|2 + 1) dxdt

(4.20)
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for any ε. Inserting (4.13)–(4.19) and (4.20) into (4.12), by (2.7), using the fact that

H · ν ≥ 0 on Γ1 and u = 0 on Γ0, we deduce

b

∫ T

0

∫
Ω

|∇gu|2g dxdt

≤ C

[∫ T

0

∫
Ω

2ε|∇gu|2g dxdt+

∫ T

0

∫
Γ1

{
c3(x)|u′|2 + [c3(x) + 1]|∇gu|2g

}
dσdt+ E(0) + E(T )

]

+ C

[∫ T

0

∫
Ω

{
|u|2(ρ+1) + [c3(x) + 1]|u|2 + 1

}
dxdt+

∫ T

0

∫
Γ1

{
|u|2 + |u|2(q−1) + 1

}
dσdt

]
.

(4.21)

From [14, Lemma 7.2], we have

∫ T−τ

τ

∫
Γ1

|∇gτu|2g dσdt

≤ Cτ,`,ρ
[ ∫ T

0

∫
Γ1

{∣∣∣∣ ∂u∂νA
∣∣∣∣2 + |u′|2

}
dσdt+ CT ‖u‖L2(0,T ;H1/2+`(Ω)) +

∫ T

0

∫
Ω

|f1(u, x)|2 dxdt
]
,

(4.22)

where τ, ` > 0 are arbitrarily small and ρ is as in the hypothesis. Applying (4.21) with

(0, T ) replaced by (τ, T − τ), taking into account the decomposition in (4.10) and using

the regularity result in (4.22), we obtain

b

∫ T−τ

τ

∫
Ω
|∇gu|2g dxdt

≤ C
[∫ T

0

∫
Γ1

{[
c2

3(x) + c3(x) + 1
]
|u′|2

}
dσdt+ E(0) + E(T ) +R(u)

]
,

where

R(u) =

∫ T

0

∫
Ω

{
|u|2(ρ+1) + |u|2 + 1

}
dxdt

+

∫ T

0

∫
Γ1

{
|u|2 + |u|2(q−1) + 1

}
dσdt+ ‖u‖L2(0,T ;H1/2+`(Ω)).

On the other hand, for a fixed τ ,

b

{∫ τ

0

∫
Ω
|∇gu|2g dxdt+

∫ T

T−τ

∫
Ω
|∇gu|2g dxdt

}
≤ 2bτE(0).

Hence

(4.23) b

∫ T

0

∫
Ω
|∇gu|2g dxdt ≤ C

[∫ T

0

∫
Γ1

c(x)|u′|2 dσdt+ E(0) + E(T ) +R(u)

]
,

where c(x) is a positive function defined by

(4.24) c(x) = c2
3(x) + c3(x) + 1.
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Choose P = 1
2b, where b is a positive constant given in (2.7). By Lemma 4.2, we have

1

2
b

∫ T

0

∫
Ω

(|u′|2 − |∇gu|2g) dxdt

=
1

2
b(u′, u)

∣∣T
0

+
1

2
b

∫ T

0

∫
Ω
f1(u, x)u dxdt

+
1

2
b

∫ T

0

∫
Γ1

f2(u, x)u dσdt+
1

2
b

∫ T

0

∫
Γ1

c3(x)u′u dσdt

≤ C
{∫ T

0

∫
Γ1

c3(x)|u′|2 dσdt+ E(0) + E(T ) +R(u)

}
.

(4.25)

Combining (4.12)–(4.25), we obtain

(4.26)

∫ T

0
E(t) dt ≤ C

{∫ T

0

∫
Γ1

c(x)|u′|2 dσdt+ E(0) + E(T ) +R(u)

}
.

We now estimate R(u) in terms of∫ T

0

∫
Ω
|u|2 dxdt+

∫ T

0

∫
Γ1

|u|2 dσdt+ E(0).

Proposition 4.3. For every solution u of (1.1) and time T large enough, the following

estimate holds true,

(4.27) R(u) ≤ CT (E(0))

{∫ T

0

∫
Ω
|u|2 dxdt+

∫ T

0

∫
Γ1

|u|2 dσdt+ E(0)

}
,

where the constant CT (E(0)) remains bounded for bounded values of E(0).

Proof. Recall that

R(u) =

∫ T

0

∫
Ω

{
|u|2(ρ+1) + |u|2 + 1

}
dxdt

+

∫ T

0

∫
Γ1

{
|u|2 + |u|2(q−1) + 1

}
dσdt+ ‖u‖L2(0,T ;H1/2+`(Ω)).

(4.28)

Noting that H1
Γ0

(Ω) ⊂ L2(ρ+1)(Ω) and using hypothesis (1.4), (1.6), we obtain

(4.29)

∫ T

0

∫
Ω
|u|2(ρ+1) dxdt ≤ C

∫ T

0

∫
Ω
|∇gu|2g dxdt ≤ CTE(0).

By the trace theorem and Assumption (A4), we have H1(Ω) ⊂ L2(q−1)(Γ1), therefore∫ T

0

∫
Γ1

{
|u|2 + |u|2(q−1)

}
dσdt

≤ C
∫ T

0

∫
Γ1

|u|2 dσdt+ C

∫ T

0

∫
Ω

{
|u|2 + |∇gu|2g

}
dxdt

≤ C
{∫ T

0

∫
Γ1

|u|2 dσdt+

∫ T

0

∫
Ω
|u|2 dxdt+ E(0)

}
.

(4.30)
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Since E(0) > 0, it follows that

(4.31)

∫ T

0

∫
Ω

1 dxdt+

∫ T

0

∫
Γ1

1 dσdt =
(|Ω|+ |Γ1|)

E(0)
· TE(0) ≤ CTE(0).

From [12], we have

(4.32) ‖u‖L2(0,T ;H1/2+`(Ω)) ≤ ε
∫ T

0

∫
Ω
|∇gu|2g dxdt+

C

4ε

∫ T

0

∫
Ω
|u|2 dxdt.

Combining (4.28)–(4.32) and choosing ε small enough, we obtain (4.27).

Hence, (4.26) becomes∫ T

0
E(t) dt

≤ C
{∫ T

0

∫
Γ1

c(x)|u′|2 dσdt+ E(0) + E(T ) +

∫ T

0

∫
Ω
|u|2 dxdt+

∫ T

0

∫
Γ1

|u|2 dσdt
}
.

Applying the dissipative property inherent in the relation (3.2), i.e., ∀T ≥ 0,

(4.33) E(0) = E(T ) +

∫ T

0

∫
Γ1

c3(x)|u′|2 dσdt,

we obtain

Proposition 4.4. For time T large enough, the following estimate holds for the solution

u of (1.1):

(4.34)

E(T ) ≤ CT (E(0))

{∫ T

0

∫
Γ1

c(x)|u′|2 dσdt+

∫ T

0

∫
Ω
|u|2 dxdt+

∫ T

0

∫
Γ1

|u|2 dσdt
}
,

where the constant CT (E(0)) remains bounded for bounded values of E(0).

4.1. Absorption of the lower order terms

Now, we are going to eliminate the lower order terms on the right-hand side of (4.34) by

applying a ‘nonlinear’ compactness-uniqueness argument as in I. Lasiecka [11] and Lasiecka

et al. [12].

Lemma 4.5. For time T large enough, the following estimate holds for the solution u of

(1.1): ∫ T

0

∫
Ω
|u|2 dxdt+

∫ T

0

∫
Γ1

|u|2 dσdt ≤ C(E(0))

∫ T

0

∫
Γ1

c(x)|u′|2 dσdt,

where the constant C(E(0)) remains bounded for bounded values of E(0).
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Proof. We use the proof by contradiction. If Lemma 4.5 is false, there exists a sequence

{(ul(0), u′l(0))}∞l=1 and a corresponding sequence {(ul(t), u′l(t))}∞l=1 which satisfies for all l,

(4.35)



u′′l +Aul + f1(ul, x) = 0 in Ω× (0,+∞),

ul(x, t) = 0 on Γ0 × (0,+∞),

∂ul
∂νA

(x, t) = −f2(ul, x)− c3(x)u′l on Γ1 × (0,+∞),

ul(x, 0) = u0
l , u′l(x, 0) = u1

l (x) in Ω

with

(4.36) lim
l→∞

∫ T
0

∫
Ω |ul|

2 dxdt+
∫ T

0

∫
Γ1
|ul|2 dσdt∫ T

0

∫
Γ1
c(x)|u′l|2 dσdt

=∞

while the energy of the initial data {(ul(0), u′l(0))}∞l=1 denoted by E(ul(0)) is uniformly

bounded in l.

By the energy relation (3.2), the sequence E(ul(t)) is also uniformly bounded for

0 ≤ t ≤ T . Hence, there exists a subsequence ul, such that

(4.37)


ul → u weakly in H1(Q),

ul → u strongly in L2(Q),

ul → u strongly in L2(Σ).

We consider two possibilities

Case 1: u 6= 0. By a compactness result [24, Corollary 4], Assumptions (A3) and (A4),

using Sobolev embedding and the convergence in (4.37), it follows that

f1(ul, x)→ f1(u, x) strongly in L∞(0, T ;L2(Ω)),(4.38)

f2(ul, x)→ f2(u, x) strongly in L∞(0, T ;L2(Γ)).(4.39)

From (4.36), we deduce that c(x)u′l → 0 in L2(Σ1). Then, using convergences (4.38),

(4.39) and passing to the limit in the problem (4.35), we have

(4.40)


u′′ +Au+ f1(u, x) = 0 in Ω× (0,+∞),

u = 0 on Γ0 × (0,+∞),

∂u
∂νA

(x, t) = −f2(u, x), u′ = 0 on Γ1 × (0,+∞).

Moreover, taking the derivative of (4.40) with respect to t, we have, for u′ = v,
v′′ +Av + ∂f1

∂u (u, x)v = 0 in Ω× (0,+∞),

v = 0 on Γ0 × (0,+∞),

∂v
∂νA

(x, t) = v = 0 on Γ1 × (0,+∞).
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By Assumption (A3), there exists a constant C > 0 such that∣∣∣∣∂f1

∂u

∣∣∣∣n ≤ C(|u| 2n
n−2 + 1

)
.

Since H1(Ω) ⊂ L
2n
n−2 (Ω), we get ∂f1

∂u ∈ L
∞(0, T ;Ln(Ω)), then, for T > 2 diam Ω, we may

apply the uniqueness continuation result of A. Ruiz [23] adapted to our case, which yields

v = u′ = 0. Then, from (4.40), we get the elliptic equation

(4.41)

Au = −f1(u, x) in Ω× (0,+∞),

∂u
∂νA

(x, t) = −f2(u, x) on Γ1 × (0,+∞).

Multiplying the first equation in (4.41) by u and using Green’s formula, we obtain∫
Ω

{
|∇gu|2g + f1(u, x)u

}
dx+

∫
Γ1

f2(u, x)u dσ = 0.

By (1.4), (1.5), (1.6) and (1.7), we have u = 0, which contradicts our assumption that

u 6= 0.

Case 2: u = 0. Denote

λl =
(
‖ul‖2L2(Q) + ‖ul‖2L2(Σ)

)1/2
,(4.42)

ũl =
1

λl
· ul.(4.43)

Then

(4.44) ‖ũl‖2L2(Q) + ‖ũl‖2L2(Σ) = 1.

Since u = 0, from (4.36), we have

(4.45) λl → 0 as l→∞.

Also, we see that ũl satisfies

(4.46)


ũ′′l +Aũl + f1(ul,x)

λl
= 0 in Ω× (0,+∞),

ũl(x, t) = 0 on Γ0 × (0,+∞),

∂ũl
∂νA

(x, t) = −f2(ul,x)
λl

− c3(x)ũ′l on Γ1 × (0,+∞).

Using the dissipative relation (4.33) (applied to ul), followed by the estimate (4.34), we

have for all t ∈ (0, T ],

(4.47)

El(t) ≤ CT (El(0))

{∫ T

0

∫
Γ
c(x)|u′l|2 dxdt+

∫ T

0

∫
Ω
|ul|2 dσdt+

∫ T

0

∫
Γ1

|ul|2 dxdt
}
,
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where El(0) is obtained by replacing u0 and u1 by u0
l and u1

l respectively in E(0).

Dividing both sides of (4.47) by λl, we deduce that the sequence E(ũl(t)) is uniformly

bounded for 0 ≤ t ≤ T . Hence, there exists a subsequence ũl, such that
ũl → u weakly in H1(Q),

ũl → u strongly in L2(Q),

ũl → u strongly in L2(Σ).

In order to pass to the limit in problem (4.46), we need the following

Proposition 4.6.

c3(x)ũ′l → 0 strongly in L2(Σ1),(4.48)

f2(ul, x)

λl
→ ∂f2

∂u
(0, x)ũ strongly in L2(Σ),(4.49)

f1(ul, x)

λl
→ ∂f1

∂u
(0, x)ũ strongly in L2(Q),(4.50)

where λl is given by (4.42).

Proof. (4.48) follows directly from (4.36) and (4.43). For the second convergence, we have

∆l =

∥∥∥∥f2(ul, x)

λl
− ∂f2

∂u
(0, x)ũl

∥∥∥∥2

L2(Σ)

=

∫
|ul|≤ε

∣∣∣∣f2(ul, x)

λl
− ∂f2

∂u
(0, x)ũl

∣∣∣∣2 dxdt+

∫
|ul|>ε

∣∣∣∣f2(ul, x)

λl
− ∂f2

∂u
(0, x)ũl

∣∣∣∣2 dxdt.
Using the inequality (a+ b)2 ≤ 2(a2 + b2) and (4.43), we obtain

∆l ≤
∫
|ul|≤ε

ũ2
l

∣∣∣∣f2(ul, x)

ul
− ∂f2

∂u
(0, x)

∣∣∣∣2 dxdt
+ 2

∫
|ul|>ε

f2
2 (ul, x)

λ2
l

dxdt+ 2

∣∣∣∣∂f2

∂u
(0, x)

∣∣∣∣2 ∫
|ul|>ε

|ũl|2 dxdt.

Then, from Assumption (A4), we get

(4.51) ∆l ≤ ‖ũl‖2L2(Σ)ζ
2
ε + C

∫
|ul|>ε

[
|ul|2(q−1)

λ2
l

+
|ul|2

λ2
l

+
1

λ2
l

]
dxdt,

where ζε = sup|y|≤ε
∣∣f2(y,x)

y − ∂f2

∂y (0, x)
∣∣, ζε → 0 as ε→ 0.

Since |ul| > ε in the second member of the right-hand side of (4.51), it follows that

∆l ≤ ‖ũl‖2L2(Σ)ζ
2
ε + C

∫
|ul|>ε

|ul|2(q−1)

λ2
l

[
1 +

1

ε2(q−1)−2
+

1

ε2(q−1)

]
dxdt

≤ ‖ũl‖2L2(Σ)ζ
2
ε + Cελ

2(q−1)−2
l · ‖ũl‖

2(q−1)

L2(q−1)(Σ)
.

(4.52)
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By the trace theorem and taking into account Assumption (A4), we have

H1(Ω) ⊂ L2(q−1)(Σ) and H1(Ω) ⊂ L2(Σ).

Using the above injections for the last inequality of the equation (4.52), we deduce

(4.53) ∆l ≤ C‖ũl‖2H1(Ω)ζ
2
ε + Cελ

2(q−1)−2
l · ‖ũl‖

2(q−1)
H1(Ω)

.

Since ũl is bounded in L∞(0, T ;H1(Ω)) and 2(q− 1)− 2 > 0, using the limit in (4.45), we

see that the second member of the right-hand side of (4.53) satisfies

lim
l→∞

sup
l

[
Cελ

2(q−1)−2
l · ‖ũl‖

2(q−1)
H1(Ω)

]
= lim

l→∞
sup
l
Cελ

2(q−1)−2
l · lim

l→∞
sup
l
‖ũl‖

2(q−1)
H1(Ω)

≤ lim
l→∞

Cελ
2(q−1)−2
l · sup

l
‖ũl‖

2(q−1)
H1(Ω)

= 0,

consequently

lim
l→∞

sup
l

∆l ≤ sup
l
‖ũl‖2H1(Ω)ζ

2
ε and lim

l→∞
∆l = 0

as ε → 0. Here we have used the fact that ũl is bounded in L∞(0, T ;H1(Ω)) and ζε → 0

as ε→ 0. That is, we get (4.49).

Also, (4.50) may be proven in the same way.

Applying Proposition 4.6 and passing to the limit in the problem (4.46), it follows that

(4.54)



ũ′′ +Aũ+ ∂f1

∂u (0, x)ũ = 0 in Ω× (0,+∞),

∂ũ
∂νA

(x, t) = −∂f2

∂u (0, x)ũ on Γ1 × (0,+∞),

ũ = 0 on Γ0 × (0,+∞),

ũ′ = 0 on Γ1 × (0,+∞).

Moreover, for ũ′ = v,
v′′ +Av + ∂f1

∂u (0, x)v = 0 in Ω× (0,+∞),

∂v
∂νA

(x, t) = 0 on Γ1 × (0,+∞),

v = 0 on Γ0 × (0,+∞).

Using the uniqueness continuation result of A. Ruiz [23], we have v = ũ′ = 0. Then, by

(4.54), we get

(4.55)


Aũ+ ∂f1

∂u (0, x)ũ = 0 in Ω× (0,+∞),

∂ũ
∂νA

(x, t) = −∂f2

∂u (0, x)ũ on Γ1 × (0,+∞),

ũ = 0 on Γ0 × (0,+∞).

As in Case 1, multiplying the first equation in (4.55) by ũ, we obtain ũ = 0, which

contradicts (4.44). Hence, Lemma 4.5 is proved.
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Combining Proposition 4.4 and Lemma 4.5, we conclude, for time T large enough that

(4.56) E(T ) ≤ C
∫ T

0

∫
Γ1

c(x)|u′|2 dσdt,

where c(x) is a positive function given in (4.24).

From (4.56), using hypothesis (1.3) and applying the dissipative relation (3.2), we

easily deduce

(4.57) E(T ) ≤ C

1 + C
E(0).

Estimate (4.57) combined with the semigroup property (cf. J. Rauch and M. Taylor [22])

implies that

E(t) ≤Me−wtE(0), ∀ t ≥ 0

with

M =
1

1 + 1
C

and w =
1

T
logM.

This completes the proof of Theorem 3.2.
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Gauthier-Villars, Paris, 1969.

[19] W. Liu, Exponential stability of the energy of the wave equation with variable coef-

ficients and a boundary distributed delay, Z. Naturforsch. A 69 (2014), no. 10-11,

547–552.

[20] Z.-H. Ning, C.-X. Shen and X. Zhao, Stabilization of the wave equation with variable

coefficients and a delay in dissipative internal feedback, J. Math. Anal. Appl. 405

(2013), no. 1, 148–155.

[21] J. Y. Park and S. H. Park, General decay for quasilinear viscoelastic equations with

nonlinear weak damping, J. Math. Phys. 50 (2009), no. 8, 083505, 10 pp.

[22] J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in

bounded domains, Indiana Univ. Math. J. 24 (1974), 79–86.

[23] A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential,

J. Math. Pures Appl. (9) 71 (1992), no. 5, 455–467.

[24] J. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl. (4) 146

(1987), 65–96.

[25] R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An

operator approach, J. Math. Anal. Appl. 137 (1989), no. 2, 438–461.

[26] H. Wu, C. L. Shen and Y. L. Yu, An Introduction to Riemannian Geometry, Univer-

sity of Beijing, 1989.

[27] P.-F. Yao, On the observability inequalities for exact controllability of wave equations

with variable coefficients, SIAM J. Control Optim. 37 (1999), no. 5, 1568–1599.

[28] Y. C. You, Energy decay and exact controllability for the Petrovsky equation in a

bounded domain, Adv. in Appl. Math. 11 (1990), no. 3, 372–388.



Uniform Stabilization for a Wave Equation with Variable Coefficients 1001

[29] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback,

SIAM J. Control Optim. 28 (1990), no. 2, 466–477.

El-Hadi Kamel, Abdelhamid Ainouz and Ammar Khemmoudj

Laboratory of AMNEDP, Faculty of Mathematics, University of Science and Technology

Houari Boumedienne, P.O. Box 32, El-Alia 16111, Bab Ezzouar, Algiers, Algeria

E-mail addresses: ekamel@usthb.dz, aainouz@usthb.dz, akhemmoudj@yahoo.fr


	Introduction
	Notations on Riemannian geometry
	Main result
	Proof of main result
	Absorption of the lower order terms


