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Boundary Effects on Eigen-problems of Discrete Laplacian in Lattices

Yueh-Cheng Kuo and Shih-Feng Shieh*

Abstract. We consider how distribution of eigenvalues depends on boundary con-

ditions of a discrete Laplacian operator on lattices. We study the Laplacian with

boundary conditions given by a linear combination of Dirichlet and Neumann con-

ditions. In particular, we derive a secular equation and investigate the Laplacian

operator’s eigenvalues with different boundary conditions, including the interlacing

property, the first eigenvalue gaps, and the monotonicity property.

1. Introduction

In this paper, we study the eigen-problems of the discrete Laplacian operator with bound-

ary condition given by a linear combination of Dirichlet and Neumann conditions, i.e.,

Robin boundary condition. In 1D lattice, the negative discrete Laplacian matrix is given

as follows:

(1.1) L ≡ L(α, β) =



2− α −1

−1 2 −1

. . .
. . .

. . .

. . .
. . . −1

−1 2− β


∈ Rn×n,

where α, β ∈ R. Here, the parameters α and β come from the boundary effects of differ-

ential equation: −φ′′(x) = λφ(x) for x ∈ [0, 1] with boundary conditions

c`φ
′(0) + d`φ(0) = 0 and crφ

′(1) + drφ(1) = 0.

Partition the interval [0, 1] into n subintervals of uniform width h = 1/n whose endpoints

xk = kh− h/2 for each k = 0, 1, . . . , n+ 1.
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Let uj approximate φ(xj) and u = [u1, u2, . . . , un]> ∈ Rn. The discretized version of the

above boundary conditions is

c`
u1 − u0

h
+ d`

u0 + u1

2
= 0 and cr

un+1 − un
h

+ dr
un + un+1

2
= 0.

This implies that u0 = αu1 and un+1 = βun, where

(1.2) α =
2c` + hd`
2c` − hd`

and β =
2cr − hdr
2cr + hdr

,

provided that 2c` − hd` and 2cr + hdr are not zeros. Hence, 1
h2
Lu = λu is the eigenvalue

problem of discrete Laplacian operator, where the matrix L has the form in (1.1) and α,

β are in (1.2).

The eigenvector u = [u1, u2, . . . , un]> ∈ Rn of L in (1.1) satisfies

−uk−1 + 2uk − uk+1 = λuk, k = 1, . . . , n,(1.3a)

u0 = αu1, un+1 = βun,(1.3b)

where α, β ∈ R are given in (1.2). Here, for α = β = 0, (1.3b) represents a Dirichlet

boundary condition, and for α = β = 1, (1.3b) represents a Neumann boundary condition.

Robin boundary conditions are commonly used in solving Sturm–Liouville problems,

which appear in many contexts in science and engineering, see [1, 4, 18]. An open prob-

lem is proposed by Professor Shin-Tung Yao in the International Congress of Chinese

Mathematicians 2019 [14] as follows:

Given a compact manifold M with boundary, we can look at the Laplacian with

boundary condition given by a linear combination of Dirichlet and Neumann

conditions. Hence we have a way to join the Laplacian with Dirichlet condition

to Laplacian with Neumann condition and back to Dirichlet condition. The

eigenvalues and the eigenfunctions move accordingly. During this motion, we

shall arrive at eigenvalues with multiplicity. Can one describe the dynamics of

such a movement?

Such an eigen-problem has been investigated by many researchers. The first eigen-

value gaps for the Laplacian and discrete Laplacian operators have been investigated

by [3, 5, 9, 16]. Eigenvalue ratios have been studied by [2, 8]. The number of eigenvalues

trapped in the square-well potential has been studied in [10]. In paper [12], the eigenvalue

problem of the discrete Laplacian on Z3 is studied. Such results are applied to the discrete

Schrödinger operators on higher dimensional lattices. In [13], the distribution of eigenval-

ues of the discrete Schrödinger operators are studied. In [11], the expansion of eigenvalues

of the discrete bilaplacian on lattices is studied. In [19], the eigenvalue estimates are used
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to the study the stability of discrete Schrödinger operators. For the continuous model, the

eigenvalues and eigenfunctions of the discrete spectrum for Robin Laplacians are construc-

tively computed in the paper [15]. In [6], the authors formulate a two-term asymptotic

expansion of eigenvalue sums of the Laplacian on a bounded domain with Robin bound-

ary conditions. They also prove the asymptotics in terms of semi-classical analysis. In

this paper, we study properties of the eigenvalues of the discrete Laplacian operator with

Robin boundary conditions; including the interlacing property, the first eigenvalue gap,

and the monotonicity property. By deriving a secular equation of (1.3), we first show in

Theorem 3.6 that for (α, β) lying in a certain domain Ω1, the interlacing properties of

eigenvalues holds:

λ1 < µ1 < λ2 < µ2 < · · · < µn−1 < λn.

Here, λj is the jth eigenvalue of L(α, β) and

(1.4) µj = 2− 2 cos
jπ

n
for j = 1, . . . , n− 1.

For (α, β) ∈ Ω1, we prove in Remark 4.7 the following first eigenvalue gap result:

(1.5) λ2(α, β)− λ1(α, β) >
4

n
sin
( π

2n

)
cos−1

(
1

2
sec

π

2n

)
=

2π2

3n2
+O

(
1

n4

)
.

Along some specific curves in the (α, β) space, the monotonicity property of eigenvalues

is given in Theorem 5.1. Therefore, asymptotically as n � 1, the first eigenvalue gap of

n2L(α, β), which approximates the continuous operator −d2/dx2, is 2π2/3.

This paper is organized as follows. In Section 2, we derive a secular equation of (1.3).

In Section 3, we study the parameter space of (α, β) and use the space to study interlacing

properties of eigenvalues. In Section 4, we estimate the first eigenvalue gap. In Section 5,

monotonicity properties with respect to the parameter (α, β) are studied.

2. The secular equation

In this section, we derive the secular equation of (1.3). Suppose that u = [u1, u2, . . . , un]> ∈
Rn is an eigenvector of L in (1.1) corresponding to eigenvalue λ ∈ (0, 4). Let uk =

c+r
k + c−r

−k for some nonzero complex conjugates c+, c−, and k = 1, . . . , n. By regard-

ing (1.3a) as a linear difference equation, we have the characteristic equation

(2.1) − 1 + 2r − r2 = λr.

Letting δ = (2 − λ)/2, the solutions of (2.1) are r± = δ ±
√
δ2 − 1. Since λ ∈ (0, 4),

we have δ ∈ (−1, 1). Then there exists a θ ∈ (0, π) such that the roots of (2.1) are
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r± = cos θ ± i sin θ. Since u is a real vector, and c+, c− ∈ C are conjugate, the kth

component of eigenvector u takes the form

(2.2) uk = c+e
ikθ + c−e

−ikθ = c cos kθ + s sin kθ,

where c = 2 Re(c+) and s = −2 Im(c+) are real constants and are not all zero. Note that

if c and s are not all zero, then u 6= 0 because the vectors [cos θ, cos 2θ, . . . , cos kθ]> and

[sin θ, sin 2θ, . . . , sin kθ]> are linearly independent.

Substituting equation (2.2) into (1.3b), we have the linear system

(2.3)

 α cos θ − 1 α sin θ

β cosnθ − cos(n+ 1)θ β sinnθ − sin(n+ 1)θ

c
s

 = 0

which has nontrivial solutions. Taking the determinant of the coefficient matrix and

applying the compound-angle formula, we see that the angle θ must satisfy

(α cos θ − 1)(β sinnθ − sinnθ cos θ − cosnθ sin θ)

− α sin θ(β cosnθ − cosnθ cos θ + sinnθ sin θ) = 0.

Then we have

(2.4) 0 = sinnθ[(1 + αβ) cos θ − α− β] + cosnθ[(1− αβ) sin θ].

Hence, the secular equation of (1.3) can be obtained as

(2.5) cotnθ =
α+ β

1− αβ
1

sin θ
− 1 + αβ

1− αβ
cot θ

provided that αβ 6= 1 and sin θ 6= 0. The following theorem shows that the solution of the

secular equation (2.5) can be used to determine the eigenvalue of L in (1.3).

Theorem 2.1. Given α, β ∈ R with αβ 6= 1, let

(2.6) g(θ) = A csc θ −B cot θ,

where

A ≡ A(α, β) =
α+ β

1− αβ
, B ≡ B(α, β) =

1 + αβ

1− αβ
.

Suppose that there is a θ∗ ∈ (0, π) such that g(θ∗) = cotnθ∗, i.e., the secular equation (2.5)

holds at θ = θ∗, then the matrix L(α, β) in (1.1) has eigenvalue λ = 2− 2 cos θ∗.

Proof. Suppose that θ∗ ∈ (0, π) is a solution of (2.5). Then the linear system (2.3) has a

nontrivial solution c∗ and s∗. Since the real part of roots of (2.1) is cos θ∗ = (2 − λ)/2,

the value λ = 2− 2 cos θ∗ and the vector u = [u1, u2, . . . , un]> ∈ Rn can be constructed by

(2.2) with c = c∗ and s = s∗. Note that u is a nonzero vector because c∗ and s∗ are not all

zero. Then λ and u satisfy (1.3), and hence λ is an eigenvalue of L(α, β) corresponding

to eigenvector u.
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The case of αβ = 1, in which the Neumann condition is included, is studied in The-

orem 2.2. In this case, we shall see that the eigenvalues and secular equation of L(α, β)

are explicitly expressed.

Theorem 2.2. Suppose that αβ = 1 and that θ∗ ∈ (0, π) is a root of

sinnθ = 0,

then the matrix L = L(α, β) in (1.1) has eigenvalue λ = 2 − 2 cos θ∗. In addition, if

(α, β) = (1, 1), then λ = 0 is an eigenvalue of L; and if (α, β) = (−1,−1), then λ = 4 is

an eigenvalue of L.

Proof. Suppose that αβ = 1, then (2.4) becomes sinnθ[(1 + αβ) cos θ − α− β] = 0. This

implies that sinnθ = 0 or 2 cos θ = α + β. If θ∗ ∈ (0, π) is a root of sinnθ = 0, then

λ = 2 − 2 cos θ∗ is an eigenvalue of L(α, β). Since αβ = 1, we see that 2 cos θ = α + β

holds when (α, β, θ) = (1, 1, 0) and (α, β, θ) = (−1,−1, π). In both cases, we take c = 1

and s = 0 in (2.2). Then a nonzero eigenvector corresponding to eigenvalue λ = 0 and

λ = 4 can be obtained for the case α = β = 1 and α = β = −1, respectively.

Remark 2.3. (i) For the case αβ 6= 1, suppose that 0 < θ1 < θ2 < · · · < θ` < π are

solutions of the secular equation g(θ) = cotnθ. Let λj = 2− 2 cos θj for j = 1, . . . , `.

Theorem 2.1 shows that 0 < λ1 < λ2 < · · · < λ` < 4 are eigenvalues of L.

(ii) For the case αβ = 1, Theorem 2.2 shows that L has n−1 eigenvalues 2−2 cos(jπ/n),

for j = 1, . . . , n − 1, inside the interval (0, 4). The rest eigenvalue of L belongs to

(−∞, 0] or [4,∞).

3. The parameter space and interlacing properties of eigenvalues

In Section 2, we see the solutions of secular equation g(θ) = cotnθ play an important role

to determine the eigenvalues of L. In (2.6), we see that the function g(θ) is dependent

on the coefficients A ≡ A(α, β) and B ≡ B(α, β). By using the parameters (A,B),

computations in Section 3.2 can be simplified. In this section, we first investigate the

parameter transformations and the interlacing property of eigenvalues.

3.1. Partition of the parameter space and the parameter transformation

It follows from (1.1) that the eigenvalues of matrices L(α, β) and L(β, α) are the same.

Hence, to investigate the eigenvalues of L, we only consider the parameter (α, β) ∈ R2

with α ≤ β. Let Ω = Ω1 ∪ Ω2 ∪ Ω3, where

Ω1 = {(α, β) ∈ R2 | α ≤ β and αβ < 1},
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Ω2 = {(α, β) ∈ R2 | 0 < α ≤ β and αβ > 1},(3.1)

Ω3 = {(α, β) ∈ R2 | α ≤ β < 0 and αβ > 1}.

We consider the transformation T : Ω→ R2 defined by

(3.2) T (α, β) ≡ (A(α, β), B(α, β)) =

(
α+ β

1− αβ
,
1 + αβ

1− αβ

)
.

In this subsection, we will characterize the images of Ω1, Ω2, and Ω3 under the transfor-

mation T . First, we show that the transformation is injective.

Lemma 3.1. The transformation T : Ω→ R2 is injective.

Proof. Suppose that T (α1, β1) = T (α2, β2). Using B(α1, β1) = B(α2, β2) in (3.2), we have

(1 + α1β1)(1 − α2β2) = (1 + α2β2)(1 − α1β1). This leads to α1β1 = α2β2. Applying

A(α1, β1) = A(α2, β2) and α1β1 = α2β2, we obtain α1 + β1 = α2 + β2. Together with the

facts that α1β1 = α2β2, α1 ≤ β1 and α2 ≤ β2, we have α1 = α2 and β1 = β2. Hence, the

transformation T is injective.

The following lemmas describe the sets of T (Ω1), T (Ω2), and T (Ω3).

Lemma 3.2. Let h(x) =
√

1 + x2. Then the set T (Ω1) is

(3.3) T (Ω1) = {(A,B) ∈ R2 | −1 < B ≤ h(A)}.

Proof. Let C = {(α, α) | −1 < α < 1}. Then C is some part of the boundary of Ω1. Let

0 = (0, 0) ∈ C be the origin. Then T (0) = (0, 1) and the image of C under T is

T (C) =

{(
2α

1− α2
,
1 + α2

1− α2

) ∣∣∣ −1 < α < 1

}
.

Since −1 < α < 1, A = 2α/(1− α2) can be arbitrary real number and

h(A) =
√

1 +A2 =
1 + α2

1− α2
.

Hence, T (C) = {(A,B) ∈ R2 | B = h(A)}.
From (3.1), we have Ω1 = Ω1,1 ∪ Ω1,2 ∪ Ω1,3, where

Ω1,1 = {(α, kα) | 1 ≤ k and 0 < α <
√

1/k},

Ω1,2 = {(α, β) | α ≤ 0 and 0 ≤ β},

Ω1,3 = {(α, kα) | 0 < k ≤ 1 and −
√

1/k < α < 0}.

See Figure 3.1 for the illustration. Let S+ = {(0, β) | β ≥ 0} and S− = {(α, 0) | α ≤ 0}.
Then S+ is the intersection of the boundaries of Ω1,1 and Ω1,2, and S− is the intersection

of the boundaries of Ω1,2 and Ω1,3. It is easy to see that

(3.4) T (S+) = {(A, 1) | A ≥ 0} and T (S−) = {(A, 1) | A ≤ 0}.
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In the following, we will describe the images of Ω1,i for i = 1, 2, 3 under T . The images

have been illustrated in Figure 3.1.

3Ω

2Ω

α

β

1,1Ω
1,2Ω

1,3Ω A

B

2( )T Ω 3( )T Ω

1,1( )T Ω1,3( )T Ω

1,2( )T Ω

Figure 3.1: The domains Ω1, Ω2 and Ω3 and the images under T .

(i) For each k ≥ 1, the curve Sk = {(α, kα) | 0 < α <
√

1/k} ⊆ Ω1,1. Then T (Sk) ={( (k+1)α
1−kα2 ,

1+kα2

1−kα2

) ∣∣ 0 < α <
√

1/k
}

is a curve from T (0) = (0, 1) to lim
α→
√

1/k
−
( (k+1)α

1−kα2 ,

1+kα2

1−kα2

)
= (∞,∞) and

(3.5) h

(
(k + 1)α

1− kα2

)
=

√
(1− kα2)2 + ((k + 1)α)2

1− kα2
≥ 1 + kα2

1− kα2

because k2 + 1 ≥ 2k. It follows from (3.4), (3.5), and Lemma 3.1 that

(3.6) T (Ω1,1) = {(A,B) | 0 < A, 1 < B ≤ h(A)}.

(ii) We show that

(3.7) T (Ω1,2) = {(A,B) | A ∈ R,−1 < B ≤ 1}.

For each (A,B) ∈ T (Ω1,2), there exists (α, β) ∈ Ω1,2 such that A = (α+ β)/(1− αβ) and

B = (1 +αβ)/(1−αβ). Since (α, β) ∈ Ω1,2 and αβ ≤ 0, this leads that −1 < B ≤ 1. This

proves the inclusion.

For each pair (A,B) with A ∈ R and −1 < B ≤ 1, there exists a number x with x ≤ 0

such that equation (1 + x)/(1− x) = B holds. Consider the system of equations

αβ = x, α+ β = (1− x)A.

Since αβ = x is hyperbola in second quadrant and α+β = (1−x)A is a line with slope −1,

the system has unique solution (α, β) with α ≤ 0 and β ≥ 0. This proves the conclusion.

(iii) For each 0 < k ≤ 1, the curve Sk = {(α, kα) | −
√

1/k < α < 0} ⊆ Ω1,3.

Then T (Sk) =
{( (k+1)α

1−kα2 ,
1+kα2

1−kα2

) ∣∣ −√1/k < α < 0
}

is a curve from T (0) = (0, 1) to
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lim
α→−
√

1/k
+

( (k+1)α
1−kα2 ,

1+kα2

1−kα2

)
= (−∞,∞). It follows from (3.4), (3.5), and Lemma 3.1

that

(3.8) T (Ω1,3) = {(A,B) | A < 0, 1 < B ≤ h(A)}.

Combining (3.6), (3.7), and (3.8), we obtain (3.3).

Lemma 3.3. Let h(x) =
√

1 + x2. Then the sets T (Ω2) and T (Ω3) are

T (Ω2) = {(A,B) ∈ R2 | A < 0,−h(A) ≤ B < −1},

T (Ω3) = {(A,B) ∈ R2 | A > 0,−h(A) ≤ B < −1}.
(3.9)

Proof. First, we show that

T (Ω2) = {(A,B) ∈ R2 | A < 0,−h(A) ≤ B < −1}.

For each (A,B) ∈ T (Ω2), there exist α and β with 0 < α ≤ β and αβ > 1 such that

A = (α + β)/(1 − αβ) and B = (1 + αβ)/(1 − αβ). It is easily seen that A < 0 and

B < −1. Furthermore,

h(A) =

√
(1− αβ)2 + (α+ β)2

αβ − 1
≥ 1 + αβ

αβ − 1
= −B.

Hence, A < 0 and −h(A) ≤ B < −1. This proves the inclusion.

For each pair (A,B) with A < 0 and −h(A) ≤ B < −1, x = (B − 1)(1 +B) > 1 is the

unique solution of (1 + x)/(1− x) = B. To prove (A,B) ∈ T (Ω2), it suffices to show the

system of equations

(3.10) αβ = x, α+ β = (1− x)A

has solution (α, β) ∈ Ω2. We see that αβ = x is hyperbola in first quadrant and α+ β =

(1 − x)A is a line with slope −1, hence, the system (3.10) having solution (α, β) with

α ≤ β is equivalent to (1− x)A ≥ 2
√
x.

Since −h(A) ≤ B, we have 1 + A2 ≥ B2. This implies that A2 ≥ (B + 1)(B − 1) =

x(B + 1)2. Since (1− x)2 =
(

2
1+B

)2
, we have (1− x)2A2 ≥ 4x. Hence, (3.10) has solution

with α ≤ β. This proves the conclusion.

Similarly, we can show that T (Ω3) = {(A,B) ∈ R2 | A > 0,−h(A) ≤ B < −1}. Hence,

(3.9) holds.

We have characterized the image of the parameter domain Ω in (3.1) under the one-

to-one parameter transformation T . The relation between the domain and image have

been illustrated in Figure 3.1. In the next subsection, we shall investigate the interlacing

properties of eigenvalues of L by the secular equation with parameter (A,B) ∈ T (Ω).
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3.2. Interlacing properties of eigenvalues

Theorem 2.1 shows that if θ∗ ∈ (0, π) is a solution of secular equation g(θ) = cotnθ, then

L in (1.1) has eigenvalue λ = 2− 2 cos θ∗. In this subsection, we will investigate interlac-

ing properties of eigenvalues and the numbers of eigenvalues in [0, 4] for each parameter

(A,B) ∈ T (Ω).

Let (A,B) ∈ T (Ω) with B 6= 0. Denote K = A/B. If K ∈ (−1, 1), then there exists a

θK ∈ (0, π) such that cos θK = K. Then we have g(θK) = 0. By using

g′(θ) = B

(
1−K cos θ

sin2 θ

)
=
B −A cos θ

sin2 θ
,

we have the following consequence immediately.

Lemma 3.4. The function g(θ) defined in (2.6) is continuous on (0, π). When B = 0,

g(θ) = A csc θ. If B 6= 0 and set K = A/B, then the following holds true.

(a) For the case −1 < K < 1:

(i) If B > 0, then g(θ) is increasing and limθ→0+ g(θ) = −∞, limθ→π− g(θ) =∞;

(ii) If B < 0, then g(θ) is decreasing and limθ→0+ g(θ) =∞, limθ→π− g(θ) = −∞.

(b) For the case K < −1 or K > 1: there is a θ1/K ∈ (0, π) such that cos θ1/K = 1/K.

(i) If A > 0, then g(θ) is decreasing on (0, θ1/K ] and increasing on [θ1/K , π). In

addition, limθ→0+ g(θ) =∞ and limθ→π− g(θ) =∞;

(ii) If A < 0, then g(θ) is increasing on (0, θ1/K ] and decreasing on [θ1/K , π). In

addition, limθ→0+ g(θ) = −∞ and limθ→π− g(θ) = −∞.

(c) For the case K = ±1:

(i) If K = 1, then limθ→0+ g(θ) = 0. In addition, if B > 0, then g(θ) is increasing

and limθ→π− g(θ) = ∞; if B < 0, then g(θ) is decreasing and limθ→π− g(θ) =

−∞;

(ii) If K = −1, then limθ→π− g(θ) = 0. In addition, if B > 0, then g(θ) is

increasing and limθ→0+ g(θ) = −∞; if B < 0, then g(θ) is decreasing and

limθ→0+ g(θ) =∞.

The secular equation can only be applied to determine the eigenvalues inside the open

interval (0, 4). Next, we determine whether L has eigenvalue λ = 0 or λ = 4.

Lemma 3.5. Let (A,B) = T (α, β) ∈ T (Ω). The matrix L in (1.1) has λ = 0 eigenvalue

if and only if A−B = 1/n. L has λ = 4 eigenvalue if and only if A+B = −1/n.
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Proof. Suppose that λ = 0 is an eigenvalue of L = L(α, β) in (1.1). Then the character-

istic equation (2.1) has solution r = 1 with multiplicity 2. Then the kth component of

eigenvector u has the form uk = c+ dk, where c, d ∈ R are not all zero. Substituting this

formula into (1.3b), we have α− 1 α

β − 1 βn− n− 1

c
d

 = 0.

There are nonzero numbers c and d such that above equation holds if and only if the

determinant of the coefficient matrix is zero, i.e., αβn−(n+1)α−βn+n+1−αβ+α = 0.

This leads to A−B = 1/n.

The proof of rest argument is similar to the above procedure of proof.

Since the function g(θ) in (2.6) is continuous on (0, π), it follows from Lemma 3.4 that

the secular equation g(θ) = cotnθ has at least n − 2 distinct roots in
(
π
n ,

(n−1)π
n

)
. In

addition, by using Theorem 2.1, we see that there are at least n − 2 distinct eigenvalues

in the interval (µ1, µn−1), where µ1 and µn−1 are given in (1.4). In the following, we shall

study interlacing properties for λj .

• For the case (A,B) ∈ T (Ω1) = {(A,B) ∈ R2 | −1 < B ≤ h(A)}:

Theorem 3.6. For each (A,B) ∈ T (Ω1), the following interlacing property holds

λ1 < µ1 < λ2 < µ2 < · · · < µn−1 < λn,

where µj is given in (1.4). In addition,

(i) if A−B < 1/n, then λ1 > 0; and if A−B > 1/n then λ1 < 0;

(ii) if A+B < −1/n, then λn > 4; and if A+B > −1/n then λn < 4.

Proof. From Lemma 3.4, we see that g(θ) is continuous on (0, π), hence, there are at

least n − 2 distinct roots θj ∈
( (j−1)π

n , jπn
)
, for j = 2, . . . , n − 1, of g(θ) = cotnθ. From

Theorem 2.1, λj = 2−2 cos θj are eigenvalues of L with µ1 < λ2 < µ2 < · · · < λn−1 < µn−1.

Now, we consider the solutions of g(θ) = cotnθ on (0, π/n) and on
( (n−1)π

n , π
)
.

Since g(θ) and cotnθ are continuous on (0, π/n) and

lim
θ→0+

cotnθ =∞, lim
θ→π

n
−

cotnθ = −∞,

g(θ) = cotnθ has a solution on (0, π/n) if limθ→0+ g(θ) 6= ∞. From Lemma 3.4, we see

that if A = 0 and B = 1 then limθ→0+ g(θ) = −∞, and hence, the secular equation has a

solution on (0, π/n). Using the continuity of eigenvalues and Lemma 3.5, we obtain that
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if A−B < 1/n, then the eigenvalue λ1 > 0. On the other hand, Let α∗ = −4 and β∗ = 4.

Then A = (α∗ + β∗)/(1 − α∗β∗) = 0 and B = (1 + α∗β∗)/(1 − α∗β∗) = −15/17. Using

Gershgorin disk theorem on L = L(α∗, β∗), the matrix L has an eigenvalue λ1 < 0 and an

eigenvalue λn > 4. Using the continuity of eigenvalues and Lemma 3.5 again, we obtain

that if A−B > 1/n, then the eigenvalue λ1 < 0.

Similarly, if limθ→π− g(θ) 6= −∞ then g(θ) = cotnθ has a solution on
( (n−1)π

n , π
)
.

From Lemma 3.4, we see that the g(θ) = cotnθ has a solution on
( (n−1)π

n , π
)

when A = 0

and B = 1. Hence, if A + B > −1/n, then the eigenvalue λn < 4. When A = 0 and

B = −15/17, we see that L has an eigenvalue λn > 4. Thus, if A + B < −1/n, then the

eigenvalue λn > 4 by the continuity of eigenvalue. This completes the proof.

• For the case (A,B) ∈ T (Ω2) = {(A,B) ∈ R2 | A < 0,−h(A) ≤ B < −1}:

Lemma 3.7. If (A,B) ∈ T (Ω2), then λ1 < 0 and λn < µn−1.

Proof. First, we show that λn < µn−1. Suppose that (A,B) ∈ T (Ω2). There exists

(α, β) ∈ Ω2 such that A = (α + β)/(1 − αβ) and B = (1 + αβ)/(1 − αβ). Since (α, β) ∈
Ω2 = {(α, β) ∈ R2 | 0 < α ≤ β and αβ > 1}, all eigenvalues of the matrix L = L(α, β) in

(1.1) are smaller than 4 by Gershgorin disk theorem. In addition, 4 is not a eigenvalue of

L. Hence, we have λn < 4. From (3.9), we see that A < 0 and B < −1. Using the fact

that A csc θ < 0 and cot θ < cotnθ for θ ∈
(
n−1
n π, π

)
, we have

g(θ) = A csc θ −B cot θ < cotnθ for θ ∈
(
n− 1

n
π, π

)
.

That is, the secular equation g(θ) = cotnθ has no solution on
(
n−1
n π, π

)
. Hence, we have

λn < µn−1.

Next, we show that λ1 < 0. Suppose that (α∗, β∗) ∈ Ω2 = {(α, β) ∈ R2 | 0 < α ≤
β and αβ > 1}. Let

(3.11) α̂ = min{α∗, 1} and β̂ = 2− α̂.

We have α̂ ≤ 1 ≤ β̂ and α̂+ β̂ = 2. Here,

(3.12) (α̂, β̂) =

(α∗, 2− α∗), α∗ ≤ 1,

(1, 1), α∗ > 1.

Since α + β = 2 is the tangent line to the curve {(α, β) | αβ = 1} at the point (1, 1) and

(α∗, β∗) ∈ Ω2, this implies 2 − α∗ < β∗ and 1 < β∗. From (3.12), we have β̂ < β∗. In

addition, α̂β̂ ≤ 1. Hence,

α̂ ≤ α∗, 1 ≤ β̂ < β∗, and α̂β̂ ≤ 1.
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Let L̂ = L(α̂, β̂) ∈ Rn×n be defined in (1.1) and λ̂1 be the smallest eigenvalue of L̂. We

have λ1 < λ̂1 (see [17, Theorem 2.7]). To show λ1 < 0, it suffices to show that λ̂1 ≤ 0.

(i) Suppose that α̂ 6= 1. From (3.11), we have α̂β̂ < 1. Then (α̂, β̂) ∈ Ω1 in (3.1). Using

(3.11) again, we have Â = (α̂ + β̂)/(1− α̂β̂) = 2/(1− α̂)2 and B̂ = (1 + α̂β̂)/(1− α̂β̂) =

(1+2α̂−α̂2)/(1−α̂)2. Then we obtain that Â−B̂ = 1 > 1/n. It follows from Theorem 3.6

that λ̂1 < 0.

(ii) Suppose that α̂ = 1. Then β̂ = 1 by (3.11). We see that λ̂1 = 0 by Theorem 2.2.

This completes the proof.

Theorem 3.8. For each (A,B) ∈ T (Ω2), we have λ1 < 0 and the interlacing property

λ2 < µ1 < λ3 < µ2 < · · · < µn−2 < λn < µn−1.

In addition, if A−B < 1/n, then λ2 > 0; and if A−B > 1/n, then λ2 < 0.

Proof. The fact λ1 < 0 follows from Lemma 3.7 directly. The interlacing property λ2 <

µ1 < λ3 < µ2 < · · · < µn−2 < λn < µn−1 is a consequence of Theorem 2.1. Suppose that

(A,B) ∈ T (Ω2) with A < B < −1. Then K = A/B > 1. From Lemma 3.4, we have

limθ→0− g(θ) = −∞. In this case, the secular equation g(θ) = cotnθ has a root on (0, π/n),

hence, λ2 > 0 by Theorem 2.1. Using the continuity of eigenvalues and Lemma 3.5, we

obtain that if A−B < 1/n, then the eigenvalue λ2 > 0.

Let α∗ = β∗ = 4, then (α∗, β∗) ∈ Ω2 and the matrix L has two negative eigenvalues, λ1

and λ2, by the Gershgorin disk theorem. In this case, A = (α∗+β∗)/(1−α∗β∗) = −8/15,

B = (1 + α∗β∗)/(1 − α∗β∗) = −17/15 and hence A − B = 9/15 > 1/n. Using the

continuity of eigenvalues and Lemma 3.5, we obtain that if A − B > 1/n, then the

eigenvalue λ2 < 0.

• For the case (A,B) ∈ T (Ω3) = {(A,B) ∈ R2 | A > 0,−h(A) ≤ B < −1}:

A similar proof as that of Theorem 3.8 and applying Theorem 2.2 give the following

assertion.

Theorem 3.9. For each (A,B) ∈ T (Ω3), we have 4 < λn and the interlacing property

µ1 < λ1 < µ2 < λ2 < · · · < µn−1 < λn−1.

In addition, if A+B > −1/n, then λn−1 < 4; and if A+B < −1/n, then 4 < λn−1.

Remark 3.10. We give some comments on the interlacing property in this section. The

interlacing theorem in [7, p. 183] states that Let A ∈ Rn×n be symmetric, z ∈ Rn and let

the eigenvalues λi(A) and λi(A± zz>) be arranged in increasing order. Then

λ1(A) ≤ λ1(A+ zz>) ≤ λ2(A) ≤ · · · ≤ λn(A) ≤ λn(A+ zz>),

λ1(A− zz>) ≤ λ1(A) ≤ λ2(A− zz>) ≤ · · · ≤ λn(A− zz>) ≤ λn(A).
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Some interlacing properties of the eigenvalues in Section 3.2 can be obtained by employing

the interlacing theorem. From Remark 2.3(ii), the Laplacian matrix L(α, β) with αβ = 1

(the red curve in the left figure of Figure 3.1) has eigenvalues µj = 2 − 2 cos jπn for j =

1, . . . , n − 1. Application of the above interlacing theorem can lead to some interlacing

properties of eigenvalues. Let e1 and en denote the first and the last columns of the

identity matrix, respectively.

• For (α, β) ∈ {(α, β) ∈ R2 | α ≤ β and β ≥ 1}, we set A = L(1/β, β) and z = e1 in

the interlacing theorem.

• For (α, β) ∈ {(α, β) ∈ R2 | α ≤ β and α ≤ −1}, we set A = L(α, 1/α) and z = en in

the interlacing theorem.

If (α, β) belongs to the region {(α, β) ∈ R2 | −1 ≤ α ≤ 0 and 0 ≤ β ≤ 1} ⊆ Ω1, then it

seems not easy to obtain the interlacing properties in Theorem 3.6 by using the interlacing

theorem.

The secular equation is constructed by using the structure and the entries of Laplacian

matrix L(α, β). It can be used to estimate accurately the location of eigenvalues of L(α, β).

Using the secular equation, we show the interlacing properties of eigenvalues of L(α, β) for

(α, β) belonging Ω1 ∪ Ω2 ∪ Ω3. Furthermore, we can use the secular equation to estimate

the first and second eigenvalues, λ1(α, β) and λ2(α, β), of the Laplacian matrix L(α, β).

In the next section, we shall give a lower bound of λ2(α, β)− λ1(α, β) for (α, β) ∈ Ω1.

4. Eigenvalue gaps

In this section, we will estimate the gap of the first two eigenvalues of L(α, β) in (1.1) for

the parameter (α, β) ∈ Ω1, where Ω1 = {(α, β) ∈ R2 | α ≤ β and αβ < 1} is defined in

(3.1). Namely, we will study a lower bound of

min
(α,β)∈Ω1

λ2(α, β)− λ1(α, β).

To this end, we partition Ω1 into 3 parts:

Φ1 = {(α, β) ∈ R2 | −1 ≤ α ≤ β ≤ 1 and αβ < 1},

Φ2 = {(α, β) ∈ R2 | α < −1, β ≤ 1 and αβ < 1},

Φ3 = {(α, β) ∈ R2 | β > 1 and αβ < 1}.

(4.1)

Here, the the three regions Φi, i = 1, 2, 3 are plotted in the left of Figure 4.1. Let

S1 = {(−1, β) | β > −1} and S2 = {(α, 1) | α < 1} be lines in Ω1. The images of

these two lines under the transformation T in (3.2) are T (S1) = {(A,−A) | A < 1} and
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T (S2) = {(A,A) | A > −1}. From Lemma 3.2, we have

T (Φ1) = {(A,B) ∈ R2 | |A| ≤ B ≤ h(A)},

T (Φ2) = {(A,B) ∈ R2 | −1 < B < −A and A ≤ B},

T (Φ3) = {(A,B) ∈ R2 | −1 < B < A},

(4.2)

where h(x) =
√

1 + x2 (see Figure 4.1 for the illustration). In the following, we shall

investigate the lower bound of λ2 − λ1 for (α, β) belonging Φ1, Φ2, and Φ3.

α

β

1Φ2Φ

3Φ

A

B

1( )T Φ2( )T Φ 3( )T Φ

1−

Figure 4.1: The domains Φ1, Φ2 and Φ3 and the images under T .

• For the case (α, β) ∈ Φ1 = {(α, β) ∈ R2 | −1 ≤ α ≤ β ≤ 1 and αβ < 1}:

Suppose that (α, β) ∈ Φ1. From (4.2) and Theorem 3.6, we see that

0 < λ1 = 2− 2 cos θ1 < µ1 < λ2 = 2− 2 cos θ2 < µ2,

where θ1 < θ2 are the two smallest roots of secular equation g(θ) = cotnθ. The region

T (Φ1) in (4.2) can be rewritten as

(4.3) T (Φ1) = {(KB,B) | −1 ≤ K ≤ 1 and 0 ≤ B ≤
√

1 +K2B2}.

In other words, for (A,B) = T (α, β) ∈ T (Φ1), there is a K∗ with −1 ≤ K∗ ≤ 1 such that

A = K∗B and 0 ≤ B ≤
√

1 +K2
∗B

2. Now, let K∗ be fixed. The function g(θ) in (2.6) has

the form

(4.4) g(θ) = B

(
K∗ − cos θ

sin θ

)
,

provided that B 6= 0. We shall note that if K∗ 6= ±1, then there exists a θ∗ ∈ (0, π) such

that g(θ∗) = 0, and if K∗ = 1 (or K∗ = −1), then limθ→0+ g(θ) = 0 (or limθ→π− g(θ) = 0,

respectively). In the following theorem, we will give lower bounds of λ2 − λ1 for K∗ ∈[
− 1, cos 3π

2n

]
∪
[

cos π
2n , 1

]
.
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Theorem 4.1. Suppose that (α, β) ∈ Φ1 and (A,B) = T (α, β). If B = 0, then A = 0 and

λ2 − λ1 = 2
(

cos πn − cos 3π
2n

)
. If B 6= 0, then −1 ≤ K∗ = A/B ≤ 1. In this case,

(i) if −1 ≤ K∗ ≤ cos 3π
2n , then λ2 − λ1 > 2

(
cos πn − cos 3π

2n

)
;

(ii) if cos π
2n ≤ K∗ ≤ 1, then λ2 − λ1 > 2

(
cos π

2n − cos πn
)
.

Proof. If B = 0, then A = 0 by (4.2). In this case, we have g(θ) = 0 by (2.6), θ1 = π/(2n),

and θ2 = 3π/(2n). By using Theorem 2.1 and the monotonicity of cosine function, we

have λ2 − λ1 = 2
(

cos πn − cos 3π
2n

)
.

(i) Suppose that B 6= 0 and −1 ≤ K∗ ≤ cos 3π
2n . There exists a θ∗ ∈

[
3π
2n , π

]
such that

g(θ∗) = 0, where g(θ) is given in (4.4). By (4.3) and Lemma 3.4, we have g(θ) ≤ 0 for

θ ∈ (0, θ∗], cotnθ < 0 for θ ∈
(
π
2n ,

π
n

)
∪
(

3π
2n ,

2π
n

)
, and 3π

2n ≤ θ∗. Hence

π

2n
< θ1 <

π

n
and

3π

2n
≤ θ2 <

2π

n
.

From Theorem 2.1 and the monotonicity of cosine function, we obtain that

λ2 − λ1 = 2 cos θ1 − 2 cos θ2 > 2

(
cos

π

n
− cos

3π

2n

)
.

The assertion (i) holds.

(ii) Suppose that B 6= 0 and cos π
2n ≤ K∗ ≤ 1. There exists a θ∗ ∈

[
0, π2n

]
such

that g(θ∗) = 0. By Lemma 3.4, g(θ) ≥ 0 for θ ∈ [θ∗, π). Since cotnθ ≥ 0 for θ ∈(
0, π2n

]
∪
(
π
n ,

3π
2n

]
, and θ∗ ≤ π

2n . Hence

0 < θ1 ≤
π

2n
and

π

n
< θ2 <

3π

2n
.

From Theorem 2.1, we obtain that

λ2 − λ1 = 2 cos θ1 − 2 cos θ2 > 2
(

cos
π

2n
− cos

π

n

)
.

The assertion (ii) holds.

Next, we will estimate a lower bound of λ2 − λ1 for B 6= 0 and cos 3π
2n < K∗ < cos π

2n .

To this end, we need the following lemma.

Lemma 4.2. Suppose that (α, β) ∈ Φ1 and (A,B) = T (α, β). Let cos 3π
2n < K∗ < cos π

2n

and gB(θ) be given in (4.4), where 0 < B ≤
√

1 +K2
∗B

2. Denote θ1(B) < θ2(B) the two

smallest roots of secular equation gB(θ) = cotnθ. Then

1√
1−K2

∗
= arg min

0<B≤
√

1+K2
∗B

2

θ2(B)− θ1(B).
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Proof. Since cos 3π
2n < K∗ < cos π

2n , there exists a θ∗ ∈
(
π
2n ,

3π
2n

)
such that gB(θ∗) = 0

for each B. Taking the derivative of gB(θ), we have g′B(θ) = B
(

1−K∗ cos θ
sin2 θ

)
> 0 for

θ ∈ (0, π). Therefore, the slope of gB(θ) increases as B increases. Turns out, the minimizer

of θ2(B) − θ1(B) takes place at a large B. Since 0 < B ≤
√

1 +K2
∗B

2, the largest B

appears when B =
√

1 +K2
∗B

2, i.e., B = 1/
√

1−K2
∗ . This completes the proof.

Let cos 3π
2n < K∗ < cos π

2n . Lemma 4.2 shows that the minimum of θ2 − θ1 will occurs

at B = 1/
√

1−K2
∗ . Let

(4.5) ĝ(θ) =
1√

1−K2
∗

(
K∗ − cos θ

sin θ

)
,

and θ∗ = cos−1(K∗) ∈
(
π
2n ,

3π
2n

)
. Since ĝ(θ) is increasing and ĝ(θ∗) = 0, we have (see

Figure 4.2 for illustration)

2n
π

3
2n
π

1θ

2θ

cot( )nθ cot( )nθ

ˆ ( )g θ

Figure 4.2: The illustration for cot(nθ) and ĝ(θ).

(i) π
2n < θ1 <

π
n < θ2 <

3π
2n ;

(ii) ĝ
(
π
2n

)
< ĝ(θ1) < 0 and 0 < ĝ(θ2) < ĝ

(
3π
2n

)
.

Then θ1 <
1
n cot−1

(
ĝ
(
π
2n

))
< π

n <
π
n + 1

n cot−1
(
ĝ
(

3π
2n

))
< θ2. Hence, the lower bound of

θ2 − θ1 can be estimated as

(4.6) θ2 − θ1 >
π

n
+

1

n

[
cot−1

(
ĝ

(
3π

2n

))
− cot−1

(
ĝ
( π

2n

))]
.

By replacing the parameter K∗ in ĝ
(
π
2n

)
and ĝ

(
3π
2n

)
by K and regarding K as a variable,

we let Ĝ1(K) = 1√
1−K2

(K−cos(π/(2n))
sin(π/(2n))

)
, Ĝ2(K) = 1√

1−K2

(K−cos(3π/(2n))
sin(3π/(2n))

)
, and

(4.7) Ĝ(K) = cot−1
(
Ĝ2(K)

)
− cot−1

(
Ĝ1(K)

)
,

where K ∈
(

cos 3π
2n , cos π

2n

)
. Here we note that Ĝ1(K∗) = ĝ

(
π
2n

)
and Ĝ2(K∗) = ĝ

(
3π
2n

)
.

Denote that θ1(K) < θ2(K) are the two smallest roots of secular equation B
(
K−cos θ

sin θ

)
=

cotnθ. From (4.5), (4.6), and (4.7), we have

(4.8) θ2(K)− θ1(K) >
π

n
+

1

n
Ĝ(K) for each K ∈

(
cos

3π

2n
, cos

π

2n

)
.
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Then we consider the optimization problem

(4.9) min
cos 3π

2n
≤K≤cos π

2n

Ĝ(K).

Lemma 4.3. The minimizer of the optimization problem (4.9) is K̂ = cos(π/n)
cos(π/(2n)) .

Proof. Taking the derivatives of Ĝ1(K) and Ĝ2(K), we have

Ĝ′1(K) =
1−K cos(π/(2n))

(1−K2)3/2 sin(π/(2n))
and Ĝ′2(K) =

1−K cos(3π/(2n))

(1−K2)3/2 sin(3π/(2n))
.

Then

Ĝ′(K) =
−1

1 + (Ĝ2(K))2
Ĝ′2(K)− −1

1 + (Ĝ1(K))2
Ĝ′1(K)

=
− sin(3π/(2n))

(1−K2) sin2(3π/(2n)) + (K − cos(3π/(2n)))2

1−K cos(3π/(2n))√
1−K2

− − sin(π/(2n))

(1−K2) sin2(π/(2n)) + (K − cos(π/(2n)))2

1−K cos(π/(2n))√
1−K2

.

Since

(1−K2) sin2(3π/(2n)) + (K − cos(3π/(2n)))2 = (1−K cos(3π/(2n)))2,

(1−K2) sin2(π/(2n)) + (K − cos(π/(2n)))2 = (1−K cos(π/(2n)))2,

we have

(4.10) Ĝ′(K) =
sin(π/(2n))− sin(3π/(2n)) +K sin(π/n)√

1−K2(1−K cos(3π/(2n)))(1−K cos(π/(2n)))
.

Hence, Ĝ′(K) = 0 if and only if sin(π/(2n))−sin(3π/(2n))+K sin(π/n) = 0. This implies

that the critical point

K̂ =
sin(3π/(2n))− sin(π/(2n))

sin(π/n)
=

2 cos(π/n) sin(π/(2n))

2 cos(π/(2n)) sin(π/(2n))
=

cos(π/n)

cos(π/(2n))
.

Next, we claim that cos 3π
2n < K̂ < cos π

2n . Since cos2 π
2n = cos πn + sin2 π

2n > cos πn , we

have K̂ < cos π
2n . Using the fact that cos 3π

2n < cos πn < K̂, we have cos 3π
2n < K̂ < cos π

2n .

From (4.10), it is easily seen that if cos 3π
2n < K < K̂ then Ĝ′(K) < 0, and if K̂ <

K < cos π
2n then Ĝ′(K) > 0. Hence, K̂ = cos(π/n)

cos(π/(2n)) is the minimizer of the optimization

problem (4.9).

Combining the previous lemmas, we have the following result.
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Theorem 4.4. Suppose that (α, β) ∈ Φ1, where Φ1 is given in (4.1). Let (A,B) = T (α, β),

B 6= 0, and K∗ = A/B. If cos 3π
2n < K∗ < cos π

2n , then

λ2 − λ1 >
4

n
sin
( π

2n

)
cos−1

(
1

2
sec

π

2n

)
.

Proof. By Lemma 4.3, we let K̂ = cos(π/n)
cos(π/(2n)) . Then Ĝ1(K̂) = cos(π/n)−cos2(π/(2n))

sin(π/(2n))
√

cos2(π/(2n))−cos2(π/n)
.

Since cos(π/n)− cos2(π/(2n)) = − sin2(π/(2n)) and

(4.11) cos2(π/(2n))− cos2(π/n) =
(
4 cos2(π/(2n))− 1

)
sin2(π/(2n)),

we have Ĝ1(K̂) = −1√
4 cos2(π/(2n))−1

. Similarly, Ĝ2(K̂) = cos(π/n)−cos(π/(2n)) cos(3π/(2n))

sin(3π/(2n))
√

cos2(π/(2n))−cos2(π/n)
.

Since cos(π/n) − cos(π/(2n)) cos(3π/(2n)) = sin(π/(2n)) sin(3π/(2n)), it follows from

(4.11) that Ĝ2(K̂) = 1√
4 cos2(π/(2n))−1

.

Since Ĝ1(K̂) = −Ĝ2(K̂) < 0, we have cot−1(Ĝ1(K̂)) = π − cot−1(Ĝ2(K̂)). It follows

from (4.7) and (4.8) that for K∗ ∈
(

cos 3π
2n , cos π

2n

)
,

θ2(K∗)− θ1(K∗) >
2

n
cot−1

(
1√

4 cos2(π/(2n))− 1

)
=

2

n
cos−1

(
1

2
sec

π

2n

)
.

Therefore, there exists a θ ∈ (θ1(K∗), θ2(K∗)) such that

λ2 − λ1 = 2 sin θ(θ2(K∗)− θ1(K∗)) >
4

n
sin θ cos−1

(
1

2
sec

π

2n

)
.

Since π
2n ≤ θ1(K∗), we have

λ2 − λ1 >
4

n
sin
( π

2n

)
cos−1

(
1

2
sec

π

2n

)
.

• For the case (α, β) ∈ Φ2 = {(α, β) ∈ R2 | α < −1, β ≤ 1 and αβ < 1}:

Suppose that (α, β) ∈ Φ2 and (A,B) = T (α, β). Then

(A,B) ∈ T (Φ2) = {(A,B) ∈ R2 | −1 < B < −A and A ≤ B}

as shown in (4.2). From Theorem 3.6, we see that 0 < λ1 < µ1 < λ2 < µ2, where µ1 and

µ2 are given in (1.4). From Figure 4.1, the region T (Φ2) can be written as

T (Φ2) = {(KB,B) | K ≥ 1 and − 1 < B < 0} ∪ {(A, 0) | A < 0}

∪ {(KB,B) | K < −1 and 0 < B}.

Assume that B 6= 0. Then there is a K∗ with K∗ ≥ 1 such that A = K∗B and −1 < B < 0,

or there is a K∗ with K∗ < −1 such that A = K∗B and 0 < B. Let g(θ) be given in (4.4).
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In both cases, g(θ) < 0 for all θ ∈ (0, π). Since cotnθ < 0 for θ ∈
(
π
2n ,

π
n

)
∪
(

3π
2n ,

2π
n

)
, we

have

(4.12)
π

2n
< θ1 <

π

n
and

3π

2n
≤ θ2 <

2π

n
.

Assume that B = 0. Then g(θ) = A csc θ. Since A < 0, we have g(θ) < 0 for all θ ∈ (0, π).

Hence, the two smallest roots of the secular equation g(θ) = cotnθ also satisfy (4.12).

From Theorem 2.1, we have the following result.

Theorem 4.5. Suppose that (α, β) ∈ Φ2, where Φ2 is given in (4.1). Then

λ2 − λ1 = 2 cos θ1 − 2 cos θ2 > 2

(
cos

π

n
− cos

3π

2n

)
.

• For the case (α, β) ∈ Φ3 = {(α, β) ∈ R2 | β > 1 and αβ < 1}:

Suppose that (α, β) ∈ Φ3 and (A,B) = T (α, β). Here,

T (Φ3) = {(A,B) ∈ R2 | −1 < B ≤ A− 1/n}

∪ {(A,B) ∈ R2 | −1 < B < A < B + 1/n}

which shows in (4.2) (see Figure 4.1 for illustration). Then we have the following result.

Theorem 4.6. Suppose that (α, β) ∈ Φ3 and (A,B) = T (α, β), where Φ3 is given in

(4.1). Then B > −1 and

(i) if B ≤ A− 1/n, then λ2 − λ1 > 2− 2 cos πn ;

(ii) if B < A < B + 1/n, then λ2 − λ1 > 2
(

cos π
2n − cos πn

)
.

Proof. Suppose that (α, β) ∈ Φ3 and (A,B) = T (α, β). From (4.2), we have −1 < B < A.

Suppose that B ≤ A − 1/n, it follows from Theorem 3.6 that λ1 ≤ 0 < µ1 < λ2. Hence,

λ2 − λ1 > 2− 2 cos πn . Then assertion (i) holds.

For the case B < A < B + 1/n, let Â = B̂ = B. Then

(4.13) g(θ) =
A−B cos θ

sin θ
= ĝ(θ) +

A− Â
sin θ

,

where ĝ(θ) = Â−B̂ cos θ
sin θ and A− Â > 0. Note that A−Â

sin θ > 0 for all θ ∈ (0, π).

(a) If B ≥ 0, then ĝ(θ) ≥ 0 for θ ∈ (0, π). From (4.13), we obtain that 0 < θ1 <
π
2n <

π
n < θ2. Hence, λ2 − λ1 > 2

(
cos π

2n − cos πn
)
.

(b) If B < 0, then ĝ(θ) < 0 and decreasing on θ ∈ (0, π). Since A−Â
sin θ > 0 and

decreasing on θ ∈ (0, π/2), from (4.13) we obtain g(θ) is also decreasing on θ ∈ (0, π/2).

It follows from Theorem 3.6 that 0 < θ1 <
π
n < θ2 <

2π
n and θ2− θ1 > π/n. Then we have

λ2 − λ1 = 2(cos θ1 − cos θ2) > 2− 2 cos πn .

This completes the proof.
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In this section, we first partition the parameter domain Ω1 into three regions. We also

estimate the first eigenvalue gaps for these 3 regions in Theorems 4.1, 4.4, 4.5, and 4.6.

We summarize a result of the global gap of the first two eigenvalues for (α, β) ∈ Ω1 in the

following remark.

Remark 4.7. For each positive integer n ≥ 2, we have

(4.14) cos
π

n
− cos

3π

2n
> 1− cos

π

n
> cos

π

2n
− cos

π

n
.

(i) Using the Mean Value Theorem, we obtain that cos π
2n − cos πn ≥

π
2n sin π

2n . Due to

the monotonicity of cos−1 and sec and n ≥ 2 a calculation yields

cos−1

(
1

2
sec

π

2n

)
≤ cos−1

(
1

2
sec

π

4

)
=
π

4
.

Hence, 4
n sin

(
π
2n

)
cos−1

(
1
2 sec π

2n

)
≤ π

n sin
(
π
2n

)
≤ 2
(

cos π
2n − cos πn

)
. It follows from (4.14)

and Theorems 4.1, 4.4, 4.5, and 4.6 that for each (α, β) ∈ Ω1,

λ2(α, β)− λ1(α, β) >
4

n
sin
( π

2n

)
cos−1

(
1

2
sec

π

2n

)
.

This proves the the inequality in (1.5).

(ii) Taylor series approximation gives

4

n
sin
( π

2n

)
cos−1

(
1

2
sec

π

2n

)
=

4

n

(
π

2n
− 1

3!

( π
2n

)3
+ · · ·

)
cos−1

(
1

2
+

1

2

( π
2n

)2
+ · · ·

)
=

2π2

3n2
+O

(
1

n4

)
.

This proves the equality in (1.5).

5. The monotonicity property of eigenvalues

The monotonicity property of eigenvalues can be investigated by using the secular equation

g(θ) = cotnθ. In this section, we consider the parameters (α, β) ∈ Φ1 which is defined in

(4.1). In this parameter region, it follows from (4.3) that the pair (A,B) ∈ T (Φ1) satisfies

B 6= 0 and −1 ≤ K∗ = A/B ≤ 1. Later, we shall fix the ratio K∗ and consider a parameter

curve {(α, β) ∈ Φ1 | K∗ = A(α, β)/B(α, β)}. Along this parameter curve, we have the

following monotonicity properties.

Theorem 5.1. Let (α, β) ∈ Φ1 \ {(−1, 1)} and (A,B) = T (α, β). Therefore, B 6= 0 and

−1 ≤ K∗ = A/B ≤ 1. Denote λ̂1 < λ̂2 < · · · < λ̂n the eigenvalues of L(α̂, β̂).
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(i) Suppose that −1 < K∗ < 1 and k∗ is an integer such that

(5.1) cos
(2k∗ + 1)π

2n
< K∗ < cos

(2k∗ − 1)π

2n
.

If α < α̂ < 1 and β̂ = (K∗ − α̂)/(1−K∗α̂) with α̂ < β̂, then (α̂, β̂) ∈ Φ1 and

0 < λ1 < λ̂1 < λ2 < λ̂2 < · · · < λk∗ < λ̂k∗ < λ̂k∗+1 < λk∗+1 < · · · < λ̂n < λn < 4.

(ii) Suppose that K∗ = 1. We have −1 < α < 1 and β = 1. If α < α̂ and β̂ = 1, then

0 < λ̂1 < λ1 < λ̂2 < λ2 < · · · < λ̂n < λn < 4.

(iii) Suppose that K∗ = −1. We have α = −1 and −1 < β < 1. If α̂ = −1 and β < β̂,

then

0 < λ̂1 < λ1 < λ̂2 < λ2 < · · · < λ̂n < λn < 4.

Proof. Let (α, β) ∈ Φ1 \ {(−1, 1)}. From (4.2), we have B 6= 0 and −1 ≤ K∗ = A/B ≤ 1.

(i) Suppose that −1 < K∗ < 1, α < α̂ < 1, and β̂ = (K∗ − α̂)/(1−K∗α̂) with α̂ < β̂.

Then we have

(5.2) 1−K∗α̂ > 0 and K∗ − 2α̂+K∗α̂
2 > 0.

Since (1−K∗α̂)− (K∗ − α̂) = (1−K∗)(1 + α̂) > 0, we have β̂ < 1. Hence, (α̂, β̂) ∈ Φ1.

By substituting β̂ = (K∗ − α̂)/(1−K∗α̂) into (3.2), we have A(α̂, β̂)/B(α̂, β̂) = (α̂ +

β̂)/(1 + α̂β̂) = (α̂−K∗α̂2 +K∗ − α̂)/(1−K∗α̂+K∗α̂− α̂2) = K∗ and B(α̂) ≡ B(α̂, β̂) =

(1− α̂2)/(1− 2K∗α̂+ α̂2). It follows from (5.2) that

B′(α̂) =
2K∗α̂

2 − 4α̂+ 2K∗
(1− 2K∗α̂+ α̂2)2

> 0.

This implies that B(α̂) is increasing in α̂. Hence, B(α) < B(α̂) because α < α̂.

*kθ 

*kθ 

* 1kθ +


* 2kθ +

* 1kθ −
* 1kθ − * 1kθ + * 2kθ +

( )gα θˆ ( )gα θcot( )nθ

Figure 5.1: The illustration for Theorem 5.1.
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Let gα̂(θ) = B(α̂)
(
K∗−cos θ

sin θ

)
. Since A(α̂, β̂)/B(α̂, β̂) = K∗, we obtain that gα̂(θ) =

cotnθ is the secular equation of (1.3) with (α, β) =
(
α̂, (K∗ − α̂)/(1 − K∗α̂)

)
. Suppose

that 0 < θ1 < θ2 < · · · < θn < π and 0 < θ̂1 < θ̂2 < · · · < θ̂n < π are the roots of

gα(θ) = cotnθ and gα̂(θ) = cotnθ, respectively. Then we have λj = 2 − 2 cos θj and

λ̂j = 2− 2 cos θ̂j for j = 1, . . . , n. It follows from (5.1) that gα̂(θ) = 0 has solution θ∗ with

θ̂k∗ < θ∗ < θ̂k∗+1. Since B(α) < B(α̂), we have (see Figure 5.1 for illustration)

θ1 < θ̂1 < θ2 < θ̂2 < · · · < θk∗ < θ̂k∗ < θ̂k∗+1 < θk∗+1 < · · · < θ̂n < θn.

Hence, the assertion (i) holds.

(ii) Let K∗ = (α+ β)/(1 + αβ) = 1, then 0 = 1 + αβ − α− β = (α− 1)(β − 1). Since

−1 ≤ α ≤ β ≤ 1 and αβ < 1, we have −1 < α < 1 and β = 1. Suppose that α < α̂

and β̂ = 1, then A(α̂, β̂)/B(α̂, β̂) = (α̂ + β̂)/(1 + α̂β̂) = 1 = K∗ and B(α̂) ≡ B(α̂, β̂) =

(1 + α̂)/(1− α̂). It is easy to see that B(α̂) is increasing in α̂. Let gα̂(θ) = B(α̂)
(

1−cos θ
sin θ

)
.

Then limθ→0+ gα̂(θ) = 0, gα̂(θ) is increasing in θ. Let 0 < θ1 < θ2 < · · · < θn < π

and 0 < θ̂1 < θ̂2 < · · · < θ̂n < π are the roots of gα(θ) = cotnθ and gα̂(θ) = cotnθ,

respectively. Then we have θ̂1 < θ1 < θ̂2 < θ2 < · · · < θ̂n < θn. Hence, the assertion (ii)

holds.

Similarly, we can show that the assertion (iii) holds.
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