
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 26, No. 4, pp. 765–798, August 2022

DOI: 10.11650/tjm/220201

Existence of Invariant Curves for Degenerate Quasi-periodic Reversible

Mappings

Peng Huang

Abstract. In this paper we are concerned with the existence of invariant curves of

quasi-periodic reversible mappings with higher order degeneracy of the twist condition

under the Brjuno–Rüssmann’s non-resonant condition. In the proof we use a new

variant of the KAM theory, containing an artificial parameter q, 0 < q < 1, which

makes the steps of the KAM iteration infinitely small in the speed of function qnε,

rather than super exponential function.

1. Introduction

In this paper we are concerned with the existence of invariant curves of the following

planar quasi-periodic mapping

(1.1) A :

x1 = x+ h(y) + f(x, y),

y1 = y + g(x, y),

where the frequency map h(y) is real analytic, the small perturbations f(x, y) and g(x, y)

are quasi-periodic (see Definition 2.1) in x with frequencies ω = (ω1, ω2, . . . , ωm), real

analytic in x and y, the variable y ranges in an open interval I ⊆ R. The mapping

is called area-preserving mapping, if it preserves area. Correspondingly, the mapping is

called reversible mapping with respect to the involutionR : (x, y) 7→ (−x, y), if ARA = R.

Our main concern will be the analytic quasi-periodic reversible mapping A with higher

order degeneracy of the twist condition, that is, there is some value y0 ∈ I such that

h′(y0) = 0, . . . , h(λ−1)(y0) = 0, h(λ)(y0) 6= 0 with λ ∈ Z > 1.

When the perturbations f = g = 0 in (1.1), the mapping A has a family of invariant

curves with h(y) as its rotation number. The condition

(1.2)
dh(y)

dy
6= 0 for all y ∈ I
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is called twist condition. Under this condition the mapping (1.1) is called twist mapping

and can be equivalent to

(1.3) A0 :

x1 = x+ y + f(x, y),

y1 = y + g(x, y).

Moser [21] considered the area-preserving twist mapping

M0 :

x1 = x+ α(y) + ϕ1(x, y),

y1 = y + ϕ2(x, y),

where the perturbations ϕ1, ϕ2 are assumed to be small and of period 2π in x. He

obtained the existence of invariant closed curves of M0 which is of class C333. About M0,

an analytic version of the invariant curve theorem was presented in [30], a version in class

C5 in Rüssmann [27] and a optimal version in class Cp with p > 3 in Herman [9,10].

When the perturbations f(x, y), g(x, y) in (1.3) are quasi-periodic in x, there are some

results about the existence of invariant curves of the following planar quasi-periodic twist

mapping

(1.4) M1 :

x1 = x+ α+ y + f(x, y),

y1 = y + g(x, y),
(x, y) ∈ R× [a, b],

where the functions f(x, y) and g(x, y) are quasi-periodic in x with the frequency ω =

(ω1, ω2, . . . , ωm), real analytic in x and y, and α is a constant.

When the map M1 in (1.4) is an exact symplectic map, ω1, ω2, . . . , ωm, 2πα−1 are

sufficiently incommensurable, Zharnitsky [34] proved the existence of invariant curves of

the map M1 and applied this result to present the boundedness of all solutions of Fermi–

Ulam problem. His proof is based on the Lagrangian approach introduced by Moser [24]

and used by Levi and Moser in [15] to show a proof of the twist theorem.

When the map M1 in (1.4) is reversible with respect to the involution R : (x, y) 7→
(−x, y), that is, RM1R = M−1

1 , ω1, ω2, . . . , ωm, 2πα
−1 satisfy the Diophantine condition∣∣∣〈k, ω〉 α

2π
− j
∣∣∣ ≥ γ

|k|τ
for all k ∈ Zm \ {0}, j ∈ Z,

Liu [17] obtained some variants of the invariant curve theorem for quasi-periodic reversible

mapping M1. As an application, he used the invariant curve theorem to investigate the

existence of quasi-periodic solutions and the boundedness of all solutions for an asymmetric

oscillator depending quasi-periodically on time. On the other hand, by establishing the

invariant curve theorem of planar smooth quasi-periodic twist mappings in [12], recently

we obtained the existence of quasi-periodic solutions and the boundedness of all solutions

for an asymmetric oscillation with a quasi-periodic external force [13].
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For the reversible mapping, the invariant curve theorem was obtained by Moser [22,23],

then developed by Sevryuk [29]. Liu [18] concerned with the existence of invariant curves

of reversible mappings, and obtained a variants of the small twist theorem. In the previous

proofs in [17, 18, 21, 34], the steps of KAM iteration decay in speed of super exponential

function εµ
n
, 1 < µ < 2.

After the research of the twist mapping, it is clear that an important direction of

further investigation is the non-twist mapping which violates the twist condition (1.2),

that is, there is some y0 such that h′(y0) = 0.

When the perturbations f(x, y), g(x, y) in (1.1) are 2π-periodic in x, Simó [31] proved

the existence of invariant curves for the periodic non-twist area preserving mapping. For

other well known results on the periodic non-twist area preserving, refer to [1, 3–6] and

the references therein. As we know if the twist condition is not satisfied, the frequency of

invariant curves may have some drift rather than the frequency remain unchanged. How-

ever, in the above references, for the periodic non-twist mapping one can only obtain the

existence of invariant curves, there is no information about the frequency of the invariant

curves.

Cheng and Xia [2] proved a generalization to the classical KAM theorem, replacing

the standard twist or nondegenerate condition with a weaker topological condition. This

generalization was also proved by Herman [11].

Zhang and Xu [33] obtained the invariant curve theorem for the analytic periodic

reversible non-twist mapping under the Brjuno–Rüssmann’s non-resonant condition. They

mainly use the ideas in [26, 28], introduce a parameter q, 0 < q < 1, and make the steps

of the KAM-iteration infinitely small in the speed of function qnε, rather than super

exponential function εµ
n
, 1 < µ < 2. Moreover, they also investigated the persistence of

the frequency of the invariant curves.

The study of the existence of invariant curves of area preserving non-twist maps,

and equivalently in degenerate Hamiltonian systems, is a problem of both theoretical

and practical relevance. Recently, there has been considerable interest in studying the

persistence of tori of Hamiltonian system with fixed frequency, where twist condition is

violated but nevertheless, the system depends on sufficient parameters that control the

frequencies. González-Enŕıquez, Haro and Llave [8, Chapter 9] obtain persistence of an

invariant torus with fixed frequency in both the twist and the non-twist cases, including

small twist.

In this paper we focus on the quasi-periodic case, that is, the perturbations f(x, y),

g(x, y) in (1.1) are quasi-periodic periodic in x with the frequencies ω = (ω1, ω2, . . . , ωm),

and similar to [17, 18, 33], we also assume that the mapping A in (1.1) is reversible with

respect to the involution R : (x, y) 7→ (−x, y), that is, ARA = R, instead of the exact
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symplecticity or area-preserving assumption on A, and want to establish the invariant

curve theorem for the quasi-periodic mapping A with higher order degeneracy of the twist

condition, that is, there is some value y0 ∈ I such that h′(y0) = 0, . . . , h(λ−1)(y0) =

0, h(λ)(y0) 6= 0 with λ ∈ Z > 1. However, we remark that unlike the standard KAM

theorems where the invariant curve for any fixed diophantine rotation number is unique,

here we may have many or even infinitely many invariant curves with the same rotation

numbers. For instance, in (1.1) if h(y) = β∗ + y3 and f(x, y) = εy(sinω1x + sinω2x +

· · ·+ sinωmx), g(x, y) = 0, then for any β close to β∗ there are three invariant curves with

rotation number β.

As in [25,32,33], we introduce some parameters, so that the existence of invariant curves

of quasi-periodic mapping A in (1.1) can be reduced to that of a family of quasi-periodic

mappings with some parameters. We write y = p + z, and expand h(y) around p such

that h(y) = h(p) +
∫ 1

0 h
′(yt)z dt, where yt = p+ tz, 0 ≤ t ≤ 1, z varies in a neighborhood

of origin of the real line R. We put Ω(p) = h(p), f(x, z; p) =
∫ 1

0 h
′(yt)z dt + f(x, p + z),

g(x, z; p) = g(x, p+z), and obtain the family of analytic quasi-periodic reversible mappings

(1.5) M :

x1 = x+ Ω(p) + f(x, z; p),

z1 = z + g(x, z; p).

Now we turn to consider this family of analytic quasi-periodic reversible mappings M

with parameters p ∈ Π such that Ω(p) 6= 0 and Π ⊆ I is a neighborhood of y0, which is a

bounded interval such as (y0 − δ, y0 + δ), δ > 0.

In this paper, under the Brjuno–Rüssmann’s non-resonant condition (2.3), the exis-

tence of invariant curves of analytic quasi-periodic reversible mappings M will be proved.

In the proof we use a new variant of the KAM theory in [26,28,33], containing an artificial

parameter q, 0 < q < 1, which makes the steps of the KAM iteration infinitely small

in the speed of function qnε, rather than super exponential function. Moreover, we will

investigate the frequency of the invariant curves, the frequency can not be regarded as

independent parameters. The frequency may have some drifts at each step, rather than

the frequencies remain unchanged. Hence, we can also obtain the existence of the invariant

curves for the analytic quasi-periodic reversible mappings A.

After we get the invariant curve theorem, as an application, we shall study the ex-

istence of quasi-periodic solutions whose frequencies are not independent parameters for

the following superlinear Duffing’s equation

(1.6) ẍ+ x3 = f(t),

where f(t) is real analytic and quasi-periodic in t with the frequency ω = (ω1, ω2, . . . , ωm).
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It is well known that the longtime behaviour of a time dependent nonlinear differential

equation

(1.7) ẍ+ f(t, x) = 0,

f being periodic in t, can be very intricate. For example, there are equations having

unbounded solutions but with infinitely many zeros and with nearby unbounded solution

having randomly prescribed numbers of zeros and also periodic solution (see [7]).

In contrast to such unboundedness phenomena one may look for conditions on the

nonlinearity, in addition to the superlinear condition that

1

x
f(t, x)→∞ as |x| → ∞,

which allow to conclude that all solutions of equation (1.7) are bounded. For example,

every solution of equation (1.6) with p(t + 1) = p(t) being continuous, is bounded. This

result, prompted by Littlewood in [16], is due to Morris [20], who proved that there are

infinitely many quasi-periodic solutions and the boundedness of all solutions of (1.6).

In 1987, Dieckerhoff and Zehnder in [7] extended this result to the general superlinear

Duffing’s equation. For recent development, we refer to [14,19] and the references therein.

The rest of the paper is organized as follows. In Section 2, we list some properties

of quasi-periodic functions, and then state the main invariant curve theorem (see The-

orem 2.7) for the quasi-periodic reversible mappings M which is defined by (1.5). We

introduce some tools which will be used to prove the invariant curve theorem, and give

the proof of Theorem 2.7 in Section 3. Some examples and applications are given in

Section 4.

2. Main result

2.1. The space of quasi-periodic functions

We first define the space of real analytic quasi-periodic functionsQ(ω) as in [30, Chapter 3].

Here the m-dimensional frequency vector ω = (ω1, ω2, . . . , ωm) is rationally independent,

that is, for all k = (k1, k2, . . . , km) 6= 0, 〈k, ω〉 =
∑

j kjωj 6= 0.

Definition 2.1. A function f : R → R is called real analytic quasi-periodic with the

frequency ω = (ω1, ω2, . . . , ωm), if there exists a real analytic function

F : θ = (θ1, θ2, . . . , θm) ∈ Rm → R

such that f(t) = F (ω1t, ω2t, . . . , ωmt) for all t ∈ R, where F is 2π-periodic in each variable

and bounded in a complex neighborhood Πm
r = {(θ1, θ2, . . . , θm) ∈ Cm : | Im θj | ≤ r, j =

1, 2, . . . ,m} of Rm for some r > 0. Here we call F (θ) the shell function of f(t).
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Denote by Q(ω) the set of real analytic quasi-periodic functions with the frequency

ω = (ω1, ω2, . . . , ωm). Given f(t) ∈ Q(ω), the shell function F (θ) of f(t) admits a Fourier

series expansion

F (θ) =
∑
k∈Zm

fke
i〈k,θ〉,

where k = (k1, k2, . . . , km), kj range over all integers and the coefficients fk decay expo-

nentially with |k| = |k1|+ |k2|+ · · ·+ |km|, then f(t) can be represented as a Fourier series

of the type from the definition

f(t) =
∑
k∈Zm

fke
i〈k,ω〉t.

In the following we define the norm of the real analytic quasi-periodic function f(t)

through that of the corresponding shell functions F .

Definition 2.2. For r > 0, let Qr(ω) ⊆ Q(ω) be the set of real analytic quasi-periodic

functions f such that the corresponding shell functions F are bounded on the subset Πm
r

with the supremum norm

|F |r = sup
θ∈Πmr

|F (θ)| = sup
θ∈Πmr

∣∣∣∣∣∑
k

fke
i〈k,θ〉

∣∣∣∣∣ < +∞.

Thus we define |f |r := |F |r.

The following properties of real analytic quasi-periodic functions can be found in [30,

Chapter 3].

Lemma 2.3. The following statements are true:

(i) Let f(t), g(t) ∈ Q(ω), then g(t+ f(t)) ∈ Q(ω);

(ii) Suppose that

|〈k, ω〉| ≥ c

|k|σ0
, c, σ0 > 0

for all integer vectors k 6= 0. Let h(t) ∈ Q(ω) and τ = βt+ h(t) (β + h′ > 0), then

the inverse relation is given by t = β−1τ + h1(τ) and h1 ∈ Q(ω/β). In particular, if

β = 1, then h1 ∈ Q(ω).

Throughout this paper, we assume that the frequency ω = (ω1, ω2, . . . , ωm) satisfies

the Diophantine condition

(2.1) |〈k, ω〉| ≥ c

|k|σ0
, c, σ0 > 0

for all integer vectors k 6= 0. It is not difficult to show that for σ0 > m− 1, the Lebesgue

measure of the set of ω satisfying the above inequalities is positive for a suitably small c.

Let |ω|∞ = max1≤i≤m |ωi|.
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2.2. The Brjuno–Rüssmann’s non-resonant condition

Since there is some value y0 ∈ I such that

h′(y0) = 0, . . . , h(λ−1)(y0) = 0, h(λ)(y0) 6= 0

with λ ∈ Z > 1, as a matter of fact, it is apparent that there exist a bounded interval Π

such that Ω(p) = h(p) satisfies

(2.2) Ω(λ)(p) 6= 0, λ ∈ Z > 1 for all p ∈ Π,

where Π ⊆ I is a neighborhood of y0, which is a bounded interval such as (y0 − δ, y0 + δ),

δ > 0.

In KAM step, Ω(p) also need satisfy the Brjuno–Rüssmann’s non-resonant condition

(2.3)

∣∣∣∣〈k, ω〉Ω(p)

2π
− j
∣∣∣∣ ≥ γ

∆(|k|)
for all k ∈ Zm \ {0}, j ∈ Z

with some γ > 0 and Brjuno–Rüssmann approximation function ∆. We call ∆: [1,∞)→
[1,∞) an Brjuno–Rüssmann approximation function, that means it is continuous, increas-

ing, unbounded such that ∆(1) = 1 and∫ ∞
1

ln ∆(t)

t2
dt <∞.

Remark 2.4. If we choose ∆(t) = tµ, the Brjuno–Rüssmann’s non-resonant condition (2.3)

becomes the Diophantine condition which had been used in [17,21,34].

In the following the measure estimate of the parameters p such that the frequency Ω(p)

satisfies the Brjuno–Rüssmann’s non-resonant condition (2.3) under (2.2) will be given.

Theorem 2.5. If the Brjuno–Rüssmann approximation function ∆ is chosen such that

+∞∑
`=1

`m
(

1

`∆(`)

)1/λ

< +∞,

then for suitable γ, the set of p satisfying the Brjuno–Rüssmann’s non-resonant condi-

tion (2.3) under (2.2) has positive measure.

Proof. Choose some m-dimensional frequency vector ω = (ω1, ω2, . . . , ωm) satisfying (2.1)

and let Πω,γ,∆ denote the set of all p ∈ Π satisfying (2.3) with the fixed ω, γ, ∆. Then

Πω,γ,∆ is the complement of the open dense set Rω,γ,∆, where

Rω,γ,∆ =
⋃

k∈Zm\{0}
j∈Z

Rk,j
ω,γ,∆ =

⋃
k∈Zm\{0}

j∈Z

{
p ∈ Π :

∣∣∣∣〈k, ω〉Ω(p)

2π
− j
∣∣∣∣ < γ

∆(|k|)

}
.
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Now we estimate the measure of the set Rk,j
ω,γ,∆. Set |kmax| = max1≤i≤m |ki|, then there

exists some 1 ≤ m̃ ≤ m such that |km̃| = |kmax|, and 1 ≤ |k|/|kmax| ≤ m. Therefore, we

have

Rk,j
ω,γ,∆ =

{
p ∈ Π :

∣∣∣∣〈k, ω〉Ω(p)

2π
− j
∣∣∣∣ < γ

∆(|k|)

}

=

p ∈ Π :

∣∣∣∣∣∣kmaxωm̃
Ω(p)

2π
+
∑
i 6=m̃

kiωi
Ω(p)

2π
− j

∣∣∣∣∣∣ < γ

∆(|k|)

 .

Since there is some value y0 such that h′(y0) = 0, . . . , h(λ−1)(y0) = 0, h(λ)(y0) 6= 0 with

λ > 1, then

Ω(i)(y0) = h(i)(y0) = 0, 1 ≤ i < λ.

And by (2.2), we know

Ω(λ)(p) 6= 0 for all p ∈ Π.

Hence there exists ζ ∈ Π between p and y0 such that Ω(λ)(ζ) 6= 0 and

Ω(p) = Ω(y0) +
Ω(λ)(ζ)

λ!
(p− y0)λ = h(y0) +

Ω(λ)(ζ)

λ!

pλ +
λ∑
=1

(−1)
(
λ



)
pλ−y0

 .

Therefore,

Rk,j
ω,γ,∆ =

{
p ∈ Π :

|kmax||ωm̃||Ω(λ)(ζ)|
λ!

∣∣pλ − bj∣∣ < 2πγ

∆(|k|)

}
=
{
p ∈ Π : bj − δk < |p|λ < bj + δk

}
,

where bj = −
∑λ

=1(−1)
(
λ


)
pλ−y0 − λ!

|kmax||ωm̃||Ω(λ)(ζ)|
{
kmaxωm̃h(y0) +

∑
i 6=m̃ kiωiΩ(p) −

2πj
}

and δk = 2πγ
∆(|k|)

λ!
|kmax||ωm̃||Ω(λ)(ζ)| .

If bj − δk ≤ 0 which means bj ≤ δk, then

meas
(
Rk,j
ω,γ,∆

)
≤ 2(2δk)

1/λ = 2

(
4πγ

∆(|k|)
λ!

|kmax||ωm̃||Ω(λ)(ζ)|

)1/λ

= 2

(
γ

|k|∆(|k|)

)1/λ( |k|
|kmax|

)1/λ( 4πλ!

|ωm̃||Ω(λ)(ζ)|

)1/λ

.

If bj − δk > 0 which means bj + δk > bj − δk > 0, and by the inequality x1/λ − a1/λ ≤
(x− a)1/λ when λ ≥ 1, x ≥ a > 0, then

meas
(
Rk,j
ω,γ,∆

)
≤ 2
(
(bj + δk)

1/λ − (bj − δk)1/λ
)
≤ 2
(
(bj + δk)− (bj − δk)

)1/λ
≤ 2(2δk)

1/λ = 2

(
4πγ

∆(|k|)
λ!

|kmax||ωm̃||Ω(λ)(ζ)|

)1/λ

= 2

(
γ

|k|∆(|k|)

)1/λ( |k|
|kmax|

)1/λ( 4πλ!

|ωm̃||Ω(λ)(ζ)|

)1/λ

.
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Since 1 ≤ |k|/kmax ≤ m, then we have the following measure estimate

meas
(
Rk,j
ω,γ,∆

)
≤ O

((
γ

|k|∆(|k|)

)1/λ
)
.

Next we estimate the measure of the set Rω,γ,∆. Since k ∈ Zm \ {0}, j ∈ Z,∣∣∣∣〈k, ω〉Ω(p)

2π
− j
∣∣∣∣ < γ

∆(|k|)
,

then we have

|j| ≤
∣∣∣∣〈k, ω〉Ω(p)

2π

∣∣∣∣+
γ

∆(|k|)
≤ c0|k|,

where c0 is a constant independent of k. Thus

meas(Rω,γ,∆) ≤
∑

k∈Zm\{0}

∑
j∈Z

|j|≤c0|k|

meas
(
Rk,j
ω,γ,∆

)
≤

∑
k∈Zm\{0}

∑
j∈Z

|j|≤c0|k|

O

((
γ

|k|∆(|k|)

)1/λ
)

≤
∑

k∈Zm\{0}

O

(
|k|
(

γ

|k|∆(|k|)

)1/λ
)
.

Also, by the condition of Theorem 2.5, we have

∑
k∈Zm\{0}

|k|
(

1

|k|∆(|k|)

)1/λ

≤ 2m
+∞∑
`=1

`

(
1

`∆(`)

)1/λ(m+ `− 1

`

)

≤ 22m−1
+∞∑
`=1

`m
(

1

`∆(`)

)1/λ

< +∞.

Hence

meas(Rω,γ,∆) ≤ O(γ1/λ) and meas(Πω,γ,∆)→ meas(Π) as γ → 0.

This completes the proof of Theorem 2.5.

Remark 2.6. From power function tβ, β > λm+ λ− 1, to exponent function et
1−γ̃

, γ̃ < 1,

can all be chosen as a Brjuno–Rüssmann approximation function.

Throughout this paper, we assume that the Brjuno–Rüssmann approximation function

∆ has been chosen such that Theorem 2.5 is established. Hence Πω,γ,∆ the set of all p ∈ Π

satisfying (2.3) under (2.2) has positive measure. Finally, with any approximation function

∆ we define another function Λ by setting Λ(t) = t∆(t).
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2.3. The main result

Before stating our theorem, we first give some definitions and notations. Define

D(r, s) =
{

(θ, z) ∈ Cm × C : | Im θj | ≤ r, j = 1, 2, . . . ,m, |z| ≤ s
}
,

and a complex neighborhood of Πω,γ,∆,

Πh =
{
p ∈ C : dist(p,Πω,γ,∆) ≤ h

}
.

Suppose the function f(x, z; p) is quasi-periodic in x with the frequency ω = (ω1, ω2,

. . . , ωm) and real analytic on D(r, s) × Πh. We expand f(x, z; p) as Fourier series with

respect to x,

f(x, z; p) =
∑
k∈Zm

fk(z; p)e
i〈k,ω〉x,

then define

‖f‖r,s,h =
∑
k∈Zm

|fk|s,her|k|,

where

|fk|s,h = sup
|z|≤s,p∈Πh

|fk(z; p)|.

And, we can do the same procedure for the function g(x, z; p).

Now we are in a position to state our main result.

Theorem 2.7. Consider the real analytic quasi-periodic mapping M given by (1.5), which

is reversible with respect to the involution R : (x, z) 7→ (−x, z), that is, MRM = R. We

assume that the corresponding shell functions F (θ, z; p), G(θ, z; p) of f(x, z; p), g(x, z; p)

are real analytic on D(r, s)×Πh with

‖f‖r,s,h + ‖g‖r,s,h = ε <
γ

50Λ(τ)
,

where τ is so large such that

16

∫ ∞
τ

ln Λ(t)

t2
dt <

r

2
.

Then there is a non-empty Cantor set Π∗ω,γ,∆ ⊆ Πω,γ,∆ and a family of transformations

V∗( · , · ; p) : D∗ → D(r, s) for all p ∈ Π∗ω,γ,∆,

x = ξ + u∗(ξ; p), z = v∗(ξ; p)

satisfying

‖V∗ − id ‖D∗×Π∗ω,γ,∆
≤ exp

{
4daΛ0ε0

(d− 1)γ

}
2dΛ0ε0σ

(d− 1)γ
,
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where D∗ =
{
| Im ξ| < r∗

}
×{0}, r/2 ≤ r∗ < r. Under these transformations, the mapping

M is transformed into

M∗ : ξ1 = ξ + Ω∗(p), η1 = η.

Thus, for any p ∈ Π∗ω,γ,∆ the mapping (1.5) has an invariant curve Γ0 with the form

x = x′ + ϕ(x′), z = ψ(x′),

where ϕ, ψ are real analytic quasi-periodic with the frequency ω = (ω1, ω2, . . . , ωm), and

the invariant curve Γ0 is of the form z = φ(x) with φ ∈ Qr∗(ω). The restriction of M

onto Γ0 is

M|Γ0 : x′1 = x′ + Ω∗(p)

whose the frequency satisfies that

|Ω∗(p)− Ω(p)|Π∗ω,γ,∆ ≤ 2ε,

and ∣∣∣∣〈k, ω〉Ω∗(p)2π
− j
∣∣∣∣ ≥ γ

2∆(|k|)
for all k ∈ Zm \ {0}, j ∈ Z.

Moreover, we have meas(Πω,γ,∆ \Π∗ω,γ,∆) ≤ cγ1/λ.

3. Proof of the main result

In this section we will prove Theorem 2.7. The proof is based on the KAM approach, is

to find a sequence of changes of variables such that the transformed mapping of M will

be closer to

x1 = x+ Ω∗(p), z1 = z

than the previous one in the narrower domain.

In the KAM step, under the weaker non-degeneracy condition (2.2), the frequencies can

not be regarded as independent parameters. Moreover, the frequencies may have some

drifts at each step, rather than the frequencies remain unchanged. Hence the previous

methods in [17,18,21,34] are not valid. The key is to control the parameters in the small

divisors. We use the ideas in [26, 28, 33], in the proof we use a new variant of the KAM

theory which containing an artificial parameter q, 0 < q < 1 and makes the steps of the

KAM iteration infinitely small in the speed of function qnε. In the following, we first give

one KAM step, we will give a construction of such transformation.
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3.1. The KAM step

Lemma 3.1. Consider the following real analytic quasi-periodic reversible mappings

M :

x1 = x+ Ω(p) + f(x, z; p),

z1 = z + g(x, z; p)

on D(r, s)×Πh. Let 0 < σ < r/2, τ ≥ 1, define a = 1− e−τσ. For all p ∈ Πω,γ,∆,

(3.1)

∣∣∣∣〈k, ω〉Ω(p)

2π
− j
∣∣∣∣ ≥ γ

∆(|k|)
for all k ∈ Zm \ {0}, j ∈ Z, 0 < |k| ≤ τ .

Let

h =
πγ

Λ(τ)T |ω|∞
, max

p∈Πh
|Ω′(p)| ≤ T.

Suppose that

‖f‖r,s,h + ‖g‖r,s,h ≤ ε <
bγ

2Λ(τ)
,

where 0 < b ≤ 1/2 is a positive constant. Then for any p ∈ Πh, there exists a change of

variables U

x = ξ + u(ξ, η; p), z = η + v(ξ, η; p),

where u and v are real analytic quasi-periodic in ξ with the frequency ω = (ω1, ω2, . . . , ωm).

Under this transformation, the original mapping M is changed into the form

M+ = U−1MU :

ξ1 = ξ + Ω+(p) + f+(ξ, η; p),

η1 = η + g+(ξ, η; p),

where the new perturbation f+ and g+ are real analytic quasi-periodic functions in ξ with

the frequency ω = (ω1, ω2, . . . , ωm) defined in a smaller domain D(r+, s+) and satisfies

‖f+‖r+,s+,h + ‖g+‖r+,s+,h ≤ ε+ = qε,

where

r+ = r − σ, 0 < s+ = s− σ

a
≤ ε, q =

2
(
a2b+ b+ ab+ (1− a) + b

2a

)
1− 2ab

,

a, b are positive constants such that 0 < q < 1. And,

(3.2) |Ω+(p)− Ω(p)| ≤ aε for all p ∈ Πh.

Let γ+ = γ − aΛ(τ)|ω|∞ε
2π , define

R+
ω,γ,∆ =

⋃
τ<|k|≤τ+

k∈Zm\{0}, j∈Z

R+,k,j
ω,γ,∆ =

⋃
τ<|k|≤τ+

k∈Zm\{0}, j∈Z

{
p ∈ Πω,γ :

∣∣∣∣〈k, ω〉Ω+(p)

2π
− j
∣∣∣∣ < γ+

∆(|k|)

}
,
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Π+
ω,γ,∆ = Πω,γ,∆ \ R+

ω,γ,∆. Then for all p ∈ Π+
ω,γ,∆,

(3.3)

∣∣∣∣〈k, ω〉Ω+(p)

2π
− j
∣∣∣∣ ≥ γ+

∆(|k|)
for all k ∈ Zm \ {0}, j ∈ Z, 0 < |k| ≤ τ+,

where

Λ+ =
Λ(τ)

dq
, τ+ = Λ−1(Λ+).

Let

T+ = T +
aε

(1− dq)h
, h+ =

πγ+

Λ(τ+)T+|ω|∞
,

where d > 1 is a constant such that 0 < dq < 1. If h+ ≤ dqh, then maxp∈Πh+
|Ω′+(p)| ≤ T+.

Moreover,

‖f+‖r+,s+,h+ + ‖g+‖r+,s+,h+ ≤ ε+ = qε.

Thus the above result also holds for the new mapping M+ in place of the mapping M.

Proof. Lemma 3.1 is usually called the iteration lemma which is actually one KAM step.

We divide the KAM step into several small steps.

3.1.1. Truncation

The function f(x, z; p) is real analytic quasi-periodic in x with the frequency ω = (ω1, ω2,

. . . , ωm), expand f(x, z; p) as Fourier series with respect to x,

f(x, z; p) =
∑
k∈Zm

fk(z; p)e
i〈k,ω〉x.

Then we truncate f(x, z; p) = f̃(x, z; p) + f̂(x, z; p) with

f̂(x, z; p) =
∑
k∈Zm
|k|>τ

fk(z; p)e
i〈k,ω〉x + (1− a)

∑
k∈Zm
|k|≤τ

fk(z; p)e
|k|σei〈k,ω〉x,

and

f̃(x, z; p) =
∑
k∈Zm
|k|≤τ

f̃k(z; p)e
i〈k,ω〉x, f̃k(z; p) =

(
1− (1− a)e|k|σ

)
fk(z; p).

In view of e−τσ = 1− a, we have

‖f̂‖r−σ,s,h ≤ (1− a)‖f‖r,s,h ≤ (1− a)ε.

On the other hand, the rest f̃(x, z; p) is bounded. Indeed, with σ̃ = σ(1−a)
a ,

‖f̃‖r+σ̃,s,h =
∑
k∈Zm

0≤|k|≤τ

(
1− (1− a)e|k|σ

)
|fk|s,he|k|(r+σ̃)

≤ sup
0≤t≤τ

(
1− (1− a)etσ

)
etσ̃

∑
k∈Zm

0≤|k|≤τ

|fk|s,he|k|r = aε
(3.4)
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which is guaranteed by the function sup0≤t≤τ
(
1 − (1 − a)etσ

)
etσ̃ which is monotonically

decreasing for 0 ≤ t ≤ τ and equals a at t = 0.

Similarly, g(x, z; p) has the same decomposition and estimates.

3.1.2. Extension of small divisors estimate

For any p ∈ Πh, there is a parameter p0 ∈ Πω,γ,∆ with |p− p0| < h = πγ
Λ(τ)T |ω|∞ , hence in

view of Λ(t) = t∆(t), k ∈ Zm, 0 < |k| ≤ τ ,∣∣〈k, ω〉(Ω(p)− Ω(p0))
∣∣ ≤ |k||ω|∞|Ω(p)− Ω(p0)| ≤ τ |ω|∞Th =

πγ

∆(τ)
.

As p0 ∈ Πω,γ,∆, then Ω(p0) satisfies (3.1), all relevant divisors thus admit the lower bound∣∣∣∣〈k, ω〉Ω(p)

2π
− j
∣∣∣∣ ≥ ∣∣∣∣〈k, ω〉Ω(p0)

2π
− j
∣∣∣∣− ∣∣∣∣〈k, ω〉Ω(p)− Ω(p0)

2π

∣∣∣∣
≥ γ

∆(|k|)
− γ

2∆(τ)
≥ γ

2∆(|k|)
.

Thus the non-resonant condition (3.1) also holds for all p in the neighborhood Πh of Πω,γ,∆

with γ = γ/2.

3.1.3. Construction of the transformation

From the theory of transformations, we know that after a canonical change of variables, the

transformed mapping of a symplectic map is also symplectic. Analogously, for a reversible

mapping, it is easy to see that if the change of variables commutes with the involution R,

then the transformed mapping is also reversible with respect to the same involution R.

More precisely, if the change of variables (ξ, η) 7→ (x, z) is of the form

U :

x = ξ + u(ξ, η; p),

z = η + v(ξ, η; p),

then from the equality RU = UR, it follows that

(3.5) u(−ξ, η; p) = −u(ξ, η; p), v(−ξ, η; p) = v(ξ, η; p).

In this case, the transformed mapping U−1MU of M is also reversible with respect to the

involution R : (ξ, η) 7→ (−ξ, η).

In the construction of the transformation, we will meet the following difference equation

(the so-called homological equation):

(3.6) l(x+ α)− l(x) = h(x),

where h =
∑

k∈Zm
|k|≤τ

hke
i〈k,ω〉x ∈ Qr(ω). Let us first study this equation.
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Lemma 3.2. Suppose that h ∈ Qr(ω) and ω = (ω1, . . . , ωm), α satisfy the Brjuno–

Rüssmann’s non-resonant condition

(3.7)
∣∣∣〈k, ω〉 α

2π
− j
∣∣∣ ≥ γ

∆(|k|)
for all k ∈ Zm \ {0}, j ∈ Z, 0 < |k| ≤ τ .

Then the difference equation (3.6) has the unique solution l ∈ Qr(ω) with limT→∞
1
T

∫ T
0 l(x)

dx = 0 if and only if

(3.8) lim
T→∞

1

T

∫ T

0
h(x) dx = 0.

In this case, we have the following estimate

(3.9) ‖l‖r ≤ γ−1∆(τ)‖h‖r.

Moreover, if h(−x− α) = h(x), then l is odd in x; if h(−x− α) = −h(x), then l is even

in x.

Proof. From h ∈ Qr(ω) and (3.7), (3.8), we know that h can be represented by

h(x) =
∑
k∈Zm

0<|k|≤τ

hke
i〈k,ω〉x.

If using a Fourier series representation

l(x) =
∑
k∈Zm

lke
i〈k,ω〉x.

After straightforward calculations we obtain the relation between Fourier coefficients hk

and lk as follows

lk =
hk

ei〈k,ω〉α − 1
, k ∈ Zm \ {0}, |k| ≤ τ,

then l is of the form

l(x) =
∑
k∈Zm

0<|k|≤τ

hk
ei〈k,ω〉α − 1

ei〈k,ω〉x,

which is the uniquely determined Fourier expansion of the wanted solution l satisfying

l ∈ Q(ω) with limT→∞
1
T

∫ T
0 l(x) dx = 0.

From (3.7), it follows that∣∣ei〈k,ω〉α − 1
∣∣ ≥ ∣∣∣〈k, ω〉 α

2π
− j
∣∣∣ ≥ γ

∆(|k|)
for all k ∈ Zm \ {0}, 0 < |k| ≤ τ .

Hence

‖l‖r ≤
∑
k∈Zm

0<|k|≤τ

γ−1∆(|k|)|hk|e|k|r ≤ γ−1∆(τ)‖h‖r.
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When h(−x− α) = h(x), we have

hk = h−ke
i〈k,ω〉α

which yields that

l(−x) =
∑
k∈Zm

0<|k|≤τ

hk
ei〈k,ω〉α − 1

e−i〈k,ω〉x =
∑
−k∈Zm
0<|k|≤τ

h−k
e−i〈k,ω〉α−1

ei〈k,ω〉x

= −
∑
k∈Zm

0<|k|≤τ

hk
ei〈k,ω〉α − 1

ei〈k,ω〉x = −l(x).

Similarly, one may verify that l(−x) = l(x) if h(−x − α) = −h(x). The proof of this

lemma is completed.

We shall construct a change of variables U:

(3.10) x = ξ + u(ξ, η; p), z = η + v(ξ, η; p),

where u and v are real analytic quasi-periodic in ξ with the frequency ω = (ω1, ω2, . . . , ωm).

Under this transformation, the original mapping M is changed into the form

(3.11) M+ = U−1MU :

ξ1 = ξ + Ω+(p) + f+(ξ, η; p),

η1 = η + g+(ξ, η; p),

where the functions f+ and g+ are real analytic quasi-periodic functions in ξ with the fre-

quency ω = (ω1, ω2, . . . , ωm) defined in a smaller domain D(s+, r+)×Πh+ and ‖f+‖r+,s+,h+

+ ‖g+‖r+,s+,h+ ≤ ε+ = qε is smaller than ‖f‖r,s,h + ‖g‖r,s,h.

We also assume that for each fixed y, p, f( · , y; p), g( · , y; p) ∈ Qr(ω) and f , g are real

analytic in the domain D(r, s) × Πh. Moreover, we assume that ω = (ω1, . . . , ωm), Ω(p)

satisfy the non-resonance conditions (2.1) and (2.3). Let

‖f‖r,s,h + ‖g‖r,s,h ≤ ε.

We try to motivate the following constructions for u, v first. From (3.10) and (3.11),

it follows that

f+(ξ, η; p) = f(ξ + u, η + v; p) + u(ξ, η; p)− u(ξ1, η1; p) + Ω(p)− Ω+(p),

g+(ξ, η; p) = g(ξ + u, η + v; p) + v(ξ, η; p)− v(ξ1, η1; p),
(3.12)

which serve to define f+, g+ implicity in D(r+, s+)×Πh+ . If u( · , η; p), v( · , η; p) ∈ Q(ω),

then one can prove that f+( · , η; p), g+( · , η; p) ∈ Q(ω) are well defined by (3.12). Indeed,

since f( · , z; p), g( · , z; p), u( · , η; p), v( · , η; p) ∈ Q(ω), then we have f(ξ+u, η+ v; p), g(ξ+
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u, η + v; p) ∈ Q(ω). Hence f(ξ + u, η + v; p) + u(ξ, η; p), g(ξ + u, η + v; p) + v(ξ, η; p) ∈
Q(ω). Denote φ̃(ξ, η; p) = f(ξ + u, η + v; p) + u(ξ, η; p) + Ω(p) − Ω+(p), ψ̃(ξ, η; p) =

g(ξ+u, η+ v; p) + v(ξ, η; p), and the corresponding shell functions are Φ̃(θ, η; p), Ψ̃(θ, η; p)

which are period 2π in each of the variables θi (1 ≤ i ≤ m). U(θ, η; p), V (θ, η; p) are the

corresponding shell functions of u(ξ, η; p), v(ξ, η; p). If the unknown functions f+(ξ, η; p),

g+(ξ, η; p) are represented by F+(θ, η; p), G+(θ, η; p), where f+(ξ, η; p) = F+(ωξ, η; p),

g+(ξ, η; p) = G+(ωξ, η; p), the conditions for F+, G+ become

F+(θ, η; p) = Φ̃(θ, η; p)− U(θ + ωη + ωF+(θ, η; p), η +G+(θ, η; p); p),

G+(θ, η; p)) = Ψ̃(θ, η; p)− V (θ + ωη + ωF+(θ, η; p), η +G+(θ, η; p); p).
(3.13)

By (3.17), (3.24) and the implicit function theorem, we know that F+(θ, η; p), G+(θ, η; p)

are well defined by (3.13), and have period 2π in each of the variables θi (1 ≤ i ≤ m).

In the following, we will determine the unknown functions u and v to satisfy the

condition (3.5) in order to guarantee that the transformed mapping M+ = U−1MU is also

reversible.

As one did in the periodic case, we may solve u and v from the following equations

u(ξ + Ω(p), η; p)− u(ξ, η; p) = f̃(ξ, η; p)− [f̃ ](η; p),

v(ξ + Ω(p), η; p)− v(ξ, η; p) = g̃(ξ, η; p)− [g̃](η; p),

where [ · ] denotes the mean value of a function over the first variable. Indeed, one can

solve these functions from the above equation. But the problem is that such functions u

and v do not, in general, satisfy the condition (3.5) i.e., the transformation U does not

commute with the involution R. In this case, the transformed mapping M+ = U−1MU

is no longer a reversible mapping with respect to R. Therefore, we cannot use the above

equations to determine the functions u and v. Instead of solving the above equations, we

may find these functions u and v from the following modified homological equations

u(ξ + Ω(p), η; p)− u(ξ, η; p) = F̃ (ξ, η; p),

v(ξ + Ω(p), η; p)− v(ξ, η; p) = G̃(ξ, η; p),
(3.14)

where

F̃ (ξ, η; p) =
1

2

(
f̃(ξ, η; p) + f̃(−ξ − Ω(p), η; p)

)
− [f̃ ](η; p),

G̃(ξ, η; p) =
1

2

(
g̃(ξ, η; p)− g̃(−ξ − Ω(p), η; p)

)
.

It is easy to verify that F̃ (−ξ−Ω(p), η; p) = F̃ (ξ, η; p) and G̃(−ξ−Ω(p), η; p) = −G̃(ξ, η; p),

hence the functions u and v meet the condition (3.5) by Lemma 3.2. In this case, the

transformed mapping M+ = U−1MU is also reversible with respect to the involution

R : (ξ, η) 7→ (−ξ, η).
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Now we can solve the functions u and v from (3.14) and give the estimates of them.

From the Lemma 3.2, we know u and v have a Fourier series expansion

u =
∑
k∈Zm

uke
i〈k,ω〉x, v =

∑
k∈Zm

vke
i〈k,ω〉x,

where

uk =
f̃k

ei〈k,ω〉Ω(p) − 1
, vk =

g̃k
ei〈k,ω〉Ω(p) − 1

, k ∈ Zm \ {0}, |k| ≤ τ.

By (3.4), (3.9) and a = 1− e−τσ < τσ we get

(3.15) ‖u‖r+σ̃,s,h ≤ 2∆(τ)γ−1‖f̃‖r+σ̃,s,h ≤ 2∆(τ)γ−1aε ≤ 2Λ(τ)γ−1σε.

Similarly,

(3.16) ‖v‖r+σ̃,s,h ≤ 2Λ(τ)γ−1σε.

Because

r + σ̃ − (r − σ) =
(1− a)σ

a
+ σ =

σ

a
,

by Cauchy’s estimates and (3.15), (3.16), we have

‖uξ‖r−σ,s,h ≤
a

σ
‖u‖r+σ̃,s,h ≤ 2aΛ(τ)γ−1ε,

‖vξ‖r−σ,s,h ≤
a

σ
‖v‖r+σ̃,s,h ≤ 2aΛ(τ)γ−1ε,

‖uη‖r+σ̃,s−σ/a,h ≤
a

σ
‖u‖r+σ̃,s,h ≤ 2aΛ(τ)γ−1ε,

‖vη‖r+σ̃,s−σ/a,h ≤
a

σ
‖u‖r+σ̃,s,h ≤ 2aΛ(τ)γ−1ε.

(3.17)

3.1.4. Estimates of the new frequency

However, due to the lack of twist condition, we have [f̃ ](η; p) in every KAM step, which

will be an obstruction in making the new perturbation smaller enough to go to the next

iteration. Therefore, the frequencies can not be regarded as independent parameters.

Moreover, the frequencies may have some drifts at each step, we have to introduce

(3.18) Ω+(p) = Ω(p) + [f̃ ](0; p)

as new frequencies, where [f̃ ](0; p) denotes the value of [f̃ ](η; p) at η = 0. As a consequence,

we have

|Ω+(p)− Ω(p)| ≤ ‖f̃‖r+σ̃,s,h ≤ aε for all p ∈ Πh,
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it follows that (3.2) holds. Let γ+ = γ − aΛ(τ)|ω|∞ε
2π . We have∣∣∣∣〈k, ω〉Ω+(p)

2π
− j
∣∣∣∣ ≥ ∣∣∣∣〈k, ω〉Ω(p)

2π
− j
∣∣∣∣− ∣∣∣∣〈k, ω〉Ω+(p)− Ω(p)

2π

∣∣∣∣ ≥ γ

∆(|k|)
− τ |ω|∞aε

2π

≥ 1

∆(|k|)

(
γ − aτ∆(τ)|ω|∞ε

2π

)
=

γ+

∆(|k|)

for all p ∈ Πω,γ,∆, k ∈ Zm \ {0}, j ∈ Z, 0 < |k| ≤ τ , that is, the non-resonant condition

with respect to the new frequency Ω+(p) automatically holds for k ∈ Zm \ {0}, j ∈ Z,

0 < |k| ≤ τ . Then by the definition of R+
ω,γ,∆, it follows that (3.3) holds.

3.1.5. Estimates of the new perturbation

From (3.12), (3.14) and (3.18), we have

f+ = u(ξ + Ω(p), η; p)− u(ξ1, η1; p) + f(ξ + u, η + v; p)

− 1

2

(
f̃(ξ, η; p) + f̃(−ξ − Ω(p), η; p)

)
+ [f̃ ](η; p)− [f̃ ](0; p),

(3.19)

g+ = v(ξ + Ω(p), η; p)− v(ξ1, η1; p) + g(ξ + u, η + v; p)

− 1

2

(
g̃(ξ, η; p)− g̃(−ξ − Ω(p), η; p)

)
.

(3.20)

From the reversibility of M, it follows that

f(−x− Ω(p)− f, z + g; p)− f(x, z; p) = 0,

g(−x− Ω(p)− f, z + g; p) + g(x, z; p) = 0.
(3.21)

By (3.19)–(3.21), we obtain

f+ = u(ξ + Ω(p), η; p)− u(ξ1, η1; p) + f(ξ + u, η + v; p)− f

+
1

2

(
f − f̃ + f(−ξ − Ω(p), η; p)− f̃(−ξ − Ω(p), η; p)

+ f(−ξ − Ω(p)− f, η + g; p)− f(−ξ − Ω(p), η; p)
)

+ [f̃ ](η; p)− [f̃ ](0; p)

(3.22)

and

g+ = v(ξ + Ω(p), η; p)− v(ξ1, η1; p) + g(ξ + u, η + v; p)− g

+
1

2

(
g − g̃ − g(−ξ − Ω(p), η; p) + g̃(−ξ − Ω(p), η; p)

− g(−ξ − Ω(p)− f, η + g; p) + g(−ξ − Ω(p), η; p)
)
.

(3.23)
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The contribution from the functions u, v on the right-hand side of (3.22), (3.23) can

be estimated using the mean value theorem followed by (3.17), yielding

‖u(ξ + Ω(p), η; p)− u(ξ1, η1; p)‖r−σ,s−σ/a,h
≤ ‖uξ‖r−σ,s,h

(
|Ω+(p)− Ω(p)|+ ‖f+‖r−σ,s−σ/a,h

)
+ ‖uη‖r−σ,s,h‖g+‖r−σ,s−σ/a,h

≤ a2bε+ ab
(
‖f+‖r−σ,s−σ/a,h + ‖g+‖r−σ,s−σ/a,h

)
,

where

(3.24) a = 1− e−τσ, b = 2Λ(τ)γ−1ε,

0 < a < 1, 0 < b ≤ 1/2 are positive constants.

Recalling that ‖f‖r,s,h + ‖g‖r,s,h ≤ ε, we can use Cauchy’s estimate to the derivatives

of f , g, we get ‖fξ‖r−σ,s,h, ‖gξ‖r−σ,s,h ≤ ε/σ, ‖fη‖r,s−σ/a,h, ‖gη‖r,s−σ/a,h ≤ aε/σ, again

applying the mean value theorem followed by (3.15), (3.16), we obtain

‖f(ξ + u, η + v; p)− f(ξ, η; p)‖r−σ,s−σ/a,h
≤ ‖fξ‖r−σ,s,h‖u‖r−σ,s−σ/a,h + ‖fη‖r,s−σ/a,h‖v‖r−σ,s−σ/a,h
≤ bε+ abε,

‖f − f̃ + f(−ξ − Ω(p), η; p)− f̃(−ξ − Ω(p), η; p)

+ f(−x− Ω(p)− f, z + g; p)− f(−ξ − Ω(p), η; p)‖r−σ,s−σ/a,h
≤ ‖f − f̃‖r−σ,s−σ/a,h + ‖f(−ξ − Ω(p), η; p)− f̃(−ξ − Ω(p), η; p)‖r−σ,s−σ/a,h

+ ‖f(−ξ − Ω(p)− f, η + g; p)− f(−ξ − Ω(p), η; p)‖r−σ,s−σ/a,h

≤ (1− a)ε+ (1− a)ε+
aε2

σ
≤ 2(1− a)ε+ bε.

Since 0 < s+ = s− σ/a ≤ ε, then we get

‖[f̃ ](η; p)− [f̃ ](0; p)‖s−σ/a,h ≤
aε2

σ
≤ bε.

Hence the new perturbation f+ has the following estimates:

‖f+‖r−σ,s−σ/a,h ≤
(
a2b+ ab+ (1− a) +

5

2
b

)
ε

+ ab
(
‖f+‖r−σ,s−σ/a,h + ‖g+‖r−σ,s−σ/a,h

)
.

(3.25)

Similarly, for g+ we get

‖v(ξ + Ω(p), η, ; p)− v(ξ1, η1; p)‖r−σ,s−σ/a,h
≤ ‖vξ‖r−σ,s,h

(
|Ω+(p)− Ω(p)|+ ‖f+‖r−σ,s−σ/a,h

)
+ ‖vη‖r−σ,s,h‖g+‖r−σ,s−σ/a,h

≤ a2bε+ ab
(
‖f+‖r−σ,s−σ/a,h + ‖g+‖r−σ,s−σ/a,h

)
,
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‖g(ξ + u, η + v, p)− g(ξ, η, p)‖r−σ,s−σ/a,h
≤ ‖gξ‖r−σ,s,h‖u‖r−σ,s−σ/a,h + ‖gη‖r,s−σ/a,h‖v‖r−σ,s−σ/a,h
≤ bε+ abε,

‖g − g̃ − g(−ξ − Ω(p), η; p) + g̃(−ξ − Ω(p), η; p)

− g(−ξ − Ω(p)− f, η + g; p) + g(−ξ − Ω(p), η; p)‖r−σ,s−σ/a,h
≤ ‖g − g̃‖r−σ,s−σ/a,h + ‖g(−ξ − Ω(p), η; p)− g̃(−ξ − Ω(p), η; p)‖r−σ,s−σ/a,h

+ ‖g(−x− Ω(p)− f, z + g; p)− g(−ξ − Ω(p), η; p)‖r−σ,s−σ/a,h

≤ (1− a)ε+ (1− a)ε+
aε2

σ
≤ 2(1− a)ε+ bε.

The new perturbation g+ has the following estimates

‖g+‖r−σ,s−σ/a,h ≤
(
a2b+ ab+ (1− a) +

3

2
b

)
ε

+ ab
(
‖f+‖r−σ,s−σ/a,h + ‖g+‖r−σ,s−σ/a,h

)
.

(3.26)

At last, adding the inequalities (3.25) and (3.26), we have

‖f+‖r−σ,s−σ/a,h + ‖g+‖r−σ,s−σ/a,h

≤ 2

(
a2b+ ab+ (1− a) +

5

2
b

)
ε+ 2ab

(
‖f+‖r−σ,s−σ/a,h + ‖g+‖r−σ,s−σ/a,h

)
.

Let

q =
2
(
a2b+ ab+ (1− a) + 5

2b
)

1− 2ab
.

Then

‖f+‖r−σ,s−σ/a,h + ‖g+‖r−σ,s−σ/a,h ≤ qε.

Suppose h+ ≤ dqh, 0 < dq < 1. By Cauchy’s estimates and (3.2) we have

|Ω′+(p)− Ω′(p)| ≤ aε

(1− dq)h
for all p ∈ Πh+ .

Let T+ = T + aε
(1−dq)h , then maxp∈Πh+

|Ω′+(p)| ≤ T+. Moreover, we have

‖f+‖r+,s+,h+ + ‖g+‖r+,s+,h+ ≤ qε,

where r+ = r − σ, s+ = s− σ/a, h+ ≤ dqh. Thus this ends the proof of Lemma 3.1.

3.2. Setting the parameters and iteration

In this section we choose some suitable parameters so that the above iteration can go on

infinitely. First, we can always choose 0 < a < 1 and 0 < b ≤ 1/2 such that

0 < q =
2
(
a2b+ ab+ (1− a) + 5

2b
)

1− 2ab
< 1
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and we we can even make dq as close to 1 as we wish.

It then suffices to choose for ε and Λ geometric sequences with the same base q, namely

εn = qnε0, Λn =
Λ0

(dq)n
,

where we assume Λ0 ≥ Λ(1) = ∆(1). Next, let τn = Λ−1(Λn), then
∑

n≥0
1
τn

is convergent.

Indeed, let t = Λ−1(Λ0(dq)−ν), we have

∑
n≥0

1

τn
≤
∫ ∞

0

dν

Λ−1(Λ0(dq)−ν)
≤ 1

ln(dq)−1

∫ ∞
τ0

dΛ(t)

tΛ(t)
.

Integrating by parts and requiring Λ(τ0) ≥ (dq)−1, we get

(3.27)
∑
n≥0

1

τn
≤ 1

ln(dq)−1

∫ ∞
τ0

ln Λ(t)

t2
dt.

Hence, from the definition of the Brjuno–Rüssmann function ∆, Λ(t) = t∆(t), we can

achieve that
∑

n≥0
1
τn

is convergent.

Define then other parameters through

γn+1 = γn −
aΛ(τn)|ω|∞εn

2π
, hn =

πγn
Λ(τn)Tn|ω|∞

,

Tn+1 = Tn +
aεn

(1− dq)hn
, 1− a = e−τnσn ,

rn+1 = rn − σn, 0 < sn+1 = sn −
σn
a
≤ εn.

As we will see in a moment, rn has a positive limit and sn tend to 0 for Λ0 sufficiently

large.

Let

Πn
ω,γ,∆ =

{
p ∈ Πn−1

ω,γ,∆ :

∣∣∣∣〈k, ω〉Ωn(p)

2π
− j
∣∣∣∣ ≥ γn

∆(|k|)
,

for all k ∈ Zm \ {0}, j ∈ Z, τn−1 < |k| ≤ τn
}(3.28)

and

Πhn =
{
p ∈ C : dist(p,Πn

ω,γ,∆) ≤ hn
}
.

Then for any p ∈ Πhn , there is a parameter p0 ∈ Πn
ω,γ,∆ with |p− p0| < hn = πγn

Λ(τn)Tn|ω|∞ ,

hence in view of Λ(τn) = τn∆(τn), k ∈ Zm, τn−1 < |k| ≤ τn,∣∣〈k, ω〉(Ωn(p)− Ωn(p0))
∣∣ ≤ |k||ω|∞|Ωn(p)− Ωn(p0)| ≤ τn|ω|∞Tnhn =

πγn
∆(τn)

.
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As p0 ∈ Πn
ω,γ,∆, then Ω(p0) satisfies (3.28), all relevant divisors thus admit the lower bound∣∣∣∣〈k, ω〉Ωn(p)

2π
− j
∣∣∣∣ ≥ ∣∣∣∣〈k, ω〉Ωn(p0)

2π
− j
∣∣∣∣− ∣∣∣∣〈k, ω〉Ωn(p)− Ωn(p0)

2π

∣∣∣∣
≥ γn

∆(|k|)
− γn

2∆(τn)
≥ γn

2∆(|k|)
.

Thus the non-resonant condition (3.28) also holds for all p in the neighborhood Πhn of

Πn
ω,γ,∆.

Denote Dn = D(rn, sn) for simplicity. By the iteration lemma, there exists a sequence

of transformations Un:

x = ξ + un(ξ, η; p), z = η + vn(ξ, η; p),

such that for any p ∈ Πhn , Un : Dn ×Πhn → Dn−1× ∈ Πhn−1 , satisfying

‖Un − id ‖Dn×Πhn
≤ 2Λ(τn)γ−1

n σnεn and ‖DUn − Id ‖Dn×Πhn
≤ 2aΛ(τn)γ−1

n εn.

Thus the transformation Vn = U0 ◦ U1 ◦ · · · ◦ Un is well defined in Dn × Πhn and is seen

to take M0 into

Mn = V−1
n M0Vn.

More precisely, if we write M0 as

x1 = x+ Ω(p) + f(x, z; p), z1 = z + g(x, z; p),

and express Vn in the form

x = ξ + Pn(ξ, η; p), z = η +Qn(ξ, η; p),

then M0 is transformed into Mn:

ξ1 = ξ + Ωn(p) + fn(ξ, η; p), η1 = η + gn(ξ, η; p),

satisfying

‖fn‖Dn×Πhn
+ ‖gn‖Dn×Πhn

≤ εn = qnε0 and |Ωn+1(p)− Ωn(p)|Πhn ≤ aεn.

In the following we will verify the assumptions in Lemma 3.1 to ensure that KAM step

is valid for all n ≥ 0.

By hn = πγn
Λ(τn)Tn|ω|∞ , it follows that

hn+1

hn
=
γn+1

γn

Tn
Tn+1

Λ(τn)

Λ(τn+1)
≤ Λn

Λn+1
= dq.
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Thus we have hn+1 ≤ dqhn. By the definition of γn, we have

γn+1 = γn −
aΛ(τn)|ω|∞εn

2π
= γn −

aΛ0|ω|∞ε0

2π

1

dn

≥ γ0 −
aΛ0|ω|∞ε0

2π

∑
0≤n∈Z

1

dn
= γ − daΛ0|ω|∞ε0

(d− 1)π
.

Since ε0 ≤ (d−1)πγ
2daΛ0|ω|∞ , we obtain γ/2 ≤ γn ≤ γ for all n ≥ 1.

Suppose maxp∈Πhn
|Ω′n(p)| ≤ Tn. Let Tn+1 = Tn + aεn

(1−dq)hn , then we have maxp∈Πhn+1

|Ω′n+1(p)| ≤ Tn+1. By iteration,

Tn+1 = Tn +
aεn

(1− dq)hn
≤ Tn

(
1 +

2daΛ0|ω|∞ε0

π(1− dq)γ
1

dn

)
≤ T0

∏
n≥0

(
1 +

2daΛ0|ω|∞ε0

π(1− dq)γ
1

dn

)
.

By ε0 ≤ π(1−dq)γ
2daΛ0|ω|∞ , then T0 ≤ Tn ≤ ed/(d−1)T0 for all n ≥ 1.

The above discussions lead to the following lemma.

Lemma 3.3 (Iterative lemma). Suppose f and g are real analytic on D0×Πh0 and satisfy

‖f‖D0×Πh0
+ ‖g‖D0×Πh0

≤ ε0 ≤ min

{
(d− 1)πγ

2daΛ0|ω|∞
,
π(1− dq)γ
2daΛ0|ω|∞

,
γb

2Λ0

}
with Λ0 sufficiently large. Then for each n ≥ 1 there exists a parameter and coordinate

transformation

Vn = U0 ◦ U1 ◦ · · · ◦ Un : D(rn, sn)×Πhn → D(r0, s0)× ∈ Πh0 ,

which transforms the reversible mapping M into Mn = V−1
n MnVn such that

‖fn‖Dn×Πhn
+ ‖gn‖Dn×Πhn

≤ εn = qnε0.

Moreover,

‖Vn+1 −Vn‖Dn+1×Πhn+1
≤ cΛ(τn+1)γ−1

n+1σn+1εn+1.

Proof. The estimate of the fn, gn on Dn×Πhn follows by applying the KAM step lemma

repeatedly. Just note that Λ(τn) ≤ Λn and

2εnΛnγ
−1
n ≤ 2ε0Λ0γ

−1
0 ≤ b for all n ≥ 1.

In the following the estimate of Vn is given. By the KAM step, we observe that

‖Un − id ‖Dn×Πhn
≤ 2Λ(τn)γ−1

n σnεn and ‖DUn − Id ‖Dn×Πhn
≤ 2aΛ(τn)γ−1

n εn,
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where D denotes the Jacobian with respect to (x, z).

Then we have

‖Vn+1 −Vn‖Dn+1×Πhn+1
= ‖Vn ◦ Un+1 −Vn‖Dn+1×Πhn+1

≤ ‖DVn‖Dn×Πhn
‖Un+1 − id ‖Dn+1×Πhn+1

≤ cΛ(τn+1)γ−1
n+1σn+1εn+1

provided that DVn is uniformly bounded on Dn ×Πhn .

In fact by induction we have DVn = DU0◦DU1◦· · ·◦DUn with the Jacobian evaluated

at different points, and

‖DVn‖Dn+1×Πhn+1
= ‖DU0 ◦DU1 ◦ · · · ◦DUn‖Dn+1×Πhn+1

≤
∏
n≥0

(
1 + 2aΛ(τn)γ−1

n εn
)

≤
∏
n≥0

(
1 +

4aΛ0ε0

γ

1

dn

)
≤ exp

{
4daΛ0ε0

(d− 1)γ

}

which is uniformly bounded and small. Thus this ends the proof of Lemma 3.3.

3.3. Convergence of iteration

We first verify that rn tend to a positive limit and sn tend to 0. From the definition of

σn, 1− a = e−τnσn and (3.27) it follows that

∑
n≥0

σn =
∑
n≥0

ln(1− a)−1

τn
≤ ln(1− a)

ln dq

∫ ∞
τ0

ln Λ(t)

t2
dt.

Hence by choosing τ0 sufficiently large, we can achieve that
∑

n≥0 σn ≤ r/2 and thus

rn → r∗ ≥ r/2 as n → ∞. From the definition of σn, εn and σn/a < sn ≤ εn, it follows

that sn → 0 as n→∞.

By Iterative Lemma (see Lemma 3.3), Vn and Ωn(p) respectively satisfy

‖Vn+1 −Vn‖Dn+1×Πhn+1
≤ cΛ(τn+1)γ−1

n+1σn+1εn+1

and

|Ωn+1(p)− Ωn(p)|Πhn ≤ aεn = aqnε0.

Note that rn → r∗, r/2 ≤ r∗ < r, sn → 0, hn → 0 as n → ∞. Thus the mappings Vn

converge uniformly on⋂
n≥0

Dn ×Πhn = D∗ ×Π∗ω,γ,∆, D∗ =
{
| Im ξ| < r∗

}
× {0}
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to a mapping V∗ which is real analytic on D∗ and uniformly continuous on Π∗ω,γ,∆. More-

over,

‖V∗ − id ‖D∗×Π∗ω,γ ≤ exp

{
4daΛ0ε0

(d− 1)γ

}
2dΛ0ε0σ

(d− 1)γ
,

|Ω∗(p)− Ω(p)|Π∗ω,γ,∆ ≤
aε0

1− q
,∣∣∣∣〈k, ω〉Ω∗(p)2π

− j
∣∣∣∣ ≥ γ

2∆(|k|)
for all k ∈ Zm \ {0}, j ∈ Z, p ∈ Π∗ω,γ,∆.

For the statement of the theorem, we choose a = 19/20 and b = 1/35, d = 2, which

results in

q ≈ 2

5
,

ln(1− a)

ln dq
≤ 16.

3.4. Estimates of measure for parameters

In this section the measure of the set Πω,γ,∆\Π∗ω,γ,∆ of bad parameters is estimated. Recall

that by construction, Π∗ω,γ,∆ =
⋂
n≥0 Πn

ω,γ,∆, where Πω,γ,∆ ⊃ Π0
ω,γ,∆ ⊃ Π1

ω,γ,∆ ⊃ · · · is a

decreasing sequence of closed sets defined inductively during the iteration process by

Πn
ω,γ,∆ = Πn−1

ω,γ,∆

∖⋃
n

Rn
ω,γ,∆, Π−1

ω,γ,∆ = Πω,γ,∆

with

Rn
ω,γ,∆ =

⋃
τn−1<|k|≤τn
k∈Zm\{0}, j∈Z

Rn,k,j
ω,γ,∆ =

⋃
τn−1<|k|≤τn
k∈Zm\{0}, j∈Z

{
p ∈ Πn−1

ω,γ,∆ :

∣∣∣∣〈k, ω〉Ωn(p)

2π
− j
∣∣∣∣ < γn

∆(|k|)

}
.

Lemma 3.4 (Measure estimates). If the Brjuno–Rüssmann approximation function ∆ is

chosen such that
+∞∑
`=1

`m
(

1

`∆(`)

)1/λ

< +∞,

then meas(Πω,γ,∆ \Π∗ω,γ,∆) ≤ cγ1/λ.

Proof. By the proof of Theorem 2.5 and by γ/2 ≤ γn ≤ γ, for all n ≥ 0, p ∈ Rn,k,j
ω,γ,∆, we

have

meas
(
Rn,k,j
ω,γ,∆

)
≤ O

((
γn

|k|∆(|k|)

)1/λ
)
≤ γ1/λO

((
1

|k|∆(|k|)

)1/λ
)
.

Next we estimate the measure of the set Πω,γ,∆ \ Rn
ω,γ,∆. Since for p ∈ Rn,k,j

ω,γ,∆,∣∣∣∣〈k, ω〉Ω(p)

2π
− j
∣∣∣∣ < γn

∆(|k|)
,
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then we have

|j| ≤ |〈k, ω〉|Ω(p)

2π
+

γn
∆(|k|)

≤ c0|k|,

where c0 is a constant independent of k. Thus,

meas(Rn
ω,γ,∆) ≤

∑
τn−1<|k|≤τn
k∈Zm\{0}

∑
j∈Z

|j|≤c0|k|

meas
(
Rn,k,j
ω,γ,∆

)

≤ γ1/λ
∑

τn−1<|k|≤τn
k∈Zm\{0}

∑
j∈Z

|j|≤c0|k|

O

((
1

|k|∆(|k|)

)1/λ
)

≤ γ1/λ
∑

τn−1<|k|≤τn
k∈Zm\{0}

O

(
|k|
(

1

|k|∆(|k|)

)1/λ
)
.

Then

meas(Πω,γ,∆ \Π∗ω,γ,∆) ≤ γ1/λ
∑

k∈Zm\{0}

O

(
|k|
(

1

|k|∆(|k|)

)1/λ
)
.

Also, by the condition of Lemma 3.4, we have

∑
k∈Zm\{0}

|k|
(

1

|k|∆(|k|)

)1/λ

≤ 2m
+∞∑
`=1

`

(
1

`∆(`)

)1/λ(m+ `− 1

`

)

≤ 22m−1
+∞∑
`=1

`m
(

1

`∆(`)

)1/λ

< +∞.

Hence

meas(Πω,γ,∆ \Π∗ω,γ,∆) ≤ cγ1/λ.

This completes the proof.

4. Example and application

4.1. Example

In this subsection we give some examples to discuss the persistence of invariant curves

with prescribed frequency and show how to introduce extra parameters in the proof. In

the following the non-degenerate condition is even order non-degeneracy. Typically, we

only consider the case of second order nondegeneracy for simplicity. The cases of more

higher even order can been treated similarly.

Suppose the second order non-degenerate condition is satisfied, i.e., there is some y∗

such that dh
dy (y∗) = 0, but d2h

dy2 (y∗) 6= 0. Without loss of generality we can assume that the
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critical value y∗ of h(y) is located at the origin. Our initial reversible mapping A0:

x1 = x+ α+ y2 + f(x, y), y1 = y + g(x, y),

where the small perturbations f(x, y) and g(x, y) are quasi-periodic in x with frequency

ω = (ω1, ω2, . . . , ωm), real analytic in x, y and include the more than 2-order terms of y, the

variable y has been scaled so that the coefficient of y2 equals to 1. By the method in this

paper and KAM iteration with some parameters, we can prove that a family of variant

curves can persist under small perturbation, but the frequency Ω∗(p) has some drift.

Moreover, the frequency Ω∗(p) satisfies the Brjuno–Rüssmann’s non-resonant condition:∣∣∣∣〈k, ω〉Ω∗(p)2π
− j
∣∣∣∣ ≥ γ

2∆(|k|)
for all k ∈ Zm \ {0}, j ∈ Z.

4.2. Application

In this subsection we will apply the above result to superlinear Duffing’s equation

(4.1) ẍ+ x3 = f(t),

where f(t) is real analytic and quasi-periodic in t with the frequency ω = (ω1, ω2, . . . , ωm).

Throughout this subsection, we assume f(t) is even in t. Introduce a new variable

y = −ẋ, Equation (4.1) is equivalent to the system

(4.2) ẋ = −y, ẏ = x3 − f(t),

which is reversible with respect to the involution (x, y) 7→ (x,−y).

Dropping the time-dependent term equation (4.1) becomes

ẍ+ x3 = 0,

which is equivalent to the system

(4.3) ẋ = −y, ẏ = x3,

which is time-independent Hamiltonian system on R2:

(4.4) ẋ = − ∂

∂y
h(x, y), ẏ =

∂

∂x
h(x, y)

with h(x, y) = 1
2y

2 + 1
4x

4. Clearly, h is positive on R2 except at the only equilibrium point

(x, y) = (0, 0) of (4.3) where h = 0. All the solutions of (4.4) are periodic with period

tending to zero as h = E tends to infinity.

Suppose (C(t), S(t)) is the solution of (4.3) satisfying the initial condition (C(0), S(0))

= (1, 0). Let T∗ > 0 be its minimal period. From (4.3), these analytic functions satisfy
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(i) C(t+ T∗) = C(t), S(t+ T∗) = S(t) and C(0) = 1, S(0) = 0.

(ii) Ċ(t) = S(t), Ṡ(t) = −C3(t).

(iii) 2S2(t) + C4(t) = 1.

(iv) C(−t) = C(t), S(−t) = −S(t).

Under the transformation

Ψ : x = c1/3ρ1/3C(θT∗), y = c2/3ρ2/3S(θT∗)

with c = 3/T∗. The system (4.2) now becomes as follows:

θ̇ = −4

3
dρ1/3 +

1

3
c1/3ρ−2/3C(θT∗)f(t),

ρ̇ = −c1/3T∗ρ
1/3S(θT∗)f(t),

d = c4/3/4. This system is reversible with respect to (ρ, θ) 7→ (ρ,−θ) and 1-periodic in θ.

As one did in the periodic case, now we change the role of the variable t and θ, and

yields that

dt

dθ
=

[
−4

3
dρ1/3 +

1

3
c1/3ρ−2/3C(θT∗)f(t)

]−1

,

dρ

dθ
= −c1/3T∗ρ

1/3S(θT∗)f(t)

[
−4

3
dρ1/3 +

1

3
c1/3ρ−2/3C(θT∗)f(t)

]−1

,

(4.5)

this system is reversible with respect to the involution (ρ, t) 7→ (ρ,−t) and 1-periodic in

the new time variable θ.

Our next goal is to obtain asymptotic expansions for t1 and ρ1. For ρ0 large enough,

the second equation of (4.5) can be rewritten as

dρ

dθ
=

3T∗c
1/3

4d
S(θT∗)f(t) +O(ρ−1).

An integration of this equation leads to

(4.6) ρ(θ) = ρ0 +O(1), θ ∈ [0, 1].

Therefore,

ρ(θ)−1/3 = ρ
−1/3
0 (1 + ρ−1

0 O(1))−1/3.

Expanding (1 + ρ−1
0 O(1))−1/3 yields

(4.7) ρ(θ)−1/3 = ρ
−1/3
0 +O(ρ

−4/3
0 ), θ ∈ [0, 1]
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for ρ0 large enough, by (4.7) and the first equality of (4.5), we get

dt

dθ
= O(ρ

−1/3
0 ), θ ∈ [0, 1],

which implies that

(4.8) t(θ) = t0 +O(ρ
−1/3
0 ), θ ∈ [0, 1]

for ρ0 large enough. Substituting (4.6)–(4.8) into the second equality of (4.5), we have,

for θ ∈ [0, 1],

(4.9)
dρ

dθ
=

3T∗c
1/3

4d
S(θT∗)f(t0) +O(ρ

−1/3
0 )

for ρ0 large enough. An integration of (4.9) over θ ∈ [0, 1] yields

ρ1 = ρ0 +O(ρ
−1/3
0 )

for ρ0 large enough, where ρ1 = ρ(1). Substituting (4.7) and (4.8) into the first equality

of (4.5), we have, for θ ∈ [0, 1],

(4.10)
dt

dθ
= − 3

4d
ρ
−1/3
0 +O(ρ

−4/3
0 )

for ρ0 large enough. An integration (4.10) over θ ∈ [0, 1] yields

t1 = t0 −
3

4d
ρ
−1/3
0 +O(ρ

−4/3
0 ),

where t1 = t(1).

To apply the invariant curve theorem obtained in Liu [17], introduce a new variable µ

by

δµ = − 3

4d
ρ−1/3, µ ∈ [−2,−1].

Obviously, ρ� 1⇐⇒ δ � 1. Under this change of variable, we may get an expression of

time-1 map of (4.5):

P :

t1 = t0 + δµ0 + δf̃1(t0, µ0, δ),

µ1 = µ0 + δf̃2(t0, µ0, δ),

where f̃1, f̃2 are real analytic and quasi-periodic in t0 with the frequency ω = (ω1, ω2, . . . ,

ωm) and f̃1, f̃2 → 0 as δ → 0. If δ is sufficiently small, therefore the assumptions of

Theorem 2 in [17] are met. Hence the existence of the invariant curves of P is guaranteed by

Theorem 2 in [17], the invariant curves are real analytic quasi-periodic with the frequency

ω = (ω1, ω2, . . . , ωm). Then system (4.1) has infinitely many quasi-periodic solutions with

frequencies
{
ω = (ω1, ω2, . . . , ωm), 1

δα

}
.



Existence of Invariant Curves for Degenerate Quasi-periodic Reversible Mappings 795

As an application of the invariant curve theorem obtained in this paper, we shall

study the existence of quasi-periodic solutions whose frequencies may be different from{
ω = (ω1, ω2, . . . , ωm), 1

δα

}
for system (4.1). To apply the theorem obtained in Section 2,

introduce a new variable µ by

(4.11) µ2 =
3

4d
ρ−1/3.

Under this change of variable, we may get an expression of time-1 map of (4.5):

P :

t1 = t0 − µ2
0 + f̃1(t0, µ0),

µ1 = µ0 + f̃2(t0, µ0),

where f̃1, f̃2 are real analytic and quasi-periodic in t0 with the frequency ω = (ω1, ω2, . . . ,

ωm) and f̃1 = O(µ8
0), f̃2 = O(µ9

0).

Since the change of variables (4.11) commutes with the involution R : (µ, t) 7→ (µ,−t),
hence P is also reversible with respect to the same involution R. Let µ = z+ p, the above

mapping P becomes

P̃ :

t1 = t0 − p2 + f̃1(t0, z0; p),

z1 = z0 + f̃2(t0, z0; p),

where f̃1(t0, z0; p) = −z2
0 − 2z0p+ f̃1(t0, z0 + p), f̃2(t0, z0; p) = f̃2(t0, z0 + p), µ0 ∈ (−δ, δ),

z0 ∈ (−δ̃, δ̃), p ∈ (0, δ − δ̃) or p ∈ (−δ + δ̃, 0), δ > δ̃ > 0. Now we apply Theorem 2.7

to prove the existence of quasi-periodic solutions and the boundedness of all solutions for

(4.1).

4.3. The main result

Theorem 4.1. Every solution of (4.1) with a real analytic quasi-periodic function f(t) ∈
Qr(ω), ω satisfying the non-resonance condition (2.1) is bounded. Moreover, (4.1) has

infinitely many quasi-periodic solutions.

Proof. Since Ω(p) = −p2, and Ω(2)(p) = −2 6= 0 when p ∈ (0, δ − δ̃) or p ∈ (−δ + δ̃, 0).

Moreover, by Theorem 2.5 there exist Brjuno–Rüssmann approximation function ∆ such

that
+∞∑
`=1

`m−1

∆(`)
< +∞.

Hence Πω,γ,∆ the set of all p ∈ (0, δ − δ̃) or p ∈ (−δ + δ̃, 0) satisfying∣∣∣∣〈k, ω〉−p2

2π
− j
∣∣∣∣ ≥ γ

∆(|k|)
for all k ∈ Zm \ {0}, j ∈ Z
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has positive measure. Then from Theorem 2.7, we know that the map P̃ has invariant

curves if δ > 0 are sufficiently small. If the conditions of Theorem 4.1 hold and δ > 0 are

sufficiently small, therefore the assumptions of Theorem 2.7 are met. Hence the existence

of the invariant curves of P̃ is guaranteed by Theorem 2.7, the invariant curves are real

analytic quasi-periodic with the frequency ω = (ω1, ω2, . . . , ωm). Undoing the change of

variables we obtain the invariant curves of P . Then system (4.1) has infinitely many

quasi-periodic solutions as well as the boundedness of solutions.

Remark 4.2. It follows from the proof of Theorem 4.1 that if the conditions of Theorem 4.1

hold, then system (4.1) has infinitely many quasi-periodic solutions with frequencies
{
ω =

(ω1, ω2, . . . , ωm), 1
−p2

}
satisfying the following non-resonance condition∣∣∣∣〈k, ω〉−p2

2π
− j
∣∣∣∣ ≥ γ

∆(|k|)
for all k ∈ Zm \ {0}, j ∈ Z,

p ∈ (0, δ − δ̃) or p ∈ (−δ + δ̃, 0), δ > δ̃ > 0

and δ is sufficiently small.
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