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Divergences on Symmetric Cones and Medians

Sangho Kum*, Yongdo Lim and Sangwoon Yun

Abstract. We are concerned with divergences on the Cartan–Hadamard Riemannian

manifold of symmetric cones, self-dual homogeneous cones in Euclidean spaces, and

related optimization problems. We introduce a parameterized version of fidelity on

symmetric cones, namely sandwiched quasi-relative entropies, and construct a one-

parameter family of divergences based on these entropies. We consider the median

minimization problem of finite points over these divergences and establish existence

and uniqueness of minimizer. The global linear rate convergence of a gradient projec-

tion algorithm for solving the median minimization problem is analyzed based on the

derived upper bound of the condition number of the Hessian function.

1. Introduction

Divergence functions on Riemannian manifolds (see Section 2), non-symmetric measure-

ments of proximity, play a central role in statistical inference, machine learning, opti-

mization, and many other fields. They can measure the dissimilarity of two points in a

space. A divergence is almost a distance function except the symmetry with respect to its

arguments and the triangle inequality. For instance, the square of a distance function is

a (symmetric) divergence function. Important examples are Bregman divergence derived

from twice differentiable and strictly convex functions f : Ω → R on an open convex set

Ω of a Euclidean space. A divergence Φ naturally gives rise to an important optimiza-

tion problem on the Riemannian manifold M , called median optimization problem (see

Section 2). Like the least squares averaging, its geometric meaning is evident.

In this paper we are mainly concerned with this median optimization problem on

symmetric cones, self-dual homogeneous convex cones in Euclidean spaces. Moreover, a

brief scheme of gradient-based optimization method with linear convergence for finding

the unique minimizer is described. By the Koecher–Vinberg theorem symmetric cones

correspond to the open convex cone of invertible squares in finite-dimensional real Eu-

clidean Jordan algebras (formally real Jordan algebras). Each symmetric cone is a Cartan–

Hadamard Riemannian manifold. The convex cone of n × n positive definite Hermitian
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matrices and the second order cones (or Lorentz cones) are standard examples of symmet-

ric cones.

This work is organized as follows. In Section 2, we give a description of the median

optimization problem and a main theorem. In Section 3, we take a brief look at basic facts

regarding Euclidean Jordan algebras and symmetric cones. In Section 4, the Löwner oper-

ator induced by a real valued function defined on the positive real numbers is introduced

and some known useful properties of its derivative, gradient and Hessian are presented.

According to these properties, the gradient of the sandwiched quasi-relative entropy is

computed. In Section 5, a proof of the unique existence of solution of the optimization

problem (2.1) based on the strict convexity of the objective function and Brouwer’s fixed

point theorem is provided. In Section 6, we provide an upper bound of the condition num-

ber of the Hessian of the objective function, which plays a key role in a gradient-based

method for finding the unique minimizer. A complete proof of being divergence of Φt (see

p. 869) is also given. Section 7 deals with a sketch of the gradient-based optimization

method with linear convergence for finding the unique minimizer. In Section 8, an explicit

formula of the unique minimizer for a special case (m = 2) is derived by exploiting the

Riccati Lemma (3.2). In this case, the unique minimizer is nothing but the Wasserstein

barycenter in the symmetric cone Ω. Section 9 is a conclusion of this work which contains

a summary of results and an open problem for the future research.

2. Problem setting

A formal definition of divergence is the following (see e.g., [1–3].) A divergence on the

Riemannian manifold M is a real valued function Φ: M ×M → R which satisfies

(D1) Φ(a, b) ≥ 0 for all a, b ∈M with equality if and only if a = b;

(D2) the first derivative DΦ with respect to the second variable vanishes on the diagonal

DΦ(a, x)
∣∣
x=a

= 0;

(D3) its Hessian is positive definite on the diagonal

D2Φ(a, x)
∣∣
x=a

(y, y) ≥ 0 for all a ∈ Ω, y ∈ V .

A divergence Φ gives rise to the following optimization problem on the Riemannian

manifold M :

arg min
x∈M

m∑
j=1

wjΦ(aj , x),
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where a1, . . . , am ∈ M and ω = (w1, . . . , wm) ∈ Rm is a positive probability vector. The

unique minimizer whenever it exists provides alternatively a barycenter or averaging on the

manifold M , called the ω-weighted Φ-median of a1, . . . , am. Several medians such as Log-

Euclidean and Bhattacharyya, have been derived from the divergence metrics [4, 10, 14].

Recently, Bhatia, Gaubert and Jain [6] considered this problem on the Cartan–Hadamard

Riemannian manifold of positive definite matrices and obtained an explicit form of the

unique minimizer for Bregman divergences of Legendre type. Divergences are not uniquely

determined in a given manifold from which we have more general but new optimization

problems: for divergences Φ1,Φ2, . . . ,Φm on the manifold M ,

arg min
x∈M

m∑
j=1

wjΦj(aj , x).

In the present work, we deal with this kind of median optimization problem on symmetric

cones as mentioned in the introduction.

Let V be a Euclidean Jordan algebra and let Ω be the symmetric cone [12]. We consider

the function Φt : Ω× Ω→ R defined by

Φt(a, b) = tr((1− t)a+ tb)− tr
(
P
(
a

1−t
2t
)
b
)t
, 0 < t < 1,

where tr is the trace functional and P is the quadratic representation of the Jordan algebra

V . This real valued function involves the t-weighted arithmetic mean of a and b, and the

sandwiched quasi-relative entropy

Ft(a, b) := tr
(
P
(
a

1−t
2t
)
b
)t
,

which is well-known in the theory of quantum information; for positive semidefinite ma-

trices A and B,

Ft(A,B) := tr
(
A

1−t
2t BA

1−t
2t
)t
, t ∈ (0, 1).

This is a parameterized version of the fidelity F1/2(A,B) = tr
(
A1/2BA1/2

)1/2
. Fidelity

and sandwiched quasi-relative entropies play an important role in quantum information

theory and quantum computation, and it has deep connections with quantum entangle-

ment, quantum chaos, and quantum phase transitions. See [13, 20–22]. In addition, the

Bures distance in the literature on quantum information is defined by

dW (A,B) =

[
tr(A+B)

2
− tr

(
A1/2BA1/2

)1/2]1/2

,

which is also known as the Wasserstein distance in statistics and the theory of optimal

transport [11,15,19]. In terms of our divergences,

d2
W (A,B) = Φ1/2(A,B).

Here is the main result of this paper.
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Theorem 2.1. For every 0 < t < 1, Φt is a divergence on Ω. Moreover for every m-tuple

t = (t1, . . . , tm) ∈ (0, 1)m, the minimization problem

(2.1) arg min
x∈Ω

m∑
j=1

wjΦtj (aj , x)

has a unique minimizer.

3. Euclidean Jordan algebras and symmetric cones

In this section, we briefly describe (following mostly [12]) some Jordan-algebraic concepts

pertinent to our purpose. A Jordan algebra V over R is a commutative algebra satisfying

x2(xy) = x(x2y) for all x, y ∈ V . For x ∈ V , let L(x) be the linear operator defined

by L(x)y = xy, and let P (x) = 2L(x)2 − L(x2). The map P is called the quadratic

representation of V . An element x ∈ V is said to be invertible if there exists an element y

(denoted by y = x−1) in the subalgebra generated by x and e (the Jordan identity) such

that xy = e.

An element c ∈ V is called an idempotent if c2 = c 6= 0. We say that c1, . . . , ck is a

complete system of orthogonal idempotents if c2
i = ci, cicj = 0, i 6= j, c1 + · · ·+ck = e. An

idempotent is primitive if it is non-zero and cannot be written as the sum of two non-zero

idempotents. A Jordan frame is a complete system of orthogonal primitive idempotents.

A finite-dimensional Jordan algebra V with an identity element e is said to be Euclidean

if there exists an inner product 〈 · , · 〉 such that 〈xy, z〉 = 〈y, xz〉 for all x, y, z ∈ V .

Theorem 3.1. (Spectral theorem, first version [12, Theorem III.1.1]) Let V be a Euclidean

Jordan algebra. Given x ∈ V , there exist real numbers λ1, . . . , λk all distinct and a unique

complete system of orthogonal idempotents c1, . . . , ck such that

(3.1) x =
k∑
i=1

λici.

The numbers λi are called the eigenvalues and (3.1) is called the spectral decomposition of

x.

Theorem 3.2. (Spectral theorem, second version [12, Theorem III.1.2]) Any two Jordan

frames in a Euclidean Jordan algebra V have the same number of elements (called the rank

of V , denoted by rank(V )). Given x ∈ V , there exists a Jordan frame c1, . . . , cr and real

numbers λ1, . . . , λr such that x =
∑r

i=1 λici. The numbers λi (with their multiplicities)

are uniquely determined by x.

Definition 3.3. Let V be a Euclidean Jordan algebra of rank(V ) = r. The spectral map-

ping λ : V → Rr is defined by λ(x) = (λ1(x), . . . , λr(x)), where λi(x)’s are eigenvalues of x
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(with multiplicities) as in Theorem 3.2 in non-increasing order λmax(x) = λ1(x) ≥ λ2(x) ≥
· · · ≥ λr(x) = λmin(x). Furthermore, det(x) =

∏r
i=1 λi(x) and tr(x) =

∑r
i=1 λi(x).

Let Q be the set of all square elements of V . It turns out that Q has non-empty interior

Ω := int(Q), and Ω is a symmetric cone, that is, the group G(Ω) = {g ∈ GL(V ) | g(Ω) =

Ω} acts transitively on it and Ω is a self-dual cone with respect to the inner product

〈 · , · 〉, where GL(V ) is the Lie group of the invertible linear operators on V (see [12]).

Furthermore, for any a in Ω, P (a) ∈ G(Ω) and is positive definite.

Note that Ω = {x ∈ V | λi(x) ≥ 0, i = 1, . . . , r}. For x, y ∈ V , we define

x ≤ y if y − x ∈ Ω

and x < y if y − x ∈ Ω. Clearly Ω = {x ∈ V | x ≥ 0} and Ω = {x ∈ V | x > 0}.
On the other hand, the symmetric cone Ω in a Euclidean Jordan algebra V has an

important geometric feature. That is, it admits a G(Ω)-invariant Riemannian metric

defined by

〈u, v〉x = 〈P (x)−1u, v〉, x ∈ Ω, u, v ∈ V.

For this, refer to [12]. So Ω is a symmetric Riemannian space of non-compact type with

respect to its distance metric. In this case, it is shown in [17, Proposition 2.6] that the

unique geodesic curve (up to parameterization) joining a and b is

t 7→ a#tb := P (a1/2)(P (a−1/2)b)t

where at =
∑r

j=1 λj(a)tcj for the spectral decomposition a =
∑r

j=1 λj(a)cj in Theo-

rem 3.2. Moreover, a#b := a#1/2b is a unique geodesic middle between a and b and

coincides with the unique solution in Ω of the Riccati equation

(3.2) P (x)a−1 = b.

Basically the trace is an inner product on V , and the Jordan algebra V endowed with

the trace inner product 〈x, y〉 = tr(xy) is still Euclidean [12]. Every Euclidean Jordan

algebra admits a unique direct sum decompositions with irreducible (simple) Euclidean

Jordan algebras. Since the trace of a product of Euclidean Jordan algebras is the sum

of their trace functionals, we may assume that V is a simple Euclidean Jordan algebra of

rank r equipped with the trace inner product.

Let {c1, c2, . . . , cr} be a Jordan frame of V . For i, j ∈ {1, 2, . . . , r}, we consider the

following subspaces of V :

Vii = V (ci, 1) = Rci, Vij = V (ci, 1/2) ∩ V (cj , 1/2) for i 6= j
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where V (ci, α) = {x ∈ V | L(ci)x = αx}. The following, called the Peirce decomposition

(see [12, Theorem IV.2.1]), plays an important role for our purpose. V is the orthogonal

direct sum: V =
⊕

i≤j Vij . Moreover,

Vij · Vij ⊆ Vii + Vjj , Vij · Vjk ⊆ Vik if i 6= k,

Vij · Vkl = {0} if {i, j} ∩ {k, l} = ∅.

If we denote by Pij the orthogonal projection onto Vij , then we can write, for all x ∈ V ,

x =
r∑
i=1

Pii(x) +
∑
i<j

Pij(x) =
r∑
i=1

xi +
∑
i<j

xij .

4. Löwner operators

Let f be a differentiable map from Ω into R. We denote by Df(x) the (Fréchet) derivative

of f at x, and by ∇f(x) the gradient of f at x. Df(x) is a linear map from the space V

into R, and its action is given by

Df(x)(y) =
d

dt

∣∣∣
t=0

f(x+ ty).

∇f(x) is an element of V and is related to Df(x) by the equation

Df(x)(y) = 〈∇f(x), y〉 = tr(∇f(x)y).

Let {c1, . . . , cr} be a Jordan frame of the simple Euclidean Jordan algebra V . For a

map φ : (0,∞)→ R, define the Löwner operator φV on Ω by

φV : Ω→ V, φV (x) =
r∑
j=1

φ(λj(x))cj

where x has the spectral decomposition x =
∑r

j=1 λj(x)cj . Denote

φtr : Ω→ R, φtr(x) = trφV (x).

That is,

φtr(x) =

r∑
j=1

φ(λj(x)).

By applying Korányi’s result [16] we have that for a continuously differentiable φ on

an open interval (0,∞), the Löwner operator φV is differentiable at x ∈ Ω, and for any

y ∈ V ,

(4.1) DφV (x)y =

r∑
j=1

φ′(λj(x))yj +
∑
i<j

[
φ

[1]
V (λ(x))

]
ij
yij
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where y =
∑

i≤j yij is the Peirce decomposition of y respect to the Jordan frame {c1, . . . , cr}
and [

φ
[1]
V (λ(x))

]
ij

=


φ(λi(x))−φ(λj(x))

λi(x)−λj(x) if λi(x) 6= λj(x),

φ′(λj(x)) if λi(x) = λj(x).

We remark that for the Euclidean Jordan algebra of Hermitian matrices, Korányi’s formula

is an extension of the Daleckii–Krein formula (see [5, Theorem V.3.3]).

The following derivative computations of φtr appears in [9, Lemma 3.1 and Theo-

rem 3.2]. For a (continuously) differentiable φ on (0,∞),

(C1) φtr is (continuously) differentiable with

Dφtr(x)(y) = 〈(φ′)V (x), y〉.

That is,

(4.2) ∇φtr(x) = (φ′)V (x) =

r∑
j=1

φ′(λj(x))cj .

(C2) If φ is twice differentiable with φ′′(t) > 0 for all t > 0, then φtr is strictly convex and

∇2φtr(x) = D(φ′)V (x).

That is,

D2φtr(x)(y, z) = 〈D(φ′)V (x)(y), z〉, x ∈ Ω, y, z ∈ V.

Let g ∈ G(Ω) and let φ : (0,∞)→ R be a differentiable map. By chain rule,

(4.3) ∇φtr(g(x)) = g∗
(
∇φtr(g(x))

)
,

where g∗ is the adjoint of the linear map g on V . Indeed,

D(φtr ◦ g)(x)(y) = Dφtr(g(x))(Dg(x)(y)) = 〈∇φtr(g(x)), Dg(x)(y)〉

= 〈∇φtr(g(x)), g(y)〉 = 〈g∗
(
∇φtr(g(x))

)
, y〉.

Proposition 4.1. For every a, x ∈ Ω and t ∈ R,

∇φtr(P (a)x)t = t · (a2#1−tx
−1), x ∈ Ω.

Proof. Let φ(s) = st on (0,∞). Then by (4.2),

∇φtr(xt) = (φ′)V (xt) =

r∑
j=1

t(λj(x))t−1cj = txt−1, x ∈ Ω.
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By (4.3),

∇φtr(P (a)x)t = P (a)(t(P (a)x)t−1) = tP (a)(P (a−1)x−1)1−t

= t(a2#1−tx
−1).

For the second equality, we used the fact that (P (a)b)−1 = P (a−1)b−1 for every invertible

a and b.

5. Medians

We first show that the objection function of (2.1) is strictly convex. It suffices to show

that for each 0 < t < 1 and a ∈ Ω, the map ϕa,t : Ω→ R

ϕa,t(x) := Φt(a, x) = tr((1− t)a+ tx)− tr
(
P
(
a

1−t
2t
)
x
)t

is strictly convex. By the linearity of x 7→ tr(x), it is enough to show the strict convexity

of

x 7→ −Ft(a, x) = − tr
(
P
(
a

1−t
2t
)
x
)t
.

Since the term P (a
1−t
2t ) is independent of the variable x, it reduces to that of

x 7→ − tr(P (a)x)t, a ∈ Ω.

This follows directly from chain rule and (C2) with φ(s) = −st for s > 0 and P (a) ∈ G(Ω).

In addition, the following formula of the gradient of ϕa,t is direct from Proposition 4.1

∇ϕa,t(x) = t
(
e−

(
a

1−t
t #1−tx

−1
))
.

Next, we shall show that the minimization problem (2.1) has a unique minimizer. Let

a1, . . . , am ∈ Ω and let t = (t1, . . . , tm) ∈ (0, 1)m. The objective function of (2.1)

ϕ(x) :=
m∑
j=1

wjϕaj ,tj (x)

is a sum of strictly convex functions and hence is strictly convex with its gradient

∇ϕ(x) =

m∑
j=1

wj∇ϕaj ,tj (x) =

m∑
j=1

wjtj

[
e−

(
a

1−tj
tj

j #1−tjx
−1
)]
.

Setting

(5.1) u :=

m∑
j=1

wjtj and uj =
wjtj
u

, j = 1, . . . ,m
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yields
m∑
j=1

uj = 1

and leads to

(5.2) ∇ϕ(x) = 0 ⇐⇒ e =
m∑
j=1

uj

(
a

1−tj
tj

j #1−tjx
−1

)
.

From

a

1−tj
tj

j #1−tjx
−1 = x−1#tja

1−tj
tj

j = P (x−1/2)

(
P (x1/2)a

1−tj
tj

j

)tj
,

(5.3) ∇ϕ(x) = 0 ⇐⇒ x =

m∑
j=1

uj

(
P (x1/2)a

1−tj
tj

j

)tj
.

Theorem 5.1. The optimization problem (2.1) has a unique solution.

Proof. It is enough to show that the gradient vanishing equation has a solution in Ω,

because of its strict convexity. Let

α := min
{
λmin(aj) | j = 1, . . . ,m

}
, β := max

{
λmax(aj) | j = 1, . . . ,m

}
where λmin(aj) and λmax(aj) denote the minimum and maximum eigenvalue of aj , respec-

tively. We note that

aj ∈ [αe, βe] := {x | αe ≤ x ≤ βe}, j = 1, . . . ,m.

Define a mapping F : [αe, βe]→ [αe, βe] by

F (x) =
m∑
i=1

uj

(
P (x1/2)a

1−tj
tj

j

)tj
where uj =

wjtj∑m
i=1 witi

, j = 1, . . . ,m. To see that F is a self-map, let x ∈ [αe, βe]. Then

from αe ≤ aj ≤ βe,

α
1−tj
tj e ≤ a

1−tj
tj

j ≤ β
1−tj
tj e

and hence

α
1
tj e = α

1−tj
tj (αe) ≤ α

1−tj
tj x = α

1−tj
tj P (x1/2)e = P (x1/2)

(
α

1−tj
tj e

)
≤ P (x1/2)a

1−tj
tj

j ≤ P (x1/2)
(
β

1−tj
tj e

)
= β

1−tj
tj P (x1/2)e = β

1−tj
tj x

≤ β
1−tj
tj (βe) = β

1
tj e.
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Therefore

αe =

m∑
j=1

ujαe =

m∑
j=1

uj
(
α

1
tj
)tje

≤
m∑
j=1

uj
(
P (x1/2)a

1−tj
tj

j

)tj (= F (x))

≤
m∑
j=1

uj
(
β

1
tj
)tje =

m∑
j=1

ujβe = βe.

By Brouwer’s fixed point theorem, there exists a point x ∈ [αe, βe] such that x = F (x),

that is, from (5.3),

∇ϕ(x) = 0.

This completes the proof.

From now on, we denote by Wt(ω; a1, . . . , am) the unique minimizer of (2.1). For the

uniform cases t := t1 = t2 = · · · = tm and wj = 1/m, j = 1, . . . ,m, we simply write

Wt(ω; a1, . . . , am) and Wt(a1, . . . , am),

respectively.

We note that for every a ∈ Ω and 0 < t < 1,

ϕa,t(a) = tr(a)− tr
(
P
(
a

1−t
2t
)
a
)t

= tr(a)− tr
(
a

1−t
t a
)t

= tr(a)− tr(a) = 0

and

(5.4) ∇ϕa,t(a) = t
(
e−

(
a

1−t
t #1−ta

−1
))

= t(e− e) = 0.

Therefore for a := a1 = a2 = · · · = am,

ϕ(a) = 0, ∇ϕ(a) = 0.

This shows that for all a ∈ Ω and t = (t1, . . . , tm) ∈ (0, 1)m,

Wt(ω; a, . . . , a) = a,

and

min
x∈Ω

m∑
j=1

wjΦtj (a, x) = 0.

As a direct consequence, we get the following corollary.
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Corollary 5.2. The map x 7→ Φt(a, x) has a unique minimizer at x = a and its minimum

min
x∈Ω

Φt(a, x) = 0.

In particular, Φt(a, b) ≥ 0 for all a, b ∈ Ω and Φt(a, b) = 0 if and only if a = b.

This together with (5.4) shows that the map Φt satisfies (D1) and (D2). Moreover, by

(5.2),

x = Wt(ω; a1, . . . , am) ⇐⇒ e =
m∑
j=1

uj
(
x−1#tja

1−tj
tj

j

)
,

where uj ’s are in (5.1). Then we have

e =

m∑
j=1

uj
(
x−1#tjaj

)
⇐⇒ x = Wt

(
ω; a

tj
1−tj
1 , . . . , a

tj
1−tj
m

)
or

e =
m∑
j=1

uj
(
x#tjaj

)
⇐⇒ x = Wt

(
ω; a

tj
1−tj
1 , . . . , a

tj
1−tj
m

)−1
.

If t = t1 = t2 = · · · = tm for all j, then u = t and uj = wj . If wj = 1/m, j = 1, . . . ,m,

then

u =
1

m

m∑
j=1

tj , uj =
tj∑m
i=1 ti

.

Therefore

e =

m∑
j=1

wj
(
x#taj

)
⇐⇒ x = Wt

(
ω; a

t
1−t
1 , . . . , a

t
1−t
m

)−1

and

e =

m∑
j=1

tj∑m
i=1 ti

(
x#tjaj

)
⇐⇒ x = Wt

(
a

tj
1−tj
1 , . . . , a

tj
1−tj
m

)−1
.

Furthermore, we have the corollary below.

Corollary 5.3. The following equations have unique solutions in Ω;

e =

m∑
j=1

wj(x#taj), e =

m∑
j=1

tj∑m
i=1 ti

(x#tjaj)

for every positive weight ω = (w1, . . . , wm) and 0 < tj , t < 1, j = 1, . . . ,m.

Remark 5.4. The equations considered in above are special cases of the following

e =
m∑
j=1

wj(x#tjaj).

It is not easy to see that this equation has a unique solution.

For the symmetric cone of positive definite matrices, Bhatia–Jain–Lim [7] proved the

preceding results for t = t1 = t2 = · · · = tm.
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6. Divergences

In this section we shall show that Φt is a divergence for all 0 < t < 1. In what follows, we

assume 0 < α ≤ β and 0 < t < 1.

Proposition 6.1. Let g : Ω → V be defined by g(x) = xt−1. Then for x ∈ [αe, βe] and

y ∈ V ,

(t− 1)αt−2‖y‖2 ≤ 〈Dg(x)y, y〉 ≤ (t− 1)βt−2‖y‖2.

Proof. Let {c1, c2, . . . , cr} be a Jordan frame of V such that x =
∑r

i=1 λici. According to

(4.1), for any y =
∑

i≤j yij ∈ V with the Peirce decomposition with respect to the Jordan

frame {c1, . . . , cr}

Dg(x)y =
r∑
i=1

(t− 1)λt−2
i yi +

∑
i<j

[g1(λ(x))]ijyij ,

where

[g1(λ(x))]ij =


λt−1
i −λt−1

j

λi−λj if λi 6= λj ,

(t− 1)λt−2
i if λi = λj .

By the orthogonality of the Peirce decomposition and the mean value theorem,

〈Dg(x)y, y〉 =

〈
r∑
i=1

(t− 1)λt−2
i yi +

∑
i<j

[g1(λ(x))]ijyij ,
r∑
i=1

yi +
∑
i<j

yij

〉

=
r∑
i=1

(t− 1)λt−2
i ‖yi‖

2 +
∑
i<j

[g1(λ(x))]ij‖yij‖2

≥
r∑
i=1

(t− 1)αt−2‖yi‖2 +
∑
i<j

(t− 1)ct−2‖yij‖2

for some α ≤ c ≤ β. From t < 1,

(t− 1)ct−2 ≥ (t− 1)αt−2

and hence

r∑
i=1

(t− 1)αt−2‖yi‖2 +
∑
i<j

(t− 1)ct−2‖yij‖2 ≥ (t− 1)αt−2
∑
i≤j
‖yij‖2 = (t− 1)αt−2‖y‖2.

Similarly, we get

〈Dg(x)y, y〉 ≤ (t− 1)βt−2‖y‖2.

This completes the proof.
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Theorem 6.2. Let a ∈ Ω and let 0 < t < 1. Let h : Ω → R be the function defined by

h(x) = tr(P (a)x)t. Then we have for x ∈ [αe, βe],

t(t− 1)αt−2(λmin(a))2(t−2)(λmax(a))4I

≤ ∇2h(x) ≤ t(t− 1)βt−2(λmax(a))2(t−2)(λmin(a))4I,

where I denotes the identity operator on V .

Proof. We note that in the notation of gradients

D2h(x)(y, z) = 〈∇2h(x)(y), z〉,

and that for x ∈ [αe, βe],

αa2 = αP (a)e = P (a)(αe) ≤ P (a)x ≤ P (a)(βe) = βa2.

Hence

(6.1) α(λmin(a))2e = αλmin(a2)e ≤ P (a)x ≤ βλmax(a2)e = β(λmax(a))2e.

By Proposition 4.1,

∇h(x) = t(a2#1−tx
−1) = tP (a)

(
P (a−1)x−1

)1−t
= tP (a)(P (a)x)t−1

from which

∇h(x) = t(P (a) ◦ g ◦ P (a))(x)

where g(x) = xt−1. That is,

Dh(x)(y) = t〈(P (a) ◦ g ◦ P (a))(x), y〉.

Then

D2h(x)(y, z) = t〈
[
P (a) ◦Dg(P (a)x) ◦ P (a)

]
(y), z〉

and hence

∇2h(x)(y) = t
[
P (a) ◦Dg(P (a)x) ◦ P (a)

]
(y).

By Proposition 6.1 and (6.1), we then have that for y ∈ V ,

〈∇2h(x)y, y〉 = t〈P (a)Dg(P (a)x)P (a)y, y〉 = t〈Dg(P (a)x)P (a)y, P (a)y〉

≥ t(t− 1)(α(λmin(a))2)t−2〈P (a)y, P (a)y〉

= t(t− 1)αt−2(λmin(a))2(t−2)〈P (a)2y, y〉

≥ t(t− 1)αt−2(λmin(a))2(t−2)λmax(P (a2))‖y‖2

≥ t(t− 1)αt−2(λmin(a))2(t−2)(λmax(a))4‖y‖2,

using the fact that the eigenvalues of P (a) are {λi(a)λj(a) | i, j = 1, . . . , r}.
Similarly, we obtain

〈∇2h(x)y, y〉 ≤ t(t− 1)βt−2(λmax(a))2(t−2)(λmin(a))4‖y‖2.
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Note that

αe ≤ a ≤ βe =⇒ α
1−t
t e ≤ a

1−t
t ≤ β

1−t
t e.

Replacing a by a
1−t
2t and changing the sign in Theorem 6.2 yields the following corollary.

Corollary 6.3. Let a ∈ Ω and αe ≤ a ≤ βe. Then for every x ∈ [αe, βe],

t(1− t)βt−2λmax(a)
(1−t)(t−2)

t λmin(a)
2(1−t)
t I

≤ ∇2ϕa,t(x) ≤ t(1− t)αt−2λmin(a)
(1−t)(t−2)

t λmax(a)
2(1−t)
t I.

It is direct to see that (D3) holds for Φt by applying the preceding corollary with

sufficiently small α and large β because D2Φt(a, x)
∣∣
x=a

(y, y) = ∇2ϕa,t(x)
∣∣
x=a

(y, y) ≥ 0.

We conclude that for 0 < t < 1, Φt : Ω× Ω→ R is a divergence on Ω.

The condition number of an operator A is defined as

cond(A) = ‖A‖‖A−1‖.

We then have

cond
(
∇2ϕa,t(x)

)
≤
[
β

α

]2−t [λmax(a)

λmin(a)

] (1−t)(4−t)
t

, x ∈ [αe, βe].

Applying with α := λmin(a) and β := λmax(a) leads to

Corollary 6.4. Let a ∈ Ω. Then for every x ∈ [λmin(a)e, λmax(a)e],

t(1− t)λmax(a)
t−2
t λmin(a)

2−2t
t I ≤ ∇2ϕa,t(x) ≤ t(1− t)λmin(a)

t−2
t λmax(a)

2−2t
t I

and

cond
(
∇2ϕa,t(x)

)
≤
[
λmax(a)

λmin(a)

] 4−3t
t

.

7. A gradient projection algorithm

In this section we present an optimization algorithm to find the unique minimizer of ϕ:

ϕ(x) :=
m∑
j=1

wjϕaj ,tj (x) =
m∑
j=1

wj

[
tr((1− tj)aj + tjx)− tr

(
P
(
a

1−tj
2tj
)
x
)tj] ,

where a1, . . . , am ∈ Ω and 0 < tj < 1, j = 1, . . . ,m, are given. We have seen that

∇ϕ(x) =

m∑
j=1

wjtj

[
e−

(
a

1−tj
tj #1−tjx

−1
)]
.
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Pick α, β > 0 so that

aj ∈ [αe, βe], j = 1, . . . ,m.

By Corollary 6.3,

tmin(1− tmax)β
tmin−2

tmin α
2−2tmin
tmin I ≤ ∇2ϕ(x) ≤ tmax(1− tmin)α

tmin−2

tmin β
2−2tmin
tmin I

for all x ∈ [αe, βe], where tmin and tmax denote respectively

tmin = min{tj | j = 1, . . . ,m}, tmax = max{tj | j = 1, . . . ,m}.

This, in particular, implies that ϕ is

α∗ := tmin(1− tmax)β
tmin−2

tmin α
2−2tmin
tmin

-strongly convex and

β∗ := tmax(1− tmin)α
tmin−2

tmin β
2−2tmin
tmin

-smooth on [αe, βe]. Note that ϕ(x) is strongly convex with parameter α∗ > 0 if and only

if ∇2ϕ(x) � α∗I for all x ∈ domϕ and ϕ(x) is called β∗-smooth when the gradient of ϕ(x)

is Lipschitz continuous with parameter β∗ > 0, i.e., ‖∇ϕ(x)−∇ϕ(y)‖ ≤ β∗‖x− y‖ for all

x, y ∈ domϕ.

Now we apply the classical gradient projection method for solving the median mini-

mization problem. Based on the strong convexity and smoothness of the objective function

derived above, we describe the global linear rate convergence of the algorithm below. Let

xk+1 =
[
xk − η∇ϕ(xk)

]
+

=

xk −
η m∑

j=1

wjtj

 e+ η
n∑
j=1

wjtj
(
a

1−tj
tj

j #1−tjx
−1
k

)
+

where the initial iterate x0 ∈ [αe, βe], [ · ]+ denotes the projection onto [αe, βe], and η is

the stepsize satisfying 0 < η < 2/β∗. Then the iterates converge to the unique minimizer

x∗ := Wt(ω; a1, . . . , am) with linear convergence rate as follows:

‖xk+1 − x∗‖2 =
∥∥∥[xk − η∇ϕ(xk)

]
+
−
[
x∗ − η∇ϕ(x∗)

]
+

∥∥∥
2

≤
∥∥xk − η∇ϕ(xk)− x∗ + η∇ϕ(x∗)

∥∥
2

=

∥∥∥∥xk − x∗ − η(∫ 1

0
∇2ϕ(xτk) dτ

)
(xk − x∗)

∥∥∥∥
2

=

∥∥∥∥(I − η ∫ 1

0
∇2ϕ(xτk) dτ

)
(xk − x∗)

∥∥∥∥
2

≤
∥∥I − η∇2ϕ(xτk)

∥∥
2
‖xk − x∗‖2

≤ qk‖xk − x∗‖2
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where the first inequality uses the non-expensiveness of the projection, xτk = xk+τ(x∗−xk),
and

q = max{|1− ηα∗|, |1− ηβ∗|}.

If η = 1/β∗, then we can obtain

‖xk+1 − x∗‖22 ≤ e
− kα∗

β∗ ‖x1 − x∗‖22 = e
−k tmin(1−tmax)

tmax(1−tmin)

(
α
β

) 4−3tmin
tmin

‖x1 − x∗‖22.

See [8, Theorem 3.10] for detailed proof.

8. A formula for m = 2

In this section we provide an explicit formula for m = 2 and t1 = t2 = 1/2. In this case

the gradient vanishing equation of ϕ is

e = (1− s)
(
x−1#ta

1−t
t
)

+ s
(
x−1#tb

1−t
t
)
, 0 < s, t < 1.

Theorem 8.1. Let a, b ∈ Ω and 0 < s < 1. Then

W1/2(1− s, s; a, b) = P
(
s(a−1#b) + (1− s)e

)
a

= P (a−1/2)
(
(1− s)a+ s(P (a1/2)b)1/2

)2
.

Furthermore,

(8.1) W1/2(1− s, s; a, b) = W1/2(s, 1− s; b, a).

Proof. Let 0 < s < 1. We first consider the equation

(8.2) e = a#x−1 + b#x−1.

We note that (8.2) is equivalent to

(8.3) e = (1− s)(a′#x−1) + s(b′#x−1)

where a′ := a/(1 − s)2 and b′ := b/s2. That is, for 0 < s < 1, x is a solution of (8.2) if

and only if

(8.4) x = W1/2(1− s, s; a′, b′).

In particular, (8.2) has a unique solution in Ω. Changing the role of a′ and b′ in (8.3)

leads to

W1/2(1− s, s; a, b) = W1/2(s, 1− s; b, a)

for all a, b ∈ Ω and 0 < s < 1.
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Suppose that x ∈ Ω is a positive definite solution of (8.2). Setting u = a#x−1 and

v = b#x−1 yields by the Riccati Lemma (3.2) that

x−1 = P (u)a−1 = P (v)b−1 and u+ v = e.

That is,

P (u)a−1 = P (v)b−1 = P (e− u)b−1.

Since

P (u−1)P (e− u) = P (u−1/2)
[
P (u−1/2)P (e− u)P (u−1/2)

]
P (u1/2)

= P (u−1/2)P (P (u−1/2)(e− u))P (u1/2)

= P (u−1/2)P (u−1 − e)P (u1/2)

= P (u−1/2)P (u1/2)P (u−1 − e)

= P (u−1 − e),

we have

a−1 = P (u−1)P (e− u)b−1 = P (u−1 − e)b−1.

By u < u+ v = e and Riccati Lemma, u−1− e = a−1#b. That is, u−1 = a−1#b+ e. From

x = P (u−1)a, we have

x = P (a−1#b+ e)a.

By (8.4), we have

P (a−1#b+ e)a = W1/2

(
1− s, s; a/(1− s)2, b/s2

)
, 0 < s < 1.

This implies that for 0 < s < 1,

W1/2(1− s, s; a, b) = P
(
s(a−1#b) + (1− s)e

)
a.

By a direct computation, the later part is equal to

P
(
s(a−1#b) + (1− s)e

)
a = P (a−1/2)

(
(1− s)a+ s(P (a1/2)b)1/2

)2
.

Remark 8.2. By (8.1) and the fact that a#b = b#a and (a#b)−1 = a−1#b−1 (e.g., [17,18]),

P (s(a−1#b) + (1− s)e)a = P ((1− s)(a−1#b)−1 + se)b

for all a, b ∈ Ω and 0 < s < 1. This is new and is not easy to prove directly even for

s = 1/2;

P (a−1#b+ e)a = P (b−1#a+ e)b, a, b ∈ Ω.
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9. Conclusion

In this paper, we provide a general framework of a median optimization problem (2.1) on

symmetric cones together with a theoretical analysis of the gradient projection method

regarding this optimization problem. This problem may be regarded as a generalization of

the well-known problem of finding Wasserstein barycenter in statistics and the theory of

optimal transport when the symmetric cone Ω is the positive definite Hermitian matrices

of fixed size. The Wasserstein barycenter problem is based on the Wasserstein distance. In

terms of our divergences, the square of the Wasserstein distance is Φ1/2(a, b) (see p. 869).

Then we close with the following question:

Is the square root of Φ1/2(a, b) a distance on the symmetric cone Ω?

This is a challenging problem for future research.

Acknowledgments

The work of the first author was supported by Basic Science Research Program through

NRF Grant No. NRF-2017R1A2B1002008. The work of the second author was supported

by the National Research Foundation of Korea (NRF) grant funded by the Korea gov-

ernment (MEST) Nos. NRF-2015R1A3A2031159 and 2016R1A5A1008055. The work of

the third author was supported by the National Research Foundation of Korea (NRF)

Nos. NRF-2016R1A5A1008055 and NRF-2019R1F1A1057051.

References

[1] S. Amari, Divergence function, information monotonicity and information geometry,

Workshop on Information Theoretic Methods in Science and Engineering (WITMSE),

2007.

[2] , Information Geometry and its Applications, Applied Mathematical Sciences

194, Springer, 2016.

[3] S. Amari and A. Cichocki, Information geometry of divergence functions, Bull. Pol.

Acad. Sci.: Tech. Sci. 58 (2010), no. 1, 183–195.

[4] V. Arsigny, P. Fillard, X. Pennec and N. Ayache, Log-Euclidean metrics for fast and

simple calculus on diffusion tensors, Magn. Reson. Med. 56 (2006), no. 2, 411–421.

[5] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics 169, Springer-Verlag,

New York, 1997.



Divergences on Symmetric Cones and Medians 885

[6] R. Bhatia, S. Gaubert and T. Jain, Matrix versions of the Hellinger distance, Lett.

Math. Phys. 109 (2019), no. 8, 1777–1804.

[7] R. Bhatia, T. Jain and Y. Lim, Strong convexity of sandwiched entropies and related

optimization problems, Rev. Math. Phys. 30 (2018), no. 9, 1850014, 18 pp.

[8] S. Bubeck, Convex optimization: Algorithms and complexity, Found. Trends Mach.

Learn. 8 (2015), no. 3-4, 231–357.

[9] Y.-L. Chang and J.-S. Chen, Convexity of symmetric cone trace functions in Euclidean

Jordan algebras, J. Nonlinear Convex Anal. 14 (2013), no. 1, 53–61.

[10] M. Charfi, Z. Chebbi, M. Moakher and B. Vemuri, Bhattacharyya median of sym-

metric positive-definite matrices and application to the denoising of diffusion-tensor

fields, Proc. IEEE Int. Symp. Biomed. Imaging 2013, 1227–1230.

[11] D. C. Dowson and B. V. Landau, The Fréchet distance between multivariate normal
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