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On Nodal Properties for Some Nonlinear Conformable Fractional Differential

Equations

Wei-Chuan Wang and Yan-Hsiou Cheng*

Abstract. A class of conformable fractional differential equations

Dα
xD

α
xu(x) + ω(x)f(u(x)) = 0 on (0, 1)

is considered. We first give a sufficient condition for the existence of sign-changing

solutions with the prescribed number of zeros to this problem. On the basis of this

result, we turn to a specific case of the above problem and give a uniqueness theo-

rem related to the function ω. Essentially, the main methods using in this work are

properties of conformable fractional calculus, the scaling argument and Prüfer-type

substitutions.

1. Introduction

Fractional calculus has arisen in 1600s and developed as a pure theoretical field of mathe-

matics. In the last few decades, fractional derivatives have been applied in various fields:

physics (classic and quantum mechanics, thermodynamics, etc.), chemistry, biology, eco-

nomics, engineering, signal and image processing, and control theory. For the above, the

readers can refer to a survey paper [25] and their bibliographies. Several definitions of

fractional derivatives, such as Riemann–Liouville, Caputo, Riesz, Riesz–Caputo, Weyl,

Grunwald–Letnikov, Hadamard, and Chen derivatives, are used in the existent literature.

Later, a simple solution to the discrepancies between known definitions was presented with

the introduction of a new fractional notion, called the conformable fractional derivative

(CFD) [19]. For simple and similar to the standard derivative, one can say that the con-

formable derivative combines the good characteristics of known fractional derivatives [1].

Now this subject is under strong development: see [3, 6, 7] and references therein.

The aim of the present paper is to study some solution properties related to a class

of conformable fractional differential equations. First, we intend to establish some suf-

ficient conditions on the existence of solutions having a prescribed number of zeros in a
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finite interval. By considering sign-changing solutions to conformable fractional differen-

tial equations, we are led to study the following nonlinear problem:

Dα
xD

α
xu(x) + ω(x)f(u(x)) = 0,(1.1)

u(0) = u(1) = 0,(1.2)

where Dα
x is the CFD of order α. Note that the details of CFD will be discussed in

Section 2. Throughout the paper we assume the following conditions hold:

(C1) α ∈ (0, 1], ω ∈ C1(R+), and ω > ε1 on [0,∞), where ε1 is a constant,

(C2) f ∈ C1(R) with sf(s) > 0 for s 6= 0.

Note that the condition (C2) implies f(0) = 0. For α = 1, many cases of BVP (1.1)–

(1.2) have been investigated in numerous papers using various methods and techniques

(see e.g., [4, 12, 14, 15, 17, 18, 38, 42, 43]). Most results in the above mentioned papers

are about the existence of one or more positive solutions. Erbe [13] initiated the idea

of connecting BVP (1.1)–(1.2) with the eigenvalues of its corresponding linear Sturm–

Liouville problem (1.3) (see below). Later, Nato and Tanaka [30] established the precise

condition concerning the behavior of the ratio f(s)/s at infinity and zero for the existence

of solutions with prescribed numbers of zeros. Besides, much effort has focussed on a

fractional generalization (0 < α ≤ 1) of the well known Sturm–Liouville problems recently

(see [2, 20, 22, 33]). These types of problem arise in various areas of science and in many

fields in engineering, we refer to [5, 26, 28, 36]. Here, we employ the following eigenvalue

problem

(1.3) Dα
xD

α
xy(x) + λω(x)y(x) = 0 and y(0) = y(1) = 0.

It is known that (cf. [11, 29]) the problem (1.3) has a countable number of eigenvalues

{λi}i∈N satisfying

0 < λ1 < λ2 < λ3 < · · · < λk < · · · → ∞,

and the corresponding eigenfunction yk(x) has exactly k − 1 zeros in (0, 1). Now (1.3) is

known as a conformable fractional Sturm–Liouville problem.

Motivated by the idea in [30] and some previous results [23,39,40], we intend to give a

sufficient condition to the existence of sign-changing solutions with prescribed numbers of

zeros. To the best of the authors’ knowledge, there are few results reported on this topic

related to conformable fractional differential equations. The following is our first result.

Theorem 1.1. Assume that there exists an integer k ∈ N such that

(1.4) lim sup
s→0+

f(s)

s
< λk < lim inf

s→∞

f(s)

s
.

Then, the problem (1.1)–(1.2) has a solution with exactly k − 1 zeros in (0, 1).
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Under the derivation of Theorem 1.1, we next turn to a typical case of (1.1)–(1.2):

(1.5)

Dα
xD

α
xu(x) + ω(x)|u(x)|q−1u(x) = 0,

u(0) = 0, Dα
xu(0) = γ > 0.

By Theorem 1.1 and its proof, we can obtain the following result immediately. It is

related to the existence of nodal solutions depending on the increasing initial parameters.

Corollary 1.2 (Sturmian theory). Assume that (C1) and q > 1 hold. Then there exists a

strictly increasing sequence of positive numbers {γn}∞n=1, such that the solution u(x; γn) of

the initial value problem (1.5) satisfies the right boundary condition u(1) = 0, and u(x; γn)

has exactly n− 1 zeros in (0, 1) for n ∈ N.

Note that the sequence {γn}∞n=1 obtained in Corollary 1.2 may not be unique, that is,

the problem (1.5) may has two solutions having exactly n− 1 zeros in (0, 1). In [37], the

author showed that such a sequence is unique, provided ω ∈ C2(R) and ([ω(x)]−1/2)′′ ≤ 0

on R with α = 1. For the above result, one can treat the initial data as a version of energy

for the nonlinear problem (1.5), and the initial data play a role similar to the spectral

parameters. Now for each n denote {x(n)
k }

n−1
k=1 to be the zero set (or nodal set) of u(x; γn)

and let x
(n)
0 = 0, x

(n)
n = 1 and u(x

(n)
k ) = 0 for 0 ≤ k ≤ n. The denseness of the nodal set

{x(n)
k }

n
k=0 will be proven in Section 4. The rest of this work is to investigate that knowledge

of the nodal points and some other information can determine the function ω. This issue

is well studied now and called the inverse nodal problem (cf. [9, 10, 16, 24, 27, 35, 41] etc.).

For the problem (1.5), we have the following

Theorem 1.3 (Uniqueness). Assume that (C1) and q > 1 hold. Let ω(x) and ω(x) be two

functions in (1.5) associated with the initial values and nodal data (γn, x
(n)
k ) and (γn, x

(n)
k )

respectively. Assume that ω(0) = ω(0), γn = γn and x
(n)
k = x

(n)
k , 1 ≤ k ≤ n − 1, for

sufficiently large n. Then, ω = ω in [0, 1].

Our plan for this paper is as follows. In Section 2, we first discuss the basic defini-

tions and elementary properties for conformable fractional calculus. Later, we prove the

uniqueness and global existence of solutions to the initial value problem (1.1) in this sec-

tion. In Section 3, we prepare some technical lemmas and give the proof of Theorem 1.1.

Finally in Section 4 we derive the denseness of nodal solutions to (1.5) and give the proof

of Theorem 1.3.

2. Basic definitions and some preliminaries

The fractional calculus [1, 19, 21, 31, 34] attracted much attention and well studied in the

last and present centuries. In this section, we first recall the elementary definitions and

properties of conformable fractional calculus for the readers’ convenience.
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Definition 2.1. (cf. [1, 19]) Let 0 < α ≤ 1 and f : [0,∞)→ R.

(i) The conformable fractional derivative of f of order α at x > 0 is defined by

Dα
xf(x) = lim

ε→0

f(x+ εx1−α)− f(x)

ε
,

and the conformable fractional derivative at 0 is defined asDα
xf(0) = limx→0+ D

α
xf(x).

Note that if f is differentiable, then

Dα
xf(x) = x1−αf ′(x),

where ′ = d
dx is the ordinary derivative with respect to x. If Dα

xf(x0) exists, one can

say that f is α-differentiable at x0.

(ii) The conformable fractional integral of f of order α is defined by

Iαf(x) =

∫ x

0
tα−1f(t) dt for x > 0.

Proposition 2.2. (cf. [1, 19,29])

(i) Let f : [0,∞)→ R be any continuous function. Then, for all x > 0 we have

Dα
x Iαf(x) = f(x).

(ii) Let f : (0, b)→ R be differentiable. Then, for x > 0 we have

(2.1) IαD
α
xf(x) = f(x)− f(0).

(iii) For all p ∈ R, Dα
x (xp) = pxp−α.

(iv) Let f, g : (0,∞)→ R be α-differentiable. Then,

Dα
x (fg) = (Dα

xf)g + f(Dα
xg) and Dα

x

(
f

g

)
=

(Dα
xf)g − f(Dα

xg)

g2
with g 6= 0.

(v) (α-chain rule) Let f, g : (0,∞) → R be α-differentiable and h(x) = f(g(x)). Then,

h(x) is α-differentiable and for all x with x 6= 0 and g(x) 6= 0 we have

(2.2) Dα
xh(x) = Dα

xf(g(x)) ·Dα
xg(x) · g(x)α−1.

(vi) (α-integration by parts) Let f, g : [a, b] → R be two functions such that fg is differ-

entiable. Then,

(2.3)

∫ b

a
xα−1f(x)Dα

xg(x) dx = f(x)g(x)
∣∣∣b
a
−
∫ b

a
xα−1g(x)Dα

xf(x) dx.
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Now we consider the initial value problem consisting of (1.1) coupled with

(2.4) u(0) = 0, Dα
xu(0) = γ,

where γ is a positive parameter. We first employ a previous result to show the existence

and uniqueness of a solution to (1.1) and (2.4).

Theorem 2.3. Assume that (C1) and (C2) hold. Then there exists a local solution of

(1.1) and (2.4). Moreover, this solution is unique in a neighborhood J = [0, a] for some

a > 0.

Proof. By (C1), (C2) and (2.1), the initial value problem (1.1) and (2.4) is equivalent to

(2.5) Dα
xu(x) = γ −

∫ x

0
tα−1ω(t)f(u(t)) dt := Fγ(x, u(x)) with u(0) = 0.

DefineB(u, r) =
{
v ∈ C([0, a],R) : maxx∈[0,a] |v(x)−u(x)| ≤ r

}
a closed ball in C([0, a],R).

Then, Fγ : [0, a] × B(0, r) → R is a continuous function satisfying |Fγ(x, u)| ≤ M for all

x ∈ [0, a], u ∈ B(0, r) and some M > 0. Moreover, Fγ(x, · ) is Lipschitz continuous for

all x ∈ [0, a]. Now, by a previous result [32, Theorem 1] there exists a unique solution of

(2.5) defined on some interval J = [0, a]. This completes the proof.

Later, we introduce an energy identity related to the local solution u(x) = u(x; γ) of

(1.1) and (2.4) in J = [0, a], and apply it to derive the global existence of the solutions. A

priori estimates for the energy will be given. It is crucial to the proof of the main theorem.

Assume that an energy function E[u](x, γ) is defined by

(2.6) E[u](x, γ) ≡ 1

2

(
Dα
xu(x)

)2
+ ω(x)F (u(x)) for x ∈ [0, a],

where F (s) =
∫ s

0 f(σ) dσ. In particular,

(2.7) E[u](0, γ) =
1

2
γ2.

Then, the following a priori bound for the energy function E[u](x, γ).

Proposition 2.4. Assume that b > 0 and γ > 0 are arbitrary. For x ∈ [0, b], the energy

function E[u](x, γ) defined as in (2.6)–(2.7) satisfies the following estimates

(2.8)
1

2
γ2e−bκb ≤ E[u](x, γ) ≤ 1

2
γ2ebκb ,

where κb = max
{ |ω′(x)|

ω(x) : x ∈ [0, b]
}

.
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Proof. In view of (1.1), (2.2) and (2.6), we find that

Dα
xE[u](x, γ) = (Dα

xu(x))2−α ·Dα
xD

α
xu(x) · (Dα

xu(x))α−1

+Dα
xω(x) · F (u(x)) + ω(x) · x1−α d

dx

(∫ u(x)

0
f(σ) dσ

)
= Dα

xu(x)[Dα
xD

α
xu(x) + ω(x)f(u(x))] +Dα

xω(x) · F (u(x))

= Dα
xω(x) · F (u(x)).

(2.9)

That is,
d

dx
E[u](x, γ) ≤ |ω

′(x)|
ω(x)

· ω(x)F (u(x)).

Then,
d

dx
E[u](x, γ) ≤ κaE[u](x, γ),

where κa = max
{ |ω′(x)|

ω(x) : x ∈ J = [0, a]
}

. Hence, for any x ∈ [0, a]

E[u](x, γ) ≤ E[u](0, γ)eκax ≤ 1

2
γ2eaκa

by (2.7) and the continuity of E[u](x, γ) in x. This means that both u(x; γ) and Dα
xu(x; γ)

are bounded as long as the solution exists. Thus, by a standard argument, we conclude

that u(x; γ) can be extended to the whole interval [0, b] for any b > 0. Hence, for x ∈ [0, b]

E[u](x, γ) ≤ 1

2
γ2ebκb ,

where κb = max
{ |ω′(x)|

ω(x) : x ∈ [0, b]
}

. Similarly, in view of (2.9), for x ∈ [0, b] one has

d

dx
E[u](x, γ) ≥ −κb · ω(x)F (u(x)) ≥ −κbE[u](x, γ).

The above linear differential inequality implies that

E[u](x, γ) ≥ E[u](0, γ)e−bκb =
1

2
γ2e−bκb

for x ∈ [0, b]. Therefore, the proof is complete.

Corollary 2.5. For the solution u(x; γ) of the initial value problem (1.1) and (2.4), it

can be extended to all x ≥ 0.

Proof. Suppose that u(x; γ) does not exist on the whole real axis. Without loss of gen-

erality, we assume that u(x; γ) exists on a maximal right interval [0, c) for some finite

c > 0. Then, u(x; γ) is unbounded on [0, c), limx→c− |u(x; γ)| = ∞. Otherwise, if u(x; γ)

is bounded on [0, c), then limx→c− D
α
xu(x; γ) exists by taking the conformable fractional
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integral on (1.1) over the interval [0, c). This implies that u(x; γ) can be extended through

c. On the other hand, since limx→c− |u(x; γ)| =∞, there exists a sequence xn → c− such

that |u(xn; γ)| → ∞. Hence, by (2.6) and the conditions on ω and f one can obtain

lim
n→∞

E[u](xn, γ) =∞.

But this contradicts the right inequality in (2.8). Therefore, the solution u(x; γ) exists for

all x ≥ 0.

3. Sturmian comparison theorem and some technical lemmas

In this section some elementary lemmas are derived to prepare for the proof of Theorem 1.1.

First consider a pair of conformable fractional differential equations

Dα
xD

α
xu(x) +Q1(x)u(x) = 0, x > 0,(3.1)

Dα
xD

α
xv(x) +Q2(x)v(x) = 0, x > 0,(3.2)

where Q2(x) ≥ Q1(x) for x > 0 are given continuous functions. Let us recall the Sturm

comparison theorem for conformable fractional differential equations and derive some tech-

nical lemmas.

Lemma 3.1. [32, Theorem 3] Let u be a nontrivial solution of (3.1) satisfying u(s1) =

u(s2) = 0 when 0 < s1 < s2. Then every nontrivial solution v of (3.2) has a zero in

(s1, s2).

Lemma 3.2. Let {ti}k−1
i=1 be zeros of an eigenfunction yk for (1.3) corresponding to λk

satisfying 0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1.

(i) Assume λ > λk. For each i ∈ {1, 2, 3, . . . , k}, there is a solution zi of

(3.3) Dα
xD

α
xz(x) + λω(x)z(x) = 0,

which has at least two zeros in (ti−1, ti).

(ii) Assume λ < λk. For each i ∈ {1, 2, 3, . . . , k}, there exists a solution zi of (3.3)

satisfying zi(x) > 0 on [ti−1, ti].

Proof. We give a proof of (i) here. The proof of (ii) is similar, so we omit it. Consider the

initial conditions

(3.4) z(ti−1 + ε) = 0 and Dα
xz(ti−1 + ε) = 1

with ε ≥ 0 for fixed i ∈ {2, 3, 4, . . . , k}. By Lemma 3.1, the solution of (3.3) and (3.4) with

ε = 0 has a zero t0 in (ti−1, ti). For a small ε > 0 we claim that the solution of (3.3)–(3.4)
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has a zero tε near t0. Here we quote the Prüfer phase equation of (3.3) from (3.10) below.

By the continuous dependence of solutions on initial conditions, the above claim holds.

Since z(ti−1 + ε) = 0, we have that for sufficiently small ε > 0 the solution of (3.3)–(3.4)

has two zeros ti−1 + ε and tε in (ti−1, ti). For the first interval (t0, t1), consider the initial

condition on t1 as follows: z(t1− ε) = 0 and Dα
xz(t1− ε) = −1 with ε ≥ 0. Then applying

the similar arguments, the proof for this subinterval is also valid.

Lemma 3.3. Let M > 0, ω∗ ≡ max{ω(x) : x ∈ [0, 1]} and γ satisfy 1
2γ

2e−κ1 > ω∗F (M).

Define δ by

(3.5) δ ≡M(γ2e−κ1 − 2ω∗F (M))−1/2.

Then the solution u(x; γ) of (1.1) and (2.4) has the following properties:

(i) If u(x; γ) has no zero in (x1, x2) and satisfies |u(x; γ)| ≤ M on [x1, x2] for some

x1, x2 ∈ [0, 1], then we have

x2 − x1 ≤ δ.

(ii) If u(x; γ) has no zero in (x1, x2) for some x1, x2 ∈ [0, 1] satisfying x2−x1 > 2δ, then

|u(x; γ)| > M for x ∈ (x1 + δ, x2 − δ).

Proof. (i) For simplicity, we denote u(x; γ) by u(x). Without loss of generality, assume

u(x) > 0 on (x1, x2). Then we have

(3.6) 0 ≤ u(x) ≤M for x1 ≤ x ≤ x2,

and

E[u](x, γ) ≤ 1

2

(
Dα
xu(x)

)2
+ ω∗F (M) on [x1, x2].

By Proposition 2.4,

1

2
γ2e−κ1 ≤ E[u](x, γ) ≤ 1

2

(
Dα
xu(x)

)2
+ ω∗F (M) on [x1, x2].

This implies that

|Dα
xu(x)| ≥ (γ2e−κ1 − 2ω∗F (M))1/2 =

M

δ
on [x1, x2],

where δ is defined in (3.5). Therefore we have either Dα
xu(x) ≥M/δ or Dα

xu(x) ≤ −M/δ

on [x1, x2]. If Dα
xu(x) ≥M/δ on [x1, x2], then (3.6) implies that

M ≥ u(x2) = u(x1) +

∫ x2

x1

tα−1Dα
t u(t) dt ≥ M

δ

∫ x2

x1

tα−1 dt =
M

αδ
(xα2 − xα1 ),

and hence xα2 − xα1 ≤ αδ. Also,

xα2 − xα1 = αcα−1(x2 − x1) ≤ αδ
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for some c ∈ (x1, x2). Therefore,

x2 − x1 ≤ c1−αδ ≤ δ.

The proof for the case Dα
xu(x) ≤ −M/δ on [x1, x2] is similar.

(ii) Without loss of generality, let u(x) > 0 on (x1, x2). In view of (1.1) we see that

(3.7) Dα
xD

α
xu(x) ≤ 0

on [x1, x2]. Assume, on the contrary, that there exists z ∈ (x1 + δ, x2 − δ) such that

u(z) ≤M . First suppose that Dα
xu(z) ≥ 0. By (3.7), one can obtain

Dα
xu(x) ≥ Dα

xu(z) ≥ 0,

where x ∈ [x1, z]. Hence, u is nondecreasing on [x1, z]. Then we have 0 ≤ u(x) ≤ u(z) ≤M
on [x1, z]. By (i), we have z − x1 ≤ δ. This contradicts z ∈ (x1 + δ, x2 − δ). Next, if

Dα
xu(z) < 0 and employ (3.7), one can obtain

Dα
xu(x) ≤ Dα

xu(z) < 0,

where x ∈ [z, x2]. This implies that u is nonincreasing on [z, x2]. Then 0 < u(x) ≤
u(z) ≤M for x ∈ [z, x2]. By (i) again, one also obtains x2 − z ≤ δ. This also contradicts

z ∈ (x1 + δ, x2 − δ). Therefore the proof is complete.

Now, we employ a Prüfer-type substitution for the solution u(x) = u(x; γ) of (1.1) and

(2.4). Define

u(x) = r(x) sin(θ(x)) and Dα
xu(x) = r(x) cos(θ(x)).

Then,

(3.8)
Dα
xu(x)

u(x)
=

cos(θ(x))

sin(θ(x))
.

Taking the conformable fractional derivative Dα
x on both sides of (3.8), and applying (1.1)

and (2.4), one can obtain

θ′(x) = xα−1

(
cos2(θ(x)) + ω(x)

f(u(x))

u(x)
sin2(θ(x))

)
,(3.9)

r′(x)

r(x)
= xα−1

(
1− ω(x)

f(u(x))

u(x)

)
cos(θ(x)) sin(θ(x))

with θ(0) = 0 and r(0) = γ. Similarly, the Prüfer phase function for (1.3) with λ = λk

satisfies

(3.10)

φ′k(x) = xα−1[cos2(φk(x)) + λkω(x) sin2(φk(x))] := Gk(x;φk),

φk(0) = 0, φk(1) = kπ.

Now we are ready to derive the following main lemma which is crucial to the proof of

Theorem 1.1.



856 Wei-Chuan Wang and Yan-Hsiou Cheng

Lemma 3.4. Let {λk}∞k=1 be the eigenvalues of (1.3).

(i) Assume that lim sups→0+
f(s)
s < λk for some k ∈ N. Then there exists γ∗ > 0 such

that θ(1; γ) < kπ for all γ ∈ (0, γ∗]. That is, the solution u(x; γ) has at most k − 1

zeros in (0, 1) for γ ∈ (0, γ∗].

(ii) Assume that lim infs→∞
f(s)
s > λk for some k ∈ N. Then there exists γ∗ > 0 such

that the solution u(x; γ) has at least k zeros in (0, 1) for γ ∈ [γ∗,∞).

Proof. (i) By assumption, there exist δ > 0 and λ > 0 such that

f(s)

s
< λ < λk for 0 < s < δ.

Since u ≡ 0 satisfies (1.1), by the continuous dependence of solutions on initial conditions,

there exists γ∗ > 0 such that |u(x; γ)| < δ for γ < γ∗ and x ∈ [0, 1]. By (3.9) and (3.10),

for γ < γ∗ and x ∈ [0, 1], one gets

θ′(x; γ) < xα−1[cos2(θ(x)) + λkω(x) sin2(θ(x))] = Gk(x; θ).

Recall that φk is the Prfüer angle of the k-th eigenfunction of (1.3) satisfying (3.10). Thus

φk(1) = kπ. By the comparison theorem [8, p. 30], one can obtain that θ(1; γ) < φk(1)

for γ < γ∗.

(ii) By assumption, there exist λ > λk and M > 0 such that

(3.11)
f(s)

s
> λ > λk for s ≥M.

Let yk be the k-th eigenfunction of (1.3) corresponding to λk and {xi}k−1
i=1 be zeros of

yk with x0 = 0 and xk = 1. By Lemma 3.2(i), for each i ∈ {1, 2, . . . , k}, there exists a

solution zi of (3.3) having at least two zeros in (xi−1, xi). Now fix i ∈ {1, 2, . . . , k}. Let

t1 and t2 be zeros of zi satisfying xi−1 < t1 < t2 < xi. Recall that δ is defined as in (3.5)

and remark that δ tends to zero as γ tends to infinity. For this i, one can choose γi > 0 so

large that, xi − xi−1 > 2δi and [t1, t2] ⊂ (xi−1 + δi, xi − δi), where γi and δi are consistent

with (3.5). Now let γ ≥ γi. We claim that u(x; γ) has at least one zero in (xi−1, xi).

Assume, on the contrary, that u(x; γ) has no zero in (xi−1, xi). By Lemma 3.3(ii), one

obtains |u(x;α)| > M for x ∈ (ri−1 + δ, ri − δ). From (3.11), we have

λω(x) <
ω(x)f(u(x;α))

u(x;α)(p−1)
for x ∈ [t1, t2] ⊂ (ri−1 + δ, ri − δ).

Then Lemma 3.1 implies that u(x;α) has at least one zero in (t1, t2). This leads a contra-

diction. Thus u(x;α) with α ≥ αi has at least one zero in (ri−1, ri). Set α∗ = max{αi :

i = 1, 2, . . . , k}. If α ≥ α∗, then u(x;α) has at least one zero in (ri−1, ri) for each

i = 1, 2, 3, . . . , k, which means that u(x;α) has at least k zeros in (0, 1) for α ∈ [α∗,∞).
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Proof of Theorem 1.1. Assume that the condition (1.4) holds. Then, by Lemma 3.4(i),

there exists γ∗ > 0 such that θ(1; γ) < kπ for γ ≤ γ∗. Also, Lemma 3.4(ii) implies that

there exists γ∗ > 0 such that θ(1; γ) > kπ for γ ≥ γ∗. Since θ(1; γ) is continuous in

γ ∈ (0,∞), there exists γk such that θ(1; γk) = kπ. This completes the proof.

4. An application: Nodal property and uniqueness

In this section, we give the proof of Theorem 1.3 and employ the classical methods,

the scaling argument and Prüfer-type substitutions, to achieve the goal. Note that

xα(1+q)ω(x) = O(xα(1+q)) and q > 1. Suppose that {γi} is a positively and strictly

increasing sequence which tends to infinity. Now, define the sequence {µi} to satisfy the

following relation for the scaling argument:

(4.1) µi = max
{
s > 0 : sα(1+q)ω(s) = γ1−q

i

}
for i ∈ N. Hence, if {γi} is a positively increasing sequence which tends to infinity, then the

corresponding sequence {µi} satisfying (4.1) decreases to zero. Then, the scaled function

vi(t) is defined by

(4.2) vi(x) =
u(µix; γi)

µαi γi
.

By (1.5), a direct calculation yields that vi satisfies

(4.3)

Dα
xD

α
xvi(x) + ω(µix)

ω(µi)
|vi(x)|q−1vi(x) = 0,

vi(0) = 0, Dα
xvi(0) = 1 and vi(µ

−1
i ) = 0.

Remark 4.1. For (4.3), one can define a functional E[vi](x) for vi by

E[vi](x) =
1

2

(
Dα
xvi(x)

)2
+

ω(µix)

(q + 1)ω(µi)
|vi(x)|q+1 with E[vi](0) =

1

2
.

Under the similar derivation as in Proposition 2.4, one can obtain that

E[vi](x) ≤ E[vi](0)eµikx ≤ 1

2
ekR

for some constant k and x ∈ [0, R].

Then, we have the following

Lemma 4.2. Suppose that R > 0 is arbitrary and µi defined as in (4.1) tends to zero as

i→∞. Then vi(x) converges to the function V (x) uniformly on any compact subinterval

of (0, R] as i→∞, where V (x) solves

(4.4)

Dα
xD

α
xV (x) + |V (x)|q−1V (x) = 0,

V (0) = 0, Dα
xV (0) = 1.
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Remark 4.3. (i) The uniqueness and global existence of solutions for (4.3) and (4.4) are

valid by using the similar arguments as in Theorem 2.3 and Corollary 2.5.

(ii) Define a functional E[V ](x) = 1
2

(
Dα
xV (x)

)2
+ 1

q+1 |V (x)|q+1 for the solution of (4.4).

It is easy to obtain that E[V ](x) = E[V ](0) = 1/2 for all x ∈ R+. This shows the

uniform boundedness of Dα
xV (x) and V (x).

Proof. Applying a standard argument after, one can express (4.3) and (4.4) as the first

order systems,

v′i(x) = xα−1zi(x),

z′i(x) = −xα−1|vi(x)|q−1vi(x) + xα−1

(
1− ω(µix)

ω(µi)

)
|vi(x)|q−1vi(x),

(4.5)

and

V ′(x) = xα−1Z(x), Z ′(x) = −xα−1|V (x)|q−1V (x)

with the same initial conditions. Note that for x ∈ [0, R] the term |vi(x)|q−1vi(x) is

uniformly bounded by Remark 4.1. Hence, the term xα−1
(
1 − ω(µix)

ω(µi)

)
|vi(x)|q−1vi(x) in

(4.5) tends to zero uniformly in any compact subinterval of (0, R] as i tends to infinity.

This implies that vi converges to V in the C1-sense. Therefore, the proof is complete.

For Corollary 1.2, we will introduce a Prüfer-type substitution to derive the asymptotic

estimates for the initial parameter γn and the nodal data of solutions. Define

(4.6) u(x) = R(x) sin(mψ(x)) and Dα
xu(x) = gR(x) cos(mψ(x)),

where m, g are some positive constants which will be specified later. Take

Dα
x

(
Dα
xu(x)

u(x)

)
= Dα

x

(
g cos(mψ(x))

sin(mψ(x))

)
.

Then, one can obtain the phase equation

ψ′(x) = xα−1

(
g

m
cos2(mψ(x)) +

ω(x)

mg
|u(x)|q−1 sin2(mψ(x))

)
.

Applying the scaling argument (4.1)–(4.2) and taking m = g = µ−α (cf. (4.1)), one can

get the modified phase equation

(4.7) ψ′(x) = xα−1

(
cos2(µ−αψ(x)) +

ω(x)

ω(µ)

∣∣∣∣v(xµ
)∣∣∣∣q−1

sin2(µ−αψ(x))

)
.

By Corollary 1.2, integrating (4.7) over [0, 1] with respect to γ = γn, one can obtain

(4.8)
nπ

µ−αn
=

∫ 1

0
tα−1

(
cos2(µ−αn ψn(t)) +

ω(t)

ω(µn)

∣∣∣∣vn( t

µn

)∣∣∣∣q−1

sin2(µ−αn ψn(t))

)
dt.
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Note that vn
(
t
µn

)
and sin(µ−αn φn(t)) vanish at the same point by (4.2) and (4.6). And

if sin(µ−αn ψn(t)) tends to zero, | cos(µ−αn ψn(t))| will approach to one obviously. Now one

can conclude that the right-hand side of (4.8) never vanishes and is bounded. Hence, for

sufficiently large n,

(4.9) µ−αn = O(n).

By (4.1) and (C1),

γn = O
(
n

q+1
q−1
)

for sufficiently large n. Now, for γ = γn rewrite the phase equation (4.7) as

(4.10) ψ′n(t) = tα−1 − tα−1

(
ω(t)

ω(µn)

∣∣∣∣vn( t

µn

)∣∣∣∣q−1

− 1

)
sin2(µ−αn ψn(t)).

Also, (4.7) implies that ψ′n(t) never vanishes for t ∈ [0, 1] and any fixed n by the same

explanation for (4.8). Next, we turn to derive the nodal property for u(x; γn). Integrating

(4.10) over [0, x
(n)
k ], one can obtain

µαnkπ =
1

α
(x

(n)
k )α −

∫ x
(n)
k

0
tα−1

(
ω(t)

ω(µn)

∣∣∣∣vn( t

µn

)∣∣∣∣q−1

− 1

)
sin2(µ−αn ψn(t)) dt.

Then,

µαnπ =
1

α

(
(x

(n)
k+1)α − (x

(n)
k )α

)
−
∫ x

(n)
k+1

x
(n)
k

tα−1

(
ω(t)

ω(µn)

∣∣∣∣vn( t

µn

)∣∣∣∣q−1

− 1

)
sin2(µ−αn ψn(t)) dt,

i.e.,

µαnπ = cα−1
k

(
x

(n)
k+1 − x

(n)
k

)
−
∫ x

(n)
k+1

x
(n)
k

tα−1

(
ω(t)

ω(µn)

∣∣∣∣vn( t

µn

)∣∣∣∣q−1

− 1

)
sin2(µ−αn ψn(t)) dt

for some ck ∈ (x
(n)
k , x

(n)
k+1). Take a change of variables µ−αn ψn(t) = σ with t = ηn(σ), where

ηn is its inverse function. Then, one has µ−αn ψ′n(t) dt = dσ. And define `
(n)
k = x

(n)
k+1 − x

(n)
k

for k = 1, 2, 3, . . . , n− 1, the nodal length of u(x; γn). Hence,

(4.11)

µαnπ = cα−1
k `

(n)
k −

∫ (k+1)π

kπ

(
ηn(σ)

)α−1

(
ω(ηn(σ))

ω(µn)

∣∣∣∣vn(ηn(σ)

µn

)∣∣∣∣q−1

− 1

)
sin2(σ)

µ−αn ψ′n(ηn(σ))
dσ.

By (4.9), (4.10) and (4.11), for sufficiently large n one can obtain

`
(n)
k = O

(
1

n

)
.

Now, we conclude the above results as follows.
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Proposition 4.4. For sufficiently large n and 1 ≤ k ≤ n− 1, the following estimates are

valid.

(i) The initial parameter γn satisfies

γn = O
(
n

q+1
q−1
)
.

Moreover, the scaling parameter µn satisfies

µ−αn = O(n).

(ii) The nodal length `
(n)
k of u(x; γn) satisfies

`
(n)
k = O

(
1

n

)
.

This shows that the nodal set Xn = {x(n)
k : k = 0, 1, 2, 3, . . . , n;n ∈ N} of u(x; γn) is

a dense subset of (0, 1) for sufficiently large n.

Remark 4.5. For sufficiently large n, µ−1(x
(n)
k+1 − x

(n)
k ) is the kth nodal length of V (x) by

(4.2) and Lemma 4.2. One can also obtain the phase equation

ϕ′(x) = xα−1
(

cos2(ϕ(x)) + |V (x)|q−1 sin2(ϕ(x))
)

for V (x) by applying a Prüfer substitution: V (x) = ρ(x) sin(ϕ(x)) and Dα
xV (x) =

ρ(x) cos(ϕ(x)). By the nice property for V (x) (cf. Remark 4.3) and the similar argument

as in (4.8), one can conclude that the interval [µ−1
n x

(n)
k , µ−1

n x
(n)
k+1] is uniformly bounded

and never vanishes for sufficiently large n.

Now, it suffices to prove Theorem 1.3.

Proof of Theorem 1.3. Assume that un and un are two solutions associated with the initial

data γn and γn corresponding to the functions ω and ω in (1.5) respectively, i.e.,

Dα
xD

α
xun + ω(x)|un|q−1un = 0,

Dα
xD

α
xun + ω(x)|un|q−1un = 0.

And µn and µn are indicated the scaling parameters satisfying (4.1) associated with γn

and γn respectively. Applying a version of conformable fractional Lagrange’s identity

(cf. (2.3)) on any subinterval [x
(n)
k , x

(n)
k+1], 1 ≤ k ≤ n, one can obtain

(Dα
xun · un −Dα

xun · un)
∣∣∣x(n)

k+1

x
(n)
k

−
∫ x

(n)
k+1

x
(n)
k

tα−1 (Dα
xun ·Dα

xun −Dα
xun ·Dα

xun) dt

+

∫ x
(n)
k+1

x
(n)
k

tα−1unun
(
ω|un|q−1 − ω|un|q−1

)
dt = 0.



On Nodal Properties for Some Nonlinear Conformable Fractional Differential Equations 861

Then,

Ik :=

∫ x
(n)
k+1

x
(n)
k

tα−1unun
(
ω|un|q−1 − ω|un|q−1

)
dt = 0.

By the scaling argument (4.2), the above integral can be written as

Ik = µαnγnµ
α
nγn

×
∫ x

(n)
k+1

x
(n)
k

tα−1vn

(
t

µn

)
vn

(
t

µn

){
[ω(t)− ω(t)](µαnγn)q−1

∣∣∣∣vn( t

µn

)∣∣∣∣q−1

+ ω(t)(µαnγn)q−1

[∣∣∣∣vn( t

µn

)∣∣∣∣q−1

−
(
µαnγn
µαnγn

)q−1 ∣∣∣∣vn( t

µn

)∣∣∣∣q−1]}
dt = 0.

Applying the change of variables s = t
µn

, one can obtain

Ik = µαnγnµ
α
nγn

×
∫ µ−1

n x
(n)
k+1

µ−1
n x

(n)
k

(µns)
α−1vn

(
µns

µn

)
vn(s)

{
[ω(µns)− ω(µns)](µ

α
nγn)q−1

∣∣∣∣vn(µnsµn
)∣∣∣∣q−1

+ ω(µns)(µ
α
nγn)q−1

[
|vn(s)|q−1 −

(
µαnγn
µαnγn

)q−1 ∣∣∣∣vn(µnsµn
)∣∣∣∣q−1]}

µn ds = 0.

Now, by the assumption limn→∞
γn
γn

= 1 and ω(0) = ω(0), this implies limn→∞
µn
µn

= 1.

Form Lemma 4.2 and Remark 4.3, one can obtain

Ik = (µαnγn)q+1µαn

×
∫ µ−1

n x
(n)
k+1

µ−1
n x

(n)
k

sα−1
{

[ω(µns)− ω(µns)]|V (s)|q+1 + ω(µns)[|V (s)|q+1 · o(1)]
}
ds

(4.12)

for sufficiently large n. Here, limn→∞(µαnγn)q+1µαn = ∞ by Proposition 4.4. Note that

µ−1
n x

(n)
k and µ−1

n x
(n)
k+1 are two consecutive zeros of vn. So they are almost zeros of V for

sufficiently large n. Also, we may admit |V (s)|q+1 ≥ 0 in [µ−1
n x

(n)
k , µ−1

n x
(n)
k+1]. Applying

the mean value theorem for integrals to the first term of the integrand in (4.12), one can

obtain∫ µ−1
n x

(n)
k+1

µ−1
n x

(n)
k

sα−1[ω(µns)− ω(µns)]|V (s)|q+1 ds = [ω(x̂)− ω(x̂)]

∫ µ−1
n x

(n)
k+1

µ−1
n x

(n)
k

sα−1|V (s)|q+1 ds

for some x̂ ∈ [x
(n)
k , x

(n)
k+1]. This implies that ω(x̂) = ω(x̂). By the denseness property of

the nodal set Xn = {x(n)
k }

n−1
k=1 (see Proposition 4.4(ii)) and the conditions of ω and ω, this

completes the proof.
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