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Moments of S(t, f) Associated with Holomorphic Hecke Cusp Forms

Sheng-Chi Liu* and Jemin Shim

Abstract. Let S(t, f) := n~targ L(1/2 + it, f), where f is a holomorphic Hecke cusp

form for SLo(Z) of weight k. We establish an asymptotic formula for the moments of

S(t, f)-

1. Introduction

It is well known that the function S(t) = Larg((1/2 + it) is related to the number of
nontrivial zeros p of the Riemann zeta-function ((s) with 0 < Im(p) < ¢. There are
many research papers that have been devoted to studying the behavior of S(t) (see, for
example, |11|2L]11},/13,/14.|18]). In particular, Selberg [15,]17] showed that for n € N,

12T (2n)!

— [ S@)’dt=———%(loglogT)" + O((loglog T)"~/?).

7/ (t) ol (2 (loglog T)" + O((loglog T)" /%)
Using the same method one can derive a similar result for S(¢,x) = 7~ ' arg L(1/2+it, ),
where y is a primitive Dirichlet character of modulus ¢. In the subsequent paper [16]
Selberg proved an analog result in the conductor aspect. More precisely, for a prime ¢, he
showed

(1.1) Z S(t, x)? <(22n))'2n (loglog @)™ + Oy ((loglog )"~ /2),

where the summation runs over the primitive characters x (mod gq).

In [6], Hejhal and Luo considered a GLg analog of . They proved an asymptotic
formula for the spectral moments of S(¢, f;) = 7' arg L(1/2+it, f;) assuming the Gener-
alized Riemann Hypothesis (GRH), i.e., S(t, f;)" is averaged over the Hecke-Maass cusp
forms f; for SLo(Z) with a smooth test function, for each fixed positive t. Recently, a GL3
analogous result was obtained in [12] assuming the GRH. In this paper, we establish a

GLy analogous result of Hejhal and Luo in the weight aspect without assuming the GRH.
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To state our main result, let Hy denote the set of holomorphic Hecke cusp forms f of

weight k for SLy(Z), where f(z) has the Fourier expansion

Z)‘f k 1)/2 2minz

with A¢(1) = 1. For f € Hj, the L-function associated to f is given by

L(s, f) = Z )\fn(sn), Re(s) > 1

n>1

and this has Euler product
H 1—)\f P)p S—i—pizs)_l
b ~1 sy —1
:H L—ap(pp) (1-=Brlpp™) -
P
The Ramanujan—Petersson conjecture (proved by Deligne [4]) asserts that

(1.2) lay(P)| = |Bs(p)| = 1, and thus [Af(p)] < 2.

The complete L-function

A(s, f):==n"°T (S * (k; 1)/2> r <s Tkt 1)/2> L(s, f)

2
admits an entire continuation to s € C and satisfies the functional equation
A(s, f) = i*A(1 = s, f).
Next we define the analog of S(t) for f by

S(t, f):= —argL(1/2+zt )

where the argument arg L(1/2 + it, f) is obtained by continuous variation along the line

Im(s) =t from 0 = +00 to ¢ = 1/2. Our main result is the following theorem.

Theorem 1.1. Let t > 0 and n € N be given. For sufficiently large even integer k we

have
272 t, f i .
k-1 Z L(l(syri? ) = Cp(loglog k)™/? + Ot ((loglog k) 1)/2)
feHy
where
C. — W if n is even,

0 if n is odd.

Remark 1.2. Theorem[L.1and Corollary [2.2]indicate that the values of [S(t, f)| on average
have order of magnitude /loglogk.
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2. Preliminaries

The following proposition is the well-known Petersson trace formula, which can be found
in [§].

Proposition 2.1 (Petersson trace formula).

=\ S(m,n; 44/
Z w )\f ( ) == (Sm,n + 27Ti_kz (mcn C) kal < T Cmn> )
c=1

feHy

where wy = F(kkll 1 £11?, Omm equals 1 if m =n and O otherwise, S(m,n;c) is the Kloost-

erman sum, and Ji_1(x) is the J-Bessel function.

From the integral representation (see [5, 8.411 10])

1 T\Y ! ixt v—
@) = 5 ) (5) /_16 (- at

and the Stirling’s formula, we deduce that

(2.1) Jea(@) < (57)
Using the bound and the relation (see [10])
k—
Wi =5 L(l sym? f),

one can deduce the following corollary.

Corollary 2.2. For any m,n > 1 with 87/mn < k we have

272 )\f(n))\f(m) _ A
k

for any A > 0.

We will need the following zero-density estimate which was established by Hough [7].
In fact, [7, Theorem 1.1] states a result without the weight 1/L(1,sym? f). However, it is
easy to derive a weighted version as Proposition below by using |7, Proposition 5.1].

Proposition 2.3. Let

Ny(o,T):=#{p=B+1iv| L(p,f) =0,0 <B,|7[ < T}

Let 1 + lozk < o < 1. For some sufficiently small 61,607 > 0 we have uniformly in
<T <k,

logk
Tk,l—el(o‘—l/Q)l k.
Z L 1 smef < ©8

feHy
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3. Proof of the main theorem

We will follow the framework of Selberg [16,(17] and Hejhal-Luo [6]. The argument here
is more complicated than in [6] since we did not assume the GRH.

For a positive parameter z (to be determined later), let

Mt f) =~ Y ?;‘Q(f)t and  R(t, f) = S(t, f) — M(t, f),

™

p<a3

where C¢(p) := ay(p) + Br(p) = Af(p).

Proposition 3.1. Let t > 0 be given. For even k € N sufficiently large and = = k%3 with
sufficiently small 6 > 0, we have

272 M(t, )" n/2 n/2—1
(3.1) 1 Z L symZf) — Cr(loglog k)™? + Oy ((loglog k) )
feHy
2m? R NP _
(3.2) 1 Z L, sym2 f) Otn(1).
feH

The proof of Proposition [3.1] shall be given in Section [} Now we deduce the main
theorem from this result.

Proof of Theorem [1.1] By the binomial theorem, we have

(3.3) S(t, f)" = M(t, f)" + On (Z M (2, )" IR, f)V) -
(=1
For 1 </ < n, we apply the generalized Hélder’s inequality with exponents
2 2
p=2, q:nfé and rzTn
and Proposition [3.1] to deduce that
2m? 1
) 1/p ) 1/q
27 1 27 1 9
< 7272 7272’]\4(157]?)\"
k—1 P L(1,sym? f) kE—1 B, L(1,sym? f)
1/r
272 1
X > s [ Rt NP
kE—1 R, L(1,sym? f)

<in (]()g log k;)(nff)/2 <in (log log k;)(nfl)/Q‘

The assertion follows from (3.3]), Proposition and this bound. O



Moments of S(t, f) Associated with Holomorphic Hecke Cusp Forms 467

4. An approximation of S(¢, f)

In this section we will prove several technical lemmas and derive an approximation of

S(t., f).
We denote by p = S+iv a typical zero of L(s, f) inside the critical strip, i.e., 0 < 8 < 1.
For Re(s) > 1, we have

(41) - T =y 2
where A(n) denotes the von Mangoldt function, and

ap(p)™ + By(p)™ if n =p™ for a prime p,
Cy(n) =

0 otherwise.

Lemma 4.1. Let x > 1. For s # p, and s # —2m — % (m =0,1,2,...), we have the
following identity

! n)Az(n zP75(1 — zP~%)2
R

L Z v i =
iR gt B ey
log T = (—2m — EHL — 5)3 ’
where
A(n) if n <,
A(n) logz(ﬂﬁ/n)*2 log®(z?/n) ifr <n<a?
Aa(n) = log?(x 3/s)10g ’ : 2_ y 3
A(n) Slog?z if ¢ <n < z°,
0 if n > 3.
Proof. First we recall the discontinuous integral
log?y .
1 ify >1,
(4.2) L g 2 Y
27 J(a) S 0 ifo<y<1
for o > 0. It follows from (4.1)) and ( . ) that
Cf 1 (1 — a2 L
~1 b Sl
og .CEZ Qm/(a) 3 L(S+u f)du

where o« = max{2,1 + Re(s)}. By moving the line of integration all way to the left, we
pick up the residues at u =0, u = p — s and u = —2m — @ —s(m=0,1,2,...) and
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deduce that
1 (1 —z%)? L’

— — d
211 2) u3 L (S + U f) b
+1
L P s(l — P 5)2 & fomf%fs(l o x72mfkas)2
=~ (s,f)log?z + +
L zp: (p—s) 7;) (—2m — B )3
Thus the lemma follows immediately. O

Lemma 4.2. For s = o +it, s’ = o/ +it’ such that 1/2 < 0,0’ <10, s # p, and s’ # p,

we have
(5 60) - T60) = m S (1 - 55 ) +ow
p
and
(4.3) Reﬂl(s n=Y o =P + O(log(|t] + k))
| R R R (T

Proof. By Hadamard’s factorization of the entire function A(s, f) we have

L'(S,f):,,ﬁ;( L)L (Y D (DY

L s—p 2T 2 2T 2

for some by € C with Re(by) = —Re}_, 1 (see |9, Propsoition 5.7]). Now Lemma

p
follow from
I’ 1
f(s)zlogs—i—O s O
Let x > 4. We define
1 1 )
(4.4) Op =O0pf =0z ft ::2—|—2m§ux{‘5—2 ’logaj}’
where p = 8 + iy runs through the zeros of L(s, f) for which
4 5 xg‘ﬁ_l/Ql
. t—y < —
(45) =< e

We shall display the dependence of ¢, as needed.

Lemma 4.3. Let x > 4. For o > o, we have

L . Cf(n)Az(”) 1/4—0/2 Cf(”)Ax(")
L(0+zt,f)=—<23ng+it +0 [t/ <Z3n%+it

+ O(w1/4*"/2 log([t| + k)),

and

or—1/2 Cr(n)Az(n
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Proof. By (4.3)), we have

(4.6) Re LL'(% +it, f) = o g)g;ft e + O(log(|t] + k)).
P

On the other hand, if 5+ i+ is a zero of L(s, f), then (1 — ) + i is also a zero of L(s, f).

Thus we have

or—f (1-5)
;((ox—ﬁ)“r(t—v)Q+(ax—1—ﬁ)2+(t—7)2>

!
2
:<” ‘1>Z (00— 1/2)° — (5= 1/2)” + (t =)”
x , ((Uw_5)2+(t—’7)2)((0-m_1+ﬁ)2+(t_,7)2)-

Case (i): If | —1/2| < U””_TI/Q, then
(00 =1/2)? = (B-1/2)* > S ((0x — 1/2)* + (B - 1/2)?)

((02 = B)* + (02 — 1+ B)?).

NG NN

Thus

| =

(00 = 1/2)* = (B =1/2)* + (t = 7)* > 7 (02 = 1+ B)* + (t = 7)?).
Case (ii): If |3 — 1/2] > = 1/2 , then by (4.4) and (4.5) we have

2318—-1/2]
log x

t—~l> >33 —1/2].

Thus

(00 = 1/2)* = (B~ 1/2)* + (t = 7)*

(00— 1/2% 4 (8= 1/2)) + (¢ = 2)* — 28— 1/2)?
> (00— B+ (02— 1+ 8Y) + (=)
> (0 =14 B + (- 7)?).
From Cases (i), (ii) and (4.7)), we have
or —f3
e e R L D o

Using this bound and (4.6)), we obtain

1 4 L

Z(O’x—ﬁ)“r(t—v) = or —1/2| L

p

(4.8)

gy o (1),



470 Sheng-Chi Liu and Jemin Shim

On the other hand, we have (by Lemma

! w(z, o, xﬁg aand
£(U+it,f)=—ZA()Cf( 2 Z 1+a777)?

wy " log*s 7 (0= B)” + (t—7)?)"”
+0 ( v )
log? =
with |w(z,o,t)| < 1.
Next we claim that
2P~ (1 + 2877)2 pl/4=0/2

(4.10) <2logx

(0 =52+ (e =)2)™* B0+ (177

If B < 22 then

1‘5*0(1 + xﬁ*U)Z - 4pl/d—o/2
(0 =82+ (t =732 = (0o — B)((0x — B)> + (t = 7)?)
§ N /402
o Ux_l/Q(Ux_/B)2+(t_7)2
4 L1/4=0/2
SR A e

If 3 > U’gl/ 2 then by the definition of o, in (#.4) and (@.5),

2318-1/2|
[t =] > ———>3[8-1/2[ > 3[B — 04l.
log
Thus (t —v)? > %((ﬁ —0z)* 4 (t —v)?). Hence
x5*0(1 + w5*0)2 mB*U(l + x5*1/2)2 logz 9 x6*0(1 + m5*1/2)2

(=824 =732 = |t=rlt—")?* — 236-121 8(B—04)? + (t —7)?
9 log 2)(1 + 2~ B-1/2)2 zl/2e
T (B—0a2+ (t—7)?
9 171/2_0

< -(1+e?)%(

s re e =

x1/27a'
—%P+@—ﬂ”
So in both cases, we have . Using (4.8) and ( -, we get

:Uﬁ*"(l + wﬁf")
E:«a—m2+@—7PP”

2(log x) €

p

1/4_0/2 L lo $I‘1/4_0/210 t+k
<8logz— (%+nﬂ' <(g)0_U§” )
4 2.1/4-0/2 L . 2 14 )2
< ¢ (loga) 7 (oz+it, )| + O((log z)°w log(|t| + k)).




Moments of S(t, f) Associated with Holomorphic Hecke Cusp Forms 471

Inserting this bound into (4.9), we have

/ A, /
£(O’—{—it, f) —— Z %ﬂf(n) + éw,(x,a, t)$1/4_a/2£(0'x + it, f)
(4.11) L e ne 5 L

+ 0(3101/4_”/2 log([t] + k))
with |w'(z,0,t)] < 1. By taking o = oy,
/

(1 o) L, gy o | 52 Crlitele)

no« +it
n<zx3

+ O(z"* =2 log(|t| + k).

Since |1 — fw/(z,05,t)| > 1— 2 =1,
L : Cy(n)Az(n) 1/4—0/2
(412) f(0x+lt7f) :O <ZS7W +O(.§E / / 10g(‘t‘+k}))
The results follow from substituting (4.12]) into (4.11) and (4.8). O

The following theorem provides an approximation of S(¢, f).

Theorem 4.4. Fort # 0, and x > 4, we have

_ 1 Cy(n)Az(n) C¢(n)Az(n)
+ O((oz — 1/2)log(|t| + k)),
where o, is defined in .
Proof. We begin with
oe] /
wS(tf) == [ (o +itf)do
12 L
o0 L/ L/
_—/Ime+Mﬂ®—waﬂmnH%+Mﬂ

Oz L/ L/
+/ Im <(Uz+it,f)—(a+it,f)) do
12 L L

= J1+ Jo+ J3.
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By Lemma [4.3] we have

oo L/
J1 = —/ Imf(o'—&—it,f)da

/ ZCf U+zt d +O<

n<a3

+0 <10g(|t| + k:)/ gl/4=o/? da>

Z Cr(n)Az(n)

noe +it

/ L1/4=0/2 da)

n<ax3

_ Cy (n)Az(n) 1 Cy (n)Az(n)
= Im Z no=titlogn 0 log x Z nowtit

n<x3

) o <log§0tg]ik)>'

<a3

Taking o0 = 0, in Lemma [4.3] we see
L/
1 < (0 =1/2) [ o+t )

3 Cr(n)As(n)

< (Ux o 1/2) noxtit

+ (0p — 1/2) log(|t] + k).

n<z?

To bound .J3, we first apply Lemma [4.2] to see that

Im (Iij(am +it, f) — £,(U + 1t, f)>

L
o (Ux_g)(a+0x_2/6)(t_ )
Z{a — o5 t_y)}+0(1).
Hence
ax—a)\a+crx—2m|t—7| - o
|J3|<Z//2{a _ }{ t—’y)Q}d +O( x 1/2)

—10 |o+@famn—v| )

e vﬁﬁﬁ<o—ﬂﬂ+@—vﬁda+me Y2

Case (i): If |8 — 1/2| < £(0, — 1/2), then for 1/2 < 0 < 0y,

o+ 05— 28] = (0 —1/2) + (00 — 1/2) = 2(8 — 1/2)|
<l|lo—=1/2|+ oy —1/2|+ 2| —1/2| < 3(0, — 1/2).

Thus

% o+ 0p — 26|t — 7 N ]
ﬂp<a—m2+u—v>d 7 <3(0s ””/;ma—ﬂv+@—vﬂd

< 10(0, — 1/2).
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Case (ii): If |8 — 1/2| > 3(0, — 1/2), then by ([.4) and (&35),
553‘6_1/2'

_ -1/2
g > A8 172

it =] >
and for 1/2 < o < oy,

o+ 05 — 28] < (0 — 1/2) + (0, — 1/2) + 2|8 — 1/2] < 6|8 — 1/2].

Thus
/z |0’—|—O’x2—2,8||t—'>;’d0</ © |a’+0’x—2ﬁ|da
2 (@=B)2+(t—7) 1/2 it =l
7z 6|8 —1/2|
< —————do =2(o, — 1/2).
f =1y do = 2oa - 1/2

It follows from Cases (i) and (ii) that
| J3| < 10(0p — 1/2) ji: Gx'_ 1/2 5+ 00, —1/2)
p (t—")
Az(n)Cy(n)
=0 | (0x = 1/2)| Y === | | + Ol(ow — 1/2)log(lt] + k),

n<x3

where the last step is obtained by Lemma The theorem follows from these bounds
for Ji1, Jo and J3. ]

We end this section by giving a consequence of Theorem which is an analog to
those obtained by Littlewood [11], Selberg |16], and Hejhal-Luo [6].

Theorem 4.5. Assuming the GRH, we have

log(|t] + k)
loglog(|t| + k)

Proof. We have o, = 5 + 20 — by virtue of the GRH. By ([.2] .,

log
ICr(p™) Az (p™)] < 2log p.

S(t, f) <

Thus
Cf -1/2 a3/
Im}:gaﬂﬁg* DS
n<x3 p<ax3
and
Cr(n)Ag(n) 1 3/
. —1/2 : /2]
(o /2) ;3 noz+it < 1ng ;3]) ogp K logz
n<x p=x

The theorem follows by taking z = {log(|t| + k)}?/3 in Theorem and above estimates.
O
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5. Proof of Proposition

5.1. The main term (3.1
First recall that Cr(p) = a(p) + B(p) = A¢(p) and

1 Cilp) _ —i Af(p) Af(p)
M(t, f) = ;Im Z P2t o Z pi/zvit Z 1/2—it

p<a? p<a? p<a? b

Set 2 = k%/3 for a suitably small § > 0 (to be specified later). Thus we have

A A A
> M, )" = EQW;" Z 1J;2(fzt N Z 11/051321‘/

pko P peks ¥

n

A general term in the expansion of (5.1) has the form

(5.2) Ap(pr)mp () Ap(py)mpr)4nlpr)

: X e X : __
pT(pl)(1/2+Zt)(_1)n(p1)pn(p1)(1/2—it) p;’_n(pT)(l/2+lt)(_1)n(pr)p77}(pT)(1/2*Zt)

where p1 < py < --- < p, <k, m(p;) +n(p;) > 1, and Y5_, (m(p;) + n(p;)) = n
To study the general term ([5.2]), we first recall the following Hecke relation

(5.3) A == Af( )

d|(m,n)

Now we discuss the contribution from the general term in the following cases.

Case (I): In the general term (5.2), m(pj,) # n(pj,) (mod 2) for some jo. By the
Heceke relation and Corollary we have the contribution from these terms are
negligible by taking 0 < § < 2/n.

Thus for any A > 0 and odd n > 1, we have

Case (IT): In the general term , m(p;) = n(pj) (mod 2) for all j, and m(pj,) +
n(pj,) > 4 for some jo. In this case, n is even and n > 2r. By the bound and
Zpgz p~! < loglog x, we deduce that the contribution from these terms to is at
most O((loglog k)™/?71).

It remains to discuss the following: In the general term (5.2), m(p;) = n(p;) (mod 2)
and m(p;) + n(p;) = 2 for all j. Clearly n must be even, say n = 2m and so r = m.

Case (III): m(pj,) = 2 or n(pj,) = 2 for some jo. We deduce that the contribution
from these terms to is at most O((log log k:)”/ 2*1) by using and the convergence

of pr_l_” for t # 0.
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Case (IV): m(pj) = n(pj) = 1 for all j. The contribution from these terms to (3.1)) is
2 2 1 9 —1)™(—; 2m
= SN m (m!)(m!)M
k—1 P L(1,sym? f) \'m (2m)2m
k

5 Af(p1)2“'>\f(pm)2.

P1-"Pm

(5.4)

X
p1<<pm <kS

By the Hecke relations, we have A¢(p1)? - Ar(pm)? = Af(p1 - pm)Af (D1 D).
Applying Corollary we see that (5.4) equals

DS 11 (1404

2 2m
( 7T) 191<"'<p'm<k3(S Pm
=0 — (1+0(k
ml(2m)>m 2 s D1 Dm ( ()
D1y Pm <k

p; distinct
= Oy (loglogk + O(1))™ - (1 + O(k:_A))
= Com(loglog k)™ + Oy, ((loglog k)™ 1).

Now the asymptotic formula (3.1)) follows from Cases (I)-(IV).

5.2. The remainder term (3.2))

Lemma 5.1. Let t > 0 be given. For even k € N sufficiently large and z = k%3 with
0<6<361/(8n+3), we have

Z (Jx,f _ 1/2)4nm4n(am,f—l/2)

L(1,sym? f) Stnd

4n?
P (log k)

where o, ¢ is defined in (4.4) and 01 is as in Proposition .

Proof. By the definition of o ¢,
(ax f _ 1/2)4n$4n(0x’f_1/2)

10 \*
< (logx) x40n/ log z + g4n+1 Z (6 _ 1/2)4nx8n(,8—1/2)_
6>%+lozz

23(8—1/2)

log x

[t—~I<

On the other hand,

Z (B _ 1/2)4nx8n(ﬁ—1/2)

1 5
B>§+logac

z3(B—1/2)

log x

[t—I<
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1
5llogz] An
J+ 1 8nditl
< log x 1
- ZE) <1ng> ’ 1, J Z1 j+1
J= §+lojgx<5§§+ljogx
23(8—1/2)
‘t_v‘g log x
Llogz| .
1 2 , 1 j e30+1)
< __ - i1 4n 8n(3+1)N - ¢ )
< log ) JZ:; (j+1)*"e 12" gz M+ Togs

By Proposition 2.3

1 n n -
2 Tty 2o, P

fEHk 6>%'~'1on
ot
1 o . 63(j+1) _ _J
y 1 4n 8”(]+1) k;l 61 lo xl k;
< (log x)4n Z(]+ )re log 5708
klogk C L 1yAn 8n(HDH3(+1) 01 1L
<t T—Nang1 (J+1)™e logz
(log z)#n+t
e 30
. _2Y1 1\,
<t W (] -+ 1)4n6(8n+ 5o)J
g =5
< sk
tn.d (log k)4

provided that 0 < 0 < 36;/(8n + 3). In addition,

1 10 i 40n/log x k k
gglﬁﬁwﬂﬁ<bw) T gy € Tlog
k

The lemma follows from above estimates.

Lemma 5.2.

Rt,f)=0 [ |[m 3 CrAp) = A:@) ) | o [ | 3 Cr(p*) A (%)

1/2+4it 1424t
pess P logp o P logp

Lo (%1/2)33%—1/2/%331/2—0 3 Cy(p)Au(p) log(zp) |

o+it
1/2 p<z p

+ O((0z — 1/2)log(|t| + k)) + O(1).
Proof. By Theorem

R(tvf):S(tvf)_M(taf)



Moments of S(t, f) Associated with Holomorphic Hecke Cusp Forms 477

_1 Cr(p)(Au(p)p'/>~7= — Cr(p™)Ax(p™)
B ; Im Z p1/2+it log p Z Z am—i-zt) logp

p<z3 m=2 pm <3 P

( . —1/2)

Using the bound (1.2)), we deduce that

Cy( ) )
> 3 GO _on) ZZW:%.
n<g3

m=3 pm<x3

Z Y Gl m(w )) +0((0, — 1/2) log([t] + k).

m=1pm<g3

Note that
Cr(p?) Az (p? 1
p<z3/? p p<x3/2 p
< (0 —1/2)logz < (0, — 1/2)logk.
Thus
_ 1 Cr(p)(Ae(p) = Alp)) _ 1 C(p)Aa(p)(1 — pl/2=oe)
R(t, f) = —Im Z pl/2+it og p T Im Z pl/2+itlog p
P§I3 p§a:3
1 Ce(pP)AL(p?) 1 Cr(p?) A, (p?) (ph—20s — 1
o fm > M o > 1) pl(—]:it)l(fgp )
p<ad/? p<z3/2

3 Cr(p)As(p)

o+t

+0 ((az —1/2)

) + O((0x — 1/2)1og(|t| + k)) + O(1).

p<z3

Note that for 1/2 < a < oy,

— xa—l/?

> C(p)Az(p)

pa+it

/Oo /2= Z Cy(p)Asz(p) log(zp) do

po+zt

p<a? p<ax?

do.

3 Cy(p)As(p) log(zp)

pa-l-it

00
< xaz—l/Q/ .’E1/2_G
1/2

p<az3

Thus

3 C(p)As(p)(1 — p/>72)

pl/2tit log p

7 S,

p<z3

p<a?

|
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< (0g — 1/2)21/2 /OO #1277 | 30 Cy(p)As (p) log(zp) | -
1

po'-l—zt

and

(00-1/2)| 3 Cr(p)Az(p) < (0y—1/2)271/2 /;:xl/g_o 3 Cr(p)Aa(p) log(ap) |

o +it o+t

p<z3 P p<z3 p
Moreover,

Cr(p*) A (p?) (p 277 — % log p

Z P+t log p < Z ) < Z (02 —1/2) D
p§x3/2 p<x3/2 pSIS/2
< (0z —1/2)logk.

The results follows from above estimates. O

Now we are ready to prove (3.2)). Recall that o, = 0,y depending on f. By Lemma

(5.5)
>y |R(t, f)>"
2
2n
1 Cy(p)(A(p) — Ax(p))
< - |Im :
fé L(1,sym? f) p;xg pl/2+itlog p
2n
Cr(p*) Az (p?)
+ Z T com2 ) |1 Z 112t
fem. 1Sym /) o P log p
2n
(0n f—1/2)2” 2n(0as=1/2) /°° 12 Cy(p)As(p) log(xp)
+ xT g Z do
;}c L(1,sym? f) 1/2 p;% potit
1
S 1/2)?27(1
+f§ I, Smef)(Uxf /2)*"(log([t| + k))*"

Since

o 3
|A<p>—Am<p>r=O(L§2§) and  C(0%) = Ap(p?) — 1.

the first two terms is of O(k) by the same argument as in Section The last term is of
O(k) by Lemma [5.1]
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For the third term, it follows from Cauchy’s inequality that

2n

2n,.2n(o, ¢—1/2 o]
Z (0, —1/2)"" (02,4 =1/2) / pl/2—o Z C(p)Az(p) log(zp) do

L(1,sym? f) pot

feHy 1/2 p<a3

<[z

feHy

® e C¢(p)As(p) log(zp)
s /2—0o f
% Z L(1 sym2 f) /1 o Z potit do

feH;, /2 p<a?

(O_Lf _ 1/2)4nx4n(oz,f71/2)
L(1, sym? f)

dny 1/2

By Holder’s inequality with the exponents 4n/(4n — 1) and 4n,

in

¥ 2o Cs(P)Ax(p) log(ap) |
/1 B > . d

o+t
p<a3 p

in

4dn—1
(froeae) ([ oo
1/2 1/2 p

p<a3

4n

1 © e o C(p)Az(p) log(zp)
- /1/2:&/2 ) . do.

(log .’L‘) pa—Ht

p<z3

Using the same argument as in Section we have

4an 2n

Ct(p)Az(p) log(zp) |Az(p) log :cp) 1/2—0”2
Z p0'+it < Z

Z L(1 symzf)

feHy p<xz3 p<z3

2n

1 2
< Z (Oim(logm)2 < (log )"

p<z3

(logp)? (logy)?. Thus

where the last inequality is obtained by Zp<y >

4n

* 1ja- C(p)As(p) log(zp)
_— 2/ ! . do
Z L 1 Syrn2 f) /1/2 p<2$3 pcr—i-zt

feHy
/ 2277 (log 2)*" do < k(log )™
/2

k

< (IOg x)4n—1

Using this bound and Lemma we have the third term in (5.5) is of O(k).
Finally (3.2)) follows from the above discussion.
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6. A weighted central limit theorem

As pointed out in Remark for a weight k Hecke cusp forms f, S(t, f) has order of
magnitude y/loglog k. Thus it makes sense to consider the following probability measure
i on R, defined by

_ 1 S(t,f)> / ot
i (E) f;k];u,symwﬂ’f(w 2 T

where 1g is the characteristic function on a Borel measurable set E in R. As a consequence
of Theorem [1.1| we obtain the following weighted central limit theorem, which should be

compared with that in [6].

Theorem 6.1. As k — oo, the probability measure py, converges to the Gaussian distri-

bution of mean 0 and variance (2m2)~!; that is,

b
lm gu(fa,b) = [ Vrexp(-m€?) e
for any a < b.

Proof. The nth moment of py is

JRRICE ZL(l,s;mm(ﬁf;%)n /

feHg

1
2 L(1,sym? f)

feHg

By Theorem [I.1] and Corollary we deduce that for all n,
lim [ € du(€) = Cu = [ €' Vrexp(-r¢") de.
k—oo JRr R

Now the result follows from the theory of moments in probability theory (see, for example,
[3, Theorem 30.2]). O
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