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Consecutive Quadratic Residues and Primitive Roots in the Sequences

Formed by Twice-differentiable Functions

Mengyao Jing and Huaning Liu*

Abstract. In this paper we bound character sums of the shape∑
n≤N

χ1(bf(n)c)χ2(bf(n+ l)c),

where χ1 and χ2 are non-principal multiplicative characters modulo a prime p, f(x)

is a real-valued, twice-differentiable function satisfying a certain condition on f ′′(x),

and l is a positive integer. As an immediate application, we obtain some distribu-

tion properties of consecutive quadratic residues and consecutive primitive roots in

Piatetski–Shapiro sequences bncc with c ∈ (1, 4/3).

1. Introduction

The Piatetski–Shapiro sequence associated with c ∈ (1, 2) is defined by (bncc)n∈N, where

bxc denotes the floor function. Investigations into arithmetic properties of these types of

sequences have attracted wide interest. For example, many papers have been written on

the least quadratic non-residues in Piatetski–Shapiro sequences (see [1, 2, 9, 12]).

Later, Banks and Shparlinski [5] focused on more general sequences. Let κ be a real

number with 2/3 < κ < 1 and let f(x) be a real-valued, twice-differentiable function such

that

(1.1) lim
x→∞

log f ′′(x)

log x
= −κ.

The constant κ corresponds to 2−c in the case of the Piatetski–Shapiro sequence (bncc)n∈N.

They studied character sums over the integer sequences (bf(n)c)n∈N and obtained the

following result.
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Proposition 1.1. Let p be an odd prime, κ and ε be fixed real numbers such that

2

3
< κ < 1 and 0 < ε <

3κ− 2

2κ(2− κ)
,

and let f(x) be a real-valued, twice-differentiable function satisfying (1.1). Then, for all

non-principal characters χ modulo p and all integers N with

p1/(2κ)+ε ≤ N ≤ p1/(2−κ),

the uniform bound ∑
n≤N

χ(bf(n)c)�ε,f Np
−δ

holds with some constant δ > 0 that depends at most on ε and f .

Following their proof, we can prove that one may take δ = 2−9ε2κ4 in the above. From

Proposition 1.1 we derive that for every sufficiently larger prime p, there is a positive in-

teger n ≤ p1/(2κ)+o(1) such that bf(n)c is a quadratic non-residue modulo p. Furthermore,

for 1 < c < 4/3, there is a positive integer n ≤ p1/(4−2c)+o(1) such that bncc is a quadratic

non-residue modulo p.

On the other hand, many scholars studied the distribution of consecutive quadratic

residues and primitive roots modulo p (see [6–8, 10, 11, 15, 16]). For instance, Tanti and

Thangadurai [15] proved that for all p ≥ 7 (respectively for p ≥ 5), there is an integer m

such that m and m + 1 are quadratic residues (respectively for quadratic non-residues)

modulo p. We remark that this is loosely related to Artin’s primitive root conjecture in

the sense that one certainly has a pair m, m + 1 of consecutive quadratic non-residues

modulo p if 2 is a primitive root modulo p and this is believed to happen infinitely often.

In this paper we study the distribution of consecutive quadratic residues and primi-

tive roots in the sequences (bf(n)c)n∈N, where f(x) is a real-valued, twice-differentiable

function. The crucial tool is to bound character sums of the shape

(1.2) Sf (χ1, χ2;N, l) =
∑
n≤N

χ1(bf(n)c)χ2(bf(n+ l)c),

where l is a positive integer. We shall prove that the bound in Proposition 1.1 is also

applicable to (1.2) if l is small enough. Our results are as follows and the proof method

due to [5, 14]. For convenience, we denote

(1.3) θ = 2−9ε2κ4

throughout this paper.
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Theorem 1.2. Let κ and ε be fixed real numbers such that

2

3
< κ < 1 and 0 < ε <

3κ− 2

2κ(2− κ)
,

and let f(x) be a real-valued, twice-differentiable function such that

lim
x→∞

log f ′′(x)

log x
= −κ.

Then, for all non-principal multiplicative characters χ1, χ2 modulo p and all integers l,

N with

p1/(2κ)+ε ≤ N ≤ p1/(2−κ) and 0 < l ≤ pε/2,

the uniform bound

Sf (χ1, χ2;N, l)�ε,f Np
−δ

holds with some constant δ > 0 that depends at most on ε and f . In particular, one may

take δ = θ.

Theorem 1.3. Suppose that ε, κ, f(x), l and N are defined as in Theorem 1.2. Let

Qf (N, l) denote the number of positive integers n ≤ N such that bf(n)c and bf(n + l)c
are quadratic residues modulo p. Then we have

Qf (N, l) =
N

4
+Oε,f

(
Np−θ

)
,

where θ is defined as in (1.3).

Theorem 1.4. Suppose that ε, κ, f(x), l and N are defined as in Theorem 1.2. Let

Gf (N, l) denote the number of positive integers n ≤ N such that bf(n)c and bf(n + l)c
are primitive roots modulo p. Then we have

Gf (N, l) =

(
φ(p− 1)

p− 1

)2

N +Oε,f

((
φ(p− 1)

p− 1

)2

4ω(p−1)Np−θ

)
,

where θ is defined as in (1.3), φ is the Euler function and ω(q) denotes the number of

distinct prime factors of q.

As an immediate application of Theorems 1.3 and 1.4, we obtain bounds on the least

consecutive quadratic residues and primitive roots in Piatetski–Shapiro sequences.

Corollary 1.5. For every sufficiently large prime p and for 1 < c < 4/3, there is a positive

integer n ≤ p1/(4−2c)+o(1) such that bncc and b(n+ 1)cc are quadratic residues modulo p.

Corollary 1.6. For every sufficiently large prime p and for 1 < c < 4/3, there is a positive

integer n ≤ p1/(4−2c)+o(1) such that bncc and b(n+ 1)cc are primitive roots modulo p.

The rest of this paper is structured as follows. First, in Section 2 we recall some prop-

erties of discrepancy and estimate certain double character sums. In Section 3 we bound

the sum (1.2) over short intervals and this bound will be applied to prove Theorem 1.2 in

Section 4. Finally, in Section 5 we prove Theorems 1.3 and 1.4.
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2. Preliminaries

The first purpose of this section is to introduce some information about discrepancy. The

discrepancy D(N) of a sequence of (not necessarily distinct) real numbers x1, . . . , xN ∈
[0, 1) is defined by

(2.1) D(N) = sup
I⊆[0,1)

∣∣∣∣V (I, N)

N
− |I|

∣∣∣∣ ,
where the supremum is taken over all intervals I = [a, b) ⊆ [0, 1), V (I, N) is the number

of integers n ≤ N such that xn ∈ I and |I| is the length of I.

Banks and Shparlinski studied the discrepancy of fractional parts of twice-differentiable

functions by using the Erdős–Turán inequality. The following result is taken from [5,

Lemma 3.2].

Lemma 2.1. Assume that f(x) is a real-valued, twice-differentiable function such that

0 < α ≤ f ′′(x) ≤ αβ (or 0 < α ≤ −f ′′(x) ≤ αβ)

throughout the the interval [K,K +L], where L ≥ 1. Then the discrepancy Df (K,K +L)

of the sequence of fractional parts ({f(n)})n∈(K,K+L]∩Z satisfies

Df (K,K + L)� α1/3β2/3 + L−1α−1/2.

The second purpose of this section is to bound certain double character sums in Lem-

mas 2.3 and 2.4. In order to prove our results, we present Weil’s bound [13, Theorem 2C]

on character sums in Lemma 2.2.

Lemma 2.2. Let Fq be a finite field and let χ be a multiplicative character of order w > 1

of Fq. Let F (x) ∈ Fq[x] be a non-constant polynomial which is not a constant times of a

w-th power and let s denote the number of distinct zeros of F (x) in Fq. Then we have∣∣∣∣∣∣
∑
x∈Fq

χ(F (x))

∣∣∣∣∣∣ ≤ (s− 1)
√
q.

Lemma 2.3. Let p be an odd prime, t be an integer with 1 ≤ t ≤ p − 1 and let χ1, χ2

be non-principal characters modulo p. Suppose that U , V are subsets of Fp of cardinalities

#U = U and #V = V . Then, for an arbitrary fixed integer k, for any complex numbers

au, bv (u ∈ U , v ∈ V) we have

(2.2)
∑
u∈U

∑
v∈V

aubvχ1(u+ v)χ2(u+ v + t)�k ABU
1−1/(2k)

(
V 1/2p1/(2k) + V p1/(4k)

)
,

where

A = max
u∈U
|au| and B = max

v∈V
|bv|.
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Proof. Denote the left side of (2.2) by Γ. Using the Hölder inequality we have

|Γ|2k ≤ A2kU2k−1
∑
u∈U

∣∣∣∣∣∑
v∈V

bvχ1(u+ v)χ2(u+ v + t)

∣∣∣∣∣
2k

≤ A2kU2k−1
∑
u∈Fp

∣∣∣∣∣∑
v∈V

bvχ1(u+ v)χ2(u+ v + t)

∣∣∣∣∣
2k

.

Let χ∗ be a character modulo p of order p− 1. Then, every character χ modulo p can

be expressed as χ = χδ0∗ , where δ0 is an integer with 1 ≤ δ0 ≤ p− 1. Note that χ1 and χ2

are non-principal characters, then there exist some 1 ≤ δ1, δ2 ≤ p− 2 such that

χ1 = χδ1∗ and χ2 = χδ2∗ .

It follows that

|Γ|2k ≤ A2kU2k−1
∑
u∈Fp

∣∣∣∣∣∑
v∈V

bvχ∗
(
(u+ v)δ1(u+ v + t)δ2

)∣∣∣∣∣
2k

= A2kU2k−1
∑

v1,...,vk∈V

∑
vk+1,...,v2k∈V

bv1 · · · bvkbvk+1
· · · bv2k

×
∑
u∈Fp

χ∗

(
k∏
i=1

(u+ vi)
δ1(u+ vi + t)δ2

)
χ∗

 2k∏
j=k+1

(u+ vj)
δ1(u+ vj + t)δ2

 .

For (m, p) = 1, let m denote the multiplicative inverse of m modulo p. If ((u + vj)(u +

vj + t), p) = 1 we have

χ∗
(
(u+ vj)

δ1(u+ vj + t)δ2
)

= χ∗
(
(u+ vj)δ1(u+ vj + t)δ2(u+ vj)

p−1(u+ vj + t)p−1
)

= χ∗
(
(u+ vj)

p−1−δ1(u+ vj + t)p−1−δ2).
Thus we have

(2.3) |Γ|2k � A2kB2kU2k−1
∑

v1,...,v2k∈V

∣∣∣∣∣∣
∑
u∈Fp

χ∗(H(u))

∣∣∣∣∣∣ ,
where

H(u) =
k∏
i=1

(u+ vi)
δ1(u+ vi + t)δ2

2k∏
j=k+1

(u+ vj)
p−1−δ1(u+ vj + t)p−1−δ2 .

Define the subset Ω ⊆ V2k as

Ω =
{

(v1, . . . , v2k) ∈ V2k : H(u) is the (p− 1)-th power of a polynomial over Fp
}
.
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By Lemma 2.2, the inner sum in (2.3) can be estimated as

(2.4)
∑
u∈Fp

χ∗(H(u)) =

O(p) if (v1, . . . , v2k) ∈ Ω,

Ok(
√
p) if (v1, . . . , v2k) ∈ V2k \ Ω.

Therefore, from (2.3) and (2.4) we immediately get

(2.5) |Γ|2k �k A
2kB2kU2k−1

(
(#Ω)p+ V 2k√p

)
.

It remains to treat the cardinality of Ω. We construct a new polynomial G(u) as

G(u) =

2k∏
i=1

(u+ vi)(u+ vi + t),

and define the subset Ω1 ⊆ V2k as

Ω1 =
{

(v1, . . . , v2k) ∈ V2k : G(u) has no simple root
}
.

It is clear that G(u) and H(u) have the same roots. Since 1 ≤ δ1, δ2 ≤ p − 2, then G(u)

having a simple root implies that H(u) can not be the (p − 1)-th power of a polynomial

over Fp. It follows that Ω ⊆ Ω1. Next, we shall prove that the cardinality of Ω1 satisfies

(2.6) #Ω ≤ #Ω1 ≤ (k + 1)k2(2k)2kV k.

For every (v1, . . . , v2k) ∈ Ω1, then for v ∈ {v1, . . . , v2k} we write

η(v) = #{1 ≤ i ≤ 2k : vi = v}.

Thus, we can divide {v1, . . . , v2k} into two disjoint sets:

{v1, . . . , v2k} = C ∪ D,

where

C = {c ∈ {v1, . . . , v2k} : η(c) ≥ 2}, D = {d ∈ {v1, . . . , v2k} : η(d) = 1}.

We denote the cardinality of D by D and write D = {d1, . . . , dD}. Consequently, the

cardinality of C satisfies

#C ≤ b(2k −D)/2c.

Therefore,

G(u) =

(∏
c∈C

(u+ c)η(c)(u+ c+ t)η(c)

)(∏
d∈D

(u+ d)(u+ d+ t)

)
.
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Since G(u) has no simple root, for every di ∈ D there exists some c ∈ C or dj ∈ D such

that

di ≡ dj + t (mod p) or di ≡ c+ t (mod p).

Hence, for fixed C, we only need to choose bD/2c values from V at most and we write

these values to form a set J . Then, every d ∈ D takes a value from J , J + t and C + t.

Thus we have

#Ω1 ≤
2k∑
D=0

b(2k−D)/2c∑
i=1

(
V

i

)
i2k−D

bD/2c∑
j=1

(
V

j

)(
2j +

2k −D
2

)D

≤
2k∑
D=0

b(2k−D)/2c∑
i=1

(
V

i

)
i2k−D

D

2

(
k +

D

2

)D
V D/2

≤
2k∑
D=0

D

2

(
k − D

2

)(
k − D

2

)2k−D (
k +

D

2

)D
V k

≤ (k + 1)k2(2k)2kV k.

This proves (2.6). Now combining (2.5) and (2.6) we immediately get Lemma 2.3.

Lemma 2.4. Assume the hypotheses of Lemma 2.3. Then, for any ε > 0, U ≥ p1/2+ε

and any V ≥ pε, we have∑
u∈U

∑
v∈V

aubvχ1(u+ v)χ2(u+ v + t)�ε ABUV p
−ε2/(1+2ε).

Proof. Taking k = d1/(2ε)e we get V ≥ p1/(2k). Then, the right side of (2.2) satisfies

ABU1−1/(2k)
(
V 1/2p1/(2k) + V p1/(4k)

)
≤ ABU1−1/(2k)V p1/(4k) ≤ ABUV p−ε/(2k).

Since U ≤ p, then we have ε ≤ 1/2. Therefore, ε/(2k) ≥ ε2/(1 + 2ε). This proves

Lemma 2.4.

3. Character sums over short intervals

Throughout this section we suppose that p is a sufficiently large prime. Like the technical

method in [5], our bound for Sf (χ1, χ2;N, l) is related to bounds for more general sums

Sf (χ1, χ2;K,L, l) =
∑

K<n≤K+L

χ1(bf(n)c)χ2(bf(n+ l)c),

where K and L are sufficiently large real numbers that satisfy certain conditions. Our

result is as follows.
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Theorem 3.1. Fix ε > 0 and 2/3 < κ < 1. Let f(x) be a real-valued, twice-differentiable

function such that

lim
x→∞

log f ′′(x)

log x
= −κ.

Then, for all non-principal characters χ1, χ2 modulo p, all positive integers l with l ≤ pε/2

and all real numbers K, L that satisfy the inequalities

(i) Kκ−ε ≥ L ≥ Kκ/2pε, (ii) K ≤ p1/(2−κ), (iii) L ≥ p1/2+ε,

we have

Sf (χ1, χ2;K,L, l)�ε,f Lp
−ε2/32.

Proof. Put H = d2pε/2e. The assumptions of Theorem 3.1 imply that

0 < α ≤ f ′′(x) ≤ αβ, K ≤ x ≤ K + L+H + l

with real numbers α and β of the size

α = K−κ+of (1) and β = Kof (1),

where the implied constants depend on f . For any integers n ∈ (K,K+L] and h ∈ [0, H−1]

we have

f(n+ h)− f(n)− hf ′(n) =

∫ n+h

n
f ′′(u)(n+ h− u) du.

Thus we have

0 ≤ f(n+ h)− f(n)− hf ′(n) ≤ 0.5H2αβ.

Note that

0 ≤ f ′(n)− f ′(K) =

∫ n

K
f ′′(u) du ≤ Lαβ.

Therefore,

(3.1) 0 ≤ f(n+ h)− f(n)− hf ′(K) ≤ 2HLαβ.

Similarly we obtain

(3.2) 0 ≤ f(n+ h+ l)− f(n)− (h+ l)f ′(K) ≤ 2(H + l)Lαβ.

Let ∆ = p−ε/4 with 0 < ∆ < 1/2, and let D = d∆−1e. By the pigeonhole principle

there is an integer j0 ∈ {0, . . . , D − 1} such that the fractional part {hf ′(K)} lies in the

interval [j0/D, (j0 + 1)/D) for at least H/D values of h ∈ {0, 1, . . . ,H − 1}. Let H be the

set of such integers h and let ξ = j0/D. Then we have

H = {h ∈ [0, H − 1] ∩ Z : {hf ′(K)− ξ} < 1/D},
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0.5∆ < 1/D ≤ ∆ and the cardinality of #H satisfies

(3.3) #H ≥ H/D ≥ 0.5∆H ≥ pε/4.

Next, we define two subsets N1,N2 ⊆ (K,K + L] as

N1 =
{
n ∈ (K,K + L] ∩ N : {f(n) + ξ} < 1−∆− 2(H + l)Lαβ

}
,

N2 =
{
n ∈ (K,K + L] ∩ N : {f(n) + lf ′(K) + ξ} < 1−∆− 2(H + l)Lαβ

}
.

We also define their complementary sets as

N c
1 = ((K,K + L] ∩ N) \ N1 and N c

2 = ((K,K + L] ∩ N) \ N2.

Let N = N1 ∩N2. Hence, (3.1) and (3.2) imply that

bf(n+ h)c = bf(n) + ξc+ bhf ′(K)− ξc

and

bf(n+ h+ l)c = bf(n) + lf ′(K) + ξc+ bhf ′(K)− ξc

hold for every pair (n, h) ∈ N ×H.

Now we estimate the cardinality of N c = ((K,K + L] ∩ N) \ N . It is clear that

N c = (N1 ∩N2)c = N c
1 ∪N c

2 .

Thus we have

(3.4) #N c ≤ #N c
1 + #N c

2 .

Write f1(x) = f(x) + ξ and f2(x) = f(x) + lf ′(K) + ξ. Recall that Df (K,K + L) is

the discrepancy of the sequence of fractional parts ({f(n)})n∈(K,K+L]∩Z. From (2.1) and

Lemma 2.1 we have

#N c
1 ≤ (L+ 1)Df1(K,K + L) + (L+ 1)(∆ + 2(H + l)Lαβ)

� Lα1/3β2/3 + α−1/2 + L∆ + 2(H + l)L2αβ

� LK−κ/3+of (1) +Kκ/2+of (1) + Lp−ε/4 + L2pε/2K−κ+of (1).

Using (i) and (iii) we get #N c
1 � Lp−ε

2+oε,f (1). Similarly, #N c
2 � Lp−ε

2+oε,f (1). From

(3.4) we get

(3.5) #N c �ε,f Lp
−ε2/2.
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For every integer h ∈ H we have

Sf (χ1, χ2;K,L, l) =
∑

K<n≤K+L

χ1(bf(n+ h)c)χ2(bf(n+ h+ l)c) +O(h)

=
∑
n∈N

χ1(bf(n+ h)c)χ2(bf(n+ h+ l)c) +Oε,f
(
pε/2 + #N c

)
.

Thus we have

(3.6) Sf (χ1, χ2;K,L, l) =
Θ

#H
+Oε,f

(
pε/2 + Lp−ε

2/2
)
,

where

Θ =
∑
n∈N

∑
h∈H

χ1

(
bf(n) + ξc+ bhf ′(K)− ξc

)
χ2

(
bf(n) + lf ′(K) + ξc+ bhf ′(K)− ξc

)
.

Now we divide N into two disjoint subsets:

N =M1 ∪M2 with M1 ∩M2 = ∅,

where

M1 =
{
n ∈ N : {f(n) + ξ}+ {lf ′(K)} ≥ 1

}
,

M2 =
{
n ∈ N : {f(n) + ξ}+ {lf ′(K)} < 1

}
.

Then we have Θ = Θ1 + Θ2, where

Θ1 =
∑
n∈M1

∑
h∈H

χ1

(
bf(n) + ξc+ bhf ′(K)− ξc

)
× χ2

(
bf(n) + ξc+ blf ′(K)c+ 1 + bhf ′(K)− ξc

)
,

Θ2 =
∑
n∈M2

∑
h∈H

χ1

(
bf(n) + ξc+ bhf ′(K)− ξc

)
× χ2

(
bf(n) + ξc+ blf ′(K)c+ bhf ′(K)− ξc

)
.

Finally, we reduce the sums Θ1 and Θ2 into weighted double character sums and apply

Lemma 2.4 to bound them. Let

Ui = {u ∈ Fp : u ≡ bf(n) + ξc (mod p) for some n ∈Mi}, i = 1, 2,

V = {v ∈ Fp : v ≡ bhf ′(K)− ξc (mod p) for some h ∈ H},

and put

au = #{n ∈M1 : bf(n) + ξc ≡ u (mod p)}, u ∈ U1,

cu = #{n ∈M2 : bf(n) + ξc ≡ u (mod p)}, u ∈ U2,

bv = #{h ∈ H : bhf ′(K)− ξc ≡ v (mod p)}, v ∈ V.
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Thus we have

Θ1 =
∑
u∈U1

∑
v∈V

aubvχ1(u+ v)χ2

(
u+ v + blf ′(K)c+ 1

)
,

Θ2 =
∑
u∈U2

∑
v∈V

cubvχ1(u+ v)χ2

(
u+ v + blf ′(K)c

)
.

In order to apply Lemma 2.4, we need to give the size of #U1, #U2, #V, au, cu and

bv. From the assumptions of Theorem 3.1 on f ′′(x) we know that

f ′(x) = x1−κ+of (1) and f(x) = x2−κ+of (1), x→∞.

Since κ < 1, the values of bf(n) + ξc (n ∈ N ) are pairwise distinct, and in view of

condition (ii) these values are of size at most p1+of (1). On the other hand, since f ′(K) > 1,

the values of bhf ′(K) − ξc (h ∈ H) are also pairwise distinct, and in view of (ii) these

values are less than p. Therefore,

au ≤ pof (1), cu ≤ pof (1), bv = 1.

Then, from (3.3) we also have

(#V) = (#H) ≥ pε/4.

It remains to treat the cardinality of U1 and U2. From (3.5) we obtain

#N = (#M1) + (#M1) = L+Oε,f
(
Lp−ε

2/2
)
.

This implies that

#M1 ≥ Lp−ε
2/16 or #M2 ≥ Lp−ε

2/16.

Case 1. If #M1 ≥ Lp−ε
2/16 and #M2 < Lp−ε

2/16. From (iii) we have

#U1 ≥ p1/2+ε−ε2/16+of (1) ≥ p1/2+ε/4.

By Lemma 2.4 we have

(3.7) Θ = Θ1 + Θ2 �ε (#U1)(#V)p−ε
2/32 + (#M2)(#H)�ε (#H)Lp−ε

2/32.

Case 2. If #M1 ≥ Lp−ε
2/16 and #M2 ≥ Lp−ε

2/16. From (iii) we also have

#U1 ≥ p1/2+ε/4 and #U2 ≥ p1/2+ε/4.

By Lemma 2.4 we have

(3.8) Θ = Θ1 + Θ2 �ε (#U1)(#V)p−ε
2/32 + (#U2)(#V)p−ε

2/32 �ε (#H)Lp−ε
2/32.

Now combining (3.6)–(3.8) we immediately get Theorem 3.1.
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4. Proof of Theorem 1.2

To get started, fix some constant η > 0 to satisfy the inequality

(4.1) Nκ−η ≥ p1/2+3η.

Since N ≥ p1/(2κ)+ε and ε < 1/2, then (4.1) is satisfied when choosing

(4.2) η =
2εκ2

1 + 6κ+ 2εκ
<
κ

2
.

Moreover, (4.1) and N ≤ p1/(2−κ) imply that

(4.3) Nκ/2−η ≥ p3η.

We also let

R = bN1+η−κ log2 pc, ∆ = pη/R − 1.

The first step is to prove that the bound

(4.4) Sf (χ1, χ2;K,∆K, l) =
∑

K<n≤K+∆K

χ1(bf(n)c)χ2(bf(n+ l)c)�ε,f ∆Kp−η
2/32

holds for all real K with Np−η ≤ K ≤ N . Noting that

∆ = eη log p/R − 1 = (1 + o(1))
η log p

R
= Nκ−η−1(log p)−1+o(1), p→∞.

Then, for sufficiently large primes p we have

(4.5) Nκ−η−1p−η ≤ ∆ ≤ Nκ−η−1,

and therefore,

(4.6) ∆K ≤ Nκ−η−1K ≤ Kκ−η.

From K ≥ Np−η, (4.3) and (4.5) we have

(4.7) ∆K ≥ Kκ/2K1−κ/2Nκ−η−1p−η ≥ Kκ/2N1−κ/2Nκ−η−1p−2η ≥ Kκ/2pη.

From K ≥ Np−η, (4.1) and (4.5) we also have

(4.8) ∆K ≥ KNκ−η−1p−η ≥ Nκ−ηp−2η ≥ p1/2+η.

Combining (4.6)–(4.8) and the assumptions of Theorem 1.2 we conclude that

Kκ−η ≥ ∆K ≥ Kκ/2pη, K ≤ p1/(2−κ), ∆K ≥ p1/2+η.
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Therefore, the assumptions of Theorem 3.1 are satisfied and we obtain (4.4).

Next, we decompose Sf (χ1, χ2;N) into R+ 1 sums. That is

(4.9) Sf (χ1, χ2;N, l) = Sf
(
χ1, χ2;Np−η, l

)
+

R−1∑
j=0

Sf
(
χ1, χ2;Kj ,∆Kj , l

)
,

where

Kj = Np−η+(ηj)/R.

Since Kj = Kj−1 + ∆Kj−1 (j ≥ 1). Thus, it follows from (4.4) and (4.9) that

Sf (χ1, χ2;N, l) =

R−1∑
j=0

Sf (χ1, χ2;Kj ,∆Kj , l) +O
(
Np−η

)
�ε,f

R−1∑
j=0

∆Kjp
−η2/32 +Np−η �ε,f Np

−η2/32.

This proves that the bound

Sf (χ1, χ2;N, l)�ε,f Np
−δ

holds with some δ > 0. In particular, when η takes the value as in (4.2), one may take

δ = 2−9ε2κ4. This completes the proof of Theorem 1.2.

5. Proofs of Theorems 1.3 and 1.4

We begin with Theorem 1.3. Let
( ·
p

)
denote the Legendre symbol modulo p. Then we

have

Qf (N, l) =
∑
n≤N

(bf(n)cbf(n+l)c,p)=1

1

4

(
1 +

(
bf(n)c
p

))(
1 +

(
bf(n+ l)c

p

))

=
∑
n≤N

1

4

(
1 +

(
bf(n)c
p

))(
1 +

(
bf(n+ l)c

p

))
+O(W ),

(5.1)

where W is defined by

W = #
{

1 ≤ n ≤ N : p | bf(n)cbf(n+ l)c
}
.

From the assumptions of Theorem 3.1 on f ′′(x) we know that

f(x) = x2−κ+of (1), x→∞.

Since κ < 1 and N < p1/(2−κ), the values of bf(n)c (n = 1, 2, . . . , N) are pairwise distinct,

and these values are of size at most p1+of (1). Note that 0 < l ≤ pε/2, we also have the
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values of bf(n + l)c (n = 1, 2, . . . , N) are pairwise distinct and of size at most p1+of (1).

Therefore,

(5.2) W � pof (1).

It follows from (5.1) and (5.2) that

Qf (N, l) =
N

4
+

1

4

∑
n≤N

(
bf(n)c
p

)
+

1

4

∑
n≤N

(
bf(n+ l)c

p

)
+

1

4

∑
n≤N

(
bf(n)c
p

)(
bf(n+ l)c

p

)
+O

(
pof (1)

)
.

From Proposition 1.1 and Theorem 1.2 we immediately get

Qf (N, l) =
N

4
+Oε,f

(
Np−θ

)
,

where θ is defined as in (1.3). This proves Theorem 1.3.

Now we prove Theorem 1.4. Noting that

φ(p− 1)

p− 1

∑
ν|p−1

µ(ν)

φ(ν)

∑
ordχ=ν

χ(n) =

1 if n is a primitive root modulo p,

0 otherwise,

where µ is the Möbious function, and the summation
∑

ordχ=ν is taken over all the char-

acters χ modulo p of order ν. Thus we have

Gf (N, l) =

(
φ(p− 1)

p− 1

)2 ∑
ν1|p−1

∑
ν2|p−1

µ(ν1)µ(ν2)

φ(ν1)φ(ν2)

∑
ordχ1=ν1

∑
ordχ2=ν2

×
∑
n≤N

χ1

(
bf(n)c

)
χ2

(
bf(n+ l)c

)
=

(
φ(p− 1)

p− 1

)2

N +

(
φ(p− 1)

p− 1

)2 ∑
ν1|p−1
ν1>1

µ(ν1)

φ(ν1)

∑
ordχ1=ν1

∑
n≤N

(bf(n+l)c,p)=1

χ1

(
bf(n)c

)

+

(
φ(p− 1)

p− 1

)2 ∑
ν2|p−1
ν2>1

µ(ν2)

φ(ν2)

∑
ordχ2=ν2

∑
n≤N

(bf(n)c,p)=1

χ2

(
bf(n+ l)c

)

+

(
φ(p− 1)

p− 1

)2 ∑
ν1|p−1
ν1>1

∑
ν2|p−1
ν2>1

µ(ν1)µ(ν2)

φ(ν1)φ(ν2)

∑
ordχ1=ν1

∑
ordχ2=ν2

×
∑
n≤N

χ1

(
bf(n)c

)
χ2

(
bf(n+ l)c

)
+O(W ).

(5.3)
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From Proposition 1.1 and (5.2) we have

(5.4)
∑
n≤N

(bf(n+l)c,p)=1

χ1

(
bf(n)c

)
=
∑
n≤N

χ1

(
bf(n)c

)
+O(W ) = Oε,f

(
Np−θ

)
,

and

(5.5)
∑
n≤N

(bf(n)c,p)=1

χ2

(
bf(n+ l)c

)
=
∑
n≤N

χ2

(
bf(n+ l)c

)
+O(W ) = Oε,f

(
Np−θ

)
.

From Theorem 1.2 we also have

(5.6)
∑
n≤N

χ1

(
bf(n)c

)
χ2

(
bf(n+ 1)c

)
= Oε,f

(
Np−θ

)
.

Combining (5.3)–(5.6) we immediately get

Gf (N, l) =

(
φ(p− 1)

p− 1

)2

N +Oε,f

((
φ(p− 1)

p− 1

)2

4ω(p−1)Np−θ

)
.

This proves Theorem 1.4.

6. Remarks

In this paper we obtain a non-trivial bound for Sf (χ1, χ2;N, l) by using the method

of [5, 14] (also see [3, 4]). In detail, we decompose the sum Sf (χ1, χ2;N, l) into character

sums over short intervals and finally reduce them into certain double character sums. In

these processes, the difference lies in Lemma 2.3 and Theorem 3.1.

We also remark that Theorem 1.2 holds when l is small. In the proof of Theorem 3.1,

we must ensure that the upper bound of (3.2) is less than 1 and #N c = o(L) in (3.5).

Therefore, if l is large, we may not be able to find suitable K and L to apply to the proof

of Theorem 1.2. Thus, we restrict that 0 < l ≤ pε/2 throughout this paper.
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