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On Periodic Solutions of the Incompressible Navier—Stokes Equations on

Non-compact Riemannian Manifolds

Thieu Huy Nguyen®, Truong Xuan Pham, Thi Van Nguyen and Thi Ngoc Ha Vu

Abstract. In this paper, we study the existence, uniqueness and stability of the time
periodic mild solutions to the incompressible Navier—Stokes equations on the non-
compact manifolds with negative Ricci curvature tensor. In our strategy, we combine
the dispersive and smoothing estimates for Stokes semigroups and Massera-type the-
orem to establish the existence and uniqueness of the time periodic mild solution to
Stokes equation on Riemannian manifolds. Then using fixed point arguments, we can
pass to semilinear equations to obtain the existence and uniqueness of the periodic
solution to the imcompressible Navier—Stokes equations under the action of a periodic

external force. The stability of the solution is also proved by using the cone inequality.

1. Introduction and statements of main results

1.1. Introduction

The problem of time-periodicity of solutions to Navier—Stokes equations has its long his-
tories. Early results can be traced back to Serrin [31] who proved that the exponential
stability of solutions to Navier—Stokes equations (NSE) implies the existence of time-
periodic solutions to NSE in bounded domains. The method of Serrin served as a starting
point for many researches on periodic solutions to NSE. This direction has been extended
further by Miyakawa and Teramoto [25], Kaniel and Shinbrot [17], and references therein.
Then, Maremonti has proved in [23] the stability and existence of periodic solutions to
NSE on the whole space. Kozono and Nakao [20] have introduced a new notion of mild
solutions and proved the existence of such a solution to NSE on the whole time-line R
in R? for d > 4. Taniuchi [32] has the proved the asymptotic stability of such periodic
solutions.

Other techniques known formally as “invading domains” have been introduced by Prodi
[29], Prouse [30], Yudovich [37], and Heywood [15] used to prove the existence of periodic

solutions to NSE on certain unbounded domains. The existence results of such solutions to
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NSE were shown by Maremonti and Padula [24] on certain exterior domain with symmetric
property and small complement. Then, extending further Serrin’s method, Galdi and
Sohr [10] have proved the existence of periodic solutions to NSE in any exterior domain
using the spaces featuring the decay of the solutions at spatial infinity. Yamazaki [36] used
interpolation spaces and the iteration scheme method [12,/18] to show the existence and
uniqueness of periodic mild solutions on exterior domains. For further results in exterior
domains, we refer to Taniuchi [33] and van Baalen and Wittwer [35], Galdi and Silvestre [9).
Moreover, Nguyen [26] used the mean-ergodic methods and Massera’s principle to show
the existence and polynomial stability of periodic solutions to the NSE around a rotating
obstacle. For recent results concerning periodic solutions to NSE in the whole space
or past moving cylinders, we refer the reader to Galdi |7,|8]. A general approach to
the problem of periodic solutions to fluid flow problems using interpolation spaces and
smoothness of corresponding linearized equations has been introduced by Geissert, Hieber
and Nguyen [11].

In the present paper we will study the existence and stability of periodic solutions to
incompressible Navier—Stokes equations (NSE) for vector fields in a non-compact Rieman-
nian manifold (M, g) with negative Ricci curvature tensor. Concretely, denoting I'(T'M)
the set of all vector fields on M, we consider NSE for a vector-field-valued mapping
u: Ry x M = T(TM)

Owu+ Vyu+ Vr = Xu+T(U)+f,
(1.1) divu =0,
u(0,2) = up(z) € T(TM) for all z € M,

where V denotes the Levi-Civita connection on M; 7 is the pressure; r(u) is Ricci operator
(see the definition in the next section); f is external force; and K is Bochner Laplace
operator. We refer the reader to [1},2,|19,21,38] for the well-posedness and ill-posedness
results for NSE on non-compact Riemannian manifolds. For the case of Einstein manifolds
with negative curvature tensor, in [27] we obtained the existence and stability of periodic
solutions to Navier—Stokes equations. In the present paper we will extent such results to
the case of general noncompact Riemannian manifolds satisfying the hypotheses (H1)—(H4)
below.

We would like to note that on a non-compact Riemannian manifold with negative
curvature tensor, the study of the Stokes problem may be transformed to the case of the
vectorial heat equations. Based on this important fact, Pierfelice [28] has proved the dis-
persive and smoothing estimates for the vectorial heat and Stokes semigroup associated
with the Bochner Laplacian on non-compact Riemannian manifolds with negative curva-

ture. Actually, Pierfelice [28] obtained exponential decaying and LP — L? estimates for
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Stokes semigroups on Riemannian manifolds with negative curvatures. Using these esti-
mates and Kato-iteration methods, Pierfelice obtained the well-posedness of Navier—Stokes
equations for vector fields on non-compact Riemannian manifolds (see details in [28§]).
However, since the energy inequalities are not valid for NSE on general non-compact
Riemannian manifolds (see [2, Theorems 3.2, 3.3]), the stability estimates for semilinear
equations using energy inequalities cannot directly be applied. Moreover, we are working
here with LP-phase space with general p, then the usual estimates in L? spaces using scalar
product cannot be used. Therefore, in the present paper, we use dispersive and smoothing
estimates of the corresponding linearized Stokes equation in combination with Massera-
type theorem to obtain the existence and uniqueness of a periodic solution to linearized
Stokes equation, and then we pass to the case of semilinear Navier—Stokes equations using
fixed-point arguments. Using cone inequality we prove the exponential stability of the

periodic solution to NSE.

1.2. Statements of the main results

Using the Kodaira—Hodge operator P = [ —|—grad(—Ag)*1 div we can get rid of the pressure
term 7 and then obtain from (1.1)) that

B — (Ru + r(u) + G(w)) = P[~Vuu + f],
(1.2) divu =0,
u(0,2) =ug(z) € (TM) for all x € M; divug =0,

where G(u) = 2grad(—A,) tdiv(r(u)) with A, being the Laplace-Beltrami operator.

The corresponding inhomogeneous Stokes equation takes the form

Ou = —Au + P[_V'UU + f]a

(1.3)
u(0,2) = ug(z) € T(TM) for all z € M

for given vector-field valued mappings v(t,-) and f(¢,-) € I'(T M), where Au = —(Z)u +

r(u)+G(u)), and e A is denoted the semigroup associated with the homogeneous Cauchy

problem
Oru = —Au,
(1.4) o B
u(0,z) = ugp(z) € N(TM) forall z € M,
i.e., the unique solution of the above Cauchy problem is given by u(t) = e tAygy. Here,

traditionally, we denote u(t) for u(t,-). To state our main results we need the following

notion of mild solution.
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Definition 1.1. By a mild solution to (1.3) we mean a mapping u: Ry x M — I'(T'M)

which satisfies the integral equation
t
(1.5) u(t) = e Hug + / e UDAP[—V v + f](r)dr for t > 0.
0

Moreover, for a given Banach space X we denote the following Banach space
Cy(Ry, X) = {h: R4 — X | h is continuous and sup ||h(t)|x < oo}
teR4
endowed with the norm ||h[[oo,x = [|hllo,(r,,x) = supser, A1) x-

We consider the existence and stability of the periodic mild solutions of equations ((1.2)),
(1.3) on the following Banach space

X = {u € Cy(Ry, IP(T(TM)) N LA(T(TM))), Vu € Cy(Ry, LP(T(TM)) N L (T(TM))) |
the function ¢ u(®) 2 + [u(®)]lzo + [ea()] G54 [Tu(®) 5
+ [cd(t)]_(%_%r%) |Vu(t)||Ls belongs to LOO(R+)}

endowed with the norm

Jull z= sup (Ju(®lz2 + [l + 0] 658 [Vu0) 15

+lea)” 5743 | Tu(o) ).

Here we assume that d < p < p < s where 3 = % + %, and denote || - [[zr := || - | Lo (07 M) s
whereas ¢4(t) := Cp max {ti%, 1}.

We now state our first main result on the existence of the periodic mild solution to
in the following theorem.

Theorem 1.2. Let (M, g) be a d-dimensional non-compact manifold with negative Ricci
curvature tensor. Suppose that v € X and the external force f € Cy(Ry, LP(I'(TM)) N
L3*(T(TM))) (p > d) are T-periodic functions. Then, problem has one and only one
T-periodic mild solution ©w € X satisfying

lallx < (C+1)(Clfllonz + Mol3).

Analogously to the case of linearized Stokes equations, by a mild solution to equa-
tion (1.2) we mean the vector-field-valued map u: Ry x M — I'(TM) satisfying the

integral equation

(1.6) u(t) = e Hug + /t e~ IAP(—Vu + f)(1)]dr  for t > 0.
0

We then state our second main result on the existence and uniqueness of the periodic mild
solution to (1.2 in the following theorem.
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Theorem 1.3. Let (M, g) be a d-dimensional non-compact manifold with the negative
Ricci curvature tensor and let f € Cy(Ry, LP(D(TM)) N L2(T(TM))) (p > d) be T-
periodic with respect to t. Then, if || f||rar2 s sufficiently small, the equation (1.2) has

one and only one T-periodic mild solution u on a small ball of X .

Lastly, our third main result on the exponential stability of the periodic mild solution

is stated as follows.

Theorem 1.4. The T-periodic mild solution u of equation (1.2)) is exponentially stable in
the sense that for any other mild solution w € X to (1.2)) such that ||u(0) — w(0)|| ppnr2 s

small enough, we have
() = AN < Cye™ " [u(0) — G0 | orz for all t >0,
here we denote

@l = @)l + Ja(@) o + a3 D Va5

+ Leat)” G340 |9

whereas 7y is a positive constant satisfying 0 < v < B, and C, is a constant independent

of u and u.

We will give the proofs of our main results in Section

2. Intermezzo on the incompressible Navier—Stokes equations on non-compact

Riemannian manifolds

For d € N, d > 2, we consider a d-dimensional non-compact Riemannian manifold (M, g)
whose the Ricci tensor Ric is a negative. We restrict ourselves to the case that the sectional
curvature of (M, g) is negative, so that the smoothing and dispersive estimates obtained
by Pierfelice |28] can be applied. We refer the reader to [13,|16] for notions and detail
discussions on Riemannian manifolds and related concepts of geometric analysis. For
details on Navier-Stokes equations on Riemannian manifolds we refer to [6,2834] and
references therein. For the reader’s convenience, in what follows, we recall some notions
on differential operators on Riemannian manifolds. We denote the Levi-Civita connection
by V and the set of all vector fields on M by I'(TM). For X € I'(T’M) we can extend
Vx to arbitrary (p,q) tensor by requiring

(i) Vx(e(S)) = ¢(VxS) for any contraction c,

(i) Vx(S®T)=VxS®T +S®VyT,
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where we take the convention that Vx f = X - f for a function f: M — R.
In particular, for S € T'(®P(TM) @41 (T*M)) we get

(VxS)(X1,..., X)) =Vx(S(Xq,..., X)) —S(VxXi,...,Xy)
- = S5(Xy, ..., VxX)).

Moreover, we define the covariant derivatives V on tensor field S € T'(@? (T M) @1 (T*M))
by
VS(X, X1,...,Xy) = (Vx9)(X1,...,Xy),

hence VS € T'(®P(TM) @4+ (T* M)). Next, we recall the “music notations” on Rieman-

nian manifolds. For a 1-form w, we define the vector field w? by
gwh V) =w(), VY el(TM)

whereas, for a vector field X, we define the 1-form X’ by
X°(Y)=g(X,Y), VY eIl(TM).

The metric on 1-forms can then be defined by setting g(w,n) := g(wf,n?), Yw,n €
['(T*M). The Riemannian gradient of a function is then defined as

grad p = (dp)”.
More generally, for (p, g)-tensor field T' € I'(®P(T'M) @1 (T*M)) we have

= C¥ gt o T) e T(@THTM) @7 (T*M)),
=Cy(g®T) € D@ (TM) @1 (T*"M)),
divT = CIVT € T(@P 1 (TM) 1 (T*M)),

where C} stands for the contraction of the ¢ and j indices for tensors.

Next, the Laplace-Beltrami operator A, applying on functions is defined as

Ag(f) =divgrad f = \/76 = < ij 6f)

for a function f: M — R, where |g| = det g.

Furthermore, the vectorial Laplacian L is defined by the stress tensor (see [6,34]):
Lu = div(Vu + Vu)®,
Since divu = 0 we can express L in the following formula

Lu=Ru + 7 (u),
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where X is the Bochner—Laplacian
Ku= —V*Vu = Tr, (V)
and r(-) is the Ricci operator related to the Ricci curvature tensor by the formula
r(u) = (Ric(u,-))* for all u € T(TM),

where the Ricci curvature tensor is defined by
d
Ric(X,Y) =Y g(R(X,e;)Y,e;) forall X,Y € T(TM)
i=1

for the standard basis { e; = 8%1- ?:1 and R being the curvature tensor on M defined by

'R,(X, Y)Z = —VX(VyZ) + VY(V)(Z) + V[Xy]Z forall X,Y,Z € F(T./\/l).

R(X,Y,X,Y)
X, X)g(Y)Y)—g(X,Y)

Moreover, the sectional curvature x is defined as k(X,Y) := i 7 for all

X, Y e T, M.
Now, for a smooth, complete, non-compact, simply connected Riemannian manifold

(M, g) we state the following hypotheses which were introduced in [28|:
(Hy) |R|+ |VR|+|V*R| < K,

(Ha) —%g < Ric < —c¢yg for some ¢ positive,

(Hs) k<0,

(Ha) infpepqre >0,

where r, is the injectivity radius for the exponential map at x.

There are several Riemannian manifolds satisfying the above hypotheses (H;)-(Hy)
such as real hyperbolic manifolds, non-compact Einstein manifolds with negative Ricci
curvature tensors (see [14,|16]), Damek-Ricci manifolds (see [4]) and symmetric manifolds
of non-compact types (see [5/14]).

In this paper, we study the periodic solutions to the Cauchy problem for the incom-
pressible Navier—Stokes equations on M.

%
Remark 2.1. We notice that the operator A 41+ G does not commute with the Kodaira—
Hodge operator P =1 + grad(—Ag)*1 div on the generalized non-compact manifolds with
all the conditions (Hj)—(Hy).
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3. Proofs of main results

In this section, we will give the proofs of our three main results stated in the first section.
We first prove the existence of bounded mild solutions to linear inhomogeneous Stokes
equations with bounded external forces. To that purpose we need the LP — L9-
dispersive and smoothing estimates of the semigroup e *A. These estimates have been
proved for semigroups on noncompact manifolds satisfying (H;)—(H4) by Pierfelice in [28].
We now recall the results on the dispersive and smoothing estimates obtained in [28] for

tA

the semigroup e ** in the following lemma.

Lemma 3.1. |28| Corollary 4.13 and Theorem 4.15] Assuming (H1)—(Ha), putting cq4(t) =
Cp max (td%’ 1). There exist 5 > Cy > 0 and some C > 0 such that the solution of (|L.4))
satisfies the following dispersive and smoothing estimates:

(i) For2 <p<r < +oco and for all ug € LP(I'(TM)) N L*(T(TM)),

(3.1) e ™ u(t)|
HVe_tAu(t) ’

1.1 g
1 < Clea®]P ™7 e (JluollLe + [luollz2), Yt >0,

_141
rrae O (|fuol v + [luollz2), V> 0.

S

(il) For1<p<2<r<+oo and for all ug € LP(I'(TM)),

Je~t4uco)

HVe_tAu(t) |

11 g
rr < Clea®)]?” e ugllLr, VE>0,

1 1 1
. < Clea®)]? 7T ae P ug||Lr, Vit > 0.

L

The following lemma gives us the boundedness (in time) of mild solutions to (1.3) for
each bounded external force.

Lemma 3.2. Consider Stokes equation on d-dimensional non-compact manifold
(M, g) with negative Ricci curvature tensor. Let ug € LP(T(TM)) N L*(T(TM)) (p > d)
and suppose that v € X, f € Cp(Ry, LP(T(TM)) N L3*(T(TM))). Then, the problem (1.3)
has one and only one mild solution uw € X given by the formula with u(0) = wuyp.
Furthermore, we have

(3-2) lullx < C(lluollonze + 11 fllo,zonz2) + Mllo[I%

for some constants C and M independent of ug, u, v and f. Here we denote the norm
|- e eeramynrz@@ay) 0y I - llzeare and the norm || - |, ry, Lo am)nL2mrmy)) 0y

I+ lloo, oLz

Proof. Consider the function u defined by the formula (L.5) with u(0) = ug. We now

estimate the norm |[[ul|x. For simplicity of writing, we denote || - ||, := || - |z (zm))-
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On Riemannian non-compact manifold with negative curvature tensor we have the LP-

boundedness of Riesz transform (see [22]), therefore the operator P is bounded. Using the
first inequality in assertion (i) of Lemma [3.1{ we have

t
Ju()]l2 < [leuol], +/0 He%t*ﬂf‘mvvv+f](T)H2dT
t
< Ce P lup)y + / DT 0(r) + F(r)||2 dr
0
t
< Clluollzrazs + ( / &P (o () 05+ 1£]12) df)

t t 1_1.,1
< Clluollppazs + ( /0 P | f]| oo 2 + /0 PO ()5 dTuvu%()
N -y 2
< Cllunlonze + 5 (1= ) lo2 + Gr(0) ol
< Cl(HUOHLmL2 + ”f”oo,LPﬁL2) + M ||v||%,

where C7 := max {C, %} and

1

t
Gi(t) = [ e P el < My < e,
0
We can estimate G1(t) and determine M; as follows:

1

t
e PAl=T) dT:/ [max{T*%,1}]57%%6*5(“7) dr
0

D
—_
—~
~
SN—
Il
o\
~~
e}
ISH
—~
2
Pt
3=
|
[l
+
-

01 T—g(%_%ﬁ%)e—ﬁ(t—ﬂ dr + flt e BT dr ift > 1,
Gt s gy if0<t<1
< /ITS(;%,%) gr+ (1 _ 165(11:)) __ v (1 _ 1eﬂ<1t>> <
0 g B S mtas \B B ’
where M := % + % Note that since d < p < p, it follows that % — % + 2% > 0.
Putting % = % + % and using again the first inequality in item (i) of Lemma we
have

t
lu(®)llp < Ce™ lluoll Lonr2 +/0 Ne 2D ()| o dr

1

+/ fea(t = )] pe PN ([Vyu(r) |l + [ Vor(7) ) dr
0

t
< Clluollsmzs + N / &) || fll oo Loroze
0

+/ [ca(t = )]+ e PE (o @IV ls + oI Ve(r) 15) dr
0
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N
< Clluollprare + E”f”oo,LPﬁLQ
t
+ [leatt =l (JeamPFH + el ) A0 arol
0
N 2
< Clluol|rnr2 + EHfHoo,LPﬁLQ + Ga(t)||v]%
< C1(lluollzonre + I flloo,ponrz) + Mav]l%,
where C7 := max {C, %} and
t
Galt) = / fealt = )] (lea(r)]P ™50 + [ea(r)]p 777 0) €770 dr < My < +o0.
0
We can estimate G2(t) and give a explicit value of My as follows:

Gal1) :/0 fealt = )% (fealr)]7™ 578 + ea(r)]p 777 0) 207 dr

11

- | (¢ )4, 1))} (lmac {11575 (e 1357 5)
0
x e P dr,

If 0 <t <1 then

1/2 .
N / (1= Z)_%Z ’ (p i) dz +/ (1—2)" 252 2 (%_%"‘é) dz
0 1/2
1/2 .
+/ (- 10 dz+/ (1—2) #5063+ ¢z
0 1/2
1/2 )
5/ PR O dz+/ (1— ) #23G-5+0) g2
0 1/2
1/2 .
0 1/2
4 _1 d _ 1 d_l_;_i_i d_1,d_d
22p " 2 22p72 925721272 9257272 25
1_d_ d d 1_d , d a
23 pta 13 -5t i
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If t > 1 then

Ga(t)

-

- /1/2[max{(t — )78, 1} ([max{T—g ks
0

+ [max{r_% , 1}] %7%+é) e Bt dr

1
- / max{(¢ —7)~%,1}]* ([max{r 5,1}~ 54 4 [max{r 5, 1}]p 75 0) e P07 g7
1/2

1_1

t
+/ maxc{(t = )74, 1] ([maX{nga 1] 757 4 + [max{r~2,1}]» %) o B0=7) g
1
1/2
< [ty (10D 1l
0
1
e ) e N
1/2
t
+/ ((t—7) "% +1)2e 7 gr
1

Q=
~—
N———
ml
=
e~
|
2
ISH
3

= M2b7
where 0 < 07 := 2% < 1. Therefore
Gg(t) < M2 = max{Mga, Mgb}.

Using the second inequality of Lemma we obtain the estimates for LP-norm of the
covariant derivative Vu(t) as follows:

ca®)” G740 | u(t)
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< Ce P (||uollp + [[uoll2)

" / ea®)” G50 [ea(t — 7))~

+

'ﬁ\»—‘
'czh—t
&M—‘

A=) (| f(2)lla + £ ()l) dr

+ t[cd<t>1*<%*%+i)[cd<t—r)ﬁ*% 12 (19,007 |, + IV (7)ll2) dr
< Clluolongs + Gar(®)fllx

+ /0 Tea® G fea(t = D (o) 1900+ 1o () Vo)) d
< Clluollzsns + Gan®)fllx

[ leatl 67 Dleate — i H e (la 4 ) arol

< Clluollprnze + Gs1(W)||fllx + Gsa(®)[|v]1% < Cllugllponre + Mst || fllx + Msz||v]%
< Co(lluollponre + 1f]lx) + Msz|v]%,

where Co := max{C, M3;} and
! —(1-141) S S
G31:/[0d(t)] vt eg(t — 7)) ae M dr < My < oo,
0

G = [ lea0 G 3 Deatt =l HHE e (T feat ) e

< M3 < +o0.

We now estimate the integrals G31, G3z and give the corresponding precise values of M3,

and M3s as follows:

1

Gs1(t) ::/0 [Cd(t)]_(;_%+é)[6d(t—T)]%_%+é€_/8(t—7) ir
- / a4, 17 G5 fmax{ ¢t — 1), (s e s g,
0

If 0 <t <1 then

t
G (t) < / t%(%*%Jﬁ)(t — 7)7%(%,%4%) dr =
0
If t > 1 then

t (-3 1] 00 gr < glon )
G31(t)§ (t—T) 2\p 5T +1 dTﬁﬂ 31 F(1—931)—|—B,
0

where 0 < 031 := %(% —%4— é) < 1 and Ms; := max{i

d
2p+2p

,3(931_1)F(1 — 931) + %}
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We continue to estimate the function Gga(t):

1

Gaalt) = [ feal)” B3+ eate = M HH O a3 4 a3 ar

::jg hnax{t—%’1}]_(%_%+%)hnax{(t—-7)—%’1}]%—%+5

=

X <[max{7'*%, 1}]%7%+% + [Inax{T*%7 1}]%7p %) e*ﬁ(th) dr.

If 0 <t <1 then

+ /1 (1— z)—%(r—ﬁa)gg(%—%%) dz + /1 (1- Z)—g(i %%)ﬁ(%‘%ﬂ) dz
1/2 1/2
92535 93t 5 9535 93355
I £+5 1-%+% 1+8-£ 5%
= M3aq
If t > 1 then

1/2 d 1 1,1 d 1 1,1
Gaa(t) :/0 [max{t_aa1}]_(5_5+3)[max{(t—T)—§,1}]?—§+a

x ([masc{r=%, 1157 ¥4 + fmax{r 5,1} 7574 ) e gy
1
b [ st 0 63D e - Ly
1/2

X ([max{f‘%, 1}]p 7544 4 [max{r %, 1}]%—%+é) eBU=T) gy
t
+ [t 176 fmax((e - 1 E 1y
1

1 1,1

X ([maX{T_%v 1}]%_%—% + [max{'r_%7 1}]»" 7 d) e~ BU=7) 4r
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</ " =y Gt | (Al g o

—0o0
t
N / <2;(;—1+;) 48 (3+d) 4 2> o B0-7) g7
—00
4(1-141) REART AR
< |22\r pTd + 1 +
- 1_4d + d 1_4d + i
2 2p 2s 2 2p 2p
# (207 428G o) (om0 - om) + 5

where 0 < 932 = %l(% - %-}- é) < 1. Therefore Ggg(t) < M32 = maX{Mgga, Mggb}.

Using again the second inequality in Lemma we obtain the estimates for L*-norm
of the covariant derivative Vu(t) as follows:

1

ca®)” G543 vugo),
< Ce P (Jluollp + [luoll2)

T / ea®)” G D et — )~ G0 8D (o) s + 1 £()1) dr

T / ca®)” G D (et — 1D (1V,0(0)l] + [Vov(7)]2) dr
< Cllug|lpenrz + Gar(t)| fllx
+ /0 ea®)™ G50 [ea(t — 1) (o) 900 s + o (D)l Vo(7) ) dr

< Clluollpparz + Gar (W) fllx
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« Tea]” G eate = 1 (a4 feanEHE) 00 el

< Clluollprnze + Ga@®)||fllx + Ga(®)||v]%
< Clluo|l ponre + Marl| fllx + Maz||v|%

< Cs(luollzonze + 1 fllx) + Maz|v]%,
where C3 := max{C, My} and
t
G = [ feato) G W eyt - )G
0
t _(1_1
Gia = [ feat)” G
0

< My < o0.

_%—F%)e_ﬁ(t_ﬂ dr < My < oo,

ul=

ealt =)+

-
S
O
ISY
—~
B
=
Q=
|
W =
+
Q=
I
IS
—~
B
SN—
3=
|
il
+
Q=
N—
ml
=
—~
T
K
~—
QU
)

We then estimate the integrals (G41, G42 and give the precise values of My, Mo as follows:

G (t) == /(]t[cd(t)](;§+i) lca(t — T)]%f?r%efg(tﬂ) o

/t[max{ti, 11 G208 fmax( (¢ — )%, 13 (3 +8) =86 4

If0 <t <1 then

t
G41(t)§/ t%(%7§+5)(t—7)7%(%7%+%) dr = § ; - <7 ; T
,_7_’_7 7_7_’_7
0 2 2p T 2s 2 2p T 2s
If ¢ > 1 then
! ~g(1-141) —B(t— fa1—1 1
G41(t>s/ (t—7) 2T 1) P dr < fONTUT(1 - 641) + - < Muy,
0

B

where 0 < 041 := g(l

Next, we have

Galt) = [ fealt)” G40 eate = )+ ()

—/0 hnax{t_%?1}]_(%_%+%)[max{(t—7—)_%’1}]%"'%

x ([maX{Tiga 1}]%7%Jré + [maX{ng, 1}]%7%+5> e~ BU=7) 4r.
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If 0 <t <1 then

Gao(t) < /ttg(é—iJri)(t—T)—‘é(iJré) <T—§(;—§+;) +T—g(;_%+;)> "
0

/2 1/2
= 4_d d d _d
- 22p N 22r 25 N 22p N 22r "2
1 d d 1 d d 1 p I =
2 T3 3 23t 2725 273
- M42a
If t > 1 then
1/2 1 1 1
G42(t)=/ [max{t—%,1}]‘(;—§+g)[max{(t_7) 271}]%5
0

1
s

X ([max{r_g, 1}]%_

+/11 [max{t_%,l}]_(%—iﬂL

/2
 (fmax{r ) s ) e

i 4 [max{r %, 1}]%—%+%) e A=) 47

)[maX{(t —7)78, 1} 5T

=
N

t
+ [ maxgef 17673 fmax(e - - f 1y
1
< (Imax{r=2, )]+ 4 fmax{r %, 1)) 544) 000 ar

1/2
<[ (-8 0d) ] (74G40) 4t G ) o g
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—00
< <2§(§+;) N 1> (2—$+£§,—i g+ -% )
>~ 1 d d 1 d g
2 2 ta2s 3~ 2 + %
i <2§(H+3) +28Git) 4 2) <B94211“(1 — B12) + ;)

Putting 0 < 049 := g(% + %) < 1 and My, := maX{M42a, M42b}, we obtain G42(t) < Mys.
Finally, the inequality (3.2]) holds if we take

6 = max{C’l,Cg,Cg} and M: maX{Ml,MQ,Mgg,MQ}. O

We now invoke the Massera principle to prove Theorem on the existence and
uniqueness of a mild T-periodic solution to the Stokes equations (|1.3]).

Proof of Theorem [L.2, For each initial data z € LP(I'(TM))NL?*(I'(T'M)) from Lemma/3.2]
there exists a unique mild solution u € X" to (1.3]) with u(0) = x. This fact allows to define
the Poincaré map P: LP(I'(TM)) N L*(T(TM)) — LP(T(TM)) N L3(T(TM)) as follows:
For each z € LP(T(TM)) N LA(T(TM)) we set

(3.3)  P(z):=u(T) where u € X is the unique mild solution of (|1.3) with u(0) = =.

Note that using the formula (1.5 of the solutions we have
T

(3.4) P(x) =u(T) = e T4z + / e T=DAPIV u(7) + f(7)] dr
0

with u as in (3.3]). Next, from T-periodicity of v and f, we obtain

(k+1)T
U((k’ + 1)T> — e—(k-‘rl)T.Au(O) _|_/ e‘((k-i—l)T—T)AP[va(T) + f(T)] dr
0

kT
= e*(k“)TAu(O) +/ e*((kH)T*T)AP[VUU(T) + f(7)]dr
0
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(k+1)T
+ / e~ (FFDT=DAP(Y o (1) + f(7)]dr
kT

kT
= TAKTAY0) 4 [ e A T IARIT o) + £(7) dr
. 0
+ / e T=DAR(Y (7 + f(r)] dr
0
kT
:e_TAe_kTAu(O)—I—/ e—T.A —(kT— T)A]P)[ ( )+f( )]
0

T
—(T—-7)A
+ [F e 0ARIT000) + () dr
T
= e TAu(kT) + / e T=DAPIV,u(r) + f(7)]dr for all k € N.
0

It follows that P¥(z) = u(kT) for all k € N. Since F € X, {P*(z)}ren is a bounded
sequence in LP(I'(TM)) N L2(T(TM)).

Next, as usual in the ergodic theory, for each n € N we define the Cesaro sume P, by
1 n
(35)  Ppo=- > PR LP(T(TM)) N L*(T(TM)) — LP(T(TM)) N L (T(TM)).

Starting from z = 0 and using the inequality (3.2]) we get

(3.6) sup 1Pl oz < Cllf zonz + Mlv]%-
€

The boundedness of {P*(0)}xen in X implies that the sequence {Py(0)}nen = {2 > 7,
Pk (0)}n c 18 clearly a bounded sequence in X. By (3.6) we obtain

sup IPa(0) o2 < Cllflenre + Mol
ne

Since LP(I'(TM))NL?*(T'(TM)) has a separable pre-dual Lot (D(TM))+ L3*T(TM)),
from Banach—Alaoglu’s Theorem there exists a subsequence {P,,, (0)} of {P,(0)} such that
{Po, (0)} *5% & € LM (I (TM)) 0 LA (D(TM))

(3.7) -
with ||2]| oze < Cllf | onze + M]v)%-

By simple computations using formula (3.5) we obtain PP, (0) — P, (0) = 1(P"1(0) —
P(0)). Since the sequence {P"1(0)},en is bounded in LP(T'(TM)) N L3(T(TM)), we get
1
lim (PP,(0) — P,(0)) = lim —(P""(0) — P(0)) =0

n—oo n—oo n

strongly in LP(['(TM))NL*(T(T /\/l)) Therefore, for the subsequence {P,, (0)} from (3.7)
we have PP, (0) — P,, (0) —— weak” ). This limit, together with (3.7)), implies that

(3.8) PP, (0) 27 3 € LP(T(TM)) N LAT(TM)).
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We now show that P(z) = z. To do this, using the formula and denoting by (-,-)
the dual pair between LP(I'(TM))NL*(T'(TM)) and L5t (D(TM))+ L*(T(TM)). Then,
since e~ T4 leaves LP%(F(TM)) + L*(T(TM)) invariant, for all h € Lﬁ(F(TM)) +
L*(T(TM)) we have

T
(PP, (0),h) = (e TAP,, (0),h) + < /0
= (Py, (0),e T4R) + </0Te (T=1)API7 ,u(7) dT,h>
([ e

~(I=DAP[V u(7) )] dr, h>

~(I=mAP(V 0 (1) ) dr, h>

e, (z, e*TA/h> +

= (e ™2, h) + < /0 L CDAB () 4 ()] dr. h>

= (P(2), h).
This yields that
(3.9) PP, (0) 2 p3 e LP(D(TM)) N LAT(TM)).

It now follows from (3.8)) and ({ . ) that
P(z) =1=.

Taking now the element 7 € LP(I'(T'M))NL?(I'(TM)) as an initial condition, by Lemma/3.2]
there exists a unique mild solution u(-) € X satisfying @(0) = . From the definition of

Poincaré map P we arrive at ﬁ(O) = u(T). Therefore, the solution a(t) is periodic with

the period T'. The inequality (1.1)) now follows from the inequalities (3.2 and (| .

We now prove the uniqueness of the periodic mild solution. Let u; and us be two
T-periodic mild solutions to equation ((1.3)) which belong to X'. Then, putting v = u; — us
we have that v is T-periodic and, by the formula (L.5),

v(t) = e MA(@ (0) — Up(0)) for t > 0.
The smoothing property (see (3.1))) implies that
Tim [[0(0) 1322 = .

This fact, together with the periodicity of v, gives that v(¢) = 0 for all ¢ > 0. This yields

up = us. O

We now prove Theorem on the existence, uniqueness and stability of periodic
solutions to Navier—Stokes equations (|1.2]) which was stated in Section Actually, we
combine the fixed point argument and the results obtained in Theorem to prove the

second main result which will be done as follows.
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Proof of Theorem [I.3]. Let
BZ = {v € X : v is T-periodic and ||v|x < p}.
Consider the equation
(3.10) Oru+ Au =P[V,v + f].
Then, for v € B;;F we set
®(v) := u where u € X is the unique T-periodic mild solution to (3.10).

We will prove that if p and ||F'||x are small enough, then the transformation ® acts from
BZ into itself and is a contraction. Indeed, taking any v € Bg, applying Theorem for
the right-hand side V,v + f, we obtain that for v € BZ there exists a unique T-periodic
mild solution u to (3.10)) satisfying

[l < (€ + 1) (Cllfllzonre + Mllvl%).-

Therefore, if p and || f||;»~r2 are small enough, the map ® acts from BF:,F into itself. Then,
by (1.5)), we have the following representation of ®:

t
B(v)(t) = e Hu(0) + /0 e UDAP[(Vyv + f)(1)]dr for ®(v) = u.

Furthermore, for vy, ve € Bg by the representation (1.1)) we obtain that u := ®(v1) —

®(v2) is the unique T-periodic mild solution to the equation
Oru + Au = P[Vy,v1 — V2] = P[Vy, 01 + Vi, (V1 — v2)].
Thus, again by Theorem in the case f = 0 we arrive at

[®(v1) — ®(va)|lx < (C+ )M (lor — v2llxlvrllx + vzl xflvr — vallx)
< 2(C+1)Mpllvr — vo|lx-

We hence obtain that if p are sufficiently small, then ®: B;;F — Bg is a contraction.
Therefore, for these values of p and ||f||zpnr2, there exists a unique fixed point u of
®, and by the definition of ®, this function @ is the unique T-periodic mild solution to
Navier—Stokes equation (|1.2]). O

To prove the stability of such a periodic solution we need the cone inequality theorem
which we now recall. To this purpose, we first introduce the following notion of a cone in

a Banach space as follows: A closed subset K of a Banach space W is called a cone if
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(i) zp € K implies Azg € K for all A > 0;
(ii) x1,x9 € K implies z1 + x4 € K;
(iii) £z € K implies zp = 0.

Then, let a cone K be given in the Banach space W. For x,y € W we then write z < y if
y—z € k.
If the cone K is invariant under a linear operator A, then it is easy to see that A

preserves the inequality, i.e., x < y implies Az < Ay. Now, the following theorem of cone

inequality is taken from [3, Theorem 1.9.3].

Theorem 3.3 (Cone inequality). Suppose that K is a cone in a Banach space W such that
K is invariant under a bounded linear operator A € L(W') having spectral radius r4 < 1.

For a vector x € W satisfying
x< Ax+z for some given z € W

we have that it also satisfies the estimate x <y, where y € W is a solution of the equation
y=Ay+z.

Lastly, we prove the third main result as follows.

Proof of Theorem [1.4] To prove the stability of the periodic solution u, we let u(t) be any
bounded solution of equation (|1.6|) corresponding to the initial value ug := u(0) € B £ =
{ve LP(D(TM))NLAT(TM)) : ||v]|prarz < §}. Then, we have

t
u(t) — a(t) = e (u(0) — a(0)) + / e UDAPV u(r) — Vau(r)] dr, for t > 0.
0
By the same way as in the proof of Lemma |3.2] we can prove that
I[u(t) = a@®lll < Ne™¥||u(0) — @(0)]| onr2

+ Zp/o (51(7') + Go(7) + G32(7) + 642(7')) e_'B(t_T)H](u —a)(7)||| dr,
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Put ¢(t) := [[|u(t) — u(t)|||. Then sup;>q¢(t) < oo, and for t > 0,
o(t) < Ne P[|u(0) — @(0)| porp2

3.11 t
(311 + Qp/o (G1(7) + Ga(7) + G32(7) + Gaa(7)) e P g(r) dr.

We will use the Cone Inequality Theorem to Banach space W := L*°([0, 00)) which is the
space of real-valued functions defined and essentially bounded on [0, 00) (endowed with
the sup-norm denoted by || - [|s) with the cone IC being the set of all (a.e.) nonnegative

functions. We now consider the linear operator A defined for h € W by
(Ah)(t) :=2p /0 t (Gi(7) + Ga(7) + Gaa(7) + Gaz(7)) e P Th(r)dr  for t > 0.
Since the boundedness of the integral
/0 ' (@1(r) + Calr) + Con(r) + Can(7) 20 dr,
we have

t
sup [ (Ah)(t)| = sup 2p / (C1(7) + -+ + Gaa(7)) e P |h(7)| dr < 20M ||,
>0 >0 0
where M := My + My + Ms3s + Myo with the constants being defined as in Lemma
Therefore, A € L(L>®([0,0))) and [|A||cc < 2pM < 1 for p being small enough. Note that
if ||u(0) — w(0)||zpr2 is small enough, by the same way as in the proof of (I) we can show
that the solution u(t) exists and unique in a small ball B, of X'
Obviously, A leaves the cone K invariant. The inequality can now be rewritten
as
¢ < Ap+2z for z(t) = Ne PHu(0) — @(0)|| porp2; t > 0.

Hence, by Theorem [3.3| we obtain that ¢ < 1, where # is a solution in L*°([0,00)) of the

equation ¥ = At + z which can be rewritten as
b(t) = Ne P u(0) = @(0) || Lor2

3.12 t
(312 +2p/0 (Gi(1) + -+ + Gaa(7)) e P p(r) | dr - for t > 0.

In order to estimate 1, for 0 < v < 8 we set w(t) := e"1)(t), t > 0. Then, by ([3.12)) we
obtain that

w(t) = Nem @D [u(0) — a(0)| o2

(3.13) b _
+ 2p/ (Gi(T) + -+ Gaa(7)) e~ BNy (1) dr  for ¢ > 0.
0
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We next consider the linear operator D defined for ¢ € L*°([0,00)) by

(Dp)(t) =2p /Ot (Gi(T) + -+ Gaa(1)) e BN o (r)dr for t > 0.

Again, we can estimate

t
sup [(Dy)(t)| = sup 2/)/0 (Gi(1) + -+ + Gaa(7)) e N o(1) | dr < 2pM 5 ||| oo

where Mv is the function obtained by substituting 3 by f — v in M.

Therefore, D € L£(L>([0,00))) and we choose 0 < v < /3 such that 2pM, < 1 (the
existence of such a constant ~ is explained at the end of proof) then | D| < 2pM., < 1.
Equation can now be rewritten as

w=Dw+z forz(t) = Ne” @V u(0) — 0(0)|| fprr2, t > 0.

Therefore, the equation w = Dw + z is uniquely solvable in L*°(]0,00)), and its solution

is w = (I — D)~'z. Hence, we obtain that

lwlloe = I(Z = D)™ 2]loe < I = D)7 H[ll12]loc

N
< ————||u(0) — (0
=1_ H-DH H'LL( ) U( )HLPOL2
< —Jju(0) - a(0)] Cylu(0) — u(0)]|
D — — 2 1= — 2,
=1 2p0t, LrNL ¥ LrAL
where Cy = —N__ This yields that

1—2pM.,"

w(t) < Cyl|u(0) — @(0)|| orzz  for t > 0.

Hence, %(t) = e~ "w(t) < Cye " [u(0)  G(0) | porze. Since [[|ut) — @) = 6(t) < (1),

we obtain that
u(t) —a@®)]]| < Cye™[[u(0) — @(0)||Lrr2  for t > 0.

Now, it remains to show the existence of . Indeed, we have Mw = My + Moy + M3z2+ +
Mo, where My, Moy, M3z, and Mys, are the functions obtained by substituting 3 by
B —vin My, My, M3 and Mys respectively.

Setting E the maximum of the terms which are independent of 8 and =, 6 := max{6;,
032,040}, and F := max{I'(1 — 601),T'(1 — 032),I'(1 — f42)}, we have E(7 + # +
537) < z—lp. It follows that 3(F+11,)9 < 1_2?5’). We obtain that ~ satisfies 0 < v <

(B=)
1
B — (%)m. The existence of v is guaranteed if p is small enough due to the fact

. E(F+1)p\ 125 :. - . .
that function (%) 1-0 is increasing on p and it tends to zero as p decreases to zero.

Our proof is completed. O
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