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Time Optimal Control of System Governed by a Fractional Stochastic Partial

Differential Inclusion with Clarke Subdifferential

Zuomao Yan

Abstract. This paper investigates the time optimal control problems to a new class of

fractional non-instantaneous impulsive stochastic partial differential inclusions with

Clarke subdifferential in Hilbert spaces. Firstly, using the fractional calculus, prop-

erties of fractional resolvent operators and a fixed-point theorem, the existence of

mild solutions for these systems is presented. Secondly, the existence of time optimal

control of system governed by fractional stochastic control inclusions with Clarke sub-

differential and non-instantaneous impulses is also obtained. Finally, an example is

given to illustrate our main results.

1. Introduction

The optimal control theory has a considerable development, and one can find applications

in many domains (see [9–11,13,33]). The time optimal control is an important topic in the

theory of optimal controls and plays a vital role in control systems. In the past decades,

much attention has been paid to time optimal control problems governed by nonlinear

differential systems [14, 22, 38]. Among them, the fractional time optimal control of a

distributed system is an optimal control problem for which dynamic systems are defined

by means of fractional differential equations and inclusions, see for example [24, 27, 29]

and references therein. In particular, it is well known that differential equations with

impulsive conditions were used to describe the evolution process with abrupt perturbation

at some certain time in biology, medicine and control theory [25]. However, in many

cases, the models with abrupt and instantaneous impulses can not characterize many

practical problems (see [2,19,20,26,28,31]). Recently, Wang et al. [37] established the time

optimal control of a system governed by a class of non-instantaneous impulsive differential

equations in Banach spaces.

On the other hand, stochastic optimal control theory is a stochastic generalization of

classical optimal control theory. There are many interesting results on the time optimal
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control of stochastic systems [5, 35]. Furthermore, impulsive stochastic optimal control

systems describing these optimal control dynamical systems subject to both impulse and

stochastic changes have attracted considerable attention [1, 4, 39, 42]. From a practical

point of view, many physical phenomena in evolution processes are modeled as impulsive

stochastic differential systems for which the impulses are non-instantaneous. Therefore,

the optimal control of such systems have become an important object of investigation

stimulated by their numerous applications to problems arising in many branches of physics

and technical science. For example, Yan and Lu [40] considered the optimal control of

a class of first-order non-instantaneous impulsive stochastic neutral evolution integro-

differential equations with infinite delay. The authors in [41] established the solvability

and optimal control of a class of fractional non-instantaneous impulsive stochastic partial

integro-differential equations with delay-dependent states. In this paper, we study the time

optimal control of non-instantaneous impulsive fractional stochastic partial differential

inclusions with Clarke subdifferential of the form

cDα
t N (xt) ∈ AN (xt) + J1−α

t [B(t)u(t)] + J1−α
t

[
µ(∂F (t, xt))

dw(t)

dt

]
,

t ∈ (si, ti+1], i = 0, 1, . . . , N,

(1.1)

x(t) ∈ gi(t, xt), t ∈ (ti, si], i = 1, . . . , N,(1.2)

x(t) = ϕ(t), t ∈ (−∞, 0],(1.3)

where the state x(·) takes values in a separable real Hilbert space H with the inner product

〈 ·, · 〉H and the norm ‖·‖H , cDα
t is the Caputo fractional derivative of order α ∈ (0, 1), J1−α

t

is the (1 − α)-order fractional integral operator. A : D(A) ⊂ H → H is the infinitesimal

generator of resolvent operator Tα(t) (t ≥ 0). The control function u takes value from a

separable Hilbert space Y , and B is a linear operator from Y into H, p ≥ 2 is an integer.

Let K be another separable Hilbert space with the inner product 〈 ·, · 〉K and the norm

‖·‖K . L(K,H) is the space of bounded linear operators mapping K into H equipped with

the usual norm ‖ · ‖H , and let L(H) denote the Hilbert space of bounded linear operators

from H to H. Suppose that {w(t) : t ≥ 0} is a given K-valued Wiener process with a

covariance operator Q ≥ 0 defined on a complete probability space (Ω,F , P ) equipped with

a normal filtration {Ft}t≥0, which is generated by the Wiener process w. The time history

xt : (−∞, 0]→ H given by xt(θ) = x(t+θ) belongs to some abstract phase space B defined

axiomatically; let 0 = t0 = s0 < t1 ≤ s1 < t2 ≤ s2 < · · · < tN ≤ sN < tN+1 = b be prefixed

numbers. gi : [0, b]×B → P(H) (i = 1, 2, . . . , N) are bounded, closed, convex-valued multi-

valued maps, and G : [0, b]×B → H is appropriate function, N (ψ) = ψ(0)−G(t, ψ), ψ ∈ B,

µ : H → L(K,H) is a linear compact operator, ∂F (t, · ) is the Clarke’s subdifferential of

F (t, · ). The initial data {ϕ(t) : −∞ < t ≤ 0} is an F0-adapted, B-valued random variable

independent of the Wiener process w with finite pth moment.
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At present, most of the literatures about differential inclusion require that the non-

linear term is a convex function, which limits the study of differential inclusion. Just

as said in [16], it is important to consider, in many problems, functionals on nonconvex

constraints. Problems of this kind are typical of variational inequalities, optimization and

optimal control theory. The study of the differential inclusions with Clarke subdifferen-

tial, which has wider applications than the subdifferential of convex function. In fact, the

Clarke subdifferential has important applications in mechanics and engineering, especially

in nonsmooth analysis and optimization (see [6,7]). Therefore, it is necessary and impor-

tant to study differential inclusions with Clarke subdifferential type. Very recently, the

papers [18, 23] studied the optimal control results for fractional evolution inclusion and

fractional impulsive evolution inclusion with Clarke subdifferential in Banach spaces. To

the best of our knowledge no work has been reported in the present literature regarding

the time optimal control for fractional impulsive stochastic partial differential inclusions

in Hilbert spaces, which is expressed in the form (1.1)–(1.3). Motivated by the above

consideration, we study this interesting problem, which is natural generalization of time

optimal control concept well known in the theory of infinite dimensional control systems.

In the present paper, we investigate the time optimal control of (1.1)–(1.3) under the

mixed Lipschitz and Carathéodory conditions. The results are obtained by using theory

of fractional resolvent operators, stochastic analysis, the properties of Clarke subdifferen-

tial with a fixed-point theorem. The known results appeared in [14,18,22–24,27,29,37,38]

are generalized to the impulsive stochastic inclusions settings and the case of with infinite

delay and multi-valued non-instantaneous impulses.

The rest of this paper is organized as follows. In Section 2, we introduce some notations

and necessary preliminaries. In Section 3, we give the existence of solutions for control

system. In Section 4, we establish the existence of time optimal control. In Section 5, an

example is given to illustrate our results.

2. Preliminaries

We assume that there exists a complete orthonormal system {en}∞n=1 in K, a bounded

sequence of nonnegative real numbers {λn}∞n=1 such that Qen = λnen, and a sequence αn

of independent Brownian motions such that

〈w(t), e〉K =

∞∑
n=1

√
λn〈en, e〉Kαn(t), e ∈ K, t ≥ 0.

Let L0
2 = L2(Q1/2K,H) be the space of all Hilbert-Schmidt operators from Q1/2K to H

with the norm ‖ψ‖2
L0
2

= Tr((ψQ1/2)(ψQ1/2)∗) for any ψ ∈ L0
2. Clearly for any bounded

operators ψ ∈ L(K,H) this norm reduces to ‖ψ‖2
L0
2

= Tr(ψQψ∗). Let LpFt(Ω, H) be the
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Banach space of all Ft-measurable pth power integrable random variables with values in

the Hilbert space H. Let C([0, b];Lp(Ω, H)) be the Banach space of continuous maps from

[0, b] into Lp(Ω, H) satisfying the condition supt∈[0,b]E‖x(t)‖pH <∞.

We use the notations P(H) = {x ∈ 2H : x 6= ∅}. Let V and Z be two Haus-

dorff topological spaces. A multi-valued map Φ: V → 2Z \ {∅} is said to be upper

semicontinuous (for short u.s.c.) x0 ∈ V , if for any neighborhood O(Φ(x0)) of Φ(x0),

there exists a neighborhood O(x0) of x0 such that Φ(x) ⊂ O(Φx0) for all x ∈ O(x0);

compact if Φ(D) is relatively compact for every any bounded subset D of V ; quasicom-

pact if its restriction to any compact subset D ⊂ V is compact. Consider Hd : P(H) ×
P(H) → R+ ∪ {∞} given by Hd(Ã, B̃) = max

{
sup

ã∈Ã d(ã, B̃), sup
b̃∈B̃ d(Ã, ã)

}
, where

d(Ã, b̃) = inf
ã∈Ã d(ã, b̃), d(ã, B̃) = inf

b̃∈B̃ d(ã, b̃). Then, (Pbd,cl(H), Hd) is a metric space

and (Pcl(H), Hd) is a generalized metric space. For more details, one can see [12].

We introduce the space PC(H) formed by all Ft-adapted measurable, H-valued stochas-

tic processes {x(t) : t ∈ [0, b]} such that x is continuous at t 6= ti, x(ti) = x(t−i ) and x(t+i )

exists for all i = 1, . . . , N . In this paper, we always assume that PC(H) is endowed with

the norm ‖x‖PC =
(

sup0≤t≤bE‖x(t)‖pH
)1/p

. Then (PC(H), ‖ · ‖PC) is a Banach space.

The notation Br(x,H) stands for the closed ball with center at x and radius r > 0 in H.

In this paper, we assume that the phase space (B, ‖ · ‖B) is a semi-normed linear

space of F0-measurable functions mapping (−∞, 0] into H, and satisfying the following

fundamental axioms due to Hale and Kato (see, e.g., [17]):

(A) If x : (−∞, σ + b] → H, b > 0, is such that x|[σ,σ+b] ∈ C([σ, σ + b], H) and xσ ∈ B,

then for every t ∈ [σ, σ + b] the following conditions hold:

(i) xt is in B;

(ii) ‖x(t)‖H ≤ H̃‖xt‖B;

(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖H : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B, where H̃ ≥ 0 is

a constant; K,M : [0,∞)→ [1,∞), K is continuous and M is locally bounded,

and H̃, K, M are independent of x(·).

(B) For the function x(·) in (A), xt is a B-valued function on [σ, σ + b].

(C) The space B is complete.

In the following, let Y be a separable Hilbert space from which the controls u take the

values. Operator B ∈ L∞([0, b], L(Y,H)), ‖B‖∞ stands for the norm of operator B on

Banach space L∞([0, b], L(Y,H)), where L∞([0, b], L(Y,H)) denotes the space of opera-

tor valued functions which are measurable in the strong operator topology and uniformly

bounded on the interval [0, b]. Let LpF ([0, b], Y ) be the closed subspace of LpF ([0, b] ×
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Ω, Y ), consisting of all measurable and Ft-adapted, Y -valued stochastic processes satis-

fying the condition E
∫ b

0 ‖u(t)‖pY dt < ∞, and endowed with the norm ‖u‖LpF ([0,b],Y ) =(
E
∫ b

0 ‖u(t)‖pY dt
)1/p

.

Let U be a nonempty closed bounded convex subset of Y . We define the admissible

control set

Uad = {$(·) ∈ LpF ([0, b], Y ) : $(t) ∈ U a.e. t ∈ [0, b]}.

Then, Bu ∈ Lp([0, b], H) for all u ∈ Uad.

We recall some basic definitions about fractional integral and derivative, we refer to

[34].

Definition 2.1. [7] Let X be a Banach space with the dual space X∗ and F : X → R be

a locally Lipschitz functional on X. The Clarke’s generalized directional derivative of F

at the point x ∈ X in the direction v ∈ X, denoted by F 0(x, v), is defined by

F 0(x, v) = lim
λ→0+

sup
y→x

F (y + λv)− F (y)

λ
.

The Clarke’s generalized gradient of F at x ∈ X, denoted by ∂F (x), is a subset of X∗

given by

∂F (x) = {x∗ ∈ X∗ : F 0(x, v) ≥ 〈x∗, v〉,∀ v ∈ X}.

Definition 2.2. [36] A family {Tα(t)}t≥0 ⊆ L(H) of bounded linear operators in H is

called an α-order fractional resolvent operator (or α-order fractional solution operator) if

it satisfies the following conditions:

(i) Tα(t) is strongly continuous for t ≥ 0 and Tα(0) = I.

(ii) Tα(t)D(A) ⊂ D(A) and ATα(t)x = Tα(t)Ax for all x ∈ D(A), t ≥ 0.

(iii) The resolvent equation holds for all x ∈ D(A), t ≥ 0,

Tα(t)x = x+

∫ t

0
gα(t− s)ATα(s)x ds,

where gα(t− s) = (t−s)α
Γ(α) .

Definition 2.3. [36] Let 0 < θ0 < π/2 and ω0 ∈ R. An α-order fractional resolvent

operator Tα(t) (t ≥ 0) is called analytic if it admits an analytic extension to a sector

Σθ0 := {z ∈ C \ {0} : | arg z| < θ0} and the analytic extension is strongly continuous on

Σθ for every θ ∈ (0, θ0). An analytic α-order fractional resolvent operator Tα(z) (z ∈ Σθ)

is said to be of analyticity type (ω0, θ0) if for each θ ∈ (0, θ0) and ω > ω0, there exists a

positive constant M = M(ω, θ) such that

‖Tα(z)‖H ≤MeωRe z, z ∈ Σθ.
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An analytic α-order fractional resolvent operator Tα(z) (z ∈ Σθ) is said to be bounded if

for each θ ∈ (0, θ0), there exists a positive constant Mθ such that

‖Tα(z)‖H ≤Mθ, z ∈ Σθ.

Let us consider the linear fractional stochastic differential inclusions of the form

cDα
t x(t) ∈ Ax(t) + J1−α

t [B(t)u(t)] + J1−α
t

[
µ(∂F (t))

dw(t)

dt

]
, t ∈ [0, b],(2.1)

x(0) = ϕ(0) ∈ B,(2.2)

where function ∂F ∈ Lp([0, b], H).

If x satisfies the inclusions (2.1)–(2.2), then for t ∈ [0, b], we have

x(t) = ϕ(0) +A(gα ∗ x)(t) +

∫ t

0
B(s)u(s) ds+

∫ t

0
µf(s) dw(s),

where f ∈ Lp([0, b], H), f(t) ∈ ∂F (t) a.e. t ∈ [0, b]. Using the definition of an α-resolvent

and the definition of an integral solution, it follows that

I ∗ x = (Tα −Agα ∗ Tα) ∗ x = Tα ∗ [x− (Agα ∗ x)]

= Tα ∗ [x− (x− ϕ(0)− I ∗Bu− I ∗ µf)] = Tα ∗ [ϕ(0) + I ∗Bu+ I ∗ µf ]

= Tα ∗ ϕ(0) + I ∗ Tα ∗Bu+ I ∗ Tα ∗ µf,

where ∗ is the convolution. Then we have for all t ∈ [0, b],

(2.3) x(t) = Tα(t)ϕ(0) +

∫ t

0
Tα(t− s)B(s)u(s) ds+

∫ t

0
Tα(t− s)µf(s) dw(s), t ∈ [0, b]

is the variation of constant formula satisfying (2.1)–(2.2). Now, we define the mild solution

for (2.1)–(2.2) as follows:

Definition 2.4. A function x ∈ C([0, b], H) is called a mild solution of (2.1)–(2.2) if

x0 = ϕ ∈ B on (−∞, 0], and (2.3) holds for every u ∈ Uad, where f ∈ Lp([0, b], H),

f(t) ∈ ∂F (t) a.e. t ∈ [0, b].

Let x : (−∞, b] → H be a function such that x ∈ PC(H). If x is a solution of (1.1)–

(1.3), from Definition 2.4 and the partial neutral differential inclusions theory, we obtain

x(t) = Tα(t)[ϕ(0)−G(0, ϕ)] +G(t, xt) +

∫ t

0
Tα(t− s)B(s)u(s) ds

+

∫ t

0
Tα(t− s)µf(s) dw(s), t ∈ [0, t1],
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where f ∈ Lp([0, b], H), f(t) ∈ ∂F (t, xt) a.e. t ∈ [0, b]. If t = s1, then x(s1) = g̃1(s1),

where g̃1(s1) ∈ g1(s1, xs1). For t ∈ (s1, t2], we have

x(t) = Tα(t− s1)[x(s1)−G(s1, xs1)] +G(t, xt) +

∫ t

s1

Tα(t− s)B(s)u(s) ds

+

∫ t

s1

Tα(t− s)µf(s) dw(s)

= Tα(t− s1)[g̃1(s1)−G(s1, xs1)] +G(t, xt) +

∫ t

s1

Tα(t− s)B(s)u(s) ds

+

∫ t

si

Tα(t− s)µf(s) dw(s).

By repeating the same procedure, we can easily deduce that

x(t) = Tα(t− si)[g̃i(si)−G(si, xsi)] +G(t, xt) +

∫ t

si

Tα(t− s)B(s)u(s) ds

+

∫ t

si

Tα(t− s)µf(s) dw(s)

holds for all t ∈ (si, ti+1], where g̃i(t) ∈ gi(t, xt), i = 1, . . . , N .

Next we will derive the appropriate definition of mild solutions of (1.1)–(1.3).

Definition 2.5. An Ft-adapted stochastic process x : (−∞, b]→ H is called a mild solu-

tion of the system (1.1)–(1.3) if x0 = ϕ ∈ B on (−∞, 0], x|[0,b] ∈ PC([0, b], H), and

(i) x(t) is measurable and adapted to Ft, t ≥ 0.

(ii) x(t) ∈ H has càdlàg paths on t ∈ [0, b] a.s and for each t ∈ [0, b], x(t) satisfies

x(t) = g̃j(t) for all t ∈ (tj , sj ], j = 1, . . . , N , and

x(t) = Tα(t)[ϕ(0)−G(0, ϕ)] +G(t, xt) +

∫ t

0
Tα(t− s)B(s)u(s) ds

+

∫ t

0
Tα(t− s)µf(s) dw(s)

for all t ∈ [0, t1], and

x(t) = Sα(t− si)[g̃i(si)−G(si, xsi)] +G(t, xt) +

∫ t

si

Tα(t− s)B(s)u(s) ds

+

∫ t

si

Tα(t− s)µf(s) dw(s)

for all t ∈ (si, ti+1], i = 1, . . . , N , where u ∈ Uad, f ∈ Lp([0, b], H), f(t) ∈ ∂F (t, xt)

a.e. t ∈ [0, b], and g̃i(t) ∈ gi(t, xt), i = 1, . . . , N .
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Definition 2.6. [15] A multi-valued map Φ: H → 2H is referred to as condensing if, for

any bounded subset D ⊆ H, which is not relatively compact, one has β(Φ(D)) < β(D),

where β(·) stands for the Kuratowski measure of noncompactness.

Lemma 2.7. [15] Let X and V be two Hausdorff topological spaces. Assume that Φ: X →
2V \ {∅} is a multi-valuedmap such that Φ(X) ⊂ K̃ and the graph of Φ is closed, where K̃

is a compact set. Then Φ is u.s.c.

The next result is a consequence of the phase space axioms.

Lemma 2.8. Let x : (−∞, b] → H be an Ft-adapted measurable process such that the

F0-adapted process x0 = ϕ(t) ∈ LpF0
(Ω,B) and x|[0,b] ∈ PC([0, b], H), then

‖xs‖B ≤MbE‖ϕ‖B +Kb sup
0≤s≤b

E‖x(s)‖H ,

where Kb = sup{K(t) : 0 ≤ t ≤ b}, Mb = sup{M(t) : 0 ≤ t ≤ b}.

Lemma 2.9. [8] For any p ≥ 1 and for arbitrary L0
2(K,H)-valued predictable process

φ(·) such that

sup
s∈[0,t]

E

∥∥∥∥∫ s

0
φ(v) dw(v)

∥∥∥∥2p

H

≤ (p(2p− 1))p
(∫ t

0

(
E‖φ(s)‖2p

L0
2

)1/p
ds

)p
, t ∈ [0,∞).

Lemma 2.10. [12] Let D be a nonempty, bounded, closed subset of a Banach space H,

and Φ: D → P(D) be a u.s.c. condensing multi-valued map. If for every x ∈ D, Φ(x) is

a closed and convex subset of D, then Φ admits a fixed point in D.

3. Existence of mild solutions

In this section, we prove the existence of mild solutions for the system (1.1)–(1.3). Assume

that the following hypotheses:

(H1) Tα(t) is an analytic resolvent of analyticity type (ω0, θ0) and M = supt∈[0,b] ‖Tα(t)‖H
<∞.

(H2) The function G : [0, b] × B → H is continuous, and there exists a positive constant

LG such that

E‖G(t1, ψ1)−G(t2, ψ2)‖pH ≤ LG[|t1 − t2|+ ‖ψ1 − ψ2‖pB], t ∈ [0, b], ψ1, ψ2 ∈ B,

E‖G(t, ψ)‖pH ≤ LG(‖ψ‖pB + 1), t ∈ [0, b], ψ ∈ B.

(H3) The functional F : [0, b]× B → R satisfies the following conditions:

(i) F (t, · ) : [0, b]→ R is measurable for all ψ ∈ B.
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(ii) F (t, ψ) : B → R is locally Lipschitz continuous for a.e. t ∈ [0, b].

(iii) There exist functions {Λn∗} ⊂ L1([0, b],R+) such that

sup
‖ψ‖pB≤n∗

E‖∂F (t, ψ)‖pH ≤ Λn∗(t)

for a.e. t ∈ [0, b], n∗ > 0 with

lim inf
n∗→+∞

‖Λn∗‖L1

n∗
= 0,

where E‖∂F (t, ψ)‖pH = sup{E‖f‖pH : f ∈ ∂F (t, ψ)}.

(H4) There exist γi > 0, i = 1, . . . , N , such that

EHp
d (gi(t1, ψ1), gi(t2, ψ2)) ≤ γi[|t1 − t2|+ ‖ψ1 − ψ2‖pB], t ∈ (ti, si], ψ1, ψ2 ∈ B,

EHp
d (gi(t, ψ), 0) ≤ γi(‖ψ‖pB + 1), t ∈ (ti, si], ψ ∈ B.

Let q satisfy 1/p + 1/q = 1 and an operator Ψ: Lq([0, b], H) → P(Lp([0, b], H)) be

defined by

Ψ(ψ) = {f ∈ Lp([0, b], H) : f(t) ∈ ∂F (t, ψ) a.e. t ∈ [0, b]}, ψ ∈ Lq([0, b], H).

We also need some auxiliary results.

Lemma 3.1. (Compare with [30]) Let condition (H3) hold and the operator Ψ satisfy: if

xn → x ∈ Lq([0, b], H), fn
w−→ f ∈ Lp([0, b], H) and fn ∈ Ψ(xn). Then one has f ∈ Ψ(x).

Lemma 3.2. (Compare with [23]) Let condition (H3) hold. Then for every x ∈ Lq([0, b], H),

the set Ψ(x) is nonempty weakly compact convex.

Now, we are in a position to state the existence theorem

Theorem 3.3. If assumptions (H1)–(H4) are satisfied, then for each u ∈ Uad, the system

(1.1)–(1.3) has at least one mild solution on [0, b], provided that

(3.1) 2p−1Kp
b max

1≤i≤N

[
(8p−1Mp + 1)γi + 4p−1(2p−1Mp + 1)LG

]
< 1.

Proof. Consider the space Y = {x : (−∞, b] → H;x(0) = ϕ(0), x|[0,b] ∈ PC(H)} endowed

with the uniform convergence topology and consider the operator Φ: Y → P(Y) defined

by

Φ(x) = {v ∈ Y : v(t) satifies (3.2)},
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where (3.2) is given by

(3.2) v(t) =



Tα(t)[ϕ(0)−G(0, ϕ)] +G(t, xt)

+
∫ t

0 Tα(t− s)B(s)u(s) ds

+
∫ t

0 Tα(t− s)µf(s) dw(s), t ∈ [0, t1], i = 0,

g̃i(t), t ∈ (ti, si], i ≥ 1,

Tα(t− si)[g̃i(si)−G(si, xsi)]

+G(t, xt) +
∫ t
si
Tα(t− s)B(s)u(s) ds

+
∫ t
si
Tα(t− s)µf(s) dw(s), t ∈ (si, ti+1], i ≥ 1,

and x : (−∞, 0]→ H is such that x0 = ϕ and x = x on [0, b], where f(t) ∈ Ψ(xt) = {f ∈
Lp([0, b], H) : f(t) ∈ ∂F (t, xt) a.e. t ∈ [0, b]}, xt ∈ B, and g̃i(t) ∈ gi(t, xt), i = 1, . . . , N .

From (H1) and Hölder’s inequality, the following inequality holds:

E

∥∥∥∥∫ t

si

Tα(t− s)B(s)u(s) ds

∥∥∥∥p
H

≤ E
[∫ t

si

‖Tα(t− s)‖H‖B(s)u(s)‖H ds
]p

≤Mp‖B‖p∞(ti+1 − si)p−1E

∫ t

si

‖u(s)‖pY ds

≤Mp‖B‖p∞(ti+1 − si)p−1‖u‖p
LpF ([0,b],Y )

.

Then from Bochner’s Theorem, it follows that Tα(t− s)B(s)u(s) are integrable on (si, t),

i = 0, 1, . . . , N . It is clear that Φ is a well-defined operator on Y. We shall show that Φ

satisfies the hypotheses of Lemma 2.10. The proof will be given in several steps.

Step 1: There exists n ∈ N such that Φ(Bn) ⊂ Bn, where Bn = {x ∈ Y : ‖x‖pPC ≤ n}.
To the contrary, assume that there exist {xn}, {vn} ⊂ Y such that xn ∈ Bn, vn ∈ Φ(xn)

and vn /∈ Bn, n ∈ N. Then, there exist sequences {fn} and {g̃i,n} with fn(t) ∈ Ψ(xn,t)

and g̃i,n(t) ∈ gi(t, xn,t), such that

vn(t) =



Tα(t)[ϕ(0)−G(0, ϕ)] +G(t, xn,t)

+
∫ t

0 Tα(t− s)B(s)u(s) ds

+
∫ t

0 Tα(t− s)µfn(s) dw(s), t ∈ [0, t1], i = 0,

g̃i,n(t), t ∈ (ti, si], i ≥ 1,

Tα(t− si)[g̃i,n(si)−G(si, xn,si)]

+G(t, xn,t) +
∫ t
si
Tα(t− s)B(s)u(s) ds

+
∫ t
si
Tα(t− s)µfn(s) dw(s), t ∈ (si, ti+1], i ≥ 1.

If x ∈ Bn, from Lemma 2.8, it follows that

‖xs‖pB ≤ 2p−1[Mb‖ϕ‖B]p + 2p−1Kp
bn := n∗.



Time Optimal Control 165

By (H1)–(H3), we have for t ∈ [0, t1],

E‖vn(t)‖pH ≤ 4p−1E‖Tα(t)[ϕ(0)−G(0, ϕ)]‖pH + 4p−1E‖G(t, xn,t)‖pH

+ 4p−1E

∥∥∥∥∫ t

0
Tα(t− s)B(s)u(s) ds

∥∥∥∥p
H

+ 4p−1E

∥∥∥∥∫ t

0
Tα(t− s)µfn(s) dw(s)

∥∥∥∥p
H

≤ 8p−1Mp[E‖ϕ(0)‖pH + LG(‖ϕ‖pB + 1)] + 4p−1LG(‖xt‖pB + 1)

+ 4p−1Mp‖B‖p∞t
p−1
1 ‖u‖p

LpF ([0,t1],Y )

+ 4p−1CpM
p‖µ‖pL(H)

[∫ t

0
[E‖fn(s)‖p

L0
2
]2/p ds

]p/2
≤ 8p−1Mp[E‖ϕ(0)‖pH + LG(‖ϕ‖pB + 1)] + 4p−1LG(n∗ + 1)

+ 4p−1Mp‖B‖p∞t
p−1
1 ‖u‖p

LpF ([0,t1],Y )

+ 4p−1CpM
p‖µ‖pL(K,H)t

p/2−1
1 ‖Λn∗‖L1([0,t1],R+).

For any t ∈ (ti, si], i = 1, . . . , N ; by (H4), we have

E‖vn(t)‖pH ≤ γi(‖xt‖
p
B + 1) ≤ γi(n∗ + 1).

Similarly, for any t ∈ (si, ti+1], i = 1, . . . , N , we have

E‖vn(t)‖pH ≤ 4p−1E‖Tα(t− si)[g̃i,n(si)−G(si, xn,si)]‖
p
H

+ E‖G(t, xn,t)‖pH + E

∥∥∥∥∫ t

si

Tα(t− s)B(s)u(s) ds

∥∥∥∥p
H

+ E

∥∥∥∥∫ t

si

Tα(t− s)µfn(s) dw(s)

∥∥∥∥p
H

≤ 8p−1Mp[γi(n
∗ + 1) + LG(n∗ + 1)] + 4p−1LG(n∗ + 1)

+ 4p−1Mp‖µ‖pL(H)‖B‖
p
∞(ti+1 − si)p−1‖u‖p

LpF ([si,ti+1],Y )

+ 4p−1CpM
p‖µ‖pL(K,H)(ti+1 − si)p/2−1‖Λn∗‖L1([si,ti+1],R+).

Then, for all t ∈ [0, b], we have

n < E‖vn(t)‖pH ≤M∗ + max
1≤i≤N

{
(8p−1Mp + 1)γi + 4p−1(2p−1Mp + 1)LG

}
n∗

+ 4p−1CpM
p‖µ‖pL(K,H)b

p/2−1‖Λn∗‖L1([0,b],R+),

where

M∗ = 8p−1Mp[E‖ϕ(0)‖pH + LG(‖ϕ‖pB + 1)]

+ max
1≤i≤N

{
(8p−1Mp + 1)γi + 4p−1(2p−1Mp + 1)LG

}
+ 4p−1Mp‖B‖p∞bp−1‖u‖p

LpF ([0,b],Y )
.
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Thus,

n∗ < 2p−1[Mb‖ϕ‖B]p + 2p−1Kp
b

[
M∗ + max

1≤i≤N

{
(8p−1Mp + 1)γi + 4p−1(2p−1Mp + 1)LG

}
n∗

+ 4p−1CpM
p‖µ‖pL(K,H)b

p/2−1‖Λn∗‖L1([0,b],R+)

]
.

Dividing on both sides by n∗ and taking the lower limit as n∗ →∞, we get

2p−1Kp
b max

1≤i≤N

{
(8p−1Mp + 1)γi + 4p−1(2p−1Mp + 1)LG

}
≥ 1.

This is a contradiction with the formula (3.1). Hence for some n ∈ N, Φ(Bn) ⊂ Bn.

Step 2: Φ(x) is convex for each x ∈ Y. In fact, if v1, v2 belong to Φ(x), then there

exist f1(t), f2(t) ∈ Ψ(xt) and g̃i,1(t), g̃i,2(t) ∈ gi(t, xt) for t ∈ [0, t1] such that

vk(t) = Tα(t)[ϕ(0)−G(0, ϕ)] +G(t, xt)

+

∫ t

0
Tα(t− s)B(s)u(s) ds+

∫ t

0
Tα(t− s)µfk(s) dw(s), k = 1, 2.

Let 0 ≤ λ ≤ 1. For t ∈ [0, t1] we have

(λv1 + (1− λ)v2)(t) = Tα(t)[ϕ(0)−G(0, ϕ)] +G(t, xt) +

∫ t

0
Tα(t− s)B(s)u(s) ds

+

∫ t

0
Tα(t− s)µ[λf1(s) + (1− λ)f2(s)] dw(s).

For any t ∈ (ti, si], i = 1, . . . , N , we have

(λv1 + (1− λ)v2)(t) = [λg̃i,1(t) + (1− λ)g̃i,2(t)].

Similarly, for any t ∈ (si, ti+1], i = 1, . . . , N , we have

vk(t) = Tα(t− si)[g̃i,k(si)−G(si, xsi)] +G(t, xt)

+

∫ t

si

Tα(t− s)B(s)u(s) ds+

∫ t

si

Tα(t− s)µfk(s) dw(s), k = 1, 2.

Let 0 ≤ λ ≤ 1. For each t ∈ (si, ti+1], i = 1, . . . , N , we have

(λv1 + (1− λ)v2)(t) = Tα(t− si)
{

[λg̃i,1(si) + (1− λ)g̃i,2(si)]−G(si, xsi)
}

+G(t, xt)

+

∫ t

si

Tα(t− s)B(s)u(s) ds

+

∫ t

si

Tα(t− s)µ[λf1(s) + (1− λ)f2(s)] dw(s).

In view of Lemma 3.2 and gi (i = 1, 2, . . . , N) are convex values, we have (λv1+(1−λ)v2) ∈
Φ(x).
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Step 3: Φ(x) is closed for each x ∈ Y. Let {vn}n≥0 ∈ Φ(x) such that vn → v in Y.

Then there exists fn(t) ∈ Ψ(xn,t) and g̃i,n(t) ∈ gi(t, xn,t) such that

vn(t) =



Tα(t)[ϕ(0)−G(0, ϕ)] +G(t, xt)

+
∫ t

0 Tα(t− s)B(s)u(s) ds

+
∫ t

0 Tα(t− s)µfn(s) dw(s), t ∈ [0, t1], i = 0,

g̃i,n(t), t ∈ (ti, si], i ≥ 1,

Tα(t− si)[g̃i,n(si)−G(si, xsi)]

+G(t, xt) +
∫ t
si
Tα(t− s)B(s)u(s) ds

+
∫ t
si
Tα(t− s)µfn(s) dw(s), t ∈ (si, ti+1], i ≥ 1.

By Lemma 3.2, passing to a subsequence if necessary, we can deduce that fn
w−→ f in

Lp([0, b], H). By applying condition (H3), we know that {fn} ⊂ Lp([0, b], H) is bounded.

Thus, there exists a subsequence, denoted it again by {fn}, which converges weakly to

f∗ in Lp([0, b], H). By the uniqueness of the limit, it is easy to have f = f∗. Since gi,

i = 1, . . . , N , are closed operators, it follows that g̃i,n(t) → g̃i(t) ∈ gi(t, xt) for every

t ∈ (ti, si], i = 1, . . . , N . Therefore, we have for each t ∈ [0, b],

vn(t)→ v(t) =



Tα(t)[ϕ(0)−G(0, ϕ)] +G(t, xt)

+
∫ t

0 Tα(t− s)B(s)u(s) ds

+
∫ t

0 Tα(t− s)µf(s) dw(s), t ∈ [0, t1], i = 0,

g̃i(t), t ∈ (ti, si], i ≥ 1,

Tα(t− si)[g̃i(si)−G(si, xsi)]

+G(t, xt) +
∫ t
si
Tα(t− s)B(s)u(s) ds

+
∫ t
si
Tα(t− s)µf(s) dw(s), t ∈ (si, ti+1], i ≥ 1.

This shows that v ∈ Φ(x).

Step 4: Φ(x) is u.s.c. and condensing. For this purpose, we decompose Φ as Φ =

Φ1 + Φ2, where the operators Φ1, Φ2 are defined on Bn respectively by

(Φ1x)(t) =


Tα(t)[ϕ(0)−G(0, ϕ)] +G(t, xt), t ∈ [0, t1], i = 0,

g̃i(t), t ∈ (ti, si], i ≥ 1,

Tα(t− si)[g̃i(si, xsi)−G(si, xsi)] +G(t, xt), t ∈ (si, ti+1], i ≥ 1

and

Φ2(x) = {ζ ∈ Y : v(t) satifies (3.3)},



168 Zuomao Yan

where (3.3) is given by

(3.3) ζ(t) =



∫ t
0 Tα(t− s)B(s)u(s) ds

+
∫ t

0 Tα(t− s)µf(s) dw(s), t ∈ [0, t1], i = 0,

0, t ∈ (ti, si], i ≥ 1,∫ t
si
Sα(t− s)B(s)u(s) ds

+
∫ t
si
Tα(t− s)µf(s) dw(s), t ∈ (si, ti+1], i ≥ 1,

where f(t) ∈ Ψ(xt) and g̃i(t) ∈ gi(t, xt). By Lemma 2.10, we need only show that Φ1 is

contractive and Φ2 is u.s.c. and compact.

Claim 1: Φ1 is a contraction map on Bn. Let t ∈ [0, t1] and x∗, x∗∗ ∈ BPC. From

(H2) and Lemma 2.8, we have

EHp
d ((Φ1x

∗)(t), (Φ1x
∗∗)(t))

≤ LG‖(x∗)t − (x∗∗)t‖pB
≤ 2p−1Kp

bLG sup
{
E‖x∗(τ)− x∗∗(τ)‖pH , 0 ≤ τ ≤ t

}
≤ 2p−1Kp

bLG sup
s∈[0,b]

E‖x∗(s)− x∗∗(s)‖pH

= 2p−1Kp
bLG sup

s∈[0,b]
E‖x∗(s)− x∗∗(s)‖pH (since x = x on [0, b])

= 2p−1Kp
bLG‖x

∗ − x∗∗‖pPC .

For any t ∈ (ti, si], i = 1, . . . , N , we have

EHp
d ((Φ1x

∗)(t), (Φ1x
∗∗)(t)) ≤ 2p−1Kp

b γi‖x
∗ − x∗∗‖pPC .

Similarly, for any t ∈ (ti, ti+1], i = 1, . . . , N , we have

EHp
d ((Φ1x

∗)(t), (Φ1x
∗∗)(t)) ≤ 4p−1Mp

[
γi‖(x∗)t − (x∗∗)t‖pB + LG‖(x∗)si − (x∗∗)si‖

p
B
]

+ 2p−1LG‖(x∗)t)− (x∗∗)t‖pB
≤ 4p−1Kp

b [2p−1Mpγi + (1 + 2p−1Mp)LG]‖x∗ − x∗∗‖pPC .

Thus, for all t ∈ [0, b], we have

EHp
d ((Φ1x

∗)(t), (Φ1x
∗∗)(t)) ≤ L0‖x∗ − x∗∗‖pPC .

Taking supremum over t,

EHp
d (Φ1x

∗,Φ1x
∗∗) ≤ L0‖x∗ − x∗∗‖pPC ,

where L0 = 2p−1Kp
b max1≤i≤N [(4p−1Mp + 1)γi + 2p−1(1 +Mp)LG]. By (3.1), we see that

L0 < 1. Hence, Φ1 is a contraction.
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Claim 2: Φ2x is clearly bounded for all x ∈ Bn.

Claim 3: Φ2 is equicontinuous on Bn. Since Tα(·) is strongly continuous, the function

s→ Tα(s) is continuous in the uniform operator topology on (0, b]. Let si < ε < t ≤ ti+1,

i = 0, 1, . . . , N , and δ > 0 such that ‖Tα(τ1) − Tα(τ2)‖pH < ε for every τ1, τ2 ∈ (si, ti+1]

with |τ1 − τ2| < δ. For each x ∈ Bn, 0 < |τ̃ | < δ, t, t + τ̃ ∈ [si, ti+1], i = 1, . . . , N , and

ζ ∈ Φ2x, there exists f ∈ Ψ(xt), we have

E‖ζ(t+ τ̃)− ζ(t)‖pH

≤ 4p−1E

∥∥∥∥∫ t

si

[Tα(t+ τ̃ − s)− Tα(t− s)]B(s)u(s) ds

∥∥∥∥p
H

+ 4p−1E

∥∥∥∥∥
∫ t+τ̃

t
Tα(t+ τ̃ − s)B(s)u(s)(s) ds

∥∥∥∥∥
p

H

+ 4p−1E

∥∥∥∥∫ t

si

[Tα(t+ τ̃ − s)− Tα(t− s)]µf(s) dw(s)

∥∥∥∥p
H

+ 4p−1E

∥∥∥∥∥
∫ t+τ̃

t
Tα(t+ τ̃ − s)µf(s) dw(s)

∥∥∥∥∥
p

H

≤ 4p−1‖B‖p∞(ti+1 − si)p−1

∫ t

si

‖Sα(t+ τ̃ − s)− Sα(t− s)‖pHE‖u(s)‖pH ds

+ 4p−1‖B‖p∞Mpτ̃p−1

∫ t+τ̃

t
E‖u(s)‖pH ds

+ 4p−1Cp

[∫ t

si

‖Tα(t+ τ̃ − s)− Tα(t− s)‖pH [E‖f(s)‖pH ]2/p
]p/2

ds

+ 4p−1CpM
p

[∫ t+τ̃

t
[E‖f(s)‖pH ]2/p ds

]p/2
ds

≤ 4p−1ε‖B‖p∞(ti+1 − si)p−1‖u‖p
LpF ((si,ti+1],Y )

+ 4p−1‖B‖p∞Mpτ̃p−1

∫ t+τ̃

t
E‖u(s)‖pH ds

+ 4p−1Cp‖µ‖pL(K,H)(ti+1 − si)p/2−1ε

∫ t

si

Λn∗(s) ds

+ 4p−1CpM
p‖µ‖pL(K,H)τ̃

p/2−1

∫ t+τ̃

t
Λn∗(s) ds.

The right-hand side tends to zero as τ̃ → 0, and sufficiently small positive number ε.

Hence Φ2 maps Bn into an equicontinuous family of functions.

Claim 4: (Φ2Bn)(t) is relatively compact in H for each t ∈ [0, b], where (Φ2Bn)(t) =

{ζ(t) : ζ ∈ Φ2Bn}, t ∈ [0, b]. If τ, τ ′ ∈ [τk, τk+1] for some k = 1, 2, . . . , n− 1, we can select

points si = τ1 < τ2 < · · · < τn = t such that ‖Tα(t − τ) − Tα(t − τ ′)‖ ≤ ε. For x ∈ Bn,
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and ζ ∈ Φ2x, there exists f(t) ∈ Ψ(xt), we have

E

∥∥∥∥∫ t

si

f(s) dw(s)

∥∥∥∥p
H

≤ Cp(ti+1 − si)p/2−1

∫ ti+1

si

Λn(s) ds = l∗i .

Then we find that∫ t

si

Tα(t− s)µf(s) dw(s) =
n−1∑
k=1

∫ τk+1

τk

[Tα(t− s)− Tα(t− τk)]µf(s) dw(s)

+
n−1∑
k=1

Tα(t− τk)µ
∫ τk+1

τk

f(s) dw(s)

∈ Di,ε +

n−1∑
k=1

Tα(t− τk)µBl∗i (0, H).

By the compactness of µ, we have
{ ∫ t

si
Tα(t−s)µf(s) dw(s) : x ∈ Bn

}
∈ Di,ε+Ji,ε, where

diam(Di,ε) ≤ ε‖µ‖pL(K,H)l
∗
i and Ji,ε are relatively compact, which permit us concluding

that the set
{ ∫ t

si
Tα(t− s)µf(s) dw(s) : x ∈ Bn

}
is relatively compact in H since ε is arbi-

trary. On the other hand, the set
{ ∫ t

si
Tα(t− s)B(s)u(s) ds

}
is bounded and independent

of x. Thus (Φ2Bn)(t) is relatively compact in H for each t ∈ [0, b].

Step 5: Φ2 has a closed graph. Let x(n) → x∗ (n → ∞), ζ(n) ∈ Φ2x
(n), x(n) ∈ Bn

and ζ(n) → ζ∗. From Axiom (A), it is easy to see that (x(n))s → (x∗)s uniformly for

s ∈ (−∞, b] as n → ∞. We shall prove that ζ∗ ∈ Φ2x∗. Now ζ(n) ∈ Φx(n) means that

there exists f (n)(t) ∈ Ψ((x(n))t) such that, for each t ∈ [si, ti+1], i = 1, . . . , N ,

ζ(n)(t) =

∫ t

si

Tα(t− s)B(s)u(s) ds+

∫ t

si

Tα(t− s)µf (n)(s) dw(s).

According to (H3), we obtain that the boundedness of fn. In view of the reflexivity of

Lp([0, b], H), without loss of generality, we can suppose that fn
w−→ f∗ ∈ Lp([0, b], H). A

continuous linear operator Υ: Lp([0, b], H)→ PC([0, b], H) is defined as

Υ(f)(·) =

∫ ·
si

Tα( · − s)B(s)u(s) ds+

∫ ·
si

Tα( · − s)µf∗(s) dw(s).

By the compactness of µ, we have

‖Υ(fn)(t)−Υ(f∗)(t)‖pH ≤ CpM
p

[∫ t

si

[
E‖µ[fn(s)− f∗(s)]‖pH

]2/p
ds

]p/2
≤ CpMp(ti+1 − si)p/2−1

∫ t

si

‖µfm(s)− µf∗(s)‖pH ds

≤ CpMp(ti+1 − si)p/2‖µfm − µf∗‖pPC as n→∞.
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Because x(n) → x in Y ⊂ Lq([0, b], H), from Lemma 3.1, it follows that

ζ∗(t) =

∫ t

si

Tα(t− s)B(s)u(s) ds+

∫ t

si

Tα(t− s)µf∗(s) dw(s)

for f∗(t) ∈ Ψ((x∗)t). Therefore, Φ2 has a closed graph and Φ2 is a completely continuous

multi-valued map with compact value. So Φ2 is u.s.c. Hence Φ = Φ1 + Φ2 is u.s.c. and

condensing. By Lemma 2.10, Φ admits a fixed point on Bn. Therefore, the system (1.1)–

(1.3) has at least one mild solution x in Bn. The proof is complete.

4. Existence of time optimal controls

In this section, we consider a control problem and present a result on the existence of

fractional impulsive stochastic time optimal controls.

Let xu denote the mild solution of system (1.1)–(1.3) corresponding to the control

u ∈ Uad. Let x0, x1 ∈ H with x0 6= x1. For some t > 0, we suppose that there exists

an admissible control u satisfying x(t, f, u) = x1 and x0 = x(0) = ϕ(0). Let us define

the transition time, which is the first time tu such that x(tu, fu, u) = x1. The optimal

time is defined by low limit t0 of tu such that x(tu, fu, u) = x1 for admissible control

u. If the control u0 ∈ Uad such that x(t0, f0, u0) = x1, then u0 ∈ Uad is called the

time optimal control. It is sufficient to prove that the existence of the admissible control

satisfies x(t0, f0, u0) = x1 with respect to (x0, x1).

Theorem 4.1. Assume that all the hypotheses of Theorem 3.3 hold. Suppose that B is

a strongly continuous operator. Then there exists a time optimal control with respect to

(x0, x1).

Proof. Let

t0 = inf{t : x(t, f, u) = x1, where u is an admissible control}.

Then, there exists a monotone decreasing sequence tn → t0 as n → ∞. Assume that

u ∈ Uad is the corresponding control such that the trajectories

xn(tn, fn, un) =



Tα(tn)[ϕ(0)−G(0, ϕ) +G(tn, (xn)tn)]

+
∫ tn

0 Tα(tn − s)B(s)un(s) ds

+
∫ tn

0 Tα(tn − s)µfn(s) dw(s), t ∈ [0, t1], i = 0,

g̃ni (tn), t ∈ (ti, si], i ≥ 1,

Tα(tn − si)[g̃ni (si)−G(si, (xn)si)]

+G(tn, (xn)tn) +
∫ tn
si
Tα(tn − s)B(s)un(s) ds

+
∫ tn
si
Tα(tn − s)µfn(s) dw(s), t ∈ (si, ti+1], i ≥ 1
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satisfying xn(tn, fn, un) = x1, n = 1, 2, . . ., and fn(s) ∈ Ψ((xn)s), g̃
n
i (tn) ∈ gi(tn, (xn)tn).

Notice that xn(tn, fn, un) ∈ Bn. Because {un} ⊆ Uad, {un} is bounded in LpF ([0, b], Y ), so

there exists a subsequence, relabeled as {un}, and u0 ∈ LpF ([0, b], Y ) such that

un
w−→ u0 in LpF ([0, b], Y ) as n→∞.

Since Uad is closed and convex, we can use Mazur’s lemma to conclude that there exists a

convex combination of {un}, denoted by {un}, which strongly converges to u0 ∈ Uad.

For every t ∈ [0, b], we know that xn(tn, fn, un) can be rewritten as

xn(tn, fn, un) =



Tα(tn)[ϕ(0)−G(0, ϕ) +G(tn, (xn)tn)]

+
∫ t0

0 Tα(tn − s)B(s)un(s) ds

+
∫ t0

0 Tα(tn − s)µfn(s) dw(s)

+
∫ tn
t0 Tα(tn − s)B(s)un(s) ds

+
∫ tn
t0 Tα(tn − s)µfn(s) dw(s), t ∈ [0, t1], i = 0,

g̃ni (tn), t ∈ (ti, si], i ≥ 1,

Tα(tn − si)[g̃ni (si)−G(si, (xn)si)]

+G(tn, (xn)tn) +
∫ t0
si
Tα(tn − s)B(s)un(s) ds

+
∫ t0
si
Tα(tn − s)fn(s) dw(s)

+
∫ tn
t0 Tα(tn − s)B(s)un(s) ds

+
∫ tn
t0 Tα(tn − s)µfn(s) dw(s), t ∈ (si, ti+1], i ≥ 1.

By (H1), (H2) and (H4), we have

Tα(tn)[ϕ(0)−G(0, ϕ)]→ Tα(t0)[ϕ(0)−G(0, ϕ)] as n→∞,

G(tn, (xn)tn)→ G(t0, (x0)t0) as n→∞,

g̃ni (tn)→ g̃0
i (t

0) as n→∞,

Tα(tn − si)[g̃ni (si)−G(si, (xn)si)]→ Tα(t0 − si)[g̃0
i (si)−G(si, (x0)si)] as n→∞,

where g̃0
i (t

0) ∈ gi(t
0, (x0)t0). It follows from condition (H3), Lemma 2.9 and Höder’s

inequality that

E

∥∥∥∥∫ tn

t0
Tα(tn − s)B(s)un(s) ds+

∫ tn

t0
Tα(tn − s)µfn(s) dw(s)

∥∥∥∥p
H

≤ 2p−1Mp‖B‖p∞(tn − t0)p−1‖u‖p
LpF ([0,t1],Y )

+ 2p−1CpM
p‖µ‖pL(K,H)(t

n − t0)p/2−1‖Λn∗‖L1([0,t1],R+).
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One has ∫ tn

t0
Tα(tn − s)B(s)un(s) ds→ 0 as n→∞,∫ tn

t0
Tα(tn − s)µfn(s) dw(s)→ 0 as n→∞.

By strongly continuity of B, we have

‖Bun −Bu0‖pH → 0 as n→∞.

It follows that

E

∥∥∥∥∫ t

si

Sα(t− s)[B(s)un(s)−B(s)u∗(s)] ds

∥∥∥∥p
H

≤Mp(ti+1 − si)p‖Bun −Bu0‖pH ,

which implies that∫ t

si

Sα(t− s)B(s)un(s) ds→
∫ t

si

Sα(t− s)B(s)u0(s) ds as n→∞.

By condition (H3), we can deduce that {fn(s)} ⊆ Ψ((xn)s) is bounded on Lp([0, b], H).

Therefore, by the reflexivity of Lp([0, b], H), then there exist a subsequence of {fn}, de-

noted again by {fn}, and f0 ∈ Lp([0, b], H), such that

fn
w−→ f0 in Lp([0, b], H) as n→∞.

By the compactness of µ, we have

‖µ[fn(s)− f0(s)]‖pH → 0 as n→∞.

It follows that

E

∥∥∥∥∫ t

si

Tα(t− s)[µfn(s)− µf0(s)] dw(s)

∥∥∥∥p
H

≤ CpMp(ti+1 − si)p/2‖µ[fn(s)− f0(s)]‖pH .

Thus, from Lemma 3.1, it follows that∫ t

si

Tα(t− s)µfn(s) dw(s)→
∫ t

si

Tα(t− s)µf0(s) dw(s) as n→∞,

where f0 ∈ Ψ((x0)s). Hence,

x1 = x(t0, f0, u0)
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=



Tα(t0)[ϕ(0)−G(0, ϕ) +G(t0, (x0)t0)]

+
∫ tn

0 Tα(t0 − s)B(s)u0(s) ds

+
∫ t0

0 Tα(t0 − s)µf0(s) dw(s), t ∈ [0, t1], i = 0,

g̃0
i (t

0), t ∈ (ti, si], i ≥ 1,

Tα(t0 − si)[g̃0
i (si)−G(si, (x0)si)] +G(tn, (x0)tn)

+
∫ t0
si
Tα(t0 − s)B(s)u0(s) ds

+
∫ t0
si
Tα(t0 − s)µf0(s) dw(s), t ∈ (si, ti+1], i ≥ 1,

where f0(s) ∈ Ψ((x0)s), g̃
0
i (t

0) ∈ gi(t
0, (x0)t0), that is, u0 is the time optimal control,

and x(t0, f0, u0) is just the trajectory corresponding to the control u0 and the proof is

complete.

5. An example

In this section, we provide an example which comes from nonconvex problems for semiper-

meable media and leads to a fractional stochastic differential inclusions with Clarke’s

subdifferential of type (1.1)–(1.3). We remark that the nonmonotone semipermeability

conditions are realized by various types of membranes, natural and artificial ones. These

conditions arise in electrostatics, hydraulics and in the description of the flow of Binghams

fluids. Here, a practical method to describe the system with fractional neutral functional

differential inclusions with non-instantaneous impulses and Clarke subdifferential aims at

reality in nonconvex semipermeable system identification and control, as real systems are

distributed phenomena. We study this type of system with hereditary control variable

and obtained the time optimal control of the system.

Consider the following fractional non-instantaneous impulsive stochastic partial differ-

ential systems of the form

cD
2/3
t

[
z(t, x)−

∫ 0

−∞
e2s |z(t+ s, x)|

1 + |z(t+ s, x)|
ds

]

∈

 ∑
|ς|≤2m

aς(x)Dς

[z(t, x)−
∫ 0

−∞
e2s |z(t+ s, x)|

1 + |z(t+ s, x)|
ds

]

+ J
1/3
t

∫
Π

sin(x, y)u(t, y) dy

+ J
1/3
t

[(∫
Π

cos(x, y) dy

)(
∂

∫ 0

−∞
e4s sin(|z(t+ s, x)|) ds

)]
dw(t)

dt
,

t ∈ [0, 1/2) ∪ [3/4, 1], x ∈ Π,

(5.1)
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z(t, x) = 0, (t, x) ∈ [0, 1]× ∂Π,(5.2)

z(τ, x) = ϕ(τ, x), (τ, x) ∈ (−∞, 0]×Π,(5.3)

z(t, x) ∈
∫ 0

−∞
t2e2s|z(t+ s, x)| ds, t ∈ (1/2, 3/4], x ∈ Π,(5.4)

where cD
2/3
t is a Caputo fractional partial derivative of order α = 2/3 ∈ (0, 1), ϕ is

continuous, and Π is a bounded domain in Rn with a smooth boundary ∂Π, aς(x) is

a smooth real function on Π, Dς = Dς
x1 · · ·D

ς
xn , Dxk = ∂

∂xk
, ς = (ς1, . . . , ςn) is an n-

dimensional multi-index, |ς| = ς1 + · · · + ςn. 0 = t0 = s0, t1 = 1/2, s1 = 3/4, t2 = 1 are

fixed real numbers, and w(t) denotes a one-dimensional standard Wiener process.

The differential operator Lm =
∑
|ς|≤2m aς(x)Dς is strongly elliptic (see [32]). Let

H = Y = {ω : ω ∈ C(Π), ω = 0 on ∂Π} with the norm ‖ · ‖C(Π) and D(A) = {ω :

ω ∈ D(A∞), Lmω ∈ C(Π), Lmω = 0 on ∂Π} define the operator A : D(A) → H by Av =

Lmv, where D(A∞) = {ω : ω ∈ W 2m,p(Π)} for all p > n. It is well known that A

generates an analytic, noncompact semigroup (T (t))t≥0 on H. From the subordination

principle [3, Theorems 3.1 and 3.3], we know that A is the infinitesimal generator of an

α-order fractional bounded and analytic resolvent operator Tα(t) (t ≥ 0) of analyticity

type (ω0, θ0). Therefore, the linear system corresponding to (5.1)–(5.4) has an associated

solution operator Tα(·) on H. We define the admissible control set Uad = {u( ·, y) | R →
Y measurable, Ft-adapted stochastic processes, and ‖u‖LpF (R,Y ) ≤ 1}.

Let the phase space B be

B = Cγ =

{
ψ ∈ C((−∞, 0], H) : lim

θ→−∞
eγθψ(θ) exists in H

}
,

where γ > 0 and set

‖ψ‖B = sup
−∞<θ≤0

eγθ‖ψ(θ)‖C(Π), ψ ∈ Cγ .

It is well known that Cγ satisfies the Axioms (A)–(C) with H̃ = 1, K̃(t) = max{1, e−γt}
and M̃(t) = e−γt (see [21, Theorem 1.3.7] for details).

Additionally, we choose 0 < γ < 2 and take ψ(θ)(x) = ψ(θ, x), (θ, x) ∈ (−∞, 0] × B.

Let z(s)(x) = z(s, x), G : [0, 1]×B → H, F : [0, 1]×B → R, gi : (1/2, 3/4]×B → P(H) be

the operators defined by

G(t, ψ)(x) =

∫ 0

−∞
e2s |ψ(s)(x)|

1 + |ψ(s)(x)|
ds, N (t, ψ)(x) = ψ(0)x−G(t, ψ)(x),

F (t, ψ)(x) =

∫ 0

−∞
e4s sin(|ψ(s)(x)|) ds, g1(t, ψ)(x) =

∫ 0

−∞
t2e2s|ψ(s)(x)| ds.

For all u ∈ C([0, 1]×Π), we define an operator B as follows:

(Bu)(t)(x) =

∫
Π

sin(x, y)u(t, y) dy, µ(x) =

∫
Π

cos(x, y) dy.
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Using these definitions, we can represent the system (5.1)–(5.4) in the abstract form (1.1)–

(1.3). Moreover, we have for all (t, ψ), (t1, ψ1) ∈ [0, 1]× B,

E‖G(t, ψ)−G(t1, ψ1)‖p
C(Π)

= E

[
sup
x∈Π

∫ 0

−∞
e2s

(
|ψ(s)(x)|

1 + |ψ(s)(x)|
− |ψ1(s)(x)|

1 + |ψ1(s)(x)|

)
ds

]p
≤ E

[∫ 0

−∞
e(2−γ)seγs‖ψ(s)− ψ1(s)‖C(Π) ds

]p
≤
(∫ 0

−∞
e(2−γ)s ds

)p
‖ψ − ψ1‖pB

≤ L̃G‖ψ − ψ1‖pB,

and E‖h(t, ψ)‖p ≤ L̃G‖ψ‖pB, where L̃G = 1
(2−γ)p . For all (t, ψ), (t, ψ1) ∈ R× B, we have

|F (t, ψ)(x)− F (t, ψ1)(x)| ≤
∫ 0

−∞
e4s| sin(|ψ(s)(x)|)− sin(|ψ1(s)(x)|)| ds

≤
∫ 0

−∞
e4s|ψ(s)(x)− ψ1(s)(x)| ds

≤
∫ 0

−∞
e(4−γ)seγs‖ψ(s)− ψ1(s)‖C(Π) ds

≤ 1

4− γ
‖ψ − ψ1‖B.

For any λ > 0, and ψ,ψ1 ∈ B, t ∈ R, we have∣∣∣∣F (t, ψ1 + λψ)(x)− F (t, ψ1)(x)

λ

∣∣∣∣
=

∣∣∣∣∣
∫ 0
−∞ e

4s[sin(|ψ1(s)(x) + λψ(s)(x)|)− sin(|ψ1(s)(x)|)] ds
λ

∣∣∣∣∣
≤
∣∣∣∣∫ 0

−∞
e4s|ψ(s)(x)| ds

∣∣∣∣ .
Let F 0(t, ψ)(x) =

∫ 0
−∞ e

4s|ψ(s)(x)| ds. Then it is easy to verify that

E‖∂F (t, ψ)‖p
C(Π)

= E

[
sup
x∈Π

∫ 0

−∞
e4s|ψ(s)(x)| ds

]p
≤ E

[∫ 0

−∞
e(4−γ)seγ̃s‖ψ(s)‖C(Π) ds

]p
≤
(∫ 0

−∞
e(4−γ)s ds

)p
‖ψ‖pB ≤ L̃F ‖ψ‖

p
B

for all (t, ψ) ∈ [0, 1] × B, where L̃F = 1
(4−γ)p . For all (t, ψ), (t1, ψ1) ∈ (1/2, 3/4] × B, we
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have

E‖g1(t, ψ)− g1(t1, ψ1)‖p
Π

= E

[
sup
x∈Π

(∫ 0

−∞
t2e2s|ψ(s)(x)| ds−

∫ 0

−∞
t21e

2s|ψ1(s)(x)| ds
)]p

≤ E
[
|t2 − t21|

∫ 0

−∞
eγs ds+ |t1|2

∫ 0

−∞
e(2−γ)seγs‖ψ(s)− ψ1(s)‖C(Π) ds

]p
≤ 2p−1

[
|t2 − t21|p

(∫ 0

−∞
eγs ds

)p
+ |t1|2p

(∫ 0

−∞
e(2−γ)s ds

)p
‖ψ − ψ1‖pB

]
≤ γ̃1[|t− t1|+ ‖ψ − ψ1‖pB],

and ‖g1(t, ψ)‖p
Π
≤ γ̃1‖ψ‖pB, where γ̃1 = 2p−1

[
( 3

2γ )p + (3
4)2p 1

(2−γ)p

]
. Similarly, we have

‖µ‖p
C(Π)

≤
(

supx∈Π

∫
Π cos(x, y) dy

)p
. Therefore, Assumptions (H1)–(H4) all hold in Sec-

tion 3. On the other hand, for u ∈ C([0, 1]×Π), we have

‖Bu‖p
C([0,1]×Π)

=

[
sup
x∈Π

(∫
Π

sin(x, y)u(t, y) dy

)]p
≤ L̃u‖u‖pC([0,1]×Π)

,

where L̃u =
(

supx∈Π

∫
Π sin(x, y) dy

)p
. Then, we can conclude that B ∈ L∞([0, 1], L(H)).

Let’s take Kb = Mb = b = 1, LG = L̃G, γi = γ̃1, i = 1, . . . , N . It is easy to see that

2p−1
[
(4p−1Mp + 1)γ̃1 + 2p−1(1 +Mp)L̃G

]
< 1,

whenever L̃G and γ̃1 are small enough. Now the condition (3.1) holds. Further, all the

conditions in Theorem 4.1 satisfied. Hence by Theorem 4.1, the system (5.1)–(5.4) has at

least one time optimal pair.
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