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From Stepwise Integrations and Low-rank Updates to a Pseudospectral

Solution Operator Matrix for the Helmholtz Operator d
dxa(x) d

dx + c(x)

Yung-Ta Li, Ping-Hsuan Tsai and Chun-Hao Teng*

Abstract. In this study we propose a construction framework utilizing stepwise inte-

grations and the Sherman-Morrison-Woodbury formula to seek pseudospectral integra-

tion preconditioning matrices for differential operators. We illustrate this framework

through formulating an inverse matrix for the Helmholtz differential operator of the

form d
dxa(x) d

dx + c(x). Numerical experiments were conducted to examine the perfor-

mance of the derived operator. The results show that the inverse matrix is an effective

solution operator to numerically solve general second order differential equations.

1. Introduction

Spectral and pseudospectral methods [21,22], due to their exponential convergence prop-

erty of approximating smooth functions, have been applied to accurately solve differential

equations for decades. However, to enjoy the advantage of the methods, great care must

be exercised to effectively resolve those ill-conditioned systems of equations, resulting from

the pseudospectral differentiation matrices. Generally speaking, the condition number of

a pseudospectral differentiation matrix is scaled with O(N2m), where m is the order of

the approximated differential operator, and N refers to the grid resolution of a mesh. As

a result, one often encounters inaccurate computations due to this ill-conditioned issue,

especially when high-order differential equations are solved on dense grids.

To overcome this obstacle, many methods have been proposed to construct operating

matrices to effectively invert numerical differentiations. In [4–6, 23–25, 27–29], operat-

ing matrices are derived based on recombined basis functions satisfying boundary con-

ditions. In [10, 20], operating matrices are formulated based on orthogonal polynomials

with boundary conditions enforced through different techniques, for instance, boundary

bordering [20] or auxiliary equations deduced from boundary conditions [10]. Based on

an integration approach, operating or preconditioning matrices have been developed [15]

for basic differentiation matrix operators with boundary conditions enforced weakly in a
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penalty manner [8, 11, 12, 16, 17]. Arbitrary-grids-based integration preconditioning ma-

trices have been constructed [13]. Beyond the commonly used Lagrange’s interpolation

formulation, pseudospectral integration matrix operators have been developed based on

a suitable Birkhoff interpolation [30]. Indeed, applying these preconditioning operators

significantly reduces the condition numbers of the targeted differentiation matrices, and

numerical equations are solved effectively.

In the aforementioned studies, most of the developed operating matrices are primar-

ily for pure differential operators, and the derivations rely upon recurrence relationships

between orthogonal polynomials and their derivatives. A nice feature shared by these

matrices is that they are banded matrices in spectral spaces. Thus, once discretized equa-

tions are transformed into spectral spaces, problems can be solved efficiently by exploring

the sparsity of those banded matrices. However, for mixed differential operators, variable

coefficients are sandwiched by differential operators. The resulting operating matrices

constructed based on those recurrence relationships for mixed differential operators are

generally full matrices, and the advantage of solving problems in spectral spaces is lost.

Numerical differentiation involving variable coefficients also encounters a similar situ-

ation, if variable coefficients and differential operators are integrated into a single matrix

through using the orthogonal polynomial recurrence identities. However, as proposed in

the seminal study [21, 22], a simple and widely used technique for mixed differentiation

is through a differentiation-multiplication-differentiation procedure. This long-established

technique has been brought to our attention, and a question is raised. Is it possible

to seek inverse matrices for mixed differential operators through reversing the stepwise

procedure? The study [19] gives an affirmative answer for the radial direction Laplace

differential operators in polar coordinates.

The goal of this study is to realize an integration-division-integration framework to

construct integration preconditioning matrices for differential operators. Our construction

framework is based on two natural properties of nodal-based pseudospectral formulations:

(1) a general pseudospectral differentiation operator, whether it is pure or mixed, is com-

posed of multiple matrices with each one being either the first order differentiation matrix

or a simple diagonal one, and (2) boundary operators are by themselves low-rank matrices.

These two properties enlighten us to consider combining stepwise integrations and low-

rank updates to construct inverse operators in a factored form for differentiation matrices.

We demonstrate this approach through deriving an inverse matrix for the Helmholtz dif-

ferential operator, d
dxa(x) d

dx + c(x), based on the Legendre pseudospectral approximation

method with boundary conditions enforced weakly through a penalty approach.

The construction procedures are summarized below. In [15], two boundary condition

penalized (BCP) first order differentiation matrices were proposed and their inverses were
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developed. We adopt these inverse operators as building blocks. Employing these inverse

operators, we express the BCP pseudospectral Laplace operator, resulting from discretiz-

ing the differential operator d
dxa(x) d

dx , into a factored form, a diagonal matrix perturbed

by a low-rank one, inserted in between the two basic BCP differentiation matrices. Since

the inverse matrices of the BCP basic differentiation operators are available, seeking the

inverse of the BCP pseudospectral Laplace differentiation operator boils down to finding

the inverse of the sandwiched matrix. We complete this step by applying the Sherman-

Morrison-Woodbury (SMW) formula. As a result, the inverse of the BCP pseudospectral

Laplace operator is the matrix product of these three inverse matrices. Once the inverse of

the BCP pseudospectral Laplace operator is obtained, we then recursively apply the SMW

formula to construct the inverse matrix of the BCP pseudospectral Helmholtz operator.

The derived inverse pseudospectral Helmholtz matrix serves as a solution operator

for advection-diffusion-reaction problems. We conduct various numerical experiments to

examine the performance of the inverse operator. The convergence results show that the

derived operator is effective, even for nonlinear problems.

The potential applications of the proposed framework advertise the significance of the

framework itself. In general, numerical differential equations are systems of equations com-

posed of pure/mixed differentiation matrices and low-rank numerical boundary operators.

By exploring these properties as we will show in this study for the Helmholtz operator, one

may adopt the present divide-and-conquer approach to construct efficient preconditioning

matrices for other numerical differential equations. We will address relevant issues at the

end of this study.

The rest of the paper is organized as follows. In the next section we demonstrate the

proposed framework through seeking an inverse pseudospectral matrix for the targeted

mixed differential operator. Section 3 is devoted to the validations of the derived operator.

Conclusions are given in the last section.

2. Formulation

2.1. Basic concepts of the Legendre pseudospectral method and the SMW formula

Let I = [−1, 1] be the pseudospectral reference domain, N ≥ 0 be an integer, and PN (x)

defined on I be the N -th degree Legendre polynomial satisfying the differential equation(
(1− x2)P ′N (x)

)′
= −N(N + 1)PN (x), x ∈ I,

where ′ denotes the differentiation with respect to the function argument. The roots of the

polynomial (1− x2)P ′N (x), ordered ascendantly as −1 = x0 < x1 < · · · < xN−1 < xN = 1,

are known as the Gauss-Lobatto-Legendre (GLL) grid points. Denoted by lj(x), the
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Lagrange basis polynomials based on the GLL points are given as

lj(x) = −
(1− x2)P ′N (x)

N(N + 1)(x− xj)PN (xj)
, j = 0, 1, . . . , N

satisfying the property lj(xi) = δij with δij being the Kronecker delta function.

Consider a function u(x) defined on I. Employing the Lagrange basis polynomials,

lj(x), we can construct an N -th degree polynomial to approximate u(x) and its derivative

u′(x) as follows:

u(x) ≈ IN [u(x)] = uN (x) =

N∑
j=0

lj(x)u(xj), u′ ≈ u′N (x) =

N∑
j=0

l′j(x)u(xj),

where IN is called the interpolation operator. Introducing the differentiation matrix D

with entries dij = l′j(xi) for 0 ≤ i, j ≤ N , we can compute the values of u′N (x) at the GLL

nodes by a matrix-vector multiplication approach:

u′N = DuN , uN = [u(x0), . . . , u(xN )]T , u′N =
[
u′N (x0), . . . , u

′
N (xN )

]T
,

where T denotes the vector transpose.

Notice that the numerical differentiation becomes an exact differentiation, provided

that u(x) is a polynomial of degree at most N . As a consequence, the numerical differen-

tiation of the n-th degree Legendre polynomial, Pn(x), is exact for n ≤ N , i.e.,

p′n = Dpn, pn = [Pn(x0), . . . , Pn(xN )]T , p′n =
[
P ′n(x0), . . . , P

′
n(xN )

]T
.

Among these derivative grid vectors, p′0, p
′
1 and p′N are important to the present study.

For the sake of convenience, we introduce the following vector expressions

e− = [1, 0, . . . , 0]T , e+ = [0, . . . , 0, 1]T , 1 = [1, 1, . . . , 1]T , 0 = [0, 0, . . . , 0]T .

Then, the expressions of p′0, p
′
1 and p′N are simply

p′0 = 0, p′1 = p0 = 1, p′N = DpN =
N(N + 1)

2

(
e+ − (−1)Ne−

)
,

where the first and the second expressions are due to the fact that P0(x) = 1 and P1(x) = x,

and the last one results from the fact that P ′N (xi) vanishes at each interior GLL grid point

and P ′N (±1) = (±1)N+1N(N + 1)/2.

Associated with the GLL nodes is the quadrature integration rule:∫ 1

−1
u(x) dx =

N∑
i=0

u(xi)ωi, ωi =
2

N(N + 1)(PN (xi))2
,
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where ωi for i = 0, 1, . . . , N are the quadrature weights, and the exactness of the integration

rule is held true provided that u(x) is a polynomial of degree at most 2N − 1. Employing

the integration rule, we define the diagonal mass matrix M and the stiffness matrix S

with their entries mij and sij , respectively, given by

mij =
N∑
k=0

li(xk)lj(xk)ωk = ωiδij , 0 ≤ i, j ≤ N,

sij =

N∑
k=0

li(xk)l
′
j(xk)ωk = ωil

′
j(xi), 0 ≤ i, j ≤ N.

Three important properties concerning the matrices M , S, and D are shown in [3]. We

directly quote the results here: (1) the mass matrix M is positive definite and diagonal,

and thus invertible, (2) the stiffness matrix S is almost skew-symmetric,

S + ST = I+ − I−,

I+ = e+e
T
+ = diag(0, . . . , 0, 1),

I− = e−e
T
− = diag(1, 0, . . . , 0),

(2.1)

and (3) the matrices, M , S, and D, are related as

(2.2) D = M−1S.

We now review concepts related to integration preconditioning. In [15] the invertible

pseudospectral first order differentiation matrix has the form

D+ = D − ηI+, η =
N(N + 1)

4
=

1

2ω0
=

1

2ωN
,

where η is the penalty parameter. In the present study we adopt the formulation of

D+ and define the D− and D+ operators, called the left-ended and right-ended BCP

differentiation matrix, respectively, with their expressions given as

D± = D ∓ ηI±, η =
N(N + 1)

2
=

1

ω0
=

1

ωN
.

With this slight change in the value of the penalty parameter, we follow the approach

shown in [19] and find that the inverse matrices of D+ and D− have the following factored

form

D−1± = PJ−1± P
TM , P =

[
p0 p1 · · · pN

]
,
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J−1± =
1

2



∓1 −1 0 · · · · · · 0 0

1 0 −1
. . . 0

0 1 0
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . 0 −1 0

...
. . . 1 0 −1

0 · · · · · · · · · 0 1 ∓1


.

Let f be the grid vector with components f(xi) for i = 0, 1, . . . , N . Then D−1− f is

an approximation solution to the differential equation u′(x) = f(x) subject to the left

boundary condition u(−1) = 0. Likewise, D−1+ f returns an approximation solution to the

same differential equation subject to the right boundary condition u(+1) = 0. Thus, we

call D−1± the first order numerical solution operators.

Due to the simple matrix structure of J−1± , it is worth introducing identities associated

with D−1± for later use. Notice that

P Te± = [P0(±1), P1(±1), . . . , PN (±1)]T =
[
(±1)0, (±1)1, . . . , (±1)N

]T
.

Then we obtain the following identities

(2.3)
ηD−1± e± = ∓p0, ηD−1∓ e± = (±1)N−1pN ,

eT±D
−1
± = −(±1)N−1pTNM , eT±D

−1
∓ = ±pT0M

by direct computations.

We have summarized the main concepts related to the Legendre pseudospectral method

for the present study. For further details of the pseudospectral methods we refer the readers

to [1, 2, 18,26].

In this study, we also need the SMW formula to conduct low rank updates. For the

purpose of self-containedness, we summarize some relevant concepts.

The SMW formula relates the inverse of a matrix perturbed by a low rank matrix with

the inverse of the original matrix. Assume that a matrix A of order n-by-n is invertible.

Now consider the sum of A and a low rank matrix of the form UCV , where U , V , and

C are of conformable sizes. Then the inverse of A after being perturbed by the low rank

matrix UCV can be computed using the following formula

(2.4) (A+UCV )−1 = A−1 −A−1U
(
C−1 − V A−1U

)−1
V A−1

provided that (C−1 − V A−1U) is invertible. Thus, when A−1 is available, the formula

provides a convenient approach to finding the inverse of theAmatrix after being perturbed
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by the low rank matrix, especially if the dimension of the matrix C is much smaller than

the dimension of A. A well known case is the following. If both U = u and V T = v

are column vectors, and C is a nonzero scalar, say 1 without losing generality, then (2.4)

becomes the Sherman-Morrison formula:

(
A+ uvT

)−1
= A−1 − A

−1uvTA−1

1− vTA−1u
.

For further details of the SMW formula, we refer the readers to [14] and the references

therein.

2.2. BCP pseudospectral discretization of the d
dxa(x) d

dx + c(x) operator

Let u(x) be a function defined on the interval I satisfying the problem:

(2.5)

d

dx

(
a(x)

du(x)

dx

)
+ c(x)u(x) = f(x), x ∈ I, a(x) > 0,

α±u(±1)± β±u′(±1) = g±, α±, β± ≥ 0, α2
± + β2± 6= 0,

where a(x), c(x) and f(x) are given smooth functions, the parameters α+, α−, β+ and β−

are non-negative reals, and g+ and g− are real numbers.

To solve the problem we introduce the GLL nodes on I and denote aj = a(xj) and

fj = f(xj) as the pointwise function values at these points. To approximate u(x), we

collocate grid function values vj for j = 0, 1, . . . , N and seek a numerical solution v(x) of

the form v(x) =
∑N

j=0 lj(x)vj to satisfy the collocation equations

fi = (IN [av′])′
∣∣∣
i
+ c(xi)v(xi)

−
(
τ+η

2aNδNi − χ+
aN l

′
i(+1)

ωi

)
(α+vN + β+v

′
N − g+)

−
(
τ−η

2a0δ0i + χ−
a0l
′
i(−1)

ωi

)
(α−v0 − β−v′0 − g−), i = 0, 1, . . . , N,

(2.6)

where τ± and χ± are called penalty parameters related by

(2.7) 1− τ−β−η = χ−α−, 1− τ+β+η = χ+α+.

Depending on the enforced boundary conditions, the values of the parameters τ− and τ+

are given as follows:

• non-Neumann condition enforced at x = ±1:

τ± >
1

α± + β±η
, χ± =

1− τ±β±η
α±

.
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• Neumann condition enforced at x = ±1:

τ± =
1

η
, χ± = 0.

Notice that for the Neumann boundary condition case, (2.7) is full-filled for any value of

χ±. Thus, for simplicity we set χ± = 0.

To show the solvability of (2.6), we introduce the following vector and matrix notations

v = [v0, v1, . . . , vN ]T , f = [f0, f0, . . . , fN ]T ,

A = diag(a0, a1, . . . , aN ), C = diag(c0, c1, . . . , cN ).

In these matrix and vector notations, the scheme (2.6) takes the following form

(L+C)v = f −M−1(τ+M−1 − χ+D
T
)
Ae+g+

−M−1(τ−M−1 + χ−D
T
)
Ae−g−

(2.8)

with

L = DAD −M−1(τ+M−1 − χ+D
T
)
Ae+

(
α+e

T
+ + β+e

T
+D

)
−M−1(τ−M−1 + χ−D

T
)
Ae−

(
α−e

T
− − β−eT−D

)
.

(2.9)

The matrix L is called a BCP pseudospectral Laplace differentiation matrix, which is a

discrete analogy of the Laplace differential operator d
dxa(x) d

dx with the boundary condi-

tions taken into account. The resultant matrix of L+C is a BCP pseudospectral matrix

representation of the Helmholtz operator d
dxa(x) d

dx + c(x).

To seek the inverse matrix of targeted operator L+C we first seek the inverse operator

of L. We start by showing that the operator L is invertible. Multiplying matrix −M to

(2.9) from the left, and employing (2.1) and (2.2) as well as (2.7), we have

−ML = STAM−1S −R+ +R−,

where

(2.10) R± = χ±α±
(
I±AD± + (I±AD±)T

)
∓ τ±α±ηAI± ∓ β±χ±DT (AI±)D.

Since the matrices, STAM−1S, R− and R+, are all symmetric, the matrix −ML is also

symmetric, indicating that −ML is diagonalizable and all the eigenvalues of −ML are

real.

We now show that these eigenvalues are positive by considering the eigenvalue-eigenvector

problem:

(2.11) λu = −MLu =
(
STAM−1S −R+ +R−

)
u, u = [u0, u1, . . . , uN ]T ,
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where λ is an eigenvalue of −ML and u is the associated eigenvector of unit length, that

is, uTu =
∑N

i=0 u
2
i = 1.

Then multiplying uT to (2.11) from the left and invoking the relationship MD = S

(see (2.2)) and the expressions of R+ and R− in (2.10), we have

(2.12) λ =
N−1∑
i=1

(u′i)
2aiωi + aNr

T
+W+r+ + a0r

T
−W−r− ≥ 0,

where u′i =
∑N

j=0 l
′
j(xi)uj , r+ =

[
uN ,−u′N

]T
, and r− =

[
u0, u

′
0

]T
, and the matrices W+

and W− are

W± =

 τ±α±η
1
2(1− β±τ±η + χ±α±)

1
2(1− β±τ±η + χ±α±) η−1 − β±χ±

 .
Notice that W− or W+ is semi-positive definite if the enforced boundary condition at the

associated end point is of the Neumann type, and is positive definite otherwise. However,

if both boundary conditions are of the Neumann type, then the Poisson problem does

not have a unique solution. Hence, we exclude the pure Neumann case in this part of the

analysis and conclude that either W+ or W− is positive definite. We will discuss the pure

Neumann case for the Helmholtz problem later. Thus, shown in (2.12) the non-negativity

of λ follows from the facts that (1) the term
∑N−1

i=1 ai(u
′
i)
2ωi is nonnegative, and (2) both

W+ and W− are semi-positive definite.

We now claim that λ is strictly positive. For an eigenvector u, the values of u′i for

1 ≤ i ≤ N − 1 are either (1) non-zero for some i, or (2) all zeros. For the former case,

from (2.12) we have

λ ≥
N−1∑
i=1

ai(u
′
i)
2ωi > 0.

For the latter one (u′i = 0 for i = 1, . . . , N−1), we identify that u′ is a polynomial of degree

at most N − 1, and vanishes at all the interior nodes, implying that u(x) =
∑N

j=0 lj(x)uj ,

the continuous representation of the eigenvector u, has the form

u(x) = c1PN (x) + c2, c21 + c22 6= 0,

where c1 and c2 are constants. Consequently, r+ and r− are non-zero vectors. Then from

(2.12) we have

λ = a0r
T
−W−r− + aNr

T
+W+r+ > 0

since either W− or W+ is positive definite.

We have shown that the matrix −ML is symmetric positive definite, and thus, in-

vertible. As a result, the existence of L−1 is established through the relationship that

L−1 = (ML)−1M .
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2.3. Inverse matrix of the BCP pseudospectral Laplace operator

We now focus on explicitly formulating L−1 based on matrix factorizations. Applying the

operators D±, we rewrite L defined in (2.9) as

L = D−AD+ +Q,

where

Q = (1− χ+(α+ + β+η))ηaND−I+ + (χ+ − τ+)(α+ + β+η)η2aNI+

+ (χ+ − τ+)β+η
2aNI+D+ − χ+β+ηaND−I+D+ − τ−α−η2a0I−

− (1− τ−β−η)ηa0I−D+ + χ−α−ηa0D−I− − χ−β−ηa0D−I−D+.

(2.13)

Since D− and D+ are invertible, we express L in a factored form as

L = D−
(
A+D−1− QD

−1
+

)
D+,

which is suggested by the equation itself to formulate L−1 as

L−1 = D−1+

(
A+D−1− QD

−1
+

)−1
D−1− .

We now proceed to find the desired operator
(
A +D−1− QD

−1
+

)−1
. To illustrate the

construction of L−1, we consider the problem subject to Dirichlet boundary conditions

(α±, β±) = (1, 0), for the sake of clarity.

For the Dirichlet problem, the corresponding penalty parameters are χ± = 1 and we

set τ− = τ+ = τ > 1. Then the Q matrix is simplified as

Q = (1− τ)η2aNI+ − τη2a0I− − ηa0I−D+ + ηa0D−I−.

We factor Q as follows:

Q = Φ̂Ψ̂
T
, Φ̂ =

[
D−e− ηe− ηe+

]
, Ψ̂

T
=


a0ηe

T
−

−a0τηeT− − a0eT−D+

aN (1− τ)ηeT+

 .
Notice that Q is a low-rank matrix and A is a diagonal one. Then, invoking the SMW

formula we have

(2.14)
(
A+D−1− QD

−1
+

)−1
=
(
I −A−1ΦK−1ΨT

)
A−1,

where

(2.15) Φ = D−1− Φ̂, ΨT = Ψ̂
T
D−1+ , K = I3 + ΨTA−1Φ
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with I3 being the identity matrix of order three. As shown in (2.14), inverting the matrix

A+D−1− QD
−1
+ hinges upon finding ΦK−1ΨT , which is treated next.

Employing the D−1− and D−1+ operators and invoking the expressions shown in (2.3),

we compute D−1− Φ̂ and Ψ̂
T
D−1+ and have

(2.16) Φ = D−1− Φ̂ =
[
e− p0 pN

]
,

and

ΨT = Ψ̂
T
D−1+ =


−ηa0pT0

τ−ηa0p
T
0 − ηa0eT−

−(1− τ)ηaNp
T
N

M = ΛΦTM ,

where Λ and its inverse are given as

Λ = η


0 −a0 0

−a0 τa0 0

0 0 (τ − 1)aN

 , Λ−1 =
1

η


− τ
a0

−a−10 0

−a−10 0 0

0 0 1
(τ−1)aN

 .
Employing the expression of ΨT we have

ΦK−1ΨT = ΦK−1ΛΦTM .

Thus, to find the matrix
(
A+D−1− QD

−1
+

)−1
we are led to find the matrix K−1Λ. From

the expression of K in (2.15) we have the inverse of K−1Λ as

Λ−1K = Λ−1 + ΦTMA−1Φ.

Employing (2.16) we compute ΦTMA−1Φ and obtain

ΦTMA−1Φ =
1

η


a−10 a−10 (−1)Na−10

a−10 κ2 κ1

(−1)Na−10 κ1 κ0

 , κν =
N∑
i=0

1

ai(PN (ξ))ν
.

Then the matrix Λ−1K is given as

(2.17) Λ−1K =
1

η


(1− τ) 1

a0
0 (−1)N

a0

0 κ2 κ1
(−1)N
a0

κ1 κ0 − 1
(1−τ)aN

 ,
and its inverse is found as

K−1Λ =
η

T


t11 t12 t13

t12 t22 t23

t13 t23 t33

 ,
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where T is given as

T =
(1− τ)2

a0aN
(κ21 − κ2κ0) +

(1− τ)κ2
a0aN

(
1

a0
+

1

aN

)
,

and tij for i = 1, 2, 3 and i ≤ j ≤ 3 are given as

t11 =
(1− τ)

aN

(
κ21 − κ0κ2

)
+
κ2
a2N

, t12 = 0,

t13 =
(−1)N (1− τ)κ2

a0aN
, t22 =

(1− τ)

a0aN

(
a0 + aN
a0aN

− (1− τ)κ0

)
,

t23 =
(1− τ)2κ1
a0aN

, t33 = −(1− τ)2κ2
a0aN

.

The expression of the operator
(
A+D−1− QD

−1
+

)−1
is given as(

A+D−1− QD
−1
+

)−1
=
(
I −A−1Φ

(
K−1Λ

)
ΦTM

)
A−1,

and thus, L−1 is given as

L−1 = D−1+

(
I −A−1Φ

(
K−1Λ

)
ΦTM

)
A−1D−1− .

We have shown the construction of L−1 for problems subject to the Dirichlet boundary

conditions. For problems subject to general boundary constraints, the corresponding

vectors Φ and ΨT , and the matrix K−1Λ to formulate L−1 are given in Appendix A.

Before proceeding further we address an issue related to examining the invertibility of

the L operator in the present inverse matrix construction framework. The L operator is

specifically constructed such that −L becomes symmetric positive definite under the mass

matrix weighted discrete 2-norm, and thus invertible. In the construction of L−1 one can

also investigate the invertibility of the problem through examining the invertibility of the

3-by-3 matrix Λ−1K given in (2.17), which does not require knowing properties of the

operator L. Thus, for other pseudospectral differential operators which are not confined

to the regular discrete 2-norm as the present L operator is, one may still establish the

invertibility of those operators by examining the corresponding compatible matrices.

2.4. Inverse matrix of the BCP pseudospectral Helmholtz operator

We now use the derived L−1 matrix to construct the (L+C)−1 operator by applying the

SMW formula and by exploiting the diagonal matrix structure of C.

Let ei, for i = 0, 1, . . . , N , be the i-th column vectors of the identity matrix of order

N + 1. To find the inverse of L+C we express L+C as

H = L+C = Lk +

N∑
i=k

cieie
T
i , Lk = L+

k−1∑
i=0

cieie
T
i .
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Then L0 = L and LN = H, and furthermore, Lk+1 and Lk are related as

Lk+1 = Lk + ckeke
T
k .

Assume that L−1k exists. Then L−1k+1 is given as

(2.18) L−1k+1 = L−1k −
(
L−1k ek

)(
c−1k + eTkL

−1
k ek

)−1(
eTkL

−1
k

)
provided that the value c−1k + eTkL

−1
k ek is nonzero. Since L−10 = L−1 is available we can

recursively apply (2.18) N + 1 times to construct H−1.

For c(x) < 0, H−1 definitely exists, because L + C is a negative definite operator

weighted by the mass matrix M . However, for a general c(x) we are unable to analytically

draw out any result regarding the inverse of (L + C). In this situation, we may try

constructing H−1 by the updating procedure (2.18). If the construction is successfully

executed, then one may try to use the resultant H−1 operator to compute numerical

solutions. If the updating procedure fails to construct the H−1 operator, for example, if

at any k step the value c−1k + eTkL
−1
k ek vanishes, it does not mean that the H operator

is not invertible. For this situation, one would have to use other approaches to seek the

H−1 operator, if it exists.

We now discuss the construction of the Helmholtz operator when the boundary condi-

tions at the end points are both of the Neumann type. When we previously discussed the

construction of the L matrix we excluded the pure Neumann case, because the solution to

the corresponding Poisson problem is not unique. However, the solution to the Helmholtz

equation subject to the Neumann boundary condition at both end points is unique. In

what follows we derive the corresponding H−1 operator.

The Helmholtz operator with pure Neumann boundary conditions can be expressed as

H = L+C = L− εI+ +C + εI+,

where, deduced from (2.9) with (α±, β) = (0, 1), the matrix L given as

L = DAD − η−1M−2Ae+e
T
+D + η−1M−2Ae−e

T
−D,

is the pure Neumann type BCP-pseudosectral Laplace operator, and ε is an introduced

parameter with its value to be determined such that the resultant matrix L − εI+ is

invertible.

To seek the inverse of the matrix operator L− εI+ we rewrite the matrix as

L = DAD − η−1M−2Ae+e
T
+D + η−1M−2Ae−e

T
−D − εI+ = D−AD+ +Q

with Q factored as

Q = Φ̂Ψ̂
T
, Φ̂ =

[
ηe+ D−e+

]
, Ψ̂

T
=

−( εη + aNη
)
eT+ − aNeT+D+

ηaNe+

 .
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Computing D−1− Φ̂ and Ψ̂
T
D−1+ , we obtain

Φ = D−1− Φ̂ =
[
pN e+

]
, ΨT = Ψ̂

T
D−1+ =

(aNη + ε
η

)
pTN − aNηeT+

−ηaNP T
N

M ,

and ΨT and Φ are related by

ΨT = ΛΦTM , Λ =

ηaN + ε
η −ηaN

−ηaN 0

 .
We then compute Λ−1 and ΦTMA−1Φ and have

Λ−1 =
−1

ηaN

0 1

1 1 + ε
η2aN

 , ΦTMA−1Φ =
1

ηaN

κ0aN 1

1 1

 .
Then we have

Λ−1K = Λ−1 + ΦTMA−1Φ =
1

ηaN

κ0aN 0

0 − ε
η2aN

 ,
leading to

K−1Λ = diag

(
η

κ0
,−

η3a2N
ε

)
.

The inverse of L− εI+ is given as

(L− εI+)−1 = D−1+

(
I −A−1ΦK−1ΛΦTM

)
A−1D−1− .

We have the formula to construct (L − εI+)−1, and we can then apply (2.18) to derive

the matrix H−1.

2.5. Inhomogeneous boundary conditions

The H−1 operator can now be used to compute numerical solutions to the second order

problems subject to homogeneous boundary conditions, that is, g− = g+ = 0, by per-

forming v = vh = H−1f . If inhomogeneous boundary conditions are imposed, then the

numerical solution v to the second order problem is the sum of the homogeneous solution

vh and the particular solution vp satisfying the problem

Hvp = −a0
(
τ−η

2e− + χ−M
−1DTe−

)
g−

− aN
(
τ+η

2e+ − χ+M
−1DTe+

)
g+.

(2.19)

To seek the particular solution vp we assume that vp is of the form

vp = H−1(−z1Da− z1Cp1 − z0Cp0) + z1p1 + z0p0,
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where z0 and z1 are constants to be determined. Performing Hvp we obtain

Hvp = HH−1(−z1Da− z1Cp1 − z0Cp0) +L(z1p1 + z0p0) +C(z1p1 + z0p0)

= −z1Da− z1Cp1 − z0Cp0 +DAD(z1p1 + z0p0) + z1Cp1 + z0Cp0

− aN
(
τ+
ω2
N

e+ − χ+M
−1DTe+

)(
α+e

T
+ + β+e

T
+D

)
(z1p1 + z0p0)

− a0
(
τ−
ω2
0

e− + χ−M
−1DTe−

)(
α−e

T
− − β−eT−D

)
(z1p1 + z0p0).

Applying the following relationships

Dp1 = p0, Dp0 = 0, ADp1 = Ap0 = a,(
α±e

T
± ± β±eT±D

)
(z1p1 + z0p0) = α±(±z1 + z0)± β±z1,

we arrive at

Hvp = −aN
(
τ+η

2e+ − χ+M
−1DTe+

)
(α+(z1 + z0) + β+z1)

− a0
(
τ−η

2e− + χ−M
−1DTe−

)
(α−(−z1 + z0)− β−z1).

By matching the coefficients on the right-hand side of (2.19), we have

(α+ + β+)z1 + α+z0 = g+, −(α− + β−)z1 + α−z0 = g−.

Solving the equations we obtain

z0 =
(α− + β−)g+ + (α+ + β+)g−
(α− + β−)α+ + (α+ + β+)α−

, z1 =
α−g+ − α+g−

(α− + β−)α+ + (α+ + β+)α−
,

and vp is determined.

If the inhomogeneous boundary conditions at the two end points are both of the

Neumann type, then we have the inhomogeneous problem as follows:

Hvp = −a0(ηe−)g− − aN (ηe+)g+,

implying that

vp = −ηa0g−H−1e− − ηaNg+H−1e+.

Notice that the vectors H−1e± are available once H−1 is constructed, since they are the

first and the last column vectors of H−1.

Finally, to numerically solve (2.8), we propose the computing steps after initializing

the required variables.

Step 1:

(2.20) f∗ = f −

z1(Da+Cp1) + z0Cp0 general case,

0 pure Neumann case.
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Step 2:

(2.21) v = H−1f∗ +

z1p1 + z0p0 general case,

−ηa0g−H−1e− − ηaNg+H−1e+ pure Neumann case.

2.6. Solving second order differential equations

The constructedH−1 operator can be used as a numerical solution operator for the second

order boundary value problem of the form

a∗(x)u′′(x) + b∗(x)u′(x) + c∗(x)u(x) = f∗(x), x ∈ I, a∗(x) 6= 0,(2.22)

α±u(±1)± β±u′(±) = g±.

Notice that (2.22) can be transformed into the form

(2.23) (θ(x)u′(x))′ + θ(x)
c∗(x)

a∗(x)
u(x) = θ(x)

f∗(x)

a∗(x)
, θ(x) = exp

(∫
b∗(x)

a∗(x)
dx

)
,

by introducing the integrating factor θ(x) playing the role of a(x) in (2.5). If θ is not

available analytically, we approximate θ numerically as

θ = [θ0, . . . , θN ] =
[
eµ0 , . . . , eµN

]T
, [µ0, . . . , µN ]T = D−1−

[
b∗0
a∗0
, . . . ,

b∗N
a∗N

]T
.

Employing L with the diagonal elements of A by θi and denoting

C = diag

(
θ0c
∗
0

a∗0
,
θ1c
∗
1

a∗1
, . . . ,

θNc
∗
N

a∗N

)
, f =

[
θ0
f∗0
a∗0
, θ1

f∗1
a∗1
, . . . , θN

f∗N
a∗N

]T
,

we can apply (2.20) and (2.21) to solve (2.23).

3. Numerical validations and discussions

In this section, we present results obtained by the proposed method. In each numer-

ical experiment, an exact solution u(x), a coefficient function a(x), and a set of pa-

rameters (α±, β±), are specified. With these pieces of information in hand we com-

pute the corresponding f(x) and g±. To examine the performance of the derived in-

verse operator when solving a problem, we measure the discrete l2 error, defined as

e2(N) =
(∑N

i=0 |u(xi) − v(xi)|2ωi
)1/2

, and the maximum pointwise error, defined as

e∞(N) = maxi=0,...,N |u(xi) − v(xi)|, where v(x) is a numerical solution obtained by the

scheme on a grid mesh characterized by N which is the degree of the approximation

polynomial v(x).
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Our first numerical experiment is solving the boundary value problem

(3.1) u′′(x) +
1

ax2 + 1
u′(x) = f(x), x ∈ (−1, 1), u(±1) = g±

with an exact solution u(x) given as

u(x) = exp

(
−tan−1(

√
ax) + tan−1(

√
a)√

a

)
, a = 5× 104.

The function f(x) and the values of g− and g+ are computed by u(x).

A convergence study for this problem and computed solution profiles are presented in

Figure 3.1. We observe that the error decays exponentially as the grid resolution increases.

Moreover, the accuracy of the numerical solutions remains at a machine accuracy level

during further grid refinements. As pointed out in [20], the function u(x) forms a thin

boundary layer near x = 0, and a dense grid is needed to resolve u(x) accurately. Similarly,

we need to use a dense grid mesh to resolve u to a machine accuracy level, as shown in

Figure 3.1(a) which agrees with the result in [20].
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Figure 3.1: Convergence results of (3.1).

The next numerical experiment is solving the problem

(3.2) u′′(x)− b2u(x) = −eax, x ∈ (−1, 1), u(±1) = 0

for the parameter sets (a, b) = (1, 0) and (a, b) = (2, 1) with an exact smooth solution

u(x) =
eax + e−bx sinh(a− b) csch(2b)− ebx sinh(a+ b) csch(2b)

b2 − a2
.

Notice that for the case (a, b) = (1, 0) the corresponding exact solution is obtained through

taking the limit of the general expression as b→ 0, leading to u(x) = −ex.
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Present JG1 JG2

N e2(N) e∞(N) e∞(N) e∞(N)

4 1.42E-04 1.34E-04 2.45E-03 7.96E-04

8 5.81E-10 5.34E-10 3.93E-08 1.57E-08

16 8.66E-16 8.88E-16 7.64E-16 7.13E-16

32 2.74E-16 4.44E-16 - -

64 6.22E-16 8.88E-16 - -

128 1.45E-15 1.55E-15 - -

256 3.05E-16 8.88E-16 - -

512 6.91E-16 1.11E-15 - -

1024 8.11E-16 1.33E-15 - -

Table 3.1: Convergence results for the Poisson problem formulated by (3.2) with a = 1 and

b = 0. Reference results, labeled JG1 and JG2, are collected from the Jacobi polynomial

based spectral-Galerkin methods [7]. (see Table 1 in [7] with the parameters α = β = 0).

Present JG1 JG2

N e2(N) e∞(N) e∞(N) e∞(N)

4 3.05E-03 3.43E-03 2.63E-02 8.45E-03

8 2.05E-07 1.95E-07 7.14E-06 2.81E-06

16 4.06E-16 4.44E-16 6.41E-15 2.93E-15

32 3.83E-16 6.10E-16 - -

64 6.27E-16 9.43E-16 - -

128 7.86E-16 1.11E-15 - -

256 3.66E-16 8.32E-16 - -

512 4.65E-16 9.99E-16 - -

1024 6.73E-16 1.55E-15 - -

Table 3.2: Convergence results for the Helmholtz problem formulated by (3.2) with a =

2 and b = 1. Reference results, labeled JG1 and JG2, are collected from the Jacobi

polynomial based spectral-Galerkin methods [7]. (see Table 1 in [7] with the parameters

α = β = 0).
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Tables 3.1 and 3.2 present convergence studies of our method, with results from the

Jacobi polynomial based spectral-Galerkin method [7] for comparison. For the grid reso-

lutions N = 4 and N = 8, our method is clearly better than the Jacobi polynomial based

spectral-Galerkin method [7], for both parameter cases (a, b) = (1, 0) and (a, b) = (2, 1).

As the grid resolution increases to N = 16, all the numerical solutions have arrived at the

machine error accuracy level. As the grid solution N further increases, the accuracy of

each numerical solution computed by the present method remains at the machine error

level.

The third numerical experiment is solving the problem

(3.3) u′′(x) + cos(3x)u′(x) + sin(3x)u(x) = f(x), x ∈ (−1, 1), u(±1) = sin(±6)

with an exact solution given as u(x) = sin(6x). This problem was solved by the arbi-

trary grid based integration preconditioning matrix method [13]. A convergence study is

presented in Table 3.3, with reference results provided in [13] for comparison.

Present GMH-PS H-PS PS

N e2(N) e∞(N) e∞(N) e∞(N) e∞(N)

8 1.19E-01 1.34E-01 1.70E+01 1.10E-01 2.10E+01

16 6.46E-05 7.87E-05 3.80E-02 1.60E-06 1.50E-01

32 9.70E-12 9.67E-12 5.40E-11 1.60E-05 1.00E-05

64 2.86E-15 4.38E-15 8.90E-12 No Conv. No Conv.

128 2.65E-15 4.44E-15 - - -

256 2.35E-15 5.21E-15 - - -

512 7.10E-15 1.04E-14 - - -

1024 6.08E-15 1.26E-14 - - -

Table 3.3: Convergence results for the Helmholtz problem formulated by (3.3). Refer-

ence results, labeled GMH-PS, H-PS, and PS, were obtained by the arbitrary grid based

pseudospectral integration precondition matrix [13], the pseudospectral integration pre-

conditioning matrix method [15], and the traditional pseudospectral method, respectively.

All these reference results were reported in [13, Table 5]. In [13] the problem was solved

by iterative methods, and those computations which failed to converge were labeled as No

Conv..

It is clearly seen from the computed errors that the present method is better, except

for the case N = 16 by the method [15]. Furthermore, the accuracy of the numerical
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solutions obtained by the present method is preserved and not ruined by round off errors,

even using a dense grid mesh.

The fourth numerical experiment is solving the Helmholtz problem

(3.4) εu′′(x)− xu′(x)− u(x) = 0, x ∈ (−1, 1), u(±1) = 0

for ε = 0.1. This problem was solved by the ultraspherical polynomial based integration

preconditioning matrix method [10], with an exact solution given as u(x) = e
x2−1
2ε which

forms a boundary layer of width O(1/ε) in the vicinity of each end point.

Table 3.4 presents a convergence study of our method, with reference results provided

in [10] for comparison. As shown in the results, for all the grid resolutions used in the

computations, our method is as good as the ultraspherical polynomial based integration

preconditioning matrix method [10], and both integration type methods are better than

the traditional pseudospectral method.

Present PLP LP

N e2(N) e∞(N) e∞(N) e∞(N)

8 7.59E-03 7.63E-03 - -

16 8.42E-06 7.81E-06 - -

32 6.35E-14 5.76E-14 - -

64 8.03E-16 1.99E-15 9.99E-16 1.59E-13

128 4.71E-16 9.99E-16 1.22E-15 9.82E-14

256 4.43E-16 1.66E-15 1.67E-15 6.61E-13

512 8.39E-16 2.77E-15 2.22E-15 1.11E-11

1024 7.23E-16 2.66E-15 3.71E-15 2.72E-11

Table 3.4: Convergence results for the Helmholtz problem formulated by (3.4) with ε = 0.1.

Reference results, labeled PLP and LP, are collected from the ultraspherical polynomial

based integration preconditioning matrix methods [10, Table 3].

Our next numerical experiment is solving the boundary value problem

(3.5) u′′(x)− (1 + sinx)u′(x) + exu(x) = f(x), x ∈ I, u(±1) = 1

with an exact solution given as u(x) = e(x
2−1)/2. The corresponding f is computed by the

given u. We use (2.20) and (2.21) to solve the discretized problem.

A convergence study is presented in Table 3.5. Similar to the previous examples, the

numerical error vanishes exponentially as the grid resolution increases. Furthermore, the
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measured errors are as small as those reported in [30], indicating that the present method

is effective and comparable to the approach [30], even during further grid refinements.

Present BCOL P-LCOL

N e2(N) e∞(N) e∞(N) e∞(N)

4 1.84e-03 1.75e-03 - -

8 5.49e-07 7.93e-07 - -

16 1.94e-13 1.98e-13 - -

32 8.70e-16 8.88e-16 - -

64 8.10e-16 1.11e-15 5.55e-16 1.67e-15

128 1.02e-15 1.22e-15 1.11e-15 2.44e-15

256 1.79e-15 1.88e-15 1.11e-15 2.55e-15

512 6.95e-15 8.10e-15 1.89e-15 4.77e-15

1024 8.37e-15 6.43e-15 3.44e-15 1.15e-14

Table 3.5: Convergence results for (3.5). Reference results are from [30] by the Birkhoff col-

location (BCOL) scheme and the preconditioned Lagrange collocation (P-LCOL) scheme.

In theory, the accuracy of a numerical solution is affected by the truncation errors and

the round off errors. In these experiments the results show that the present approach is

better than the other methods in most cases, when round off errors are much smaller than

the truncation errors of the numerical solutions. For computations based on dense grid

meshes and when round off errors and the truncation errors of the numerical solutions are

of the same order of magnitude, our method is as good as the other methods.

Encouraged by the performances of our method in the previous experiments for solving

linear differential equations, we further test the performance of the present method for

solving a nonlinear differential equation.

The following experiment is solving the problem described by the charge conserving

Poisson-Boltzmann equation of the form

u′′(ξ) =
sinh(u(ξ))

d−1
∫ d
−d e

u(ξ) dξ
, ξ ∈

(
−d

2
,
d

2

)
, u

(
±d

2

)
= ±V.

Introducing the linear coordinate transformation, ξ(x) = xd/2, and denoting the trans-

formed variable u(ξ(x)) by v(x), we have the transformed problem as follows:

(3.6)
d2v(x)

dx2
=
d3

8

sinh(v(x))∫ 1
−1 e

v(x) dx
, x ∈ (−1, 1), v(±1) = ±V.
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Let v be the grid vector of v(x) and f be the grid vector defined as

f =
[
f0 f1 · · · fN

]
, fi =

sinh(v(xi))∑N
k=0 e

v(xi)ωi
.

We solve (3.6) by the following scheme

v = L−1
[
d3

8
f −

(
τ−η

2e− + χ−M
−1DTe−

)
V− −

(
τ+η

2e+ − χ+M
−1DTe+

)
V+

]
by a nonlinear equation solver.

Figure 3.2 presents computed solutions for various values of N . For certain particular

parameter ranges a good approximation of the Dirichlet problem has been derived [9],

and we use the derived formula to compute an approximation solution for comparison.

In Figure 3.2 it is shown that the difference between the numerical solution and the

approximation solution becomes smaller as the grid resolution N increases.
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Figure 3.2: Numerical solutions of (3.6) with problem parameters given by V = 6 and

d = 15 (a) and d = 30 (b). Approximation solutions are computed by the formula given

in [9].

Note that the plotted approximation solution has a zigzag for 2 ≤ x ≤ 2.5 in Fig-

ure 3.2(a). It is caused by the approximation formula provided in [9] (Eq. (3.15b) in the

reference), which is for approximating x(u) (the inverse of u) instead of u(x). The formula

was derived by singular perturbation theory, with range splitting and asymptotic match-

ing. Thus, depending on the value of u, different approximation formula were applied.

As a result, the plotted curve x(u) (black line) has a jump discontinuity at the matching

point in u (approximately at u = 0.5), forming a zigzag shape in the plot in this case. For

further information about the property of the approximation solution x(u) we refer the

readers to [9].
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We close this section by demonstrating the performance of the derived H−1 operator

when solving a time-dependent partial differential equation. Consider u(x, t) satisfying

the model problem

(3.7)


∂u
∂t = ∂2u

∂x2
+ f(x, t), x ∈ (−1, 1), t > 0,

u(x, 0) = u0(x), x ∈ [−1, 1],

±∂u(±1,t)
∂x = g±(t), t ≥ 0

with an exact solution given as

u(x, t) = e−π
2t sin(πx) + e−4

(
x− π

12

)2
cos(6πx).

The functions f(x, t), u0(x), and g±(t) are evaluated by the given exact solution.

We discretize the problem by the present pseudospectral method in space and the

Crank-Nicholson difference method in time, and have the scheme as

vn+1 − vn

∆t
= L

(
vn+1 + vn

2

)
+
fn+1 + fn

2
+ ηe−

gn+1
− + gn−

2
+ ηe+

gn+1
+ + gn+

2
,(3.8)

v0 = [u0(x0), u0(x1), . . . , u0(xN )]T ,

where ∆t is the time step, the superscript n denotes the integer time level, vn = [vn0 , . . . ,

vnN ]T is the solution grid vector at discrete time tn = n∆t with vni being the value approx-

imating u(xj , tn), fn = [fn0 , . . . , f
n
N ]T is the grid vector of f at time level tn, and L is the

BCP pseudospectral Laplace operator defined in (2.9).

The fully discrete scheme (3.8) is stable independent of the size of the time step.

To show this fact it is sufficient to consider the homogeneous version of the scheme.

Multiplying (vn+1 +vn)M to the scheme from the left and invoking that M is symmetric

positive definite and ML is semi-negative definite, we have

(vn+1)TMvn+1 = (vn)TMvn +
∆t

2

(
vn+1 + vn

)T
ML

(
vn+1 + vn

)
≤ (vn)TMvn.

As a result, the discrete energy norm of the numerical solution at time level tn is bounded

as follows:

(vn)TMvn ≤ (vn−1)TMvn−1 ≤ · · · ≤ (v0)TMv0.

Thus, for a fixed terminal time T = n∆t the numerical solution vn is bounded by the

initial data and is independent of the time step, during grid refinements.

For the sake of computation accuracy, we still need to use a proper time step size

to advance the solution in time, although the scheme is unconditional stable. For this

numerical experiment we use ∆t = 1/N for computations. As we will see soon, this choice

of time step gives satisfactory results.
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To compute vn+1 we rewrite the system of equations as

vn+1 = −vn −H−1
(

4

∆t
vn + fn+1 + fn

)
−H−1e−η

(
gn+1
− + gn−

)
−H−1e+η

(
gn+1
+ + gn+

)
,

(3.9)

where H−1 is given as

H−1 =

(
L− 2

∆t
I

)−1
,

and is formulated by the method described in Section 2.4. To examine the performance of

the scheme, we measure the approximation error defined by e(N, tn) =
(∑N

i=0 |u(xi, tn)−
vni |2ωi

)1/2
.

Figure 3.3(a) presents the error history curves resulting from computing numerical

solutions by different grid resolutions. For a given grid resolution N the corresponding

curve indicates that the computed solution gradually evolves to the steady state solution

within a certain level of accuracy, where the higher the grid resolution, the better the

solution accuracy. Figure 3.3(b) shows the convergence rate of the numerical solution at

times t = 2 and t = 50. At t = 2 the solution profile has not yet arrived at the steady

state, and hence, the convergence rate is of second order due to the Crank-Nicholson

difference in time. On the other hand at t = 50 the solution profile has reached the steady

state, and thus, as the grid resolution increases, the error decays exponentially due to the

pseudospectral discretization in space.
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Figure 3.3: (a) Error history curves of the model heat problem (3.7) solved by (3.9) with

different grid resolutions. (b) Measured errors at time t = 2 and t = 50 for different values

of N . We take time step as ∆ = 1/N in each computation.
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4. Conclusions and future plans

We have presented a framework based on stepwise integrations and low-rank updates

to seek an inverse pseudospectral matrix for the Helmholtz differential operator. The

resultant inverse matrix was used to solve general second order differential equations, and

the computation results clearly illustrated the performance of the operators as expected.

Before closing, we would like to address potential applications of the present framework

for seeking integration preconditioning matrices.

The present framework for seeking inverse matrices is applied in nodal spaces. Thus,

for the basic mixed differential operator, d
dxa(x) d

dx , the linkage between differential op-

erators and sandwiched variable coefficients is easily decoupled, and the inverse matrix

for the mixed differential operator is formed by a matrix product of the inverses of the

decoupled ones. Consequently, existing inverse matrices, developed by other orthogo-

nal polynomial methods for the first order differential operator, can be adopted into the

present framework as basic elements to formulate different orthogonal polynomials based

operating matrices for the mixed operator as well. Furthermore, using existing inverse

spectral/pseudospectral matrices as building blocks in the present divide-and-conquer ap-

proach, we can further seek integration preconditioning matrices for other high-order pure,

mixed, or even nonlinear differential operators.

We may further apply the present framework to devise preconditioning techniques for

multidomain schemes based on pseudospectral, discontinuous Galerkin and summation-

by-parts finite difference methods. Similar to the model single domain scheme present in

this study, multidomain schemes are composed of element-wise differentiation operators

which are commonly products of basic differentiation matrices and element-wise low-rank

boundary operators which relate field values between adjacent elements. By exploring

these properties within these schemes as shown in this study, we strongly believe that

efficient and accurate numerical procedures may be devised. We hope to report these

works in the near future.

A. General L−1

Following a parallel procedure as shown in Section 2.3, we now proceed to finding the

matrix K−1Λ to formulate the L−1 matrix for the general case. We factor Q described

in (2.13) as

Q = Φ̂Ψ̂
T
,

where Φ̂ and Ψ̂
T

are, respectively, given as

Φ̂ =
[
D−e− ηe− ηe+ D−e+

]
,
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and

Ψ̂
T

=


ηa0χ−(α−e

T
− − β−eT−D+)

−τ−α−ηa0eT− − (1− τ−β−η)a0e
T
−D+

(χ+ − τ+)(α+ + β+η)ηaNe
T
+ + (χ+ − τ+)β+ηaNe

T
+D+

(1− χ+(α+ + β+η))ηaNe
T
+ − χ+β+ηaNe

T
+D+

 .

Employing the inverse operators, D−1− and D+, we compute D−1− Φ̂ and Ψ̂
T
D−1+ and have

Φ = D−1− Φ̂ =
[
e− p0 pn e+

]
,

and

ΨT = Ψ̂
T
D−1+ =


−χ−α−ηa0pT0 − χ−β−η2a0eT−

+τ−α−ηa0p
T
0 − (1− τ−β−η)ηa0e

T
−

−(χ+ − τ+)(α+ + β+η)ηaNp
T
N + (χ+ − τ+)β+η

2aNe
T
+

−(1− χ+(α+ + β+η))ηaNp
T
N − χ+β+η

2aNe+

M = ΛΦTM ,

where with the use of the relationships in (2.7) the matrix Λ is given as

Λ = η


−χ−β−ηa0 −χ−α−a0 0 0

−χ−α−a0 τ−α−a0 0 0

0 0 −(χ+ − τ+)(α+ + β+η)aN (χ+ − τ+)β+ηaN

0 0 −(χ+ − τ+)β+ηaN −χ+β+ηaN

 .

To find K−1Λ we compute ΦTMA−1Φ and Λ−1, and the results are

ΦTMA−1Φ =
1

η


1
a0

1
a0

(−1)N
a0

0

1
a0

κ2 κ1
1
aN

(−1)N
a0

κ1 κ0
1
aN

0 1
aN

1
aN

1
aN

 , κν =
N∑
i=0

1

ai(PN (xi))ν
,

and

Λ−1 =
1

η


− τ−
χ−a0

− 1
a0

0 0

− 1
a0

β−η
α−a0

0 0

0 0 − χ+

(χ+−τ+)aN
− 1
aN

0 0 − 1
aN

− 1
aN

(
α+

β+η
+ 1
)

 .
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Thus, we have Λ−1K as

Λ−1K = Λ−1+ΦTMA−1Φ =
1

η



(
1− τ−

χ−

)
1
a0

0 (−1)N
a0

0

0 κ2 + β−η
α−a0

κ1
1
aN

(−1)N
a0

κ1 κ0 − χ+

(χ+−τ+)aN
0

0 1
aN

0 − α+

β+ηaN

 .

Then the inverse of Λ−1K is found as

K−1Λ =
η

T


t11 t12 t13 t14

t12 t22 t23 t24

t13 t23 t33 t34

t14 t24 t34 t44

 ,

where T is given as

T =
(χ− − τ−)(χ+ − τ+)

a0aN

(
(κ21 − κ0κ2)α−α+ −

α+β−ηκ0
a0

)
+

1

a0aN

(
κ2α−α+ +

α+β−η

a0

)(
(χ− − τ−)χ+

aN
+

(χ+ − τ+)χ−
a0

)
− α−β+η

a0a2N

(
(χ− − τ−)(χ+ − τ+)κ0 −

(χ− − τ−)χ+

aN
− (χ+ − τ+)χ−

a0

)
,

and tij for 1 ≤ i ≤ 4 and i ≤ j ≤ 4 are found as follows:

t11 =
χ−
aN

(χ+ − τ+)(κ21 − κ0κ2)α−α+ +
χ−χ+

a2N
(κ2α−α+)

− χ−
aN

(
α+β−η

a0
+
α−β+η

aN

)(
κ0(χ+ − τ+)− χ+

aN

)
,

t12 =
(−1)Nχ−α−β+ηκ1

a0

(
κ0(χ+ − τ+)− χ+

aN

)
,

t13 =
(−1)Nχ−(χ+ − τ+)

a0aN

(
α−β+η

aN
+
α+β−η

a0
+ κ2α−α+

)
,

t14 =
(−1)N+1χ−(χ+ − τ+)κ1α−β+η

a0aN
,

t22 =

(
χ+(χ− − τ−)

aN
+
χ−(χ+ − τ+)

a0
− (χ− − τ−)(χ+ − τ+)κ0

)
α−α+

a0aN
,

t23 =
(χ+ − τ+)(χ− − τ−)

a0aN
κ1α−α+,

t24 =
α−β+η

a0aN

(
χ−(χ+ − τ+)

a0
+
χ+(χ− − τ−)

aN
− κ0(χ− − τ−)(χ+ − τ+)

)
,

t33 = −(χ− − τ−)(χ+ − τ+)

a0aN

(
α+β−η

a0
+
α−β+η

aN
+ κ2α−α+

)
,
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t34 = (χ+ − τ+)(χ− − τ−)
α−β+ηκ1
a0aN

,

t44 = −α−β+η
a0

(
(κ21 − κ0κ2)(χ− − τ−)(χ+ − τ+) + κ2

(
χ+(χ− − τ−)

aN
+
χ−(χ+ − τ+)

a0

))
+
β−β+η

2

a20

(
κ0(χ− − τ−)(χ+ − τ+)− χ+(χ− − τ−)

aN
− χ−(χ+ − τ+)

a0

)
.
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