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Nonemptiness Problems of Wang Cubes with Two Colors

Hung-Hsun Chen, Wen-Guei Hu* and Song-Sun Lin

Abstract. This investigation studies the nonemptiness problems of Wang cubes with

two colors. Wang cubes are unit cubes with colored faces, which are generalized from

Wang tiles. For a set B of Wang cubs, Σ(B) is the set of all global patterns on Z3

that can be constructed by the cubes in B. The nonemptiness problem is to determine

whether Σ(B) 6= ∅ or not. Denote by P(B) the set of all periodic patterns on Z3 that

can be constructed by the cubes in B. For Wang cubes, the corresponding Wang’s

conjecture is that if Σ(B) 6= ∅, then P(B) 6= ∅.
We introduce the transition matrices and trace operators to determine whether

Σ(B) 6= ∅ and P(B) 6= ∅ or not, respectively. A basic set B is called a minimal cycle

generator if P(B) 6= ∅ but P(B′) = ∅ for all B′ $ B. By computer computation, there

exist 86 equivalence classes of minimal cycle generators with two colors. By verifying

that the basic sets B that contains no minimal cycle generators satisfy Σ(B) = ∅, we

prove that the Wang’s conjecture for Wang cubes with two colors is true.

1. Introduction

Firstly, we briefly review the nonemptiness problems on Z2. The edge coloring problem

on Z2 is closely related to lattice models in the scientific modeling of spatial structure.

Relevant investigations have been performed on phase transitions; see Baxter [3, 4], Lieb

[16,17] and Penrose [18].

In 1961, in studying proving theorem by pattern recognition, Wang [20] started to

study the square tiling of a plane. Wang tiles are unit squares with colored edges. In

tiling the infinite Euclidean plane, Wang tiles are arranged side by side on Z2 such that

the touching edges of the adjacent tiles have the same colors; the tiles cannot be rotated

or reflected. Let Sp = {0, 1, . . . , p − 1} be a set of p colors, p ≥ 2. The set of all Wang

tiles with p colors is denoted by W2;p. A finite set B ⊆ W2;p of Wang tiles is called a
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basic set (of Wang tiles). We call U = (ui,j) ∈ WZ2

2;p a global pattern (tiling) on Z2 if the

continuous edges of the adjacent tiles have the same colors. Let Σ(B) be the set of all

global patterns that can be constructed from the Wang tiles in B. For m,n ≥ 1, a global

pattern U = (ui,j) ∈WZ2

2;p is called (doubly) periodic pattern with horizontal period m and

vertical period n if

ui+m,j = ui,j+n = ui,j

for all i, j ∈ Z. Let P(B) be the set of all periodic patterns that can be constructed from

the Wang tiles in B. Clearly, P(B) ⊆ Σ(B).

Given a basic set B, the nonemptiness problem is to determine whether or not Σ(B) 6=
∅. In [20], Wang conjectured that

(1.1) if Σ(B) 6= ∅, then P(B) 6= ∅,

that is, any set of Wang tiles that can tile a plane can tile the plane periodically. If Wang’s

conjecture (1.1) holds, then the nonemptiness problem can be reduced to determining

whether or not P(B) 6= ∅.
However, Berger [5] proved that Wang’s conjecture was wrong and the nonemptiness

problem of Wang tiles is undecidable. He presented a set B of Wang tiles that could only

tile the plane aperiodically, that is,

(1.2) Σ(B) 6= ∅ and P(B) = ∅.

A set B is called an aperiodic set if B satisfies (1.2). Thereafter, the smaller aperiodic sets

are found by Robinson, Penrose, Culik and Kari [8, 10, 14, 18, 19]. For p = 2 and p = 3,

Chen et al. [6, 12] showed that Wang’s conjecture (1.2) holds. Recently, the minimal

aperiodic set of 11 Wang tiles with four colors was constructed by Jeandal and Rao [13],

in the sense that no aperiodic set has less than four colors or less than 11 tiles.

Considering the tiles that are unit squares with colored vertices, currently, the smallest

number of colors of aperiodic sets is six [15]. Our previous work [12] showed the Wang’s

conjecture holds for p = 2. To find periodic patterns in corner coloring needs much more

computation than that in edge coloring. Therefore, the problem for p = 3 is still under

investigation.

In many situations, the three-dimensional problems are more related to our real world

phenomena. The three-dimensional face coloring is considered. Wang tiles were gener-

alized to Wang cubes, unite cube with colored faces, by Culik and Kari [9]. In the face

coloring of a space, Wang cubes stack the whole space such that the touching faces of

adjacent cubes have the same colors. Before stating the main results, some notation is

introduced.
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The set of all Wang cubes with p colors is denoted by W3;p. Let B ⊆W3;p be a set of

Wang cubes. Given m,n, k ≥ 1, let

Zm×n×k = {(i1, i2, i3) ∈ Z3 | 0 ≤ i1 ≤ m− 1, 0 ≤ i2 ≤ n− 1, 0 ≤ i3 ≤ k − 1}.

For m,n, k ≥ 1, we call Um×n×k ∈ WZm×n×k

3;p a local pattern on Zm×n×k if the continu-

ous faces of the adjacent cubes have the same colors. Let Σm×n×k(B) be the set of all

local patterns on Zm×n×k that can be constructed by the Wang cubes in B. Denote by

Γm×n×k(B) the cardinality of Σm×n×k(B).

Similarly, we call U = (ui1,i2,i3) ∈WZ3

3;p a global pattern (tilling) on Z3 if the continuous

faces of the adjacent cubes have the same colors. Denote by Σ(B) the set of all global

patterns that can be constructed by the Wang cubes in B. Clearly,

if Σm×n×k(B) = ∅ for some m,n, k ≥ 1, then Σ(B) = ∅.

Subsequently, periodic patterns on Z3 are introduced. Let L3 be the set of finite index

subgroups of Z3. By Hermite normal form, L3 can be parameterized as

L3 =








a1 b12 b13

0 a2 b23

0 0 a3


Z3

∣∣∣ ai ≥ 1 for 1 ≤ i ≤ 3 and 0 ≤ bij ≤ ai − 1 for i+ 1 ≤ j ≤ 3




.

For any sublattice L ∈ L3, a global pattern U = (ui1,i2,i3) ∈ WZ3

3;p is called (triply) L-

periodic if for any (i1, i2, i3) ∈ Z3,

(1.3) ui1+l1,i2+l2,i3+l3 = ui1,i2,i3

for all (l1, l2, l3) ∈ L. In particular, if a global pattern U is L-periodic with b12 = b13 =

b23 = 0, U is called cuboid periodic with period (a1, a2, a3). Otherwise, U is called paral-

lelopiped periodic.

For B ⊆ W3;p, let P(B) be the set of all L-periodic patterns that can be constructed

from the Wang cubes in B. For m,n, k ≥ 1, let Pm×n×k(B) be the set of all cuboid periodic

patterns with period (m,n, k) that can be constructed by the cubes in B. Notably, every

L-periodic pattern can be represented as a cuboid periodic pattern with period (m,n, k)

for some m,n, k ≥ 1, that is,

P(B) =
⋃

m,n,k≥1
Pm×n×k(B).

Denote by Pm×n×k(B) the cardinality of Pm×n×k(B). It is clear that the number m ·n · k
is greater than or equal to the index |Z3/L|. Therefore, for determining P(B) 6= ∅ in
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computing, to consider general L-periodic patterns is much efficient in some cases; see

Example 3.4.

In general, let Q be a 3×3 integer matrix with r = rank(Q) ≥ 1. Clearly, if 1 ≤ r ≤ 2,

QZ3 is a subgroup of Z3 with infinite index. For 1 ≤ r ≤ 3, a global pattern U = (ui1,i2,i3)

is called r-directional periodic if for any (i1, i2, i3) ∈ Z3,

ui1+l1,i2+l2,i3+l3 = ui1,i2,i3

for all (l1, l2, l3) in some QZ3 with rank(Q) = r. For B ⊆W3;p, denote by Pr(B) the set of

all r-directional periodic patterns that can be constructed from the cubes in B. Notably,

Σ(B) ⊇ P1(B) ⊇ P2(B) ⊇ P3(B) = P(B).

Now, the Wang’s conjecture can be generalized to Wang cubes: for any B ⊆W3;p,

(1.4) if Σ(B) 6= ∅, then P(B) 6= ∅.

The aperiodic set of Wang tiles in [13] can be easily used to construct a set B of 11 Wang

cubes such that Wang’s conjecture (1.4) fails with 4 colors, i.e., Σ(B) 6= ∅ and P(B) = ∅.
Moreover, Culik and Kari [9] constructed a strongly aperiodic set B′ of 21 Wang cubes

with 7 colors such that Σ(B′) 6= ∅ and P1(B′) = ∅.
In this work, we prove that Wang’s conjecture (1.4) for Wang cubes holds for p = 2

using a computer. Concerning the number of colors such that (1.4) holds, it only remains

open for p = 3.

As in our previous work [6, 12], the main strategy of the proof is as follows. First,

B is called a cycle generator if P(B) 6= ∅; otherwise, B is called a non-cycle generator.

Moreover, B is called a minimal cycle generator (MCG) if B is a cycle generator and

P(B′) = ∅ whenever B′ ( B; B is called a maximal non-cycle generator (MNCG) if B is

a non-cycle generator and P(B′′) 6= ∅ for any B′′ % B.

For a set B of Wang tiles with two colors, our previous work [7] showed that the

positivity of the spatial entropy of Σ(B) is completely determined by the minimal cycle

generators in B. The problem for Wang cubes with two colors is still under investigation.

Given p ≥ 2, denote the set of all minimal cycle generators by C(p) and the set of

maximal non-cycle generators by N (p). Clearly,

C(p) ∩N (p) = ∅.

Therefore, Wang’s conjecture (1.4) holds for p ≥ 2 if

Σ(B) = ∅ for any B ∈ N (p)

can be shown.
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For p = 2, after the symmetry group Oh of a unit cube and the permutation group S2

of colors of x-, y- and z-directional faces, respectively, are applied, it is shown that C(2)

has 86 equivalence classes and N (2) has 28 equivalence classes. Furthermore, (1.4) holds

for p = 2. Indeed, if Σ(B) = ∅, then there exists a basic set B′ that is in the equivalence

class of B such that Σ4×3×k(B
′) = ∅ for some k ≥ 1.

Since the period of a periodic pattern for p = 3 can be much larger than that for

p = 2, the process in this paper cannot work for p = 3 immediately. To study the Wang’s

conjecture for p = 3, it will need more efficient arguments and computer programs to find

C(3) and N (3).

The rest of the paper is arranged as follows. Section 2 introduces the transition

matrices and trace operators. They are very useful in determining whether Σm×n×k(B) 6=
∅ and P(B) 6= ∅ or not. Section 3 will introduce the procedure for determining the sets

C(2) and N (2), and will prove the main result.

2. Preliminaries

This section introduces necessary elements in proving the main result, including the sym-

metries of Wang cubes, the transition matrices and trace operators.

2.1. Symmetries

The symmetry of the unit cube is introduced. The symmetry group Oh of unit cube has 24

rotation elements and 24 reflection elements, which is isomorphic to S4×C(2), where S4 is

the permutation group of order 24 and C(2) is the cyclic group of order 2. Therefore, given

a basic set B ⊆W3;p and any element τ ∈ Oh, another basic set (B)τ can be obtained by

transforming the local patterns in B by τ .

In face coloring, the permutations of colors in the x-, y- and z-directions are mutually

independent. Denote the permutations of colors in the faces in the x-, y- and z-directions

by ηx ∈ Sp, ηy ∈ Sp and ηz ∈ Sp, respectively. Now, for any B ⊆ W3;p, define the

equivalence class [B] of B by

[B] = {B′ ⊆W3;p : B′ = ((((B)τ )ηx)ηy)ηz , τ ∈ Oh and ηx, ηy, ηz ∈ Sp}.

As in [6, 12], whether or not Σ(B) 6= ∅ and P(B) 6= ∅ is shown to be independent of

the choice of elements in [B]. Indeed, for any B′ ∈ [B],

(2.1) Σ(B′) 6= ∅ (or P(B′) 6= ∅) if and only if Σ(B) 6= ∅ (or P(B) 6= ∅).

Moreover, for B′ ∈ [B], B′ is an MCG (MNCG) if and only if B is an MCG (MNCG).

Therefore, groups Oh and S2 can be used efficiently to reduce the number of cases B ⊆W3;p

that must be considered, and then can greatly reduce the computation time.
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2.2. Transition matrix

This subsection introduces the transition matrices for face coloring.

Now, the case p = 2 is considered. Let u be a unit cube. The face in the positive

(negative) x-direction is denoted by x+ (x−); the face in the positive (negative) y-direction

denoted by y+ (y−); the face in the positive (negative) z-direction is denoted by z+ (z−);

see Figure 2.1. The colors on the six faces of a Wang cube u is denoted by


x

+ y+ z+

x− y− z−


 =


x

+(u) y+(u) z+(u)

x−(u) y−(u) z−(u)


 .

Moreover, for a local pattern Um×n×k = (ui1,i2,i3) on Zm×n×k, m,n, k ≥ 1, the color

of the face αβ on the Wang cube ui1,i2,i3 is denoted by αβ(ui1,i2,i3), where α is x, y or z,

β = +,−.

NONEMPTINESS PROBLEMS OF WANG CUBES WITH TWO COLORS 5

(2.1) [B] = {B′ ⊆ W3;p : B′ = ((((B)τ )ηx)ηy )ηz , τ ∈ Oh and ηx, ηy, ηz ∈ Sp}.
As in [6, 12], whether or not Σ(B) 6= ∅ and P(B) 6= ∅ is shown to be independent1

of the choice of elements in [B]. Indeed, for any B′ ∈ [B],2

(2.2) Σ(B′) 6= ∅ (or P(B′) 6= ∅) if and only if Σ(B) 6= ∅ (or P(B) 6= ∅).
Moreover, for B′ ∈ [B], B′ is an MCG (MNCG) if and only if B is an MCG3

(MNCG). Therefore, groups Oh and S2 can be used efficiently to reduce the num-4

ber of cases B ⊆ W3;p that must be considered, and then can greatly reduce the5

computation time.6

2.2. Transition Matrix. This subsection introduces the transition matrices for7

face coloring.8

Now, the case p = 2 is considered. Let u be a unit cube. The face in the positive9

(negative) x-direction is denoted by x+ (x−); the face in the positive (negative)10

y-direction denoted by y+ (y−); the face in the positive (negative) z-direction is11

denoted by z+ (z−); see Figure 1. The colors on the six faces of a Wang cube u is12

denoted by13

(
x+ y+ z+

x− y− z−

)
=

(
x+(u) y+(u) z+(u)
x−(u) y−(u) z−(u)

)
.

Moreover, for a local pattern Um×n×k = (ui1,i2,i3) on Zm×n×k, m,n, k ≥ 1, the14

color of the face αβ on the Wang cube ui1,i2,i3 is denoted by αβ(ui1,i2,i3), where α15

is x, y or z, β = +,−.16

x

y

z

x+

x−

y− y+

z−

z+

Figure 1. The six faces of a unit cube

Definition 2.1. The coding function φ ≡ φm×n : {0, 1}Zm×n → {j | 0 ≤ j ≤17

2mn−1} is defined as18

(2.3) φ
(
(βi,j)0≤i≤m−1,0≤j≤n−1

)
=

m−1∑

i=0

n−1∑

j=0

βi,j2
i+mj .

Clearly, it can be verified that the coding function φ is bijective.19

Figure 2.1: The six faces of a unit cube.

Definition 2.1. The coding function φ ≡ φm×n : {0, 1}Zm×n → {j | 0 ≤ j ≤ 2mn−1} is

defined as

φ
(

(βi,j)0≤i≤m−1
0≤j≤n−1

)
=

m−1∑

i=0

n−1∑

j=0

βi,j2
i+mj .

Clearly, it can be verified that the coding function φ is bijective.

Now, given B ⊆W3;2, for computing Σm×n×k(B), m,n, k ≥ 1, the 2mn×2mn transition

matrix Vm×n(B) = [vi,j(B)]0≤i,j≤2mn−1 is defined as follows. For 0 ≤ i, j ≤ 2mn − 1,

vi,j(B) is the number of the local patterns Um×n×1 = (ui1,i2,0) in Σm×n×1(B) such that

(2.2) i = φ
(

(z−(ui1,i2,0))0≤i1≤m−1
0≤i2≤n−1

)
and j = φ

(
(z+(ui1,i2,0))0≤i1≤m−1

0≤i2≤n−1

)
.

Notably, i determines the colors of top surface of the local patterns Um×n×1, and j deter-

mines the colors of bottom surface of Um×n×1.
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Denote by |A| the sum of all the entries of a matrix A. Notably, |Vm×n| is the

number of the local patterns on Zm×n×1 that can be generated by B. Furthermore, from

the definition of Vm×n(B), it can be easily verified that, for m,n, k ≥ 1,

(2.3) Γm×n×k(B) = |Vk
m×n(B)|.

2.3. Periodic patterns and trace operator

This subsection studies the trace operator and generalized trace operator for studying

periodic patterns of face coloring.

As in [1, 2, 11], Pm×n×k(B) can be computed by trace operators as follows. Given

B ⊆ W3;2, the 2mn × 2mn trace operator Tm×n(B) = [ti,j(B)]0≤i,j≤2mn−1 is defined as

follows. For 0 ≤ i, j ≤ 2mn−1, ti,j(B) is the number of the local patterns U(m+1)×(n+1)×1 =

(ui1,i2,0) in Σ(m+1)×(n+1)×1(B) that satisfy

um,i2,0 = u0,i2,0 and ui1,n,0 = ui1,0,0

for 0 ≤ i1 ≤ m and 0 ≤ i2 ≤ n, and (2.2). Notably, |Tm×n(B)| is the number of the local

patterns with x-period m , y-period n and height 1 that can be constructed by the cubes

in B. The following proposition indicates that the number of cuboid periodic patterns can

be computed using the trace of trace operator.

Proposition 2.2. Given B ⊆W3;2, for m,n, k ≥ 1,

(2.4) Pm×n×k(B) = tr(Tk
m×n(B)).

Proof. From the construction of Tm×n(B), it is clear that tr(Tk
m×n(B)) is the number of

the local patterns with x-period m, y-period n and height k that can be constructed by

the tiles in B such that the colors of top surface are equal to those of bottom surface.

Every such local pattern corresponds uniquely with a cuboid periodic pattern with period

(m,n, k). Therefore, (2.4) follows. The proof is complete.

By using L-period to present a cuboid periodic pattern with period (m,n, k), the index

|Z3/L| = a1 · a2 · a3 is always smaller than or equal to m · n · k. Indeed, a1 · a2 · a3 is

an aliquot part of m · n · k. Now, we introduce the generalized trace operator to help us

compute the number of certain L-periodic patterns.

Given B ⊆W3;2, for 0 ≤ q ≤ m−1, the 2mn×2mn generalized trace operator Tm×n;q =

[tq;i,j(B)]0≤i,j≤2mn−1 is defined as follows.

For 0 ≤ i, j ≤ 2mn − 1, tq;i,j(B) is the number of the local patterns U(m+1)×(n+1)×1 =

(ui1,i2,0) in Σ(m+1)×(n+1)×1(B) such that

um,i2,0 = u0,i2,0 and ui1,n,0 = umod(i1+m−q,m),0,0
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for 0 ≤ i1 ≤ m and 0 ≤ i2 ≤ n, and (2.2). In particular, Tm×n;0 = Tm×n. Here, mod(a, b)

is the remainder when a is divided by b. Notably, |Tm×n;q(B)| is the number of the local

patterns with two-dimensional parallelogram period with L′ = [m q
0 n ]Z2 and height 1 that

can be constructed by the cubes in B.

The following proposition is a generalization of Proposition 2.2.

Proposition 2.3. Given B ⊆W3;2, for m,n, k ≥ 1 and 0 ≤ q ≤ m−1, let L =
[
m q 0
0 n 0
0 0 k

]
Z3.

Then, the number of L-periodic patterns that can be constructed by the cubes in B is

tr(Tk
m×n;q).

Proof. Similar to the proof of Proposition 2.2, from the construction of Tm×n;q(B), the

result follows immediately. The proof is complete.

Notably, using generalized trace operators to find a periodic pattern is more efficient

than only using trace operators; see Example 3.4.

Now, recall some notation and results of matrix theory. A matrix A is called nilpotent

if Ak equals a zero matrix for some k ≥ 1. The property “nilpotent” can be used to

specify whether B is a cycle generator or Σ(B) = ∅.

Proposition 2.4. Given a basic set B ⊆W3;2,

(i) B is a cycle generator if and only if Tm×n;q(B) is not nilpotent for some m,n ≥ 1

and 0 ≤ q ≤ m− 1.

(ii) Σ(B) = ∅ if and only if Vm×n(B) is nilpotent for some m,n ≥ 1.

Proof. First, we have that Tm×n;q(B) and Vm×n(B) are non-negative matrices. From

Proposition 2.3, B is easily seen to be a cycle generator if and only if tr(Tk
m×n;q) > 0 for

some m,n, k ≥ 1 and 0 ≤ q ≤ m − 1. Therefore, (i) follows immediately. Similarly, from

(2.3), (ii) follows. The proof is complete.

The following proposition provides an efficient method to check the nilpotent for a

non-negative matrix.

Proposition 2.5. Suppose A is a non-negative matrix. Then, A is nilpotent if and only

if A can be reduced to a zero matrix by repeating the following process: if the i-th row

(column) of A is a zero row, then the i-th column (row) of A is replaced with a zero

column.

Proof. Suppose the i-th row (column) of A is a zero row. Suppose A′ = A except the

i-th column (row), and the i-th column (row) of A′ is a zero column (row). Since A and
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A′ are non-negative,

A is nilpotent ⇐⇒ tr(Ak) = 0 for all k ≥ 1

⇐⇒ tr(A′k) = 0 for all k ≥ 1

⇐⇒ A′ is nilpotent.

Therefore, from above, the result can be easily obtained. The proof is complete.

3. Main result

This section introduces the procedure for obtaining C(2) and N (2) by computer, and

proves Wang’s conjecture holds for Wang cubes with two colors.

3.1. Periodic pairs

This section firstly classifies the 64 Wang cubes with two colors into four groups.

For easily presenting the 64 Wang cubes, each Wang cube w =
(
x+ y+ z+

x− y− z−

)
is assigned

a number by

ϕ(w) = 1 + z− + 2y− + 22x− + 23z+ + 24y+ + 25x+.

Definition 3.1. According to the colors on the faces in the x-, y- and z-directions of a

Wang cube, we classify the 64 Wang cubes into four groups.

(i) G0 is the set of the Wang cubes that has the same color in each direction, that is,

w ∈ G0 if and only if

w =


a b c

a b c




where a, b, c ∈ {0, 1}.

(ii) G1 is the set of the Wang cubes that has the same colors in exactly two directions,

that is, w ∈ G1 if and only if

w =


a

+ b c

a− b c


 ,


a b+ c

a b− c


 or


a b c+

a b c−




where a, b, c, aβ, bβ, cβ ∈ {0, 1}, a− 6= a+, b− 6= b+ and c− 6= c+ for β = +,−.

(iii) G2 is the set of the Wang cubes that has the same color in exactly one direction,

that is, w ∈ G2 if and only if

w =


a

+ b+ c

a− b− c


 ,


a

+ b c+

a− b c−


 or


a b+ c+

a b− c−




where a, b, c, aβ, bβ, cβ ∈ {0, 1}, a− 6= a+, b− 6= b+ and c− 6= c+ for β = +,−.
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(iv) G3 is the set of the Wang cubes that has different colors in any direction, that is,

w ∈ G3 if and only if

U =


a

+ b+ c+

a− b− c−




where aβ, bβ, cβ ∈ {0, 1}, a− 6= a+, b− 6= b+ and c− 6= c+ for β = +,−.

In the following, G0, G1, G2 and G3 are listed in detail.

G0 = {1, 10, 19, 28, 37, 46, 55, 64},
G1 = {2, 3, 5, 9, 12, 14, 17, 20, 23, 26, 27, 32, 33, 38, 39, 42, 45, 48, 51, 53, 56, 60, 62, 63},
G2 = {4, 6, 7, 11, 13, 16, 18, 21, 24, 25, 30, 31, 34, 35, 40, 41, 44, 47, 49, 52, 54, 58, 59, 61},
G3 = {8, 15, 22, 29, 36, 43, 50, 57}.

The following proposition shows that for each cube w in Gi, 0 ≤ i ≤ 3, there exists a

minimum cycle generator B ⊂ Gi that contains w. The proof is omitted for brevity.

Proposition 3.2. (i) Each Wang cube w in G0 can generate a cuboid periodic pattern

with period (1, 1, 1) by repetition of itself; {w} is then a MCG.

(ii) For each Wang cube w in G1, there exist exactly four Wang cubes wi ∈ G1, 1 ≤ i ≤ 4,

such that {w,wi} can generate three different periodic patterns, which are cuboid

periodic with period (1, 1, 2), (1, 2, 1) or (2, 1, 1), and {w,wi} is a MCG for 1 ≤ i ≤ 4.

(iii) For each Wang cube w in G2, there exist exactly two Wang cubes w1, w2 ∈ G2 such

that {w,wi} can generate a periodic pattern, which is cuboid periodic with period

(1, 2, 2), (2, 1, 2) or (2, 2, 1), and {w,wi} is a MCG for 1 ≤ i ≤ 2.

(iv) For each Wang cube w in G3, there exists exactly one Wang cube w1 ∈ G3 such that

{w,w1} can generate a cuboid periodic pattern with period (2, 2, 2), and {w,w1} is

a MCG.

Furthermore, the minimum cycle generators B ⊂ Gi, 0 ≤ i ≤ 3, can be easily found.

Table A.2 presents the details.

3.2. Algorithms

Before the developed algorithms are presented, some notations must be introduced.

Definition 3.3. (i) For a set A, let P(A) be the power set of A.

(ii) For a subset S ⊆ P(W3;2), let

[S] = {[S] | S ∈ S}.
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(iii) For [B] ∈ [P(W3;2)], let 〈B〉 be a fixed chosen element of [B].

(iv) Let N ∗(2) be the set of all B ∈ P(W3;2) such that Σ(B) = ∅, that is,

N ∗(2) = {B ∈ P(W3;2) | Σ(B) = ∅}.

(v) Let C∗(2) be the set of all cycle generators, that is,

C∗(2) = {B ∈ P(W3;2) | P(B) 6= ∅}.

(vi) Let U∗(2) be the set of all aperiodic sets, that is,

U∗(2) = {B ∈ P(W3;2) | P(B) = ∅,Σ(B) 6= ∅}.

Now, the main idea of the algorithms is introduced, as follows. Let

N = 264, P(W3;2) = {Bj | 0 ≤ j ≤ N − 1}, where B0 = ∅,
initial state for C∗(2): C∗(2) = ∅,
initial state for N ∗(2): N ∗(2) = ∅,
initial state for the set of aperiodic sets: U∗(2) = ∅.

Algorithm 3.1 Main algorithm

1: j = 0

2: repeat

3: j = j + 1

4: if P(Bj) 6= ∅ then

5: C∗(2) = C∗(2) ∪ {Bj}
6: else

7: if Σ(Bj) = ∅ then

8: N ∗(2) = N ∗(2) ∪ {Bj}
9: else

10: U∗(2) = U∗(2) ∪ {Bj}
11: end if

12: end if

13: until j = N − 1

After the algorithm has been executed, if U∗(2) = ∅ after the algorithm, then Wang’s

conjecture holds for Wang cubes with two colors. Moreover, if U∗(2) = ∅, then C∗(2) is

the set of all cycle generator and N ∗(2) is the set of all non-cycle generators.

The methods to achieve the goal are introduced below.
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(I) reduce the number of cases that must be considered in the computation.

(II) construct efficient initial states for C∗(2) and N ∗(2).

(III) construct an efficient process for determining whether or not P(Bj) 6= ∅.

(IV) use the idea in (I), (II) and (III) to construct an efficient flowchart.

With respect to (I), the decomposition W3;2 = G0 ∪ G1 ∪ G2 ∪ G3 is used to reduce

the number of cases that must be considered in the computation. Clearly, if B ⊆ W3;2

contains a Wang cube w ∈ G0, then B is a cycle generator. Moreover, let B = A1∪A2∪A3

with Ai ∈ P(Gi), i = 1, 2, 3. If Ai is a cycle generator, then B immediately satisfies

(1.1). Therefore, in studying Wang’s conjecture, only cases B = A1 ∪ A2 ∪ A3 such that

P(Ai) = ∅, i = 1, 2, 3, have to be considered. Table A.1 presents the details of Ai ∈ P(Gi)

with P(Ai) = ∅, i = 1, 2, 3.

Firstly, we consider the cases B ⊆ G1 ∪ G2. By (2.1) and above result, the cases

B ⊆ G1 ∪G2 that have to be considered can be further reduced to the cases in I1 or I ′1:

(3.1) I1 ≡ {A1 ∪ 〈A2〉 | A1 ∈ P(G1) and [A2] ∈ [P(G2)],P(A1) = ∅,P(〈A2〉) = ∅}

and

(3.2) I ′1 ≡ {〈A1〉 ∪A2 | [A1] ∈ [P(G1)] and A2 ∈ P(G2),P(〈A1〉) = ∅,P(A2) = ∅}.

From Table A.1, |I1| = 1.120104× 107 and |I ′1| = 9.078498× 106. Therefore, I ′1 is the

better choice for reducing B ⊆ G1∪G2. Notably, |I ′1| � |P(G1∪G2)| = 248 ≈ 2.8417×1014;

the reduction is considerable. Indeed, for Ai ∈ P(Gi), 1 ≤ i ≤ 3, we verify that P(B) = ∅
implies Σ(B) = ∅ by computer. Moreover, for Ai ∈ P(Gi), 1 ≤ i ≤ 3, Ai satisfies (1.1).

Next, it is clear that if B contains a cycle generator of G1 ∪G2, then B satisfies (1.1).

Hence, we only consider the cases B ⊆ N(G1 ∪G2) ∪G3, where N(G1 ∪G2) is the set of

non-cycle generators in P(G1 ∪G2). Similarly, the cases B ⊆ N(G1 ∪G2) ∪G3 that have

to be considered can be further reduced as (3.1) and (3.2).

With respect to (II), the initial state for C∗(2) are given by the set of all minimal cycle

generators that are the subsets of Gi, 1 ≤ i ≤ 3. C∗(2) and N ∗(2) can be easily found

using a computer program. See Tables A.2 and A.5.

With respect to (III), using the generalized trace operators Tm×n;q, 0 ≤ q ≤ 1, to

find a periodic pattern is more efficient than only using the trace operator Tm×n. The

following example illustrates this idea.
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Example 3.4. (a) Let

B1 = {2, 7, 20, 43, 61}

=






0 0 0

0 0 1


 ,


0 0 0

1 1 0


 ,


0 1 0

0 1 1


 ,


1 0 1

0 1 0


 ,


1 1 1

1 0 0





 .

By computer, it can be verified that B1 is a MCG, and it can generate a cuboid periodic

pattern U1 with period (7, 14, 14). Using Propositions 2.4 and 2.5 to find this periodic

pattern, we need to show that the trace operator T7×14(B1) is not nilpotent. However, the

size of T7×14(B1) is 27·14×27·14, and it costs too much memories of computer. Considering

parallelopiped period, U1 can be represented as a
[
7 3 0
0 2 0
0 0 14

]
-periodic pattern. Then, the

associated generalized trace operator is T7×2;3(B1) with size 27·2×27·2, which is much less

than that of T7×14(B1). Therefore, in general, generalized trace operators provide a more

efficient method to determine P(B) 6= ∅.
(b) Let

B2 = {6, 7, 25, 36, 61}

=






0 0 0

1 0 1


 ,


0 0 0

1 1 0


 ,


0 1 1

0 0 0


 ,


1 0 0

0 1 1


 ,


1 1 1

1 0 0







∈ [{4, 6, 15, 49, 58}].

It can be shown that B2 is a MCG, and it can generate a cuboid periodic pattern U2 with

period (7, 28, 28). In fact, U2 can be represented as a
[
7 3 0
0 4 0
0 0 28

]
-periodic pattern. Similar

to (a), it is easier to find U2 using T7×4;3(B2) than T7×28(B2).

(c) Let

B3 = {2, 7, 29, 48, 51}

=






0 0 0

0 0 1


 ,


0 0 0

1 1 0


 ,


0 1 1

1 0 0


 ,


1 0 1

1 1 1


 ,


1 1 0

0 1 0





 .

We have that B3 is a MCG, and it can generate a cuboid periodic pattern U3 with period

(14, 14, 14). In fact, U3 can be represented as a
[
14 3 0
0 1 0
0 0 14

]
-periodic pattern. So, by checking

that T14×1;3(B3) is not nilpotent, U3 can be found.

Furthermore, the periodical patterns U1, U2 and U3 are clearly described in Re-

mark 3.7(iii).

With respect to (IV), the flowchart, which is based on (I), (II) and (III), is as follows.
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We have that B3 is a MCG, and it can generate a cuboid periodic pattern U31

with period (14, 14, 14). In fact, U3 can be represented as a




14 3 0
0 1 0
0 0 14


-2

periodic pattern. So, by checking that T14×1;3(B3) is not nilpotent, U3 can3

be found.4

Furthermore, the periodical patterns U1, U2 and U3 are clearly described in5

Remark 3.7 (iii).6

With respect to (IV), the flowchart, which is based on (I), (II) and (III), is as7

follows.8

Initial states: C∗(2), N∗(2) and U∗(2). First,

consider each Bj ∈ I′
1. Second, consider Bj ∈ I2 .

Check whether or not Bj contains
an element C ∈ C∗(2)

P(Bj) 6= ∅.





C∗(2) = C∗(2)
N∗(2) = N∗(2)
U∗(2) = U∗(2)

Check whether or not Bj is a subset
of some N ∈ N∗(2)

Σ(B) = ∅.





C∗(2) = C∗(2)
N∗(2) = N∗(2)
U∗(2) = U∗(2)

Check whether or not Vm×n(Bj ) is
nilpotent for some m,n ≥ 2

Σ(Bj) = ∅.





C∗(2) = C∗(2)
N∗(2) = N∗(2) ∪ [Bj ]
U∗(2) = U∗(2)

Check whether or not Tm×n;q(Bj) is
nilpotent for all m,n ≥ 1 and 0 ≤ q ≤ m − 1

P(Bj) 6= ∅.





C∗(2) = C∗(2) ∪ [Bj ]
N∗(2) = N∗(2)
U∗(2) = U∗(2)

Σ(Bj ) 6= ∅ and P(Bj) = ∅.




C∗(2) = C∗(2)
N∗(2) = N∗(2)
U∗(2) = U∗(2) ∪ [Bj ]

Yes

Yes

Yes

Yes

No

No

No

No

FIGURE 2. Flowchart

In real computation, we use the above flowchart twice to complete our algorithm,9

as follows.10

Figure 3.1: Flowchart.

In real computation, we use the above flowchart twice to complete our algorithm, as

follows.

Step 1. The cases B ∈ I ′1 defined in (3.2) are considered. Set

C∗(2) ≡ {B ∈ P(Gi) for i = 0, 1, 2, 3 | P(B) 6= ∅},
N ∗(2) ≡ {B ∈ P(Gi) for i = 1, 2 | Σ(B) = ∅},
U∗(2) ≡ {∅}

as the initial state of the flowchart. After the flowchart, we get three new sets: C∗(2),

N ∗(2) and U∗(2).

Step 2. Consider the cases

B ∈ I2 ≡ {〈A〉 ∪A3 | [A] ∈ [P(N ∗(2))], and A3 ∈ P(G3),P(A3) = ∅},

where N ∗(2) in I2 is obtained from Step 1. Notably, for A ∈ P(N ∗(2)), we have Σ(A) = ∅,
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which implies P(A) = ∅. In addition, the initial states C∗(2), N ∗(2) and U∗(2) are the

results from Step 1.

Remark 3.5. Suppose that the computation based on the flowchart has been completed.

(i) If the set U∗(2) = ∅, then Wang’s conjecture holds for Wang cubes with two colors;

otherwise, every element in U∗(2) is an aperiodic set.

(ii) It is easy to see that an element in C∗(2) may be not a minimal cycle generator.

However, C(2) can be obtained from C∗(2) by the following process: First, set C(2)

equals to C∗(2). If C1, C2 ∈ C(2) with C1 ( C2, then C2 must be removed from C(2).

Indeed,

C(2) = {B ∈ C∗(2) | B doesn’t contain any B′ ∈ C∗(2) except itself}.

(iii) In a manner similar to that for (ii), we can obtain N (2) from N ∗(2). Indeed,

N (2) = {B ∈ N ∗(2) | B is not a proper subset of B′

for all B′ ∈ N ∗(2) except itself}.

3.3. Main result

The computer program of Figure 3.1 is written, and the computation is completed in

finite time. These cases can be computed completely within a week. The main result is

as follows.

Theorem 3.6. The set U∗(2) = ∅, and then Wang’s conjecture holds for Wang cubes with

two colors.

Remark 3.7. (i) C(2) and N (2) can be obtained and their numbers are listed in Table A.5.

(ii) From the computational results, if B ⊆W3;2 is a cycle generator, then there exists

B′ ∈ [B] such that Tm×n(B′) is not nilpotent for some 1 ≤ m ≤ 14 and 1 ≤ n ≤ 28; see

Tables A.2–A.4 for details. Among them, the most complicated cases are B1, B2 and B3 in

Example 3.4, they can be verified that they are cycle generators by checking T7×2;3(B1),

T7×4;3(B2) and T14×1;3(B3) are not nilpotent, respectively.

On the other hand, from the computational results, if Σ(B) = ∅ for B ⊆ W3;2, then

there exists B′ ∈ [B] such that Vm×n(B′) is nilpotent for some 1 ≤ m ≤ 4 and 1 ≤ n ≤ 3.

For example, consider

B4 = {2, 7, 15, 20, 41, 62}

=






0 0 0

0 0 1


 ,


0 0 0

1 1 0


 ,


0 1 1

1 0 0


 ,


1 0 1

1 1 1


 ,


1 1 0

0 1 0


 ,


1 1 0

0 1 0





 .
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V4×3(B4) is nilpotent, and Vm×n(B4) are not nilpotent for all 1 ≤ m ≤ 3 and 1 ≤ n ≤ 2.

(iii) (a) Continue to study B1 and U1 = (u1;i1,i2,i3) in Example 3.4(a). Through more

careful verification by computer, U1 is a
[
7 3 1
0 2 1
0 0 1

]
-periodic pattern with


u1;0,1,0 u1;1,1,0 u1;2,1,0 u1;3,1,0 u1;4,1,0 u1;5,1,0 u1;6,1,0

u1;0,0,0 u1;1,0,0 u1;2,0,0 u1;3,0,0 u1;4,0,0 u1;5,0,0 u1;6,0,0




=


61 61 7 2 20 43 61

2 43 61 7 20 20 2


 .

Therefore, by (1.3), the periodic pattern U1 is understood completely.

(b) Consider B2 and U2 = (u2;i1,i2,i3) in Example 3.4(b). It can be verified that U2 is

a
[
7 3 0
0 4 1
0 0 1

]
-periodic pattern with




u2;0,3,0 u2;1,3,0 u2;2,3,0 u2;3,3,0 u2;4,3,0 u2;5,3,0 u2;6,3,0

u2;0,2,0 u2;1,2,0 u2;2,2,0 u2;3,2,0 u2;4,2,0 u2;5,2,0 u2;6,2,0

u2;0,1,0 u2;1,1,0 u2;2,1,0 u2;3,1,0 u2;4,1,0 u2;5,1,0 u2;6,1,0

u2;0,0,0 u2;1,0,0 u2;2,0,0 u2;3,0,0 u2;4,0,0 u2;5,0,0 u2;6,0,0




=




36 6 25 36 7 25 25

61 7 36 61 61 6 36

36 61 61 6 36 7 25

61 6 36 7 25 25 36



.

So, by (1.3), the periodic pattern U2 is all now clear.

(c) For B3 and U3 = (u3;i1,i2,i3) in Example 3.4(c), after further study, U3 can be

represented as a
[
14 3 5
0 1 0
0 0 1

]
-periodic pattern, and the Wang cubes in u3;i1,0,0, where i1 goes

from 0 to 13, are

2→ 51→ 29→ 2→ 51→ 48→ 7→ 51→ 29→ 51→ 29→ 2→ 51→ 7.

By (1.3), the periodic pattern U3 is understood completely.

For completeness, Table A.5 gives the numbers of minimal cycle generators and max-

imal non-cycle generators.

A. Appendices

Table A.1 presents the numbers of equivalence classes of non-cycle generators in Gi with

two colors. Only the non-zero cases are listed.
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Number of cubes [G1] G1 [G2] G2 [G3] G3

1 cube 1 24 1 24 1 8

2 cubes 4 228 5 252 2 24

3 cubes 9 1112 12 1456 2 32

4 cubes 18 3126 34 4860 2 14

5 cubes 24 5664 54 10320

6 cubes 30 7056 80 14792

7 cubes 24 6240 74 14736

8 cubes 18 3948 62 10266

9 cubes 9 1760 33 4920

10 cubes 4 528 16 1548

11 cubes 1 96 4 288

12 cubes 1 8 1 24

Total: 143 29790 376 63486 7 78

Table A.1

Tables A.2, A.3 and A.4 present the equivalence classes of the minimal cycle generators

with two colors. The symbol [B](m,n,k) presents one of the equivalence classes [B] with

the periodic (m,n, k) which satisfy m ≤ n ≤ k.

k [C] ∈ [C(G0)] with k cubes

1 [{1}](1,1,1)
k [C] ∈ [C(G1)] with k cubes

2 [{2, 9}](1,1,2) [{2, 27}](1,1,2) [{2, 63}](1,1,2)
k [C] ∈ [C(G2)] with k cubes

2 [{4, 25}](1,2,2) [{4, 61}](1,2,2)
3 [{4, 13, 49}](3,3,3)
4 [{4, 11, 21, 49}](2,2,2) [{4, 11, 21, 58}](2,2,2) [{4, 13, 54, 59}](2,2,2)
k [C] ∈ [C(G3)] with k cubes

2 [{8, 57}](2,2,2)
4 [{8, 29, 43, 50}](2,2,2)

Table A.2
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k [C] ∈ [C(G1G2)] with k cubes

3
[{2, 3, 25}](1,3,3) [{2, 3, 61}](1,3,3) [{2, 11, 25}](1,2,2)
[{2, 11, 53}](1,3,3) [{2, 11, 61}](1,2,2) [{2, 31, 59}](1,2,2)

4

[{2, 3, 13, 49}](2,2,2) [{2, 3, 13, 58}](2,4,4) [{2, 3, 30, 59}](4,4,4)
[{2, 7, 21, 41}](2,3,3) [{2, 7, 21, 59}](2,3,3) [{2, 7, 25, 41}](5,5,5)
[{2, 7, 25, 44}](2,3,6) [{2, 7, 25, 51}](4,4,4) [{2, 7, 25, 59}](5,5,5)

5 [{2, 7, 20, 44, 61}](2,2,3)
6 [{2, 4, 7, 41, 59, 62}](3,3,3) [{2, 7, 16, 51, 60, 61}](3,3,4)

Table A.3

k [C] ∈ [C(G1G2G3)] with k cubes

3 [{2, 7, 57}](3,3,3) [{2, 15, 57}](2,2,2) [{4, 29, 57}](2,2,2)

4

[{2, 3, 5, 57}](2,2,2) [{2, 3, 13, 57}](5,5,5) [{2, 3, 14, 57}](4,4,4)
[{2, 3, 29, 57}](2,3,3) [{2, 3, 29, 58}](5,5,5) [{2, 4, 13, 57}](2,2,2)
[{2, 4, 29, 59}](2,4,4) [{2, 7, 22, 41}](5,5,5) [{2, 7, 25, 43}](7,7,7)
[{2, 8, 25, 41}](2,2,2) [{2, 8, 25, 43}](2,3,6) [{2, 8, 25, 59}](2,4,4)
[{2, 11, 13, 57}](2,3,3) [{2, 11, 24, 57}](2,4,4) [{2, 11, 29, 57}](2,2,2)
[{2, 11, 29, 59}](2,3,3) [{2, 15, 29, 51}](2,3,3) [{2, 15, 29, 59}](2,2,2)
[{2, 15, 59, 61}](2,3,3) [{4, 6, 11, 57}](2,3,3) [{4, 11, 21, 50}](2,4,8)
[{4, 11, 22, 57}](2,2,2) [{4, 13, 50, 57}](3,3,2) [{4, 15, 54, 57}](2,2,2)

5

[{2, 3, 29, 48, 60}](2,4,4) [{2, 4, 15, 53, 59}](2,3,3) [{2, 4, 21, 47, 57}](2,5,5)
[{2, 7, 16, 29, 51}](2,5,5) [{2, 7, 20, 43, 53}](5,10,10) [{2, 7, 20, 43, 61}](7,14,14)
[{2, 7, 29, 48, 51}](14,14,14) [{2, 7, 50, 59, 61}](3,3,6) [{2, 8, 20, 43, 61}](2,2,3)
[{2, 8, 29, 54, 59}](2,8,8) [{4, 6, 15, 24, 57}](2,2,4) [{4, 6, 15, 49, 57}](2,5,5)
[{4, 6, 15, 49, 58}](7,28,28) [{4, 6, 24, 47, 57}](2,2,3) [{4, 6, 29, 43, 49}](5,5,5)
[{4, 6, 29, 43, 50}](2,6,6) [{4, 8, 29, 41, 50}](2,2,2) [{4, 8, 29, 41, 54}](2,3,3)
[{4, 13, 22, 40, 57}](2,2,5) [{4, 13, 22, 50, 59}](2,2,2) [{4, 15, 22, 40, 57}](2,2,3)

6

[{2, 3, 6, 29, 39, 60}](3,3,3) [{2, 3, 11, 32, 38, 57}](3,9,9) [{2, 3, 29, 38, 39, 60}](3,3,4)
[{2, 7, 15, 51, 60, 61}](3,3,3) [{2, 7, 22, 44, 59, 61}](3,3,6) [{2, 7, 29, 47, 50, 60}](3,3,6)
[{4, 6, 7, 16, 24, 57}](2,2,10) [{4, 6, 15, 24, 49, 58}](2,6,7)

Table A.4
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Table A.5 shows the numbers of C(2) and N (2). Firstly, denote by

Ck(2) = {B ∈ C(2) : |B| = k},
Nk(2) = {B ∈ N (2) : |B| = k},
[Ck(2)] = {[B] ∈ [C(2)] : |B′| = k for all B′ ∈ [B]},

[Nk(2)] = {[B] ∈ [N (2)] : |B′| = k for all B′ ∈ [B]}.

Clearly, from Proposition 3.2, C(2) =
⋃28
k=1 Ck(2) and N (2) =

⋃28
k=1Nk(2). Only the cases

for Ck(2) 6= ∅ and Nk(2) 6= ∅ are listed.

k #{Ck(2)} #{[Ck(2)]} #{Nk(2)} #{[Nk(2)]}
1 8 1

2 76 6

3 904 10

4 6042 37

5 4056 22

6 2544 10 2688 7

7 3072 9

8 48 1

9 1824 7

10 96 1

11 192 1

12 0 0

...
...

...

27 0 0

28 96 2

Table A.5
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