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Three Examples of Sharp Commutator Estimates via Harmonic Extensions

Armin Schikorra

Abstract. Recently, Lenzmann and the author observed how to obtain a large class

of sharp commutator estimates by a combination of an integration by parts, an har-

monic extension, and trace space estimates. In this survey we review this approach

in three concrete examples: the Jacobian estimate by Coifman-Lions-Meyer-Semmes,

the Coifman-Rochberg-Weiss commutator estimate for Riesz transforms, and a Kato-

Ponce-Vega-type inequality.

1. An estimate by Coifman-Lions-Meyer-Semmes

Throughout this text, we will only consider maps which are smooth and have compact

support, i.e., C∞c -maps. We will make no attempt to obtain an optimal space in the

estimates which we consider hold. Rather, our focus lies on obtaining optimal estimates,

which by density arguments may lead to these optimal spaces.

Let u ∈ C∞c (Rn,Rn) and ϕ ∈ C∞c (Rn). The Jacobian of u, sometimes denoted by

Jac(u) is the determinant of the gradient

Jac(u) = det(∇u).

The Jacobian naturally appears in geometric contexts, since it describes the volume of a

square distorted by the linear map ∇u(x) – as we know from the transformation rule for

integrals.

The following estimates are then quite obvious1

(1.1)

∫
Rn

det(∇u)ϕ . ‖∇u‖nLn‖ϕ‖L∞

and (by an integration by parts)∫
Rn

det(∇u)ϕ . ‖u‖L∞‖∇u‖n−1
Ln ‖∇ϕ‖Ln .

But these are not sharp estimates.
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This had somewhat been known for quite some time in the theory of geometric PDEs

(again: the Jacobian is a very geometric object and appears for example in surfaces of

prescribed mean curvature) [21, 30], but it took until the 1990s to really understand the

reason (in the sense of Harmonic Analysis). After an earlier result by Müller [20] (who

proved L logL-estimates for the Jacobian), Coifman-Lions-Meyer-Semmes [9] obtained the

following remarkable estimate

(1.2)

∫
Rn

det(∇u)ϕ . ‖∇u‖nLn [ϕ]BMO.

Here [ϕ]BMO denotes the seminorm of the space of function of bounded mean oscillation

(BMO), namely

[ϕ]BMO := sup
r>0,x0∈Rn

−
∫
Br(x0)

∣∣∣∣ϕ−−∫
Br(x0)

ϕ

∣∣∣∣.
Estimate (1.2) is a strictly weaker estimate than (1.1), since

[ϕ]BMO . ‖ϕ‖L∞ .

Two different methods are given in [9] in order to obtain (1.2):

(1) Showing that det(∇u) belongs to the Hardy space H1(Rn) if ∇u ∈ Ln(Rn,Rn) and

then using duality with BMO.

(2) Reduction to the Coifman-Rochberg-Weiss commutator, see Section 2.

Before proceeding, let us stress that (1.2) has been a crucial tool for regularity theory

of geometric PDEs, such as regularity theory for the equations for surfaces of prescribed

mean curvature and for harmonic maps into manifolds, see for example [1, 13, 14, 22], see

also the monograph [15] and for some open problems the survey [24]. The usefulness of

(1.2) is based on the continuous embedding of the Sobolev space W 1,n into BMO (and

there is no embedding of W 1,n into L∞ for n 6= 1!), which makes the following estimate a

consequence of (1.2)

(1.3)

∫
Rn

det(∇u)ϕ . ‖∇u‖nLn‖∇ϕ‖Ln .

Actually, in terms of Lorentz space one can improve this estimate: since W 1,(n,∞) embeds

into BMO,

(1.4)

∫
Rn

det(∇u)ϕ . ‖∇u‖nLn‖∇ϕ‖L(n,∞) .
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1.1. “Intermediate” sharp estimates for the Jacobians

The estimate (1.2), (1.3) can be interpreted also as a distributional definition of the

Jacobian (cf. [3]): det(∇u) is well defined as an element of BMO∗ or (W 1,n)∗.

But this can be “improved” in the differential order of the Sobolev spaces: If in (1.2)

one “allows more derivatives” to “fall” on ϕ, one can uniformly reduce the derivatives

that “fall” on u. Namely, the following estimate is true

(1.5)

∫
det(∇u)ϕ . [u1]Ẇ s1,p1 · · · [un]Ẇ sn,pn [ϕ]Ẇ sn+1,pn+1

holds whenever s1, . . . , sn+1 > 0 and p1, . . . , pn+1 ∈ (1,∞) are so that

(1.6)
n+1∑
i=1

si = n

and

(1.7)
n+1∑
i=1

1

pi
= 1.

Estimates of this sort were observed not so long after the work of [9], see e.g. [25]; Indeed,

one can hope to obtain this from multilinear interpolation of the inequality (1.2). It seems

however that some versions of estimates of the form (1.5) were known to some experts

even earlier than the work in [9] – e.g. the technique in [27] hints into this direction.

This seems to be the case due to the fact that (1.5) is technically easier than (1.2). We

shall make the last (very superficial) statement more precise below: we consider proofs by

Tartar [27], by Brezis-Nguyen [27], and Lenzmann and the author [18] of different versions

of (1.5). We then show that, in order to prove the limit space BMO-inequality (1.2), one

more push is needed.

1.2. “Intermediate” estimates: An argument due to Tartar

The technique for proving the so-called Wente’s inequality in [27] inspire the following

argument.

Denote by F the Fourier transform. For simplicity of presentation we restrict ourselves

to the case n = 2, but this arguments takes over to any dimension. The properties of

the Fourier transform (products in geometric space become convolutions in phase space,

derivatives in geometric space become polynomials in phase space) imply that one can

write

F det(∇u1|∇u2)(ξ) = c

∫
det(ξ, ξ − η)Fu1(ξ − η)Fu2(η) dη
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where c is a (real) number. The compensation effect that is responsible for the correctness

of estimates such as (1.2), (1.5) etc. is the following: By the properties of the determinant

we have

det(ξ, ξ − η) = −det(ξ, η) = det(η, ξ − η).

In particular, the following estimates are true:

|det(ξ, ξ − η)| .


|ξ||ξ − η|,

|ξ||η|,

|η||ξ − η|.

Interpolating between these three options, for any s1, s2, s3 > 0, s1 +s2 +s3 = 2 (cf. (1.6))

we have

(1.8) |det(ξ, ξ − η)| . |ξ − η|s1 |η|s2 |ξ|s3 .

So we set

κ(ξ, η) := |ξ − η|−s1 |η|−s2 |ξ|−s3 det(ξ, ξ − η),

which smooth away from η = 0 and ξ = 0 and η = ξ and satisfies

|κ(ξ, η)| . 1.

Define the bilinear operator T = T (a, b) as

F(T (a, b)) :=

∫
κ(ξ, η)Fa(ξ − η)Fb(η) dη

and use the Plancherel Theorem to find∫
det(∇u1|∇u2)ϕ =

∫
T ((−∆)s1/2u1, (−∆)s2/2u2)(−∆)s3/2ϕ.

In some sense T is a zero-multiplier operator, see [28, Theorem 5.1], so one obtains the

estimate ∫
det(∇u1|∇u2)ϕ =

∫
T ((−∆)s1/2u1, (−∆)s2/2u2)(−∆)s3/2ϕ

≤ ‖T ((−∆)s1/2u1, (−∆)s2/2u2)‖
Lp′3
‖(−∆)s3/2ϕ‖Lp3

. ‖(−∆)s1/2u1‖Lp1‖(−∆)s2/2u2‖Lp2‖(−∆)s3/2ϕ‖Lp3 .

This is not exactly the same estimate as in (1.5), since W s,p is not characterized by the

norm ‖(−∆)s/2f‖Lp unless p = 2 – but it clearly goes into the right direction – and with

a bit more care (and para-products) one can obtain (1.4) from this strategy.
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Remark 1.1. (1) Observe that it does not seem to be obvious how this possibly could

lead to the BMO-estimate (1.2) for s3 → 0.

(2) In order to avoid multilinear Fourier multipliers one can conduct the argument de-

scribed above also without Fourier transform. Instead, one can use the representa-

tion

∇u(x) = R(−∆)1/2u(x) = c

∫
Rn

(x− y)

|x− y|n+1
(−∆)1/2u(y) dy.

Now a similar estimate to (1.8) can be used for the kernels (x−y)/|x−y|n+1 instead

of the Fourier symbol iξ/|ξ|. This was used, for “intermediate estimates” of some

commutators in [23], see also [2, 11].

1.3. “Intermediate” estimates for s1 = · · · = sn+1 = n/(n+ 1): A proof due to

Brezis-Nguyen

The following is a beautiful idea by Brezis and Nguyen [3] for

s := s1 = · · · = sn+1 =
n

n+ 1
and p := p1 = · · · = pn = n+ 1.

Denote by

Rn+1
+ = Rn × (0,∞)

and from now on we adapt the notation that x ∈ Rn and t ∈ (0,∞), i.e., variables in Rn+1

are (x, t).

Let U : Rn+1
+ → Rn be an extension of u : Rn → Rn, and Φ: Rn+1

+ → Rn be an extension

of ϕ : Rn → R.

Then, by Stokes’ theorem (identifying Rn with Rn × {0} = ∂Rn+1
+ ),∣∣∣∣ ∫

Rn

det(∇xu
1, . . . ,∇xu

n)ϕdx

∣∣∣∣ =

∣∣∣∣ ∫
Rn+1
+

det(∇x,tU
1, . . . ,∇x,tU

n,∇x,tΦ) d(x, t)

∣∣∣∣.
Here ∇x = (∂x1 , . . . , ∂xn) denotes the gradient for functions in Rn, and ∇x,t = (∂x1 , . . . ,

∂xn , ∂t) denotes the gradient for functions in Rn+1
+ . From the above equality we obtain by

Hölder’s inequality, ∣∣∣∣ ∫
Rn

det(∇xu
1, . . . ,∇xu

n)ϕdx

∣∣∣∣
≤ [U1]Ẇ 1,n+1(Rn+1

+ ) · · · [U
n]Ẇ 1,n+1(Rn+1

+ )[Φ]Ẇ 1,n+1(Rn+1
+ ).

(1.9)

This estimate holds for any extension U1, . . . , Un,Φ: Rn+1
+ → R of u1, . . . , un, ϕ : Rn → R.

In particular it holds for extensions Ui that (approximately) realize the trace embedding

W 1,n+1(Rn+1
+ ) ↪→Wn/(n+1),n+1(Rn),
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namely for extensions U of u such that

(1.10) [U ]W 1,n+1(Rn+1
+ ) ≈ [u]Wn/(n+1),n+1(Rn).

For example, the harmonic extension

(1.11) U(x, t) = pt ∗ u(x)

gives (1.10), where pt is the Poisson kernel

(1.12) pt(z) = c
t

(|z|2 + t2)(n+1)/2
.

But, (under certain assumptions on the integrability and decay, i.e., on s) also kernels of

the form

(1.13) pst (z) = c
ts

(|z|2 + t2)(n+s)/2

satisfy (1.10).

Whatever choice for the extension we make, once (1.10) is satisfied we have obtained∣∣∣∣ ∫
Rn

det(∇xu
1, . . . ,∇xu

n)ϕdx

∣∣∣∣
≤ [u1]Ẇn/(n+1),n+1(Rn+1

+ ) · · · [u
n]Ẇn/(n+1),n+1(Rn+1

+ )[Φ]Ẇn/(n+1),n+1(Rn+1
+ )

which is (1.5) for our special choice.

1.4. “Intermediate estimates”: General case

Here we follow [18] to obtain (1.5) in full generality by the harmonic extension.

By adapting in the above argument (1.9) the Hölder inequality it is easy to obtain∣∣∣∣ ∫
Rn

det(∇xu
1, . . . ,∇xu

n)ϕdx

∣∣∣∣
≤ [u1]Ẇ s1,p1 (Rn+1

+ ) · · · [u
n]Ẇ sn,pn (Rn+1

+ )[Φ]Ẇ sn+1,pn+1 (Rn+1
+ )

for pi satisfying (1.7) and

si := 1− 1

pi
,

that is, for trace spaces of W 1,pi . But what to do for estimates in spaces W s,p which are

not trace spaces of W 1,q, i.e., for s 6= 1− 1/pi? Weights in t-direction are the answer. We

can smuggle those in by writing with the help of (1.6), (1.7)

1 = t1−s1−1/p1 · · · t1−sn+1−1/pn+1 .
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Then, from the argument in Section 1.3, we obtain∣∣∣∣ ∫
Rn

det(∇xu
1, . . . ,∇xu

n)ϕdx

∣∣∣∣
≤ ‖t1−s1−1/p1∇x,tU

1‖Lp1 (Rn+1
+ ) · · · ‖t

1−sn−1/pn∇x,tU
n‖Lpn (Rn+1

+ )

× ‖t1−sn+1−1/pn+1∇x,tΦ‖Lpn+1 (Rn+1
+ ).

Again this inequality holds for all possible extensions U1, . . . , Un,Φ: Rn+1
+ → R of u1, . . . ,

un, ϕ : Rn → R, and we need to find an extension such that

(1.14) ‖t1−s−1/p∇x,tU‖Lp1 (Rn+1
+ ) ≈ [u]W s,p(Rn).

We are lucky: under some integrability and decay assumptions extensions such as the

one defined in (1.13), and in particular the harmonic extension (1.11), satisfy (1.14). The

proof of this fact is somewhat scattered throughout the literature: an early work where

this appears is [29], see also [19]; it also is partially contained (somewhat hidden) in Stein’s

books, e.g. [26]. As a special case the s-harmonic extension theory was popularized in the

2010s in the PDE community by Caffarelli and Silvestre [5]. In terms of Besov- and Triebel

spaces the most general statement known to the author is due to Bui and Candy [4]. Thus,

by the right choice of extension (for example the harmonic extension), we obtain (1.5) in

its full generality.

Again, one should notice that it is in no way obvious how sn+1 → 0 implies the

BMO-estimate (1.2). This is what we meant after Equation (1.7) when we said that

the BMO-estimate (1.2) is structurally more complex than the “intermediate” estimate

(1.5). In the next section, we shall see what additional trick we need: it’s an additional

integration by parts.

1.5. The BMO-estimate

In this section we prove the BMO-estimate (1.2) first obtained in [9]. More precisely, we

show the estimate

(1.15)

∫
Rn

det(∇u)ϕ . ‖∇u1‖Lp1 · · · ‖∇un‖Lpn [ϕ]BMO

holds whenever p1, . . . , pn ∈ (1,∞) so that

n∑
i=1

1

pi
= 1.

The proof of the BMO-estimate as in [18] follows from an adaption of the above arguments

in three directions: First, we will apply an additional integration by parts in t-direction,
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namely the almost trivial observation that for sufficient decay at ∞ a smooth function f

satisfies

(1.16)

∫ ∞
0

f(t) dt = −
∫ ∞

0
t∂tf(t) dt.

Secondly, we will (for the first time) use the harmonicity of the extension: if ∆x,tF ≡ 0

then obviously

∂ttF = −∆xF.

We will use this fact essentially only in order to replace derivatives in t-direction (which we

cannot integrate by parts in Rn+1
+ since there would appear boundary terms) by derivatives

in x-directions (which we can integrate by parts in Rn+1
+ without having boundary terms).

Thirdly, we will need a replacement for the trace estimate such as (1.10), (1.14) for BMO:

Carleson measure estimates.

1.5.1. An additional integration by parts

As always, let U : Rn+1
+ → Rn be an extension of u : Rn → Rn, and Φ: Rn+1

+ → Rn be an

extension of ϕ : Rn → R.

By Stokes’ theorem, as before,

C :=

∣∣∣∣ ∫
Rn

det(∇xu
1, . . . ,∇xu

n)ϕdx

∣∣∣∣
=

∣∣∣∣ ∫
Rn+1
+

det(∇x,tU
1, . . . ,∇x,tU

n,∇x,tΦ) d(x, t)

∣∣∣∣.(1.17)

Now we perform an additional integration by parts in t-direction, namely (1.16)

C =

∣∣∣∣ ∫
Rn+1
+

t∂t det(∇x,tU
1, . . . ,∇x,tU

n,∇x,tΦ) d(x, t)

∣∣∣∣.
We claim that if U i, Φ are harmonic, then it is possible to estimate C by

(1.18) C .
n∑

i=1

∫
Rn+1
+

t|∇x,tU
1| · · · |∇x,t∇xU

i| · · · |∇x,tU
n||∇x,tΦ|.

That is, a second derivative hits one of the U ’s and it does so in x-direction.

Proof of (1.18). It might be interesting to observe that the following argument does not

use the determinant structure anymore. It simply follows by the product structure of the

integral. The determinant structure was only important for the first integration by parts

(1.17).

Assume that U i and Φi are harmonic. We split the integral in n+ 1 parts,

C ≤ I1 + · · ·+ In + II
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where for i = 1, . . . , n,

Ii :=

∣∣∣∣ ∫
Rn+1
+

det(∇x,tU
1, . . . , ∂t∇x,tU

i, . . . ,∇x,tU
n,∇x,tΦ) d(x, t)

∣∣∣∣
and

II :=

∣∣∣∣ ∫
Rn+1
+

tdet(∇x,tU
1, . . . ,∇x,tU

n,∇x,t∂tΦ) d(x, t)

∣∣∣∣.
For i = 1, . . . , n, harmonicity implies that

|∂t∇x,tU
i| = |(∂x1∂tU

i, . . . , ∂xn∂tU
i,−∆xU

i)| ≤ |∇x,t∇xU
i|,

so for I1, . . . , In the estimate (1.18) is immediate.

For II we have, again by harmonicity,

det(∇x,tU
1, . . . ,∇x,tU

n,∇x,t∂tΦ) = det
(
∇x,tU

1 · · · ∇x,tU
n ∇x∂tΦ

−∆xΦ

)
.

Thus, II can be estimated by (for a second we write z = (x, t))

II ≤
n+1∑

i1,...,in=1

n∑
j=1

∣∣∣∣ ∫
Rn+1
+

t∂zi1U
1 · · · ∂zinU

n · ∂xj∂tΦ

∣∣∣∣
+

n+1∑
i1,...,in=1

∣∣∣∣ ∫
Rn+1
+

t∂zi1U
1 · · · ∂zinU

n ·∆xΦ

∣∣∣∣.
With an integration by parts in x-direction (there are no boundary terms in x-direction,

which is the big difference to integration by parts in t-direction)

II ≤
n+1∑

i1,...,in=1

n∑
j=1

∣∣∣∣ ∫
Rn+1
+

t∂x
(
∂zi1U

1 · · · ∂zinU
n
)
· ∂tΦ

∣∣∣∣
+

n+1∑
i1,...,in=1

∣∣∣∣ ∫
Rn+1
+

t∇x

(
∂zi1U

1 · · · ∂zinU
n
)
· ∇xΦ

∣∣∣∣.
Both terms satisfy the estimate that we claimed (1.18).

The reason we want (1.18) is that we find below a square function, and will use

the square function estimate [26, Section I, §8.23, p. 46] which states that (“tangential”

version)

(1.19)

(∫
Rn

(∫ ∞
t=0
|κt ∗ f(x)|2 dt

t

)p

dx

)1/p

. ‖f‖Lp(Rn)

and (“non-tangential” version)(∫
Rn

(∫
|x−y|<t

|κt ∗ f(y)|2 dtdy
tn+1

)p

dx

)1/p

. ‖f‖Lp(Rn)
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hold true for kernels κ with sufficient decay at infinity and
∫
κ = 0. In our case we will

apply this to f = ∇xu, and κ = ∇x,t

∣∣
t=1

pt, i.e., we use that

∇x,t∇xU = (∇x,tpt) ∗ (∇xu) = tκt ∗ ∇xu.

These are the trace estimates we treat in the next section.

1.5.2. Trace estimates

We have found in the last section that if U i and Φ: Rn+1
+ → R denote the harmonic

extensions (with decay to zero at infinity making them unique) of ui and ϕ : Rn → R,

then

(1.20)

∫
Rn

det(∇u1, . . . ,∇un)ϕ .
n∑

i=1

∫
Rn+1
+

t|∇x,tU
1| · · · |∇x,t∇xU

i| · · · |∇x,tU
n||∇x,tΦ|.

An important tool is now the characterization of ϕ ∈ BMO in terms of the harmonic

extension Φ. The next theorem follows e.g. from [26, IV, §4.3, Theorem 3, p. 159] or [12,

Theorem 7.3.8].

Theorem 1.2 (Characterization of BMO by Carleson measures). Let Φ: Rn+1
+ → R be

the (s-)harmonic extension of ϕ ∈ C∞c (Rn) as in (1.11), (1.13). Then

[ϕ]BMO ≈
(
|B|−1 sup

B

∫
T (B)

t|∇x,tΦ|2 dxdt
)1/2

.

Here the supremum is taken over balls B ⊂ Rn and T (B) ⊂ Rn+1
+ denotes the tent over

B, i.e., if B = B(x0, r) then

T (B) =
{

(x, t) ∈ Rn+1
+ : |x− x0| < t− r

}
.

Also, we need the following estimate which serves as a replacement for the L1-L∞

Hölder inequality on Rn+1
+ :∫

Rn+1
+

tF (x, t)G(x, t) dxdt

. sup
B⊂Rn balls

(
|B|−1

∫
T (B)

t|F (y, t)|2 dydt
)1/2 ∫

Rn

(∫
|x−y|<t

|G(y, t)|2 dydt
tn−1

)1/2

dx.

For a proof, see [26, IV, Proposition 4.4, p. 162]. In particular, if Φ: Rn+1
+ → R is the

harmonic extension of ϕ : Rn → R we have

(1.21)

∫
Rn+1
+

t|∇x,tΦ||G(x, t)| dxdt . [ϕ]BMO

∫
Rn

(∫
|x−y|<t

|G(y, t)|2 dydt
tn−1

)1/2

dx.



Three Examples of Sharp Commutator Estimates via Harmonic Extensions 1375

In our situation (1.20) we employ this estimate with

Gi = |∇x,tU
1| · · · |∇x,t∇xU

i| · · · |∇x,tU
n|.

Moreover one can show [18, (10.3)] that if U : Rn+1
+ → R is the harmonic extension of

u ∈ C∞c (Rn), then for all x ∈ Rn,

(1.22) sup
(y,t):|x−y|<t

|∇x,tU(y, t)| .M|∇u|(x) +M|(−∆)1/2u|(x).

Here M is the Hardy-Littlewood maximal function. Thus,∫
Rn

(∫
|x−y|<t

|G1(y, t)|2 dydt
tn−1

)1/2

dx

≤
∑

Di∈{(−∆)1/2,∇x}

∫
Rn

M|D2u
2| · · ·M|Dnu

n|
(∫
|x−y|<t

|∇x,t∇xU
1(y, t)|2 dydt

tn−1

)1/2

dx.

Hölder’s inequality and the boundedness of maximal functions and Riesz transforms on

Lp leads to∫
Rn

(∫
|x−y|<t

|G1(y, t)|2 dydt
tn+1

)1/2

dx

≤ ‖∇u2‖Lp2 (Rn) · · · ‖∇un‖Lpn (Rn)

(∫
Rn

(∫
|x−y|<t

|∇x,t∇xU
1(y, t)|2 dydt

tn−1

)p1/2

dx

)1/p1

.

Now, we use the non-tangential square function estimate, see [26, Section I, §8.23, p. 46],

which states that for p ∈ (1,∞),

(1.23)

(∫
Rn

(∫
|x−y|<t

|κt ∗ f(y)|2 dtdy
tn+1

)p

dx

)1/p

. ‖f‖Lp(Rn)

hold true for kernels κ with sufficient decay at infinity and
∫
κ = 0. Since U1 is harmonic

with decay to zero at infinity, it can be written as U1 = pt ∗ u1, where pt is the Poisson

kernel as in (1.11). Consequently,

∇x,t∇xU
1 = (∇x,tpt) ∗ ∇xu

1,

and just by computing ∇x,tpt we can find a map κ with sufficient decay (and since it is a

derivative with
∫
κ = 0) so that

∇x,tpt(z) = t−1t−nκ(z/t) ≡ t−1κt(z).

Thus, (∫
Rn

(∫
|x−y|<t

|∇x,t∇xU
1(y, t)|2 dydt

tn−1

)p1/2

dx

)1/p1
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=

(∫
Rn

(∫
|x−y|<t

t−2|κt ∗ ∇xu
1(y, t)|2 dydt

tn−1

)p1/2

dx

)1/p1

=

(∫
Rn

(∫
|x−y|<t

|κt ∗ ∇xu
1(y, t)|2 dydt

tn+1

)p1/2

dx

)1/p1

(1.23)

. ‖∇xu
1‖Lp1 (Rn).

Plugging all these estimates together, we obtain (1.15)

1.6. The actual div-curl estimate

The theorem by Coifman-Lions-Meyer-Semmes [9] actually treats div-curl estimates, namely

for vectorfields f : Rn → Rn, g : Rn → Rn so that

div f = 0, curl g = 0,

we have for any p ∈ (1,∞)∫
Rn

f · g ϕ . ‖f‖Lp(Rn)‖g‖Lp′ (Rn)[ϕ]BMO.

One can easily obtain the same estimate (and the related intermediate estimates) by the

same method as above if one represents (by the Poincarè lemma) the vector fields as

differential forms f = dα ∈ C∞c (
∧1 Rn), g = ∗ dβ ∈ C∞c (

∧n−1 Rn)∣∣∣∣ ∫
Rn

f · g ϕ
∣∣∣∣ ≡ ∣∣∣∣ ∫

Rn

da ∧ dbϕ
∣∣∣∣.

Now the Stokes theorem implies for extensions A, B, Φ of a, b, ϕ respectively that∣∣∣∣ ∫
Rn

da ∧ dbϕ
∣∣∣∣ =

∣∣∣∣ ∫
Rn+1
+

dA ∧ dB ∧ dΦ

∣∣∣∣.
The further estimates are exactly as in the above sections.

Let us remark, that an argument based on the harmonic extension argument has been

used by Chanillo in [6] quite some time ago in the realm of compensated compactness. In

particular, for div-curl quantities he obtained estimates of the form (1.3) in this way. The

BMO-estimate via this argument seems to be new in [18].

2. Coifman-Rochberg-Weiss commutator

Let R = (R1, . . . ,Rn) denote the (vectorial) Riesz transform, given by the Fourier symbol

F(Rf)(ξ) := c i
ξ

|ξ|
Ff(ξ),
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where c is a real nonzero number. In [10] Coifman-Rochberg-Weiss proved the following

estimate2 for any p ∈ (1,∞)

(2.1)

∫
Rn

(Ri(f) g + f Ri(g))ϕ . [ϕ]BMO‖f‖Lp(Rn)‖g‖Lp′ (Rn).

This is a commutator estimate, since it can by duality it is equivalent to

‖[ϕ,Ri](f)‖Lp(Rn) . [ϕ]BMO‖f‖Lp(Rn),

where

[ϕ,R](f) = ϕRi(f)−Ri(ϕf).

As for the Jacobian, (2.1) is an improvement of the (almost) trivial estimate∫
Rn

(Ri(f) g + f Ri(g))ϕ . ‖ϕ‖L∞‖f‖Lp(Rn)‖g‖Lp′ (Rn).

Indeed, it was shown in [9] that the Jacobian estimate from Section 1 follows from (2.1).

In [18] the estimate (2.1) is proven by the extension method, namely we obtain

Theorem 2.1. Let f, g, ϕ ∈ C∞c (Rn), i = 1, . . . , n. The term∫
Rn

(Ri(f) g + f Ri(g))ϕ

can be estimated by

(1) The Coifman-Rochberg-Weiss [10] estimate, for any p ∈ (1,∞)

[ϕ]BMO‖f‖Lp(Rn)‖g‖Lp′ (Rn);

(2) For any s ∈ (0, 1) and p1, p2, p3 ∈ (1,∞)

‖(−∆)s/2ϕ‖Lp1 (Rn)‖Isf‖Lp2 (Rn)‖g‖Lp3 (Rn).

The main additional observation in addition to the arguments from Section 1 is the

following: for a map f : Rn → R denote fh : Rn+1
+ → R the harmonic extension fh(x, t) :=

pt ∗f(x) for the Poisson kernel (1.12). Then we have the following for some constant c ∈ R

(2.2) ∂t(Rif)h = −c∂xif
h.

2Indeed, they proved this estimate for general Calderon-Zygmund operators instead of only the Riesz

transforms.
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2.1. The integration by parts

We use the following formula which holds e.g. for any C1-function η : [0,∞) → R with

sufficient decay at infinity, namely limt→∞ |η(t)| = limt→∞ |η′(t)| = 0:

η(0) =

∫ ∞
0

t∂ttη(t) dt.

Let F,G,Φ: Rn+1
+ → R be the harmonic extensions of f, g, ϕ : Rn → R. By an abuse of

notation we shall write

RiF := (Rif)h.

Then we find∣∣∣∣ ∫
Rn

(Ri(f) g + f Ri(g))ϕ

∣∣∣∣ =

∣∣∣∣ ∫
Rn+1
+

t∂tt((Ri(F )G+ F Ri(G))Φ)

∣∣∣∣.
Our goal is to show at least one of these derivatives hits Φ,

(2.3)

∣∣∣∣ ∫
Rn

(Ri(f) g + f Ri(g))ϕ

∣∣∣∣ .∑∫
Rn+1
+

t
(
|∇x,tF̃ ||G̃|+ |F̃ ||∇x,tG̃|

)
|∇x,tΦ|

where the sum is over F̃ ∈ {RF, F} and G̃ ∈ {RG,G}.
We compute

∂tt((Ri(F )G+ F Ri(G))Φ)

= ∂t(Ri(F )G+ F Ri(G))∂tΦ + (Ri(F )G+ F Ri(G))∂ttΦ

+ ∂tt(Ri(F )G+ F Ri(G))Φ.

(2.4)

Clearly the first term is already of the form we need to get (2.3). As for the second term,

we can use the harmonicity of Φ,

(Ri(F )G+ F Ri(G))∂ttΦ = −(Ri(F )G+ F Ri(G))∆xΦ

and thus by an integration by parts in x-direction∫
Rn+1
+

t(Ri(F )G+ F Ri(G))∂ttΦ =

∫
Rn+1
+

t∇x(Ri(F )G+ F Ri(G))∇xΦ

which is of the form (2.3).

It remains to compute the last term in (2.4). We have

∂tt(Ri(F )G+ F Ri(G)) = (∂ttRi(F )G+ F ∂ttRi(G)) + (Ri(F ) ∂ttG+ ∂ttF Ri(G))

+ 2(∂tRi(F )∂tG+ ∂tF ∂tRi(G)).
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Now we employ (2.2) (we pretend c = 1 for simplicity)

= (∂ttRi(F )G+ F ∂ttRi(G)) + (Ri(F )∂ttG+ ∂ttF Ri(G))− 2(∂xiF ∂tG+ ∂tF ∂xiG)

and use the product rule on the last term (factoring ∂xi)

= (∂ttRi(F )G+ F ∂ttRi(G)) + (Ri(F )∂ttG+ ∂ttF Ri(G))

− 2∂xi(F ∂tG+ ∂tF G) + 2(F ∂t∂xiG+ ∂t∂xiF G)

and again by (2.2) we find

= (∂ttRi(F )G+ F ∂ttRi(G)) + (Ri(F )∂ttG+ ∂ttF Ri(G))

− 2∂xi(F ∂tG+ ∂tF G)− 2(F ∂ttRiG+ ∂ttRiF G)

and thus

= −(∂ttRi(F )G+ F ∂ttRi(G)) + (Ri(F )∂ttG+ ∂ttF Ri(G))− 2∂xi(F ∂tG+ ∂tF G).

Now we use the harmonicity of F and G (and recall that RiF and RiG are by definition

also harmonic),

= +(∆xRi(F )G+ F ∆xRi(G))− (Ri(F )∆xG+ ∆xF Ri(G))− 2∂xi(F ∂tG+ ∂tF G).

Next we factor the divergence

= +∇x · (∇xRi(F )G+ F ∇xRi(G))− (∇xRi(F ) · ∇xG+∇xF · ∇xRi(G))

−∇x · (Ri(F )∇xG+∇xF Ri(G)) + (∇xRi(F ) · ∇xG+∇xF · ∇xRi(G))

− 2∂xi(F ∂tG+ ∂tF G).

We see that the second and fourth row cancel, and thus

= +∇x · (∇xRi(F )G+ F ∇xRi(G))−∇x · (Ri(F )∇xG+∇xF Ri(G))

− 2∂xi(F ∂tG+ ∂tF G).

But this implies that also for the third term in (2.4) we obtain the estimate (2.3) by an

integration by parts.

2.2. The trace theorems

We have found in (2.3)∣∣∣∣ ∫
Rn

(Ri(f) g + f Ri(g))ϕ

∣∣∣∣ .∑∫
Rn+1
+

t
(
|∇x,tF̃ ||G̃|+ |F̃ ||∇x,tG̃|

)
|∇x,tΦ|

where the sum is over F̃ ∈ {RF, F} and G̃ ∈ {RG,G}. Now we need to prove trace

estimates.
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Lemma 2.2. Let F,G,Φ: Rn+1
+ → R be the harmonic extensions of f, g, ϕ : Rn → R,

respectively. Then ∫
Rn+1
+

t|∇x,tF ||G||∇x,tΦ|

can be estimated by

(1) for p ∈ (1,∞)

(2.5) . [ϕ]BMO‖f‖Lp‖g‖Lp′ ;

(2) for p1, p2, p3 in (1,∞) with 1/p1 + 1/p2 + 1/p3 = 1

. ‖(−∆)s/2ϕ‖Lp1‖f‖Lp2‖Isg‖Lp3 ,(2.6)

. ‖(−∆)s/2ϕ‖Lp1‖Isf‖Lp2‖g‖Lp3 .(2.7)

Proof. To prove (2.5) we proceed the same way as in the BMO-estimate for the Jacobian,

Section 1.5.2.

For (2.6) use a different version of the maximal function estimate (1.22), namely we

have

sup
t>0

t|∇x,tF (x, t)| .Mf(x).

Thus, by Hölder’s inequality∫
Rn+1
+

t|∇x,tF ||G||∇x,tΦ|

.
∫
Rn
+

Mf(x)

(∫ ∞
0

t2s−1|G|2 dt
)1/2(∫ ∞

0
t1−2s|∇x,tΦ|2 dt

)1/2

dx

. ‖f‖Lp2

(∫
Rn

(∫ ∞
0

t2s−1|G|2 dt
)p3/2

dx

)1/p3(∫
Rn

(∫ ∞
0

t1−2s|∇x,tΦ|2 dt
)p1/2

dx

)1/p1

.

Now we can write

∇x,tΦ = ts−1κ ∗ (−∆)s/2ϕ

where s < 1 ensures that κ satisfies
∫
κ = 0. Thus, we find again a square function

estimate, as in (1.19), and have(∫
Rn

(∫ ∞
0

t1−2s|∇x,tΦ|2 dt
)p1/2

dx

)1/p1

=

(∫
Rn

(∫ ∞
0
|κt ∗ (−∆)s/2ϕ|2 dt

t

)p1/2

dx

)1/p1

. ‖(−∆)s/2ϕ‖Lp1 .

As for G, we can write

G = pt ∗ (−∆)s/2Isg =: t−sκt ∗ Isg
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and use the same square function estimate to obtain(∫
Rn

(∫ ∞
0

t2s−1|G|2 dt
)p3/2

dx

)1/p3

=

(∫
Rn

(∫ ∞
0
|κt ∗ Isg|2

dt

t

)p3/2

dx

)1/p3

. ‖Isg‖Lp3 .

This establishes (2.6).

For (2.7) we argue similarly,∫
Rn+1
+

t|∇x,tF ||G||∇x,tΦ|

.
∫
Rn
+

Mg(x)

(∫ ∞
0

t2s+1|∇x,tF |2 dt
)1/2(∫ ∞

0
t1−2s|∇x,tΦ|2 dt

)1/2

dx

. ‖g‖Lp3

(∫
Rn

(∫ ∞
0

t2s+1|∇x,tF |2 dt
)p2/2

dx

)1/p2

×
(∫

Rn

(∫ ∞
0

t1−2s|∇x,tΦ|2 dt
)p1/2

dx

)1/p1

.

The term involving Φ is estimated as above, for F we write

∇x,tF =: t−1−sκt ∗ Isf,

and have by the square function estimate(∫
Rn

(∫ ∞
0

t2s+1|∇x,tF |2 dt
)p2/2

dx

)1/p2

=

(∫
Rn

(∫ ∞
0
|κt ∗ Isf |2

dt

t

)p2/2

dx

)1/p2

. ‖Isf‖Lp2 .

This establishes (2.7).

3. Coifman-McIntosh-Meyer and Kato-Ponce-Vega type estimates

In the above section we estimated commutators in Lp-spaces. A class of commutator

estimates usually called Coifman-McIntosh-Meyer or Kato-Ponce-Vega estimates [7,8,16,

17] consider Hölder and Lipschitz-estimates. In this section we show how this works by

the extension method.

Theorem 3.1. Let p ∈ (1,∞) and f, g, ϕ ∈ C∞c (Rn). Then,

‖[(−∆)1/2, ϕ](f)‖Lp(Rn) . [ϕ]C0,1‖f‖Lp(Rn)

or equivalently∫
Rn

(
f(−∆)1/2g − (−∆)1/2f g

)
ϕ . [ϕ]C0,1‖f‖Lp(Rn)‖g‖Lp′ (Rn).

One observes readily that this estimate is completely trivial for (−∆)1/2 replaced by

the derivative ∇.
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3.1. The integration by parts

The main additional observation to start the integration by parts in this context is the

following: if F : Rn+1
+ → R is the harmonic extension of f : Rn → R, then we have the

so-called Dirichlet-to-Neumann property

∂tF (x, 0) = c(−∆)1/2f.

Thus, denoting F,G,Φ: Rn+1
+ → R the harmonic extensions of f, g, ϕ : Rn → R, then∣∣∣∣ ∫

Rn

(
f(−∆)1/2g − (−∆)1/2f g

)
ϕ

∣∣∣∣ =

∣∣∣∣ ∫
Rn+1
+

∂t((F ∂tG− ∂tF G)Φ)

∣∣∣∣.
By a first cancellation we find readily∣∣∣∣ ∫

Rn

(
f(−∆)1/2g − (−∆)1/2f g

)
ϕ

∣∣∣∣ ≤ ∣∣∣∣ ∫
Rn+1
+

(F ∂tG− ∂tF G)∂tΦ

∣∣∣∣
+

∣∣∣∣ ∫
Rn+1
+

(F ∂ttG− ∂ttF G)Φ

∣∣∣∣.
By another integration by parts in t-direction, we find∣∣∣∣ ∫

Rn

(
f(−∆)1/2g − (−∆)1/2f g

)
ϕ

∣∣∣∣ ≤ C1 + C2 + C3,

where

C1 :=

∣∣∣∣ ∫
Rn+1
+

t((F ∂tG− ∂tF G)∂ttΦ)

∣∣∣∣, C2 :=

∣∣∣∣ ∫
Rn+1
+

t∂t(F ∂tG− ∂tF G)∂tΦ

∣∣∣∣,
C3 :=

∣∣∣∣ ∫
Rn+1
+

t∂t((F ∂ttG− ∂ttF G)Φ)

∣∣∣∣.
We claim that we can estimate

C1 + C2 + C3 .
∫
Rn+1
+

t(|F ||∇x,tG|+ |∇x,tF ||G|)|∇x,t∇xΦ|

+

∫
Rn+1
+

t|∇x,tF ||∇x,tG||∇xΦ|.
(3.1)

For C1 this is clear by the harmonicity of Φ, ∂ttΦ = −∆xΦ.

For C2 we find

C2 =

∣∣∣∣ ∫
Rn+1
+

t(F ∂ttG− ∂ttF G)∂tΦ

∣∣∣∣.
Using the harmonicity of F , G and the factoring the divergence,

(3.2) F ∂ttG− ∂ttF G = −(F ∆xG−∆xF G) = −∇x · (F ∇xG−∇xF G).
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That is, an integration by parts in x-direction leads to

C2 =

∣∣∣∣ ∫
Rn+1
+

t(F ∇xG−∇xF G)∂t∇xΦ

∣∣∣∣.
This establishes the estimate (3.1) for C2.

Using (3.2) in C3,

C3 =

∣∣∣∣ ∫
Rn+1
+

t∂t((F ∇xG−∇xF G) · ∇xΦ)

∣∣∣∣.
After computing the product rule for ∂t there is only one term not obviously satisfying

the estimate (3.1), namely∣∣∣∣ ∫
Rn+1
+

t(F ∇x∂tG−∇x∂tF G) · ∇xΦ

∣∣∣∣ ≤ ∣∣∣∣ ∫
Rn+1
+

t∇x(F ∂tG− ∂tF G) · ∇xΦ

∣∣∣∣
+

∣∣∣∣ ∫
Rn+1
+

t(∇xF ∂tG− ∂tF ∇xG) · ∇xΦ

∣∣∣∣.
Thus, (3.1) is established as well for C3.

3.2. The trace estimates

In (3.1) it was established that for f, g, ϕ ∈ C∞c (Rn) we have the following estimate for

the respective harmonic extensions F,G,Φ: Rn+1
+ → R∫

Rn

(
f(−∆)1/2g − (−∆)1/2f g

)
ϕ

.
∫
Rn+1
+

t(|F ||∇x,tG|+ |∇x,tF ||G|)|∇x,t∇xΦ|+
∫
Rn+1
+

t|∇x,tF ||∇x,tG||∇xΦ|.

Theorem 3.1 is then a consequence of the next two lemmas:

Lemma 3.2. Let f, g, ϕ ∈ C∞c (Rn) then for the respective harmonic extensions F,G,Φ:

Rn+1
+ → R, ∫

Rn+1
+

t|∇x,tF ||∇x,tG||∇xΦ| . ‖f‖Lp‖g‖Lp′ [ϕ]Lip.

Proof. By, e.g., the maximum principle (one can also use an estimate by the maximal

function similar to (1.22))

‖∇xΦ‖L∞(Rn+1
+ ) ≤ ‖∇xϕ‖L∞(Rn).

Note that there is no reason for this estimate to be true when ‖∇xΦ‖L∞(Rn+1
+ ) is replaced

by ‖∂tΦ‖L∞(Rn+1
+ ).
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Thus, Hölder’s inequality implies∫
Rn+1
+

t|∇x,tF ||∇x,tG||∇xΦ|

. [ϕ]Lip

(∫
Rn

(∫ ∞
0

t|∇x,tF |2 dt
)p/2

dx

)1/p(∫
Rn

(∫ ∞
0

t|∇x,tG|2 dt
)p′/2

dx

)1/p′

.

Now as in the sections before we find a square function, namely we can write

∇x,tF = t−1κt ∗ f,

for a kernel κ satisfying the square function estimate, and conclude that(∫
Rn

(∫ ∞
0

t|∇x,tF |2 dt
)p/2

dx

)1/p

=

(∫
Rn

(∫ ∞
0
|κt ∗ F (x)|2 dt

t

)p/2

dx

)1/p

. ‖f‖Lp(Rn)

and in the same fashion we have(∫
Rn

(∫ ∞
0

t|∇x,tG|2 dt
)p′/2

dx

)1/p′

. ‖g‖Lp′ (Rn).

This proves the claim.

Lemma 3.3. Let f, g, ϕ ∈ C∞c (Rn) then for the respective harmonic extensions F,G,Φ:

Rn+1
+ → R, ∫

Rn+1
+

t|F ||∇x,tG||∇x,t∇xΦ| . ‖f‖Lp‖g‖Lp′ [∇ϕ]BMO.

Proof. This is similar to the Jacobian estimate, Section 1.5.2: More precisely, by (1.21),∫
Rn+1
+

t|F ||∇x,tG||∇x,t∇xΦ|

≤ [∇xϕ]BMO

∫
Rn

(∫
|x−y|<t

|F (y, t)|2|∇x,tG(y, t)|2 dydt
tn−1

)1/2

dx.

By an estimate similar to (1.22) we have

sup
(y,t):|x−y|<t

|F (y, t)| .Mf(x).

By Hölder inequality and the maximal theorem we thus obtain∫
Rn+1
+

t|F ||∇x,tG||∇x,t∇xΦ|

≤ [∇xϕ]BMO‖f‖Lp(Rn)

(∫
Rn

(∫
|x−y|<t

|∇x,tG(y, t)|2 dydt
tn−1

)p′/2

dx

)1/p′

.
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Again, we write

∇x,tG =: t−1κt ∗ g,

and use the non-tangential square function estimate (1.23) to obtain(∫
Rn

(∫
|x−y|<t

|∇x,tG(y, t)|2 dydt
tn−1

)p′/2

dx

)1/p′

=

(∫
Rn

(∫
|x−y|<t

|κt ∗ g(y)|2 dydt
tn+1

)p′/2

dx

)1/p′

. ‖g‖Lp′ (Rn).

This establishes the claim.

4. On strengths and limitations of the method by harmonic extension

In some sense, the extension method described above is similar to the Littlewood-Paley

decomposition (which can be used to prove all of the statements alluded to above). One

main advantage is that the technical argument of paraproducts can be avoided (at least

for the commutators mentioned). But of course the mathematical deepness of the results

means that the technical difficulties cannot disappear, they can just be shifted. While

in the argument by Littlewood-Paley theory the space characterizations and compensa-

tion effects have to be dealt with at the same time, the argument by harmonic extension

described here separates these two features: the compensation effects are observed from

elementary computations (product rules and cancellations), and the spaces are character-

ized by trace spaces (which follow from quite deep facts from harmonic analysis). However,

these trace space characterizations are independent of the specific commutator – only the

compensation phenomena change from commutator to commutator. Another limitations

of the method by harmonic extension is that it is not clear how to treat, e.g. commutators

involving general Calderon-Zygmund operators certain operators. Rather – at least for

the limit space estimates – the extension needs to be adapted to the operators involved

(which is relatively easy for simpler objects such as Riesz transforms, Riesz Potentials,

and fractional Laplacians).
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