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Bounds for the Lifespan of Solutions to Fourth-order Hyperbolic Equations

with Initial Data at Arbitrary Energy Level

Bin Guo* and Xiaolei Li

Abstract. This paper deals with lower and upper bounds for the lifespan of solutions

to a fourth-order nonlinear hyperbolic equation with strong damping:

utt + ∆2u−∆u− ω∆ut + α(t)ut = |u|p−2u.

First of all, the authors construct a new control function and apply the Sobolev

embedding inequality to establish some qualitative relationships between initial energy

value and the norm of the gradient of the solution for supercritical case (2(N−2)/(N−
4) < p < 2N/(N − 4), N ≥ 5). And then, the concavity argument is used to prove

that the solution blows up in finite time for initial data at low energy level, at the

same time, an estimate of the upper bound of blow-up time is also obtained.

Subsequently, for initial data at high energy level, the authors prove the mono-

tonicity of the L2 norm of the solution under suitable assumption of initial data,

furthermore, we utilize the concavity argument and energy methods to prove that the

solution also blows up in finite time for initial data at high energy level.

At last, for the supercritical case, a new control functional with a small dis-

sipative term and an inverse Hölder inequality with correction constants are em-

ployed to overcome the difficulties caused by the failure of the embedding inequality

(H2(Ω) ∩ H1
0 (Ω) ↪→ L2p−2 for 2(N − 2)/(N − 4) < p < 2N/(N − 4)) and then an

explicit lower bound for blow-up time is obtained. Such results extend and improve

those of [S. T. Wu, J. Dyn. Control Syst. 24 (2018), no. 2, 287–295].

1. Introduction

Let Ω ⊂ RN (N ≥ 2) be a bounded simply connected domain. Consider the initial and

boundary value problem of fourth-order wave equations with superlinear sources

(1.1)


utt + ∆2u−∆u− ω∆ut + α(t)ut = |u|p−2u, x ∈ Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = ∆u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.
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In what follows, we always assume that ω > 0, α(t) : [0,∞) → (0,∞) is a nonincreasing

bounded differentiable function.

Problem (1.1) may describe some phenomena of granular materials such as the longi-

tudinal motion of an elasto-plastic bar. In fact, the first identity of Problem (1.1) may

be derived from the conservation of mass and momentum, for more details, the interested

reader may refer to the derived process of Equation (3.6) of [4] and other references [2,3].

It is well known that the source term causes finite-time blow-up of solutions and drives

the equation to possible instability while the damping term prevents finite-time blow-up

of the solution and drives the equation toward stability. So, it is of interest to explore the

mechanism of how the sources dominate the dissipation (strong damping term ∆ut and

weak damping term ut), which attracts considerable attention. For example, the author

in [6] discussed the following equation

utt + ∆2u− α∆u± β
N∑
i=1

∂

∂xi
σi(uxi) = f(u),

where α ≥ 0 and β is a constant. He defined and utilized a potential well (first introduced

by Sattinger in [16]) to discuss some properties of solutions such as blow-up, boundedness

and convergence to the steady-state solution as time variable goes to infinity. After then,

Lin et. al. in [11] considered the fourth-order nonlinear evolution equation with strong

damping

utt + ∆2u−∆u− ω∆ut = f(u),

with ω > 0. By using the classical potential well method and the concavity argument,

they established the existence of global weak solutions and global strong solutions under

additional assumptions about the initial date and nonlinearities. Later, Liu and Xu in

[12,13] improved the above results. In 2018, Wu in [18] applied the potential well method

to prove the solution of Problem (1.1) blew up in finite time for 2 < p < 2(N −2)/(N −4)

(N ≥ 5), at the same time the estimate of an upper bound of blow-up time was also given.

In fact, we all know that the upper bound guarantees blowing-up of the solution and the

importance of the lower bound is that it may provide us a safe time interval for operation.

In addition, Wu applied some methods used in [10, 17] to obtain the estimate of a lower

bound of blow-up time for the subcritical case of 2 < p < 2(N − 2)/(N − 4) (N ≥ 5)

or 2 < p < ∞ (1 < N ≤ 4). For more related works, the interested readers may refer

to [5, 14,15,19]. However, [18] leaves some unsolved problems:

(i) Whether does the solution of Problem (1.1) blow up in finite time when p lies in the

supercritical internal (2(N − 2)/(N − 4), 2N/(N − 4))?

(ii) Whether does the solution blow up in finite time for initial data at arbitrary energy

level?
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To the best of our knowledge, there are few related works for above problems. In fact,

applying the classical potential well method and the methods used in [10,17] to study such

problems, we have to face some difficulties:

• How to establish some qualitative relationships between initial energy value and the

norm of the gradient of the solution for the supercritical case and high energy level?

• How to bypass the difficulty caused by the failure of the embeddingH2(Ω)∩H1
0 (Ω) ↪→

L2p−2(Ω) for 2(N−2)/(N−4) < p < 2N/(N−4) and then give an estimate of lower

bound for blow-up time?

In this paper, we first borrow some ideas of our previous works [8,9] to establish some

qualitative relationships between initial energy value and the norm of the gradient of the

solution for supercritical case and low energy level, and then we modify the functional

constructed in [18] and apply the concavity method to prove that the solution blows up

in finite time for initial data at the low energy level. Subsequently, in the case of initial

data at high energy level, we construct a suitable function and apply energy inequalities

to obtain the estimate of the lower bound of the L2 norm of the solution. Moreover, the

concavity method is used to prove that the solution blows up in finite time for initial data

at high energy level. At the same time, we also give the upper bound for blow-up time. At

the last part of this paper, we apply the interpolation inequality, Sobolev inequality and

energy inequalities to establish an inverse Hölder inequality with the correction constant

and then construct the new control functional with a small dissipative term to get some

estimates of the lower bound of blow-up time for supercritical case.

This paper is organized as follows. In Section 2, we recall some useful lemmas and

estimate of the lifespan of blow-up solutions for low initial level. Section 3 is devoted to

discussing blow-up of solutions for high energy level. In last section, we will apply the

interpolation inequality and energy inequalities to give the estimate of the lower bound

for blow-up time.

2. Initial data at low energy level

For the sake of completeness, we first give some lemmas and notations which will be used

later. Set

H = {u ∈ H2(Ω) ∩H1
0 (Ω) | u = ∆u = 0 on ∂Ω}

and

‖u‖H =
√
‖∆u‖22 + ‖∇u‖22,
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where ‖·‖p denotes the usual Lp(Ω) norm ‖·‖Lp(Ω) for 1 ≤ p ≤ ∞. From [1], we know that

there exists a positive constant B0 such that the following embedding inequality holds

(2.1) ‖u‖p ≤ B0‖u‖H for u ∈ H.

That is, B0 = supu∈H\{0}
‖u‖p
‖u‖H . Here p satisfies

(2.2)

2 < p ≤ 2N
N−4 if N ≥ 5,

2 < p <∞ if 1 ≤ N ≤ 4.

Next, we first state, without the proof, the local existence which can be established by

combining the argument of [18].

Theorem 2.1. [18] Let u0 ∈ H and u1 ∈ L2(Ω). Then Problem (1.1) admits a unique

solution u( · , t) ∈ L∞(0, T ;H), ut ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) for T > 0 small

enough. Moreover, the energy functional satisfies

(2.3) E′(t) = −
∫

Ω
α(t)u2

t dx− ω
∫

Ω
|∇ut|2 dx ≤ 0,

where the energy functional

E(t) =
1

2

∫
Ω
|ut|2 dx+

1

2

∫
Ω
|∆u|2 dx+

1

2

∫
Ω
|∇u|2 dx− 1

p

∫
Ω
|u|p dx.

Before stating our main results, we give a useful lemma.

Lemma 2.2. Let

h(λ) =
1

2
λ− Bp

0

p
λp/2, λ > 0, p > 2,

then there exists λ1 = B
2p/(2−p)
0 such that

(1) limλ→+∞ h(λ) = −∞, h(0) = 0, h′(λ1) = 0;

(2) h(λ) is increasing for 0 < λ ≤ λ1; h(λ) is decreasing for λ ≥ λ1.

The proof of this lemma is similar to these of [7–9], we omit it here. Next, we consider

the case of low initial energy. Our main result is as follows:

Theorem 2.3. Assume that the condition (2.2) and the following conditions are fulfilled:

(H1)

∫
Ω
|∇u0|2 dx+

∫
Ω
|∆u0|2 dx > λ1;

(H2) E(0) < d =
p− 2

2p
B

2p/(2−p)
0 .
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Then the solution of Problem (1.1) blows up in a finite time T ∗ > 0, that is,

lim
t→T ∗

‖u‖pp = +∞.

Moreover, T ∗ satisfies

T ∗ ≤
4p(d− E(0))‖u0‖22 + (p+ 1)

[
(α(0) + 1)‖u0‖22 + ω‖∇u0‖22 + ‖u1‖22

]2
p(p− 2)(d− E(0))

[
2
∫

Ω u0u1 dx+ (α(0) + 1)‖u0‖22 + ω‖∇u0‖22 + ‖u1‖22
] .

Proof. Step 1. We claim that there exists a λ2 > λ1 such that for t > 0,

(2.4)

∫
Ω
|∇u|2 dx+

∫
Ω
|∆u|2 dx ≥ λ2.

In fact, we apply Inequality (2.1) to obtain

E(t) ≥ 1

2

∫
Ω
|∇u|2 dx+

1

2

∫
Ω
|∆u|2 dx− Bp

0

p

(∫
Ω
|∇u|2 dx+

∫
Ω
|∆u|2 dx

)p/2
∆
=

1

2
λ(t)− Bp

0

p
λp/2(t) = h(λ(t))

with λ(t) =
∫

Ω |∇u|
2 dx+

∫
Ω |∆u|

2 dx.

According to E(0) < d and Lemma 2.2, we know that there exists a λ2 > λ1 such that

h(λ2) = E(0). Since λ0
∆
=
∫

Ω |∇u0|2 dx+
∫

Ω |∆u0|2 dx > λ1, we get h(λ0) ≤ E(0) = h(λ2).

Once again applying the monotonicity of h(λ), we have that λ0 ≥ λ2 > λ1.

Next, we prove Inequality (2.4) by arguing by contradiction. Suppose that there exists

a t0 > 0 such that λ(t0) < λ2.

Case 1. If λ1 ≤ λ(t0) < λ2, then we choose t1 = t0.

Case 2. If λ(t0) < λ1, then inequalities λ0 ≥ λ2 > λ1 and the continuity of λ(t)

imply that there exists t1 ∈ (0, t0) such that λ1 ≤ λ(t1) < λ2. And then, we apply the

monotonicity of h(t) and the definitions of E(t) to obtain

E(t1) ≥ h(λ(t1)) > h(λ2) = E(0),

which contradicts Identity (2.3).

Step 2. Define

ϕ(t) =

∫
Ω
|u( · , t)|2 dx+

∫ t

0

∫
Ω

(
α(s)u2( · , s) + ω|∇u( · , s)|2

)
dxds

+

∫ t

0

∫
Ω

(s− t)αs(s)u2( · , s) dxds− t
∫

Ω

(
α(0)u2

0 + ω|∇u0|2
)
dx+ β(t+ σ)2,

where β, σ will be determined later.

It is easy to check that

ϕ′(t) = 2

∫
Ω
utu dx+ 2

∫ t

0

∫
Ω

(
α(s)us( · , s)u( · , s) + ω∇u( · , s)∇us( · , s)

)
dxds+ 2β(t+ σ),
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and

ϕ′′(t) = 2

∫
Ω
|ut|2 dx+ 2

∫
Ω
uttu dx+ 2

∫
Ω

(α(t)utu+ ω∇u∇ut) dx+ 2β

= (p+ 2)‖ut‖22 + (p− 2)

(∫
Ω
|∆u|2 dx+

∫
Ω
|∇u|2 dx

)
− 2pE(0)

+ 2β + 2p

∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds.

(2.5)

By virtue of (2.4) and (2.5), we have

ϕ′′(t) = 2

∫
Ω
|ut|2 dx+ 2

∫
Ω
uttu dx+ 2

∫
Ω

(α(t)utu+ ω∇u∇ut) dx+ 2β

≥ (p+ 2)‖ut‖22 + 2p(d− E(0)) + 2β

+ 2p

∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds.

And then, we choose β = p(d− E(0))/(p+ 1) > 0, σ =
∫

Ω

(
α(0)|u0|2 + ω|∇u0|2 + |u0|2 +

|u1|2
)
dx/(2β) > 0 to obtain

ϕ′′(t) ≥ (p+ 2)‖ut‖22 + 2(p+ 2)β

+ 2p

∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds.

(2.6)

Subsequently, we estimate the term (ϕ′(t))2/4:

(ϕ′(t))2

4

≤ ‖ut‖22‖u‖22 + β2(t+ σ)2 + 2β(t+ σ)‖ut‖2‖u‖2
+ 2
(
β(t+ σ) + ‖ut‖2‖u‖2

)
×
(∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds

∫ t

0

∫
Ω

(
α(s)u2( · , s) + ω|∇u( · , s)|2

)
dxds

)1/2

+

(∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds

∫ t

0

∫
Ω

(
α(s)u2( · , s) + ω|∇u( · , s)|2

)
dxds

)
≤
[
‖ut‖22 +

∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds+ 2β

]
ϕ(t).

(2.7)

Here we have used the following inequalities

2‖u‖2 · ‖ut‖2β(t+ σ) ≤ ‖ut‖22(β(t+ σ)2 − t
∫

Ω

(
α(0)u2

0 + ω|∇u0|2
)
dx)

+ ‖u‖22β2(t+ σ)2

(
β(t+ σ)2 − t

∫
Ω

(
α(0)u2

0 + ω|∇u0|2
)
dx

)−1

,
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and

2β(t+ σ)

(∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds

∫ t

0

∫
Ω

(
α(s)|u|2 + ω|∇u|2

)
dxds

)1/2

≤
∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds

(
β(t+ σ)2 − t

∫
Ω

(
α(0)u2

0 + ω|∇u0|2
)
dx

)
+ β2(t+ σ)2

∫ t

0

∫
Ω

(
α(s)|u|2 + ω|∇u|2

)
dxds

(
β(t+ σ)2 − t

∫
Ω

(
α(0)u2

0 + ω|∇u0|2
)
dx

)−1

.

By Inequalities (2.6) and (2.7), it is not difficulty to verify that

ϕ(t)ϕ′′(t)− p+ 2

4
(ϕ′(t))2 ≥ 0, p > 2,

which implies

(ϕ1−(p+2)/4(t))′′ ≤ 0 for t > 0.

Noticing that ϕ1−(p+2)/4(0) > 0, (ϕ1−(p+2)/4)′(0) < 0, then

ϕ1−(p+2)/4(T ∗) = 0 for some T ∗ ∈

(
0,
−ϕ1−(p+2)/4(0)

(ϕ1−(p+2)/4)′(0)

)
.

Step 3. According to the analysis above, we have

lim
t→T ∗

ϕ(t) =∞,

which implies that

(2.8) lim
t→T ∗

‖∇u( · , t)‖2 =∞.

Combining (2.3) with (2.8) and utilizing the definition of E(t), we have

lim
t→T ∗

‖u( · , t)‖p =∞.

Remark 2.4. In fact, the constant d = p−2
2p B

2p/(2−p)
0 coincides with the mountain pass

level. i.e., we claim that

d = inf
u∈H\{0}

sup
α≥0

J(αu) = inf
u∈N

J(u),

where the functional

J(u) =
1

2

∫
Ω

(
|∇u|2 + |∆u|2

)
dx− 1

p

∫
Ω
|u|p dx,

and the Nehari manifold

N =

{
u ∈ H \ {0},

∫
Ω
|∇u|2 dx+

∫
Ω
|∆u|2 dx =

∫
Ω
|u|p dx

}
.
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Proof. For any ‖u‖p 6= 0, a simple analysis shows that the maximum of J(αu) for α ≥ 0

may be attained at α0 satisfying ‖u‖2H = αp−2
0 ‖u‖pp. And then, we have

inf
u∈H\{0}

sup
α≥0

J(αu) = inf
u∈H\{0}

{
α2

0

2
‖u‖2H −

αp0
p
‖u‖pp

}
=
p− 2

2p
inf

u∈H\{0}

(
‖u‖H
‖u‖p

)2p/(p−2)

=
p− 2

2p
B

2p/(2−p)
0 .

3. Initial data at high energy level

In this section, we discuss properties of blowing-up solution to Problem (1.1) for initial

data at the high energy level (E(0) ≥ d). Let µ1 be the first eigenvalue of the following

problem ∆2ψ = µψ, x ∈ Ω,

ψ = ∆ψ = 0, x ∈ ∂Ω,

and set B1 = min{µ1, (p+ 2)/(p− 2)}. Our main results are as follows:

Theorem 3.1. Assume that the following conditions are fulfilled:

(H3) p > 2, u0 ∈ H and u1 ∈ L2(Ω);

(H4)

∫
Ω
u0u1 dx ≥

α(0) + ωB1 + 4p

2(p− 2)B1
E(0) > 0;

(H5)

∫
Ω
|u0|2 dx >

pE(0)

(p− 2)B1
.

Then the solution of Problem (1.1) blows up in a finite time T ∗ > 0, that is,

lim
t→T ∗

‖u‖pp = +∞.

Moreover, T ∗ satisfies

T ∗ ≤
2
[
(p− 2)B1‖u0‖42 − pE(0)‖u0‖22 + (p+ 1)

( ∫
Ω

(
α(0)u2

0 + ω|∇u0|2
)
dx
)2](

(p− 2)2B1‖u0‖22 − p(p− 2)E(0)
)( ∫

Ω

(
α(0)u2

0 + ω|∇u0|2
)
dx
) .

Proof. Step 1. We first consider the monotonicity of the norm ‖u‖2. Define F (t) =∫
Ω uut dx. Then

F ′(t) =

∫
Ω
|ut|2 dx+

∫
Ω
uutt dx =

∫
Ω
|ut|2 dx−

∫
Ω
|∆u|2 dx

−
∫

Ω
|∇u|2 dx− ω

∫
Ω
∇u∇ut dx−

∫
Ω
α(t)uut dx+

∫
Ω
|u|p dx
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≥ p+ 2

2

∫
Ω
|ut|2 dx+

[
p− 2

2
− δ

2

(
ω +

α(0)

B1

)]
B1‖u‖22

− 1

2δ

(
ω

∫
Ω
|∇ut|2 dx+

∫
Ω
α(t)u2

t dx

)
− pE(t).

We choose δ = (p− 2)B1/(α(0) + ωB1 + 4p), then

d

dt

[
F (t)− α(0) + ωB1 + 4p

2(p− 2)B1
E(t)

]
≥
[
p− 2

2
− δ(ωB1 + α(0))

2B1

]
B1

[
F (t)− α(0) + ωB1 + 4p

2(p− 2)B1
E(t)

]
= M0

[
F (t)− α(0) + ωB1 + 4p

2(p− 2)B1
E(t)

]
.

At last, Gronwall’s inequality and the condition (H4) show that∫
Ω
u( · , t)ut( · , t) dx ≥ eM0t

[∫
Ω
u0(·)u1(·) dx− α(0) + ωB1 + 4p

2(p− 2)B1
E(0)

]
+
α(0) + ωB1 + 4p

2(p− 2)B1
E(t),

(3.1)

where M0 = 2p(p− 2)B1/(ωB1 + α(0) + 4p) > 0.

Step 2. Similar to the proof of Theorem 2.3, we also define

ϕ(t) =

∫
Ω
|u( · , t)|2 dx+

∫ t

0

∫
Ω

(
α(s)u2( · , s) + ω|∇u( · , s)|2

)
dxds

+

∫ t

0

∫
Ω

(s− t)αs(s)u2( · , s) dxds− t
∫

Ω

(
α(0)u2

0 + ω|∇u0|2
)
dx+ β(t+ t0)2,

where β, t0 will be determined later.

It is easy to check that

ϕ′(t) = 2

∫
Ω
utu dx+ 2

∫ t

0

∫
Ω

(
α(s)us( · , s)u( · , s) + ω∇u( · , s)∇us( · , s)

)
dxds+ 2β(t+ t0),

and

ϕ′′(t) = 2

∫
Ω
|ut|2 dx+ 2

∫
Ω
uttu dx+ 2

∫
Ω

(α(t)utu+ ω∇u∇ut) dx+ 2β

= (p+ 2)‖ut‖22 + (p− 2)

(∫
Ω
|∆u|2 dx+

∫
Ω
|∇u|2 dx

)
− 2pE(0)

+ 2β + 2p

∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds.

(3.2)

Next, we will divide this proof into two cases.

Case 1. We assume that E(t) ≥ 0. Then Inequality (3.1) and the condition (H4)

indicate that
d

dt

∫
Ω
|u|2 dx ≥ 0.
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Moreover, we have

‖u‖22 − ‖u0‖22 =

∫ t

0

d

ds
‖u‖22 ds = 2

∫ t

0

∫
Ω
u( · , s)us( · , s) dxds ≥ 0,

which implies

(3.3) ‖u‖22 ≥ ‖u0‖22.

Next, we estimate the term ϕ′′(t). Applying Identity (3.2) and Inequality (3.3), it is

not hard to verify that

ϕ′′(t) ≥ (p+ 2)‖ut‖22 + 2(p− 2)B1‖u0‖22 − 2pE(0) + 2β

+ 2p

∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds.

Moreover, we choose β = [(p − 2)B1‖u0‖22 − pE(0)]/(p + 1) > 0, t0 =
[ ∫

Ω(α(0)u2
0 +

ω|∇u0|2) dx
]
/β > 0 to obtain

ϕ′′(t) ≥ (p+ 2)‖ut‖22 + 2(p+ 2)β + 2p

∫ t

0

∫
Ω

(
α(s)u2

s( · , s) + ω|∇us( · , s)|2
)
dxds.

The rest of the proof is similar to those of Theorem 2.3, we omit it here.

Case 2. There exists t1 > 0 such that E(t1) < 0. This proof is similar to the argument

of Theorem 2.3. We omit it here.

It is worth pointing out that the principle significance of the condition (H5) is that it

allows us to establish an explicit upper bound of blow-up time. In fact, if this condition

is removed, we also prove the nonexistence of solutions.

Theorem 3.2. Assume the following conditions are satisfied

(H6) p > 2, u0 ∈ H and u1 ∈ L2(Ω);

(H7)

∫
Ω
u0u1 dx >

α(0) + ωB1 + 4p

2(p− 2)B1
E(0) > 0,

then the solution of Problem (1.1) blows up in finite time.

Proof. Case 1. For all t ≥ 0, we first assume that E(t) ≥ 0. According to (H7) and

Inequality (3.1), it is easy to check that

d

dt

∫
Ω
|u|2 dx = 2

∫
Ω
uut dx ≥ 2eM0tν, t ≥ 0,

where ν =
∫

Ω u0u1 dx− α(0)+ωB1+4p
2(p−2)B1

E(0) > 0.
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Assume by contradiction that the solution u is global. Then, it is easily seen that

‖u( · , t)‖2 = ‖u0‖2 + 2

∫ t

0

∫
Ω
u( · , τ)uτ ( · , τ) dxdτ ≥ ‖u0‖2 + 2

∫ t

0
eM0τν dτ

= ‖u0‖2 +
2ν

M0

(
eM0t − 1

)
.

(3.4)

On the other hand, by Theorem 2.1, Minkowski inequality and Hölder inequality, we have

‖u( · , t)‖2 ≤ ‖u0‖2 + ‖u( · , t)− u0‖2 ≤ ‖u0‖2 +

∥∥∥∥∫ t

0
uτ dτ

∥∥∥∥
2

≤ ‖u0‖2 +

∫ t

0
‖uτ‖2 dτ ≤ ‖u0‖2 +

1√
B1

∫ t

0
‖∇uτ‖2 dτ

≤ ‖u0‖2 +

√
t√
B1

(∫ t

0

∫
Ω
|∇uτ |2 dxdτ

)1/2

≤ ‖u0‖2 +

√
t√

B1ω
(E(0)− E(t))1/2 ≤ ‖u0‖2 +

√
tE(0)

B1ω
.

(3.5)

Applying the fact limt→+∞
[
2ν/M0 +

√
tE(0)/(B1ω)

]
e−M0t = 0 and inequalities (3.4) and

(3.5), we have
2ν

M0
≤ 0,

which contradicts ν > 0 and M0 > 0.

Case 2. There exists t1 > 0 such that E(t1) < 0. This proof is similar to the argument

of the second case of Theorem 3.1. We omit it here.

4. Lower bounds for lifespan time

In this section, we mainly give some estimates of lower bounds for the blow-up time

T ∗ when 2(N − 2)/(N − 4) < p ≤ 2N/(N − 4) (N ≥ 5). Especially, in this case, the

methods used in [17,18] are not applicable due to the failure of the embedding inequality

H2 ∩H1
0 (Ω) ↪→ L2p−2(Ω).

Theorem 4.1. If all the conditions of Theorem 2.3 and the following conditions are

satisfied
2(N − 2)

N − 4
< p ≤ 2(N − 1)

N − 4
, N ≥ 5,

then the lifespan T ∗ satisfies the following estimate

T ∗ ≥ M2−p(u0, u1)

(p− 2)

C2ω

(2B2
0)p−1

,

where

C2 =
1

πN(N − 2)

[
Γ(N)

Γ(N2 )

]2N

, M2−p(u0, u1) =

[∫
Ω

(
|u1|2 + |∇u0|2 + |∆u0|2

)
dx

]2−p
.
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Proof. Step 1. Define

H(t) =
1

p

∫
Ω
|u|p dx+

1

2

∫
Ω

(
|ut|2 + |∇u|2 + |∆u|2

)
dx.

The fact limt→T ∗ ‖u‖p = +∞ implies

(4.1) lim
t→T ∗

H(t) = +∞.

Step 2. A direct computation shows that

H ′(t) =

∫
Ω
|u|p−2uut dx+

∫
Ω

(
ututt +∇u∇ut + ∆u∆ut

)
dx.

Furthermore, we apply (2.3) and the definition of E(t) to obtain

(4.2) H ′(t) = 2

∫
Ω
|u|p−2uut dx−

∫
Ω
α(t)|ut|2 dx− ω

∫
Ω
|∇ut|2 dx.

On the other hand, applying Hölder inequality and Sobolev embedding inequality, we

get ∣∣∣∣2 ∫
Ω
|u|p−2uut dx

∣∣∣∣
≤ 2

∫
Ω
|u|p−1|ut| dx

≤ 2

(∫
Ω
|u|2(p−1)N/(N+2) dx

)(N+2)/(2N)(∫
Ω
|ut|2N/(N−2) dx

)(N−2)/(2N)

≤ 2C

(∫
Ω
|u|2(p−1)N/(N+2) dx

)(N+2)/(2N)(∫
Ω
|∇ut|2 dx

)1/2

≤ (C
√
ω)−2

(∫
Ω
|u|2(p−1)N/(N+2) dx

)(N+2)/N

+ ω

∫
Ω
|∇ut|2 dx,

(4.3)

where C2 = 1
πN(N−2)

[
Γ(N)/Γ(N/2)

]2N
. According to 2(N − 2)/(N − 4) < p ≤ 2(N −

1)/(N − 4) (N ≥ 5), we apply Inequality (2.1) to get

(4.4)

(∫
Ω
|u|2(p−1)N/(N+2) dx

)(N+2)/N

≤ B2(p−1)
0

[∫
Ω

(
|∇u|2 + |∆u|2

)
dx

]p−1

.

Once again using (2.3) and the definition of E(t), we have

(4.5)
1

2

∫
Ω

(
|∇u|2 + |∆u|2

)
dx ≤ 1

p

∫
Ω
|u|p dx+ E(0).

By (4.2)–(4.5), we have

(4.6) H ′(t) ≤ (2B2
0)p−1

C2ω
(H(t) + E(0))p−1.

Finally, we combining (4.1) with (4.6) to get∫ ∞
H(0)+E(0)

ξ1−p dξ ≤ (2B2
0)p−1

C2ω
T ∗ =⇒ T ∗ ≥ M2−p(u0, u1)

(p− 2)

C2ω

(2B2
0)p−1

.
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From the process of the above proof, it is obvious to find that the embedding theorem

H ↪→ L2N(p−1)/(N+2) fails when 2(N − 1)/(N − 4) < p ≤ 2N/(N − 4), which leads to the

above method is not applicable. However, we have to look for a new technique or construct

a new control functional to bypass this difficulty. In what follows, we only consider the

case when the spatial dimension N is bigger than four. First of all, we give a useful lemma.

Lemma 4.2. Assume that u is the solution to Problem (1.1). Then the following inequality

remains true

1

p

∫
Ω
|u|p dx ≤ C1

(∫
Ω
|u|2(N−1)/(N−4) dx

)α
+

1

p− 1
E(0),

where α, C1 are defined as follows:

α =
(N − 4)[2N − (N − 4)p]

2N2 − 8−N(N − 4)p
> 1,

2(N − 1)

N − 4
< p <

2(N2 − 4)

N(N − 4)
,

C1 =
(2Bp

0)α/[2N−(N−4)p]

2(p− 1)
.

Proof. By the interpolation inequality, we know that the following inequality holds

(4.7)

∫
Ω
|u|p dx ≤ Bp

0

(∫
Ω
|u|k dx

)(1−θ)p/k [∫
Ω

(
|∆u|2 + |∇u|2

)
dx

]θp/2
,

where
1

p
=

1− θ
k

+
θ

2∗∗
, k =

2(N − 1)

N − 4
, 2∗∗ =

2N

N − 4
, N ≥ 5.

Noticing that 2(N − 1)/(N − 4) < p < 2(N2 − 4)/[N(N − 4)] (N ≥ 5) =⇒ 0 < θp/2 < 1

and combining Young inequality with (4.7), we have

(4.8)∫
Ω
|u|p dx ≤ Bp

0ε
2/(θp−2)

(∫
Ω
|u|k dx

)2(1−θ)p/[k(2−θp)]
+Bp

0ε
2/(θp)

∫
Ω

(
|∆u|2 + |∇u|2

)
dx.

And then, we choose Bp
0ε

2/(θp) = 1/2 and utilize inequalities (4.5) and (4.8) to obtain the

following inequality∫
Ω
|u|p dx ≤ (2Bp

0)2/(2−θp)

2

(∫
Ω
|u|k dx

)2(1−θ)p/[k(2−θp)]
+

1

p

∫
Ω
|u|p dx+ E(0).

This completes the proof of Lemma 4.2.

Theorem 4.3. If all the conditions of Theorem 2.3 and the following conditions are

satisfied
2(N − 1)

N − 4
< p <

2(N2 − 4)

N(N − 4)
, N ≥ 5,
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then the lifespan T ∗ satisfies that the following estimate

T ∗ ≥ 1

M0(β − 1)

(
Z(0) +

2pε0E(0)

(p− 1)ω

)1−β
,

where

M0 =
C2α2(N − 1)2

22α−4(N + 4)2ε0

(
2ωB2

0

ε0

)(2N+4)/(N−4)

, Z1/α(0) =

∫
Ω
|u0|(2N−2)/(N−4) dx,

ε0 =
(p− 1)ω

(2Bp
0)α/[2N−(N−4)p]

, C2 =
1

πN(N − 2)

[
Γ(N)

Γ(N2 )

]2N

,

β = 2 +
8N + 16− 4(N − 4)p

(N − 4)(2N + 4p−Np)
> 2.

Proof. This proof will be divided into three steps.

Step 1: Equivalent Blowing-up. Define

Z(t) =

(∫
Ω
|u( · , t)|k dx

)α
− ε0

∫ t

0

∫
Ω
|∇uτ ( · , τ)|2 dxdτ,

where k = 2(N − 1)/(N − 4), α = (N − 4)[2N − (N − 4)p]/[2N2 − 8 − N(N − 4)p],

ε0 = (p− 1)ω/(2Bp
0)α/[2N−(N−4)p].

By (2.3) and Lemma 4.2, we have

ω

∫ t

0

∫
Ω
|∇uτ |2 dxdτ ≤

pE(0)

p− 1
+

ω

2ε0

(∫
Ω
|u|k dx

)α
.

Moreover, we apply the above inequality to obtain

(4.9) Z(t) ≥ 1

2

(∫
Ω
|u|k dx

)α
− pε0E(0)

(p− 1)ω
.

Combining the above inequality with the conclusion of Theorem 2.3, it is easy to prove

that

lim
t→T ∗

Z(t) = +∞.

Step 2. A direct computation shows that

(4.10) Z ′(t) = αk

(∫
Ω
|u|k dx

)α−1 ∫
Ω
|u|k−2uut dx− ε0

∫
Ω
|∇ut|2 dx.

Step 3. It is easily seen that Young’s inequality, the Sobolev embedding inequality
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and Identity (2.3) yield

αk

(∫
Ω
|u|k dx

)α−1 ∫
Ω
|u|k−2uut dx

≤ αk
(∫

Ω
|u|k dx

)α−1

‖|u|k−1‖2N/(N+2)‖ut‖2N/(N−2)

≤ Cαk
(∫

Ω
|u|k dx

)α−1

‖|u|k−1‖2N/(N+2)‖∇ut‖2

≤ C2α2k2

ε0

(∫
Ω
|u|k dx

)2α−2

‖|u|k−1‖22N/(N+2) + ε0‖∇ut‖22

≤ C2α2k2

ε0

(∫
Ω
|u|k dx

)2α−2(2B2
0

p

∫
Ω
|u|p dx+ 2B2

0E(0)

)(2N+4)/(N−4)

+ ε0‖∇ut‖22.

(4.11)

Utilizing (4.11) and Lemma 4.2, we have

αk

(∫
Ω
|u|k dx

)α−1 ∫
Ω
|u|k−2uut dx

≤ ε0

∫
Ω
|∇ut|2 dx+M0

(∫
Ω
|u|k dx

)2α−2(1

2

∫
Ω
|u|k dx+

pε0E(0)

(p− 1)ω

)(2N+4)/(N−4)

.

(4.12)

Furthermore, Inequalities (4.9) and (4.12) as well as Identity (4.10) show that

Z ′(t) ≤M0

[
Z(t) +

2pε0E(0)

(p− 1)ω

]β
, β =

2N + 4

N − 4
+ 2− 2

α
,

which shows that

T ∗ ≥ 1

M0(β − 1)

(
Z(0) +

2pε0E(0)

(p− 1)ω

)1−β
.

This completes the proof of this theorem.

Remark 4.4. Since the embedding relationship H ↪→ Lq(Ω) (1 ≤ q <∞, if N = 1, 2, 3, 4)

holds, we may follow our method used in this paper or [10,17,18] to obtain similar results.

However, when p ∈
[
2(N2− 4)/[N(N − 4)], 2N/(N − 4)

]
, it seems that we can not obtain

similar results as Lemma 4.2. So, we need to develop a new method or technique to discuss

this problem.
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