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Schur Product with Operator-valued Entries

Oscar Blasco and Ismael Garcia-Bayona*

Abstract. In this paper we characterize Toeplitz matrices with entries in the space of
bounded operators on Hilbert spaces B(H) which define bounded operators acting on
(2(H) and use it to get the description of the right Schur multipliers acting on ¢2(H)

in terms of certain operator-valued measures.

1. Introduction

Throughout the paper X, Y and F are complex Banach spaces and H denotes a separable
complex Hilbert space with orthonormal basis (e,). We write £(X,Y") for the space of
bounded linear operators, X* for the dual space and denote B(X) = £(X, X). We also use
the notations ¢2(E), C(T, E), LP(T, E) or M (T, E) for the space of sequences z = (2,,) in E
such that [|z]|e2gm) = (D ney Han2)1/2 < 00, the space of E-valued continuous functions,
the space of strongly measurable functions from the measure space T = {z € C: |z| = 1}
into E with || f|l o = (27 1F()[PL)? < oo for 1 < p < oo (with the usual
modification for p = o00) and the space of regular vector-valued measures of bounded
variation respectively. As usual, for E = C we simply write ¢2, C(T), LP(T) and M(T).

Given two matrices A = (ay;) and B = (f;) with complex entries, their Schur product
is defined by A * B = (ay;Bj). This operation endows the space B(¢?) with a structure
of Banach algebra. A proof of the next result, due to J. Schur, can be found in [2,
Proposition 2.1] or [10, Theorem 2.20].

Theorem 1.1. (Schur, [12]) If A = (ax;) € B(¢?) and B = (By;) € B((*) then Ax B €
B(¢%). Moreover ||A B2y < 1Al g2 Bllaee2)-

More generally, a matrix A = (oy;) is said to be a Schur multiplier, to be denoted by
A € M(£?), whenever Ax B € B(£?) for any B € B(¢?). For the study of Schur multipliers
we refer the reader to [2,/10]. Recall that a Toeplitz matrix is a matrix A = (ay;) such

that there exists a sequence of complex numbers (v;);ez with ay; = vj_;. The study of
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Toeplitz matrices which define bounded operators or Schur multipliers goes back to work
of Toeplitz in [15]. The reader is referred to [1,12,10] for recent proofs of the following

results concerning Toeplitz matrices.

Theorem 1.2. (Toeplitz, [15]) Let A = (au;) be a Toeplitz matriz. Then A € B((?) if

~

and only if there exists f € L>(T) such that aa; = f(j — k) for all k,j € N. Moreover
ANl = [If1] oo m)-

Theorem 1.3. (Bennet, [2]) Let A = (au;) be a Toeplitz matriz. Then A € M((?) if
and only if there exists . € M(T) such that oyj = [(j — k) for all k,j € N. Moreover

1ALl = el aecry-

It is known the recent interest for operator-valued functions (see [9]) and for the ma-
tricial analysis (see [10]) concerning their uses in different problems in Analysis. In this
paper, we would like to formulate the analogues of the theorems above in the context of
matrices A = (T};) with entries Tj; € B(H). For such a purpose, we are led to consider
operator-valued measures. We shall make use of several notions and spaces from the the-
ory of vector-valued measures and the reader is referred to classical books [6}/7] or to [3]
for some new results in connection with Fourier analysis.

In the sequel we write (-,-) and ((-,-)) for the scalar products in H and ¢?(H) respec-
tively, where (x,y)) = >_72,(%;, ;) and we use the notation ze; = (0,...,0,,0,...) for
the element in ¢?(H) in which x € H is placed in the j-coordinate for j € N. As usual,
coo(H) = span{ze; : x € H, j € N}.

Definition 1.4. Given a matrix A = (T};) with entries T}; € B(H) and x € coo(H) we
write A(x) for the sequence (E;’il Tkj(xj))k. We say that A € B(/2(H)) if the map
x — A(x) extends to a bounded linear operator in ¢?(H), that is

ol s 2\ 1/2 - 1/2
DD Ty <C S Yyl
k=1 ||j=1 j=1

We shall write
[A B2y = Inf{C > 0 |Ax|[ 2y < Cl|%| g2y }-

Definition 1.5. Given two matrices A = (T};) and B = (Sy;) with entries Tj;, Sy; €
B(H) we define the Schur product A «x B = (T};Sy;) where T};Sy; stands for the compo-
sition of the operators Tj; and Si;.

Contrary to the scalar-valued case this product is not commutative.
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Definition 1.6. Given a matrix A = (T};), we say that A is a right Schur multiplier
(respectively left Schur multiplier), to be denoted by A € M,.((*(H)) (respectively A €
M;(¢*(H))), whenever B x A € B({?(H)) (respectively A +x B € B(¢(H))) for any B €
B(¢%(H)). We shall write

A a, (e2(ayy) = E{C > 02 |B x A2y < ClIBllsezmy)}

and
A sy (e2(ery) = Inf{C > 01 |A x Bl|g2(my) < ClIBlse2 () }-

Denoting by A* the adjoint matrix given by Si; = T3 for all k,j € N, one easily
sees that A € B((?(H)) if and only if A* € B(¢*(H)) with ||A|| = ||A*|| and also that
A € M (*(H)) if and only if A* € M,.(¢*(H)) and || Al s, 2(rry) = A% |, (e2(m1))-

If X and Y are Banach spaces we write X®Y for the projective tensor product. We
refer the reader to [6, Chapter 8], [11, Chapter 2] or [4] for all possible results needed in
the paper. We recall that (X®Y)* = £(X,Y™*) and to avoid misunderstandings, for each
T € L(X,Y*), we write JT when T is seen as an element in (X®Y)*. In other words,
we write J: L(X,Y*) = (X®Y)* for the isometry given by JT(z ®vy) = T(z)(y) for any
T e L(X,Y"),ze€ X and y € Y. Also, given z* € X* and y* € Y*, we write :c*/é\ig*
for the operator in £(X,Y™) given by x*/é\@/y*(z) = z*(z)y* for each z € X. In the paper
we shall restrict ourselves to the case L(X,Y™*) = B(H), that is X = Y* = H. Using the
Riesz theorem we identify Y = Y* = H. Hence, for T,S € B(H) and x,y € H, we shall

use the following formulae

(T(z),y) =TT (z®y),

(r®y)(z) =(z,v)y, z€H,
Ty =@ (Ty), (@oyT =Ty,
J(TS)(z ®y) = JT(Sz ®y) = TS(z © T*y).

The paper is divided into four sections. The first section is of a preliminary character
and we recall the basic notions on vector-valued sequences and functions to be used in the
sequel. Next section contains several results on regular operator-valued measures which are
the main ingredients for the remaining proofs in the paper. In Section [4 we are concerned
with several necessary and sufficient conditions for a matrix A to belong to B(¢*(H)) and
we show that the Schur product endows B(¢?(H)) with a Banach algebra structure also in
this case. The final section deals with Toeplitz matrices A with entries in B(H), that is
those matrices for which there exists a sequence (17);cz C B(H) so that Ty; = T;_. We
shall write 7 the family of such Toeplitz matrices and we characterize 7 N B(¢?(H)) as

those matrices where T}; = ji(j — k) for a certain regular operator-valued vector measure
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i belonging to V°°(T,B(H)) (see Definition below). Concerning the analogue of
Theorem [1.3] we shall show that M (T,B(H)) € M,((>(H)) € Msor(T,B(H)) where
M(T,B(H)) stands for the space of regular operator-valued measures and Mgor (T, B(H))
is defined, using the strong operator topology, as the space of vector measures p such that
te € M(T, H) where p;,(A) = u(A)(z) for any x € H.

2. Preliminaries on operator-valued sequences and functions

Write ¢2_ (N, B(H)) and ¢2_, (N?, B(H)) for the space of sequences T = (T;,) C B(H)

and matrices A = (T};) C B(H) such that

00 1/2
ITlez_ Bz = (Z (T ( ) <00
llzll= 1 ||y|| 1

and
1/2

o [o.¢]
[Allez_ (2 gy = sup ZZ (T (), )| < 00.
lzll=Llyl=1 \ =1 j=1

The reader can see that these spaces actually coincide with the ones appearing using
notation in [5]. Of course ¢*(E) C ¢2_, (E). In the case B(H) we can actually introduce

certain spaces between (%(E) and ¢2_, (E).

Definition 2.1. Given a sequence T = (7;,) and a matrix A = (T};) of operators in
B(H), we write
1/2
2
1Tl v —-5@1<§jwr H)

and
1/2

|Alle, o sy = sup ZZmu

||x||— =1 k=1
We set (3o (N, B(H)) and ¢2,1(N?, B(H)) for the spaces of sequences and operators with

ITllez, . v5(ery) < o0 and [[Allz (N2 sy < 00 respectively.

Remark 2.2. Tt is easy to show that
C(N?, B(H)) ¢ (N, o1 (N, B(H)) G Gor(N°, B(H)).

As usual, we denote ¢y (t) = ¢ for k € Z, and, given a complex Banach space E, we
write P(T, E) = span{ey; : j € Z,e € E} for the E-valued trigonometric polynomials,
Po(T,E) = spanfep; : j € Nye € E} for the E-valued analytic polynomials. It is
well-known that P(T, F) is dense in C(T,FE) and LP(T,E) for 1 < p < oco. Also, we
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shall use HZ(T,E) = {f € LX(T,E) : f(k) = 0,k < 0}, where f(k) = [;" f(t)on(t) o
for k € Z. Recall that H3(T, E) coincides with the closure of P,(T, E) with the norm
in L2(T,E). Similarly H2(T2,E) = {f € L2(T% E) : f(k,j) = 0,k,j < 0}, where
Fl ) = J5 Iy 1t 5)n®)05(5) 5252 for k. j € Z.

Let us now introduce some new spaces that we shall need later on.

Definition 2.3. Let T = (7,,) C B(H) and A = (T};) C B(H). We say that T €
H?(T, B(H)) whenever

2 1/2
dt
HT”ﬁQ(T,B(H)):SKfp . Z;Tj%'(t) Gy < o0.
We say that A € H2(T2, B(H)) whenever
1/2
o2 pon || N M 2 dt ds
1A oy = 50 | ] .Y uelad)| ga) <o

Remark 2.4. HQ(’]T B(H)) ¢ HZ(T,B(H)).
Consider T = e; Qe e;j. Then for any ¢t € [0,27) and N € N,

N N

Z e; ®e] @;(t = sup Z(x,ej>cpj(t)ej =1.

[Jlz||=1 |5 =
=1 B(H) 1=t = H

Hence we have T = (e; ® €;); € H2(T,B(H)). On the other hand, since 5] =1
for all j, we have lim;_, ||Tj|| = 1 # 0, which implies that T ¢ L'(T,B(H)) and so
T ¢ H2(T,B(H)), as desired.

Proposition 2.5. (i) H(T,B(H)) C (2o (N, B(H)) and H*(T2, B(H)) C (2o (N?, B(H)).
(ii) H2(T,B(H)) € (*(N,B(H)) and (*(N, B(H)) ¢ H*(T,B(H)).

Proof. (i) Both inclusions are immediate from Plancherel’s theorem (which holds for
Hilbert-valued functions). It suffices to see that there exists T € (35 (N, B(H))\H2(T,B(H))
because choosing matrices with a single row we obtain also a counterexample for the
other inclusion. Now selecting T}, = en®T € B(H) for a given x € H we clearly have
T = (en/?é/a:) € 2o (N, B(H)) with HTH%OT w8y = l[z]. However, for any ¢ € [0, 2m)
and N € N,

—~—

N
= (Z eann(t)> ® = ||z||VN,
B(H) n=1

B(H)

N

> (en @ x)pnlt)

n=1
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showing that T ¢ H2(T, B(H)).

(ii) The example in Remark [2.4] shows that H2(T,B(H ) ¢ *(N,B(H)). Let us
now find T € 2(N,B(H)) \ HQ(T,B( )). Consider H = L2( ) and T = (Tj) where
Tj: L*(T) — L*(T) is given by Tj(f) = % f.

Clearly T € (*(N,B(H)) since ||T;]| = 1/j for all j € N. On the other hand, for each
t €[0,27) and N € N one has that (Zjvzl Tip; () (f) = (ZN % (p])f and therefore

7=1
N N N
pi(t) 1
Srem) -3 3L
= CICON om I
This shows that T ¢ H2(T, B(H)). O

3. Preliminaries on regular vector measures

We recall some facts for vector measures that can be found in [6,7]. Let us consider the
measure space (T,B(T), m) where B(T) stands for the Borel sets over T and m for the
Lebesgue measure on T. Given a vector measure pu: B(T) — E and B € B(T), we shall

denote |u|(B) and ||u||(B) the variation and semi-variation of p of the set B given by

|pe|(B) = sup {Z (A, A € B(T), r is a finite partition of B}
Aem

and
[l (B) = sup{[{e", )|(B) : " € E*, ||e"|| = 1},

where (e, u)(A) = e*(u(A)) for all A € B(T). Of course |u|(-) becomes a positive measure
on B(T), while ||u||(-) is only sub-additive in general. We shall denote |u| = |p|(T) and
llell = ||ell(T). For dual spaces E = F* it is easy to see that ||u| = sup{|(u, f)| : f €
F, ]l = 1} where {1, £)(4) = u(A)(f).

In what follows we shall consider regular vector measures, that is to say vector measures
w: B(T) — E such that for each ¢ > 0 and B € B(T) there exists a compact set K, an
open set O such that K C B C O with ||u]|(O\ K) < e. Let us denote by 9(T, E) and
M (T, E) the spaces of regular Borel measures with values in £ endowed with the norm
given the semi-variation and variation respectively. Of course M (T, E) C (T, E) when
E is infinite dimensional.

It is well known that the space (T, E) can be identified with the space of weakly
compact linear operators T,: C(T) — E and that ||T,|| = ||| (see [6, Chapter 6]). Hence,
for each g € M(T, E') and k € Z we can define (see [3]) the k-Fourier coefficient by

pk) = Tu(p—)-
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Also, the description of measures in M (T, E') can be done using absolutely summing
operators (see [5]) and the variation can be described as the norm in such space (see [6])
but we shall not follow this approach. On the other hand, since we deal with either
E = B(H) or E = H we have at our disposal Singer’s theorem (see for instance [8,13,/14]),
which in the case of dual spaces E = F* asserts that M (T, F) = C(T, F')*. In other words
there exists a bounded linear map ¥, : C(T, F') — C with ||¥,| = |u| such that

Vu(yo) = Tu(9)(y), ¢€C(T), y € F.

In particular, for k € Z one has fi(—k)(y) = ¥, (ypy) for each y € F.
As mentioned above since M (T, £(X,Y*)) = C(T, X®Y)*, for each . € M (T, L(X,Y*))
we can associate two operators 1), and ¥,,. Of course the connection between them is given

by the formula

Tu(9)(2)(y) = Vu((z®y)p), ¢eC(T), zeX, yeY.

There is still one more possibility to be considered using the strong operator topology,
namely ®,,: C(T, X) — Y™ defined by

Qu(f)y) =Vu(f@y), feC(TX) yey,

where f@y(t) = f(t) ®y.

Therefore, given p € M(T, L(X,Y ™)), we have three different linear operators defined
on the corresponding spaces of polynomials: T),: P(T) — £(X,Y*), ¥,: P(T, X®Y) — C
and ®,: P(T, X) — Y* defined by the formulae

N N
T.| > ajei| = D ajfi(=j), N,ME€EN, aj €C,
j=—M j=—M
mj g my
\I/M Z (Z l’jn) ® <Z yjm) Pi | = Z (Z Z a:]n yjm)) ,
j=— m=1 j=— n=1m=1
N
‘I)H Z Tipj | = Z ﬁ(—j)(l‘J), N, M €N, IS X.
. M

When restricting to the case Y* = H we obtain the following connection between
them:

IT()(x @y) = Vu((z @y)Y) = (Pu(2y),y), ¢ €P(T), z,y € H.

Given p € M(T, L(X,Y*)) and = € X, let us denote by p, the Y*-valued measure
given by
pa(A) = p(A)(z), A€ B(T).
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It is elementary to see that u, is a regular measure because one can associate the weakly
compact operator T),, = 0,0T),: C(T) — Y* where §, stands for the operator d,: L(X,Y™)
— Y* given by §,(T) = T'(x) for T € L(X,Y™).

If pe M(T,B(H)), k € Z and =,y € H then u, € M(T, H),

(Ha(A),y) = Tu(A)(z ®y), AeB(T)
and
(u(k)(2),y) = (z(k), y) = Th(k)(z @ y).

Let us introduce a new space of measures appearing in the case £ = B(H).

Definition 3.1. Let p € 9T, B(H)). We say that y € Msor(T,B(H)) if p, € M(T, H)
for any x € H. We write

lullsor = sup{|pz| : @ € H, [lxf| = 1}.
Proposition 3.2. M(T,B(H)) € Msor(T,B(H)) € M(T,B(H)).

Proof. The inclusions between the spaces follow from the inequalities

[{u(A) (@), 9 < (A @)yl < eyl

which leads to
[ )] < e[yl < |l ]y

and the corresponding embeddings with norm 1 trivially follow.

Let H = (?. We shall find measures p1 € Msor(T,B(H)) \ M(T,B(H)) and us €
M(T,B(H)) \ Msor(T,B(H)). Both can be constructed relying on a similar argument.
Let yo € H with [|yo|| = 1 and select a Hilbert-valued regular measure v with |v| = oo
(for instance take a Pettis integrable, but not Bochner integrable function f: T — H
given by t — (fn(t))n and v(A) = ([, fa(t) @)n for A € B(T)). Denote T,,: C(T) - H

2w
the corresponding bounded (and hence weakly compact) operator associated to v with
170 = 1wl
Define

p(A)(x) = (z,v(A))yo, A€ B(T)

and
p2(A)(x) = (z,y0)v(A), AecB(T).

In other words, if J,: H — B(H) and I,: H — B(H) stand for the operators

Jy(l‘)(z) = <Z?:L‘>y7 Iy(x)(z) = (z,y>z, x,Y,z S Ha
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then we have that T, = J,,T, and T,, = 1,1, are weakly compact. Hence p1,pus €
(T, B(H)).
Note that |(u1)z| = [{z,v)| and |(p2)| = [{(x, yo)||v|, = € H. Hence

lullsor = vl llp2llsor = [v]-

Also notice that ||u1(A)||zy = [v(A)||u, and therefore || = ||, which gives the desired

results. O

Definition 3.3. Let p: B(T) — L£(X,Y™) be a vector measure. We define “the adjoint
measure” p*: B(T) — L(Y, X*) by the formula

(A W) (x) = pa(A)(y), A€B(T), z€ X, yeY.
In the case that p € M(T, B(H)) with the identification Y* = H, one clearly has that

(2, 1" (A)(y)) = (W(A)(z),y), AeB(T), z,y€H.

Remark 3.4. p* belongs to MM(T,B(H)) (resp. M(T,B(H))) if and only if p belongs to
M(T, B(H)) (resp. M(T, B(H))). Moreover ||ul| = [lu°| (resp. |u] = 1),

The results follow using that T,«(¢) = (T,(¢))* for any ¢ € C(T) and ||u(A)| =
||*(A)|| for any A € B(T).

Let us describe the norm in Mgor(T, B(H) using the adjoint measure.
Proposition 3.5. Let p € M(T,B(H)). Then p € Msor(T,B(H)) if and only if ®,- €
L(C(T,H),H). Moreover ||p||sor = ||® |-

Proof. By definition, p € Msor(T, B(H)) if and only if the operator S, (z) = p, is well
defined and belongs to L(H, M (T, H)). Moreover, ||u|lsor = ||Sull. The result follows
if we show that S, is the adjoint of ®,«. Recall that, identifying H = H*, we have
p* € M(T,B(H)). Hence @,~: P(T, H) — H is generated by linearity using

By (vr) = P (—k)(2) = B(—k)* (), z€H, ke
Therefore, if k € Z, x,y € H, since M (T,H) = (C(T, H))*, we have
Su)(@pr) = Wy, (wer) = (y(=k), z) = (B(=k)(y), ) = (y, Pu- (zo%))-

By linearity we extend to (y,®,«(xz¢)) = S,(y)(x¢) for any polynomial ¢ and since
P(T, H) is dense in C(T, H) we obtain the result. This completes the proof. O

Let us consider the following subspace of regular measures which plays an important

role in what follows.
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Definition 3.6. Let us write V°°(T, E) for the subspace of those measures p € M(T, E)
such that there exists C' > 0 with

lu(A)]] < Cm(A), A e B(T).

We define

il =sup{”;‘<<fff)”  m(A) > o}

It is clear that any p € V°°(T, B(H)) also belongs to M(T,B(H)) and it is absolutely
continuous with respect to m.

Let us point out two more possible descriptions of V°°(T, E). One option is to look
at V®(T,E) = L(LY(T),E) (see [7, page 261]), that is to say that T, has a bounded
extension to L!(T). Hence a measure p € M(T, E) belongs to V°(T, E) if and only if

[T < Cligllprery, ¢ € C(T).

Moreover [Tyl 1z = [l

In the case that £ = F™* also one has that V°(T, E) = L!(T, F)*, that is the dual of
the space of Bochner integrable functions. In this case a measure p € V°(T, E) if and
only if ¥, has a bounded extension to L' (T, F)*, that is

Wu()ll < Cllplrr,ry, peP(T,F).

Morcover 1%, 11 g, = 1]

Although measures in V°(T, B(H)) are absolutely continuous with respect to m, the
reader should be aware that they might not have a Radon-Nikodym derivative in L!(T, E)
(see |6, Chapter 3)).

For the sake of completeness we give an example for E' = B(H) of such a situation.

Proposition 3.7. Let H = (? and p € 9T, B(H)) such that T, € L(C(T),B(H)) is
given by

Tu(6) =Y d(n)en @ en.
n=1
Then p € V(T,B(H)) with ||p1t]|cc = 1,

e @er ifk>1,
0 if k <0,

k) =

but it does not have a Radon-Nikodym derivative in L'(T,B(H)).



Schur Product with Operator-valued Entries 1185
Proof. Let us show that T}, defines a continuous operator from L*(T) to B(H) with norm 1.

In such a case, using that the inclusion C(T) — L!(T) is weakly compact, one automati-
cally has that u € M(T, B(H)). For x = (a,) € H and y = (f,,) € H one has

= Z ?E(n)anﬁn
n=1

This gives that ¢ € V°(T,B(H)) and ||p]|ec < 1. Using that T,(¢;) = e; ®e; and
||ej(§>/ej|| By = 1 we get the equality of norms.

(Tu(9)(x), )

< sup [$(n)lll=llyll < Nl =iyl

The result on Fourier coefficients is obvious. To show that p does not have a Bochner
integrable Radon-Nikodym derivative follows now using that otherwise ji(k) = f(k:) for
some f € L'(T,B(H)) which implies that ||f(k)|| — 0 as k — oo while ||fi(k)|| = 1 for
k > 1. This completes the proof. O

We finish this section with a known characterization of measures in M (T, F*) to be

used later on, that we include for sake of completeness.

Lemma 3.8. Let E = F* be a dual Banach space and p € M(T, E). For each 0 <r <1

we define

(3.1) Posp(t) =Y fi(k)r t €1[0,2m).

keZ

Then
(i) Prxp € C(T,E) and || P+ pil o(r,p) < ]| L for any 0 <7 < 1.

(ii) p € M(T, E) if and only if supgc, <1 || Pr * il 11,5y < 00. Moreover

ul= sup [Py # plloacr.m)
0<r<1

Proof. (i) Observe that

1+1"
S AR Mol < 1T (1+2Z > = llully

keZ k=1

This shows that the series in (3.1)) is absolutely convergent in C(T, E) and we obtain (i).
(ii) Assume that p € M(T, E). In particular |u] € M (T) and

o dt _ [ dt
/ 1wl o < [ Proe ) o
0 0 27

Hence, using the scalar-valued result, we have

sup || Py * pll py (7 my < sup. 15 [pll| oy < S [l Brllrery = |1l
0<r<1 0<r<
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Conversely, assume that supg, 1 |5 * pl|pi(r,z) < oo. Since LY T,E) € M(T,E) =
C(T, F)*, from the Banach-Alaoglu theorem one can find a sequence r, converging to 1
and a measure v € M(T, E) such that P, * pu — v in the w*-topology. Selecting now

functions in C(T, F') given by ye_j for all y € F and k € Z one shows that v(k) = (k).
This gives that p = v and therefore p € M(T, F). Finally, notice that

nl = sup{|¥u(p)| : p € P(T, ), llpllor.m = 1}-

Given now p = E,]CV:_M YiPk, one has P, xp = Ziv:_M ykr|k|g0k and

Pep) = Y AR = [P () 5
0 s
k=—M
Finally, since p = lim,_,1 P, * p is in C(T, F'), we have
W, (p)] = lim [0,(P, p)
2 dt
< sup Prx p(t)(p(t)) 5
o<r<1|Jo 7r
< sup |5 pllpier,pyllpllocr,F)-
0<r<1
This gives the inequality |u| < supgc,<; ||Pr* pl|1(r, ) and the proof is complete. O

4. Some results on matrices of operators

Throughout the rest of the paper, we write A = (Tj;) C B(H), Ry and C; the k-row

respectively, that is
Ry = (Tij)521,  Cj = (Thy)ita

and

M N
Ana(s,t) =) ) Tijei(s)pw(t), 0<t,s<2m, N,MeN.
k=1 j=1

For each x = (z;) € (*(H) we consider the function hx given by
oo
halt) = xj05(t), te€0,2m).
j=1

Remark 4.1. Observe that A € H2(T2, B(H)) if and only if
sup ||AN,MHL2(']I‘2,B(H)) < 00.
N,M

Note that x € ¢2(H) if and only if hy € H3(T, H). Moreover

1lle2(rry = I1hxl z2(m, 1)



Schur Product with Operator-valued Entries 1187
Proposition 4.2. Let A = (T};) C B(H).
(i) If A € 251 (N* B(H)) then Ry, C; € (251 (N,B(H)) for all k,j € N.
(ii) If A € H%(T%, B(H)) then C;,Ry, € HX(T,B(H)) for all j, k € N.

Proof. (i) follows trivially from the definitions.
(ii) Let ¥ € N, M € Nand t € [0,27). For N > k' we have

N or [ N M ds
S Tet) = [ X e a) | el o
j=1 0 k=1 j=1 T

Therefore

2 2
or || IV or p2n || N M
dt ds dt
Tyripi(t — < Th.0:(t - .
/0 ; W ej(t) o —/0 /0 E E ki Ps (t)Pr(s) or o

k=1 j=1

Hence HRk’HfI?(EB(H)) < HAHfI?(’Jl‘?,B(H))' A similar argument shows that HCJ'HI??(T,B(H))

< ”A”Eﬂ(l‘? B(H)) and it is left to the reader. O

Definition 4.3. Let A = (T;) C B(H). Define Ba: P,(T, H) x Po(T,H) — C by

(hx, h )—>/27r 2W\7A (s,t)(hx(s) ® h (t))ﬁﬁ
xy Ity 0 0 N,M\5, X y o0 271'7
_ M
where hyx = .0, zjp; and hy = 3 47, yppy for xj,yx € H.

We now give the characterization of bounded operators in B(¢*(H)) in terms of bilinear

maps.
Proposition 4.4. If A = (Ty;) C B(H) then
(4.1) (A(x),y)) = Ba(hx, hy), %,y € coo(H).

In particular, A € B({*(H)) if and only if Ba extends to a bounded bilinear map on
HE(T,H) x H3(T, H). Moreover |A|| = ||Ball.

Proof. To show (4.1)) we observe that for hyx = Zévzl xjp; and hy = Zkle Yrpr we have
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2m 2w
— [ TAxam bl 9 1y 1)
0 Jo
The equality of norms follows trivially. O

From Proposition [£.4] one can produce some sufficient conditions for A to belong to
B((*(H)).
Corollary 4.5. If A € f[2(T2,B(H)) U 2(N2, B(H)) then A € B({2(H)) and |A] <
min{ || Al g2 p2 g5y 1ALz vz, ey }-
Proof. Assume first A € (2(N?, B(H)). Then
(A, Y < DD 1Tl e
k=1 j=1

and therefore, using Cauchy-Schwarz’s inequality in £2(N?),

[(A), YD < 1Az o) 15115k D ez v2)
= | Alleznz ey Iy [l
Assume now A € H2(T2, B(H)) and apply Cauchy-Schwarz in L2(T2)

dsﬂ

2w 21
/ T AN (s, ) (hx(s) © hy (1)) 55—
0 0

< ANl mzer2 sy |l 2 oo, ey oy 2 or ) -
Now the result follows from Proposition O

Actually a sufficient condition better than A € ¢2(N? B(H)) is given in the following

result.
Proposition 4.6. Let A = (Ty;) C B(H) such that C; for allj € N or R} € (25(N, B(H))
for all k € N and satisfy

min{[|(C;)l 2,2, . v Rl 2v ez vy } = M < 0.

Then A € B(¢2(H)) and ||A]| < M.
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Proof. Let x,y € (?(H), we have

[(AG YN <D D Nyl

N
ﬂ(JWM
i\ Ty | 19

k=1 j=1
o - AY2 o 1/2
2
A ()] ) (X Pl ?
j=1k=1 J k=1 j=1
. 1/2
< xllezcny Iy ey | D ||CJ‘H?§OT(N,B(H))
j=1
Similar argument works with R, which completes the proof. O

Let us now present some necessary conditions for A € B(¢?(H)). Since (A (ze;), yey)
= (Ty;(x),y), we have that if A € B((*(H)) then A € (*°(N? B(H)) and supy, ; || Tj;]| <
[N[E

Lemma 4.7. Let A = (Ty;) € B((?(H)). Then (Cj)j, (Ri)r, (C5)j, (R} )k
€ (2N, o (N, B(H))).

Proof. Since for each y € (2(H), x,y € H and k,j € N we have

(A(zer), y) = (Ri(2),y)

and
(A(x), ye;) = (x,C;(y)),

we clearly have

IRz, sy = swp sup |(A(wer) ¥)| < IA].
el =1 Iyl 2y =1

A similar argument allows to obtain ||Cj”Z§OT(N,B(H)) < [|A]l. Now, since ||Tj;[| = |73,
applying the fact that rows in A* correspond with the adjoint operators in the columns

in A we obtain the other cases. O

Let us give another necessary condition for boundedness to be used later on.

Proposition 4.8. Let A = (Ty;) € B((*(H)). Then

o0 [e.9] o0
D> T | < AP Y Nl
j=1

k=1 j=1
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Proof. Let x € (?(H) and assume that P |zjI> = 1. Denote by Fx: [0,27] —
(2(H) the continuous function given by Fx(s) = (zjp;(s)). Trivially, we have |x| =

| Fxllc(me2(ry)- Then

oo 00 00 27 || oo ds
S It =3 [ Tl 5
k=1 j=1 =170 ||j=1

2r o0 00 2

4 ds
- [ Y S B o) o

0 4 m

k=1||j=1

27 5 dS
— [ IAEE)IP

0

27
ds

< A% F 22 — ||A%
<IAPR [T IAIR 5 = 1Al

This concludes the result. O

From Proposition we can get an extension of Schur theorem to matrices whose

entries are operators in B(H).

Theorem 4.9. Let A = (Ty;) and B = (Sk;). If A,B € B({*(H)) then AxB € B((*(H)).
Moreover
A+ Bllgezmy) < [[AllBe2) Bl e my)

Proof. Tt suffices to show that if x,y € coo(H) then
(4.2) [(A «B(x),y)| < [[AIBIx[ly]l-

Notice that

|<<A*B(X)7Y>>| = Z <ZTI€]SIC3 :17] k>
k=

I
WE
Mg
ér°
QH
E’ﬂ
s

k=
e lNe’e)

Z Z 1T () 1S5 (5|
k=1 j=1

o = V2, o 1/2
SO T ww)lI? S 1Sk
k=1 j=1 k=1 j=1

Using the estimate above and applying Proposition to B and A*, we obtain (4.2)
immediately since ||A|| = ||A*||. The proof is then complete. O
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Given S € Nx N and A = (T};), we write PsA = (Ty;xs), that is the matrix with
entries Ty; if (k,j) € S and 0 otherwise. In particular, matrices with a single row, column
or diagonal correspond to S = {k} xN, S =Nx{j} and D; = {(k,k+1): k € N} forl € Z
respectively. Also, the case of finite or upper (or lower) triangular matrices coincides with
PsA for S =[1,N|x[1,M]={(k,j): 1<kE<N,1<j<M}orS=A={(k,j):j >k}
(or S = {(k,j) : 7 < k}) respectively.

It is well known that the mapping A — PsA is not continuous in B(H) for all sets S
(for instance, the reader is referred to [10, Chapter 2, Theorem 2.19] to see that S = A
the triangle projection is unbounded) but there are cases where this holds true. Clearly
we have that A € B(¢*(H)) if and only if || A|| = supy a/ | P v, Al < oo. This easily

follows noticing that

(P vx 1,00 A(x), y) = (A(Pyx), Puy)),

where Pyx stands for the projection on the N-first coordinates of x.

In general it is rather difficult to compute the norm of the matrix A. Let us consider

some trivial cases.
Corollary 4.10. Let A = (T};) C B(H). Then
(1) [PuxgAll = 1Cillez, . vBey) for each j € N.
(i) [[PrryxnAll = [IRellez, 5 for each k € N.
(ili) || Pp,All = supy, [|Tkk+1 for each | € Z (where Ty, j+ = 0 whenever k41 <0).

Proof. (i) and (ii) follow trivially from Lemma
To see (iii), note that (PDZA(X))I@ = (Tk,k—l—lxk—&-l)k- Hence ||PDZA(X)H <
(supg [| Tk k+l1) ||| Since the other inequality always holds, the proof is complete. O

5. Toeplitz multipliers on operator-valued matrices

In this section we shall achieve the operator-valued analogues to the Toeplitz and Bennet

theorems presented in the introduction.

Theorem 5.1. Let A = (Ty;) € T. Then A € B({*(H)) if and only if there exists
p e V(T,B(H)) such that Ty; = [i(j — k) for all k,j € N. Moreover, ||A| = |1t oo

Proof. Assume that p € V(T,B(H)) and Tj; = u(j — k) for all k,j € N. Then, for
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X,y € coo(H), we have

N M N
> (Thj(@s),ye) = Y > (Tu(@ieon) (25), ve)

M
(A(x),y) = Z
k=1 j=1 k=1 j=1
M N M N
=D V(P @) = U | DD P © Bk
k=1 j=1 k=1 j=1
N M
j=1 k=1

Therefore

2m
(AG < 1z | (=0 © (=D lma 57

27 dt
= 0o hx (=) |||y (=1)|| ==
gl /O 1P (=) 7oy (=) 5

<t ("t i)m ([ im0 gfr)m

< MlulloolIxllez ey Iy ll 2 (1)

Hence, A € B(/?(H)) and ||A|| < ||i/|co-
Conversely, let us assume that A € B(¢(*(H)) and Ty; = T for a given sequence
T = (T},)nez of operators in B(H). We define

N M N
T ( Z Oénwn) = apT11 + Z a_pThi11 + Z anT1ng1-

n=—M n=1 n=1

We are going to show that T € L(LY(T),B(H)). Since L'(T) = span{epy : k € Z}'l I

suffices to show that
27 N
<lal [ %
0 |2

f(2)

Let x,y € H and notice that

<T< Z oencpn) (:U),y> = Z anBn(z,y),
n=—M

n=—M

dt

(5'1) an@n(w %

where 8,(x,y) = (Tn(x),y). Now taking into account that A,, = ((Ty;(x),y)) is a
Toeplitz matrix and defines a bounded operator A, € B(¢%) with [|A, | < [|A|[lz|l]|yl
we obtain, due to Theorem that

Yy = Z/Bn(xvy)@n € L>(T)

neL
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with [ty | oo(ry < A l[l2]lly]l. Finally, we have

N 2 N
‘<T( ZMans0n> (m),y>| = /0 < > ancpn(t)> 0) ;i;

n=—M

N

Z antpn(t)

n=—M

< Al {yll-

LY(T)

This shows ({5.1)) which gives ||T'|| L1 (1) pm) < |A]|. Finally, from the embedding C(T) —
LY(T) we have that there exists u € V°°(T,B(H)) such that T, = T and ||ullec < ||A].

The proof is then complete. O

To prove the analogue of Bennet’t theorem on Schur multipliers we shall need the

following lemmas.

Lemma 5.2. Let A = (T};) € M;((*(H)) UM, ((3(H)) and xo,y0 € H with ||xo| =
llyol| = 1. Denote by Ay o = (ki) the matriz with entries

Y = (Tkj(20), y0), k,j €N
Then Aqgye € M(C?) and || Agyyollpezy < min{ | Al a2y AN M, 20y }-
Proof. Let zp € H and ||z0|| = 1 and consider the bounded operators 7, : ¢*(H) — % and
iyt 02 — (*(H) given by
a0 (7)) = ({255 20))j5 iz (k) = (an20)-

Now, given B = (8;) € B(¢*) with ||B|| = 1, we define B = i, B 7.

Hence B € B(¢*(H)). Moreover |B|| = || B|| because ||i., || = |75 || = 1 and B((c;))20 =
B((ajz0)) for any (o) € £2.

Let us write B = (Sy;) and observe that Si; = Bka?é/zo. Indeed,

(Skj (), y) = (B(xej), yer) = (({x; 20) Br;jz0)r: yer) = Brj(x, 20) (20, y)-

Recall that T(z®y) = @ T(y) and (z @ y)T = T*z @y for any T € B(H) and

xz,y € H. In particular we obtain

((TkjSkj)(w0),y0) = Brj{Tk;(20), yo)(To, z0)

and
((SkjThj) (o), yo) = Brj{Tkj(wo), 20) (20, Yo)-
Therefore, choosing zg = zg and C = A x B one has Cy, 4, = Azy,y * B, and using that

|Cao.40 |l < ||CJ| we obtain

| Azo o * Bllgezy < [|A *Bllgezmy) < 1Al a2
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Similarly, choosing zg = 39 and C = B x A one obtains

1B * AwoyollBezy < 1Al A, 21y -
This completes the proof. O

Lemma 5.3. Let p € M(T,B(H)), A = (Ty;) € T with Tj = [i(j — k) for k,j € N,
B = (S;) C B(H) and x,y € coo(H). Then

(A B3) = ([ [ Brarts b= o @y 00 ).

Proof. Let x,y € coo(H), say hx = Z;Vﬂ zjp; and hy = ch\/lzl yrpr- Recall that z; =
2 2
o hx(s)ei(s) &£ and yi, = [ hy (t)ex(t) &£, Then

<<A * B( ):¥)

= ZZ k) Sk (2;5), yk)
k=1 j=1
0 <Z A — k)Sij () ¢k<t>,hy<t>>%
_ ]:1
dt
(ngsk] 33] Spk ) h ()>27T

s ©i(s) ds dt
:/0 ; < Z u(l) Z Skiei(s)er(t)(hx(s)) ’hy(t)>27127r
l

j—k=l

TS ©0:(s) ds dt
:/0 /0 Z T u(l) Z Skiei(8)er(t) | (hx(s)) ® hy(t) o
= k=l

o S
/ ( Z Skj%(&f)s%(t)) (hx(s)) ® hy(t) irg;)

j—k=l

( SkpsS)ent >) (x(5)) @ hy (1 ;j;) w)
j—k=l

N
3 St k) (hx<s>>®hy<t>§j§fr)

0 ([ Bt ==l o0 525 ).

The proof is complete. O

\
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Theorem 5.4. If p € M(T,B(H)) and A = (T};) € T with T; = i(j — k) for k,j € N
then A € M(F2(H)) N M,.(¢*(H)) and

max{ || Al| pg, 2 (m))s 1A A, 2y b < -
= |u*| then it suffices to show the

Proof. Since ||Al[p,e2(mry) = A | my 2y and |l
case of left Schur multipliers. Let x,y € coo(H) and B = (Si;) C B(H) such that

B € B(f?(H)). Define

2w p2m dt ds
= [ Bt — - )l @y 1) 5

Hence we can rewrite, since (A\z) @ y =z ® Ay,

= Z Z Ski(zjpj(u)) @ yrpr(u).

k=1j=1

In particular,

2y 1/2
|G (u ||H®H<Z ZSky 25 (W) || lyrer(u Z > Skjwip(w) |l
k=1||j=1 =1]|j=1
< B[/ llyll-

From Lemma we have

(A B,V < Wullowrnmy 521G aza = By

This finishes the proof. O
Lemma 5.5. Let p,v € M(T,B(H)), A = (Ty;) € T with Tyj = i(j — k), B=(Skj) € T
with Sy; = vV(j — k) for k,j € N and x,y € coo(H). Then
M [N
(A*Bx),y) =W | D[ D00 —k)(=)7) | ©yrer | -
k=1 \j=1
Proof. Denote hy = S0 yror and hy = Z;VZI zjpj. Then
M N N M
(AxB(x),y) =YY (i — k(i — = > GO (@he1), yr)
k=1 j=1 I=—M k=1
N M N M
= > Y Ta) ) (@) @u) = Y Til) (Z (Th41) @ yk)
k=1

=—M k=1 I=—M
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N /M
=27 ( Z < V(1) (xp41) ® yk:) @—z)
I

The proof is complete. O

Corollary 5.6. Let A = (Sy;) € T such that Sy; = V(j — k) for some v € (T, B(H)).
For each x,y € coo(H) we denote

F; ,yA Z ’//\j_ 5133 SOJ() ® Y Pr(t).

If A € M, ((*(H)) then

1 Fxy.allpirmsm < 1AM 1l 1Y 1le @

Proof. If A € M,.((*(H)) then Bx A € B(¢{*(H)) for any B € B(¢2(H))NT. In particular
for any B = (T};) with Tj; = 1(j — k) for some p € V(T, B(H)) with ||u| = ||B].
Since LY(T, H®H) C (V>°(T, B(H)))* isometrically, we can use Lemma to obtain

1Exy.allpirazm = sup{lVu(Fxya)l : el =1}
= sup{[(B * A(x),y)| : [|B] = 1}

< Al a2 cplIxllez ey 1y ez
This completes the proof. O

Theorem 5.7. Let A = (Ty;) € T N M, (¢*(H)). Then there exists p € Msor(T, B(H))
such that Ty; = 1i(j — k) for all k, j € N. Moreover, ||ullsor < [[Allm, (2(m))-

Proof. Let A € M,(¢?(H)). For each zg,yo € H, as above we consider the scalar-valued
Toeplitz matrix Ay, o = ((Tk;(x0),yo)). Using Lemma we have that A, ,, € M(£?)
and || Azqyollpme2) < Al ame2(my)- This guarantees, invoking Theorem 1.3 l that there
exists Nugyo € M(T) such that (Ty;(20),Y0) = Tag.po(j — k) for all 4,k € N and [z =

| Ao,yo | M, (£2)-
Now define u(A) € B(H) given by

<,u(A)(x),y> = nm,y(A), x,y € H.

Let us show that 1 € Mgor(T, B(H)) and ||ullsor < [|Al[ s, e2())-
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First we need to show that p(A) € B(H) for any A € B(T). This follows using that

Matpa y(1) = Nizy(1) + By (1), 1€Z

for any A\, € C and z,2’,y € H. This guarantees that Nyt y = Aay + BNy
and hence p(A): H — H is a linear map. The continuity follows from the estimate
M2yl < Al a2y Izl [ly]]. To show that it is a regular measure, select {x, : n € N}
dense in H. Hence, for any S € B(H) we have

S]] = sup{(S(xn), zm) : n,m € N}.

Denoting by 0nm = 7z, ., We have that for each B € B(T), given (n,m) € N x N and

€ > 0, there exists K, ,, C B C Oy, which are compact and open respectively so that

|nn,m|(0n,m \ Kn,m) < E.

Now selecting K = Un,m Ky m and O = (ﬂn m Omm)o we conclude that

(O K) <e

This shows that p € M(T, B(H)).
Using now that

(Tu(0)(),y) = Tp, , (9)

for each ¢ € C(T), where T, , € L(C(T),C) denotes the operator associated to 7, €
M(T), we clearly have that Tj; = fi(j — k) for all j,k € N.
Select yi, = yBy, for some fj € C and ||y|| = 1. From Corollary |5.6{ we obtain that
N

2T dt
/0 ZZ | — k) (2;)Bep;(D)pr(t) | @y o
M
) (Z $k+lﬁk> @(t)
k=1

HRH
/27r
0 li=—m

1/2
< [JAl a2y 1%l ez 7y (ZWH > :

Taking x; = za; such that ||z] = 1, we get

dt
2

N

2
[T e | am@ae || 5

I=—M j—k=l

N M 1/2
< [[A | pm, o2 () Z:|Oéj|2 <Z|5k’2> :
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Using now
N
)= Y| DD Bay | @uls).
I=—M \j—k=l
Now recall that 1z(1)(z) = 115(1) and
N 2 N ds
> (1) ;i (1) Brer(t) :/ < > ﬁx(l)¢1(8)> Y=t =s)5 .
I=—M j—k=l 0 Ni=——m

Therefore, if @ = 3272 ajp; and 8 = 3277, By, belong to L?(T), we have that y(t) =
a(t)B(—t) and
27 dt
(5.2) ; e * Y (=)l o < A ate ez leell 2 cmy 1 Bll 2 -
To show that u, € M(T, H), due to Lemma it suffices to prove that

(5.3) sup ||pa * P?"”LI(T,H) < 0.
0<r<1

Choosing B(t) = a(t) = V1 —r2/|1 — re®| we obtain that y(t) = P.(t) and from ([5.2)
we get (5.3)) and the estimate ||tz ||ar(r, 7y < | Alla, (e2(ar))- This finishes the proof. O
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