DOI: 10.11650/tjm/181110

Schur Product with Operator-valued Entries

Oscar Blasco and Ismael García-Bayona*

Abstract. In this paper we characterize Toeplitz matrices with entries in the space of bounded operators on Hilbert spaces $\mathcal{B}(H)$ which define bounded operators acting on $\ell^2(H)$ and use it to get the description of the right Schur multipliers acting on $\ell^2(H)$ in terms of certain operator-valued measures.

1. Introduction

Throughout the paper X, Y and E are complex Banach spaces and E denotes a separable complex Hilbert space with orthonormal basis (e_n) . We write $\mathcal{L}(X,Y)$ for the space of bounded linear operators, X^* for the dual space and denote $\mathcal{B}(X) = \mathcal{L}(X,X)$. We also use the notations $\ell^2(E)$, $C(\mathbb{T},E)$, $L^p(\mathbb{T},E)$ or $M(\mathbb{T},E)$ for the space of sequences $\mathbf{z}=(z_n)$ in E such that $\|\mathbf{z}\|_{\ell^2(E)}=\left(\sum_{n=1}^{\infty}\|z_n\|^2\right)^{1/2}<\infty$, the space of E-valued continuous functions, the space of strongly measurable functions from the measure space $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$ into E with $\|f\|_{L^p(\mathbb{T},E)}=\left(\int_0^{2\pi}\|f(e^{it})\|^p\frac{dt}{2\pi}\right)^{1/p}<\infty$ for $1\leq p\leq\infty$ (with the usual modification for $p=\infty$) and the space of regular vector-valued measures of bounded variation respectively. As usual, for $E=\mathbb{C}$ we simply write ℓ^2 , $C(\mathbb{T})$, $L^p(\mathbb{T})$ and $M(\mathbb{T})$.

Given two matrices $A = (\alpha_{kj})$ and $B = (\beta_{kj})$ with complex entries, their Schur product is defined by $A * B = (\alpha_{kj}\beta_{kj})$. This operation endows the space $\mathcal{B}(\ell^2)$ with a structure of Banach algebra. A proof of the next result, due to J. Schur, can be found in [2, Proposition 2.1] or [10, Theorem 2.20].

Theorem 1.1. (Schur, [12]) If $A = (\alpha_{kj}) \in \mathcal{B}(\ell^2)$ and $B = (\beta_{kj}) \in \mathcal{B}(\ell^2)$ then $A * B \in \mathcal{B}(\ell^2)$. Moreover $||A * B||_{\mathcal{B}(\ell^2)} \le ||A||_{\mathcal{B}(\ell^2)} ||B||_{\mathcal{B}(\ell^2)}$.

More generally, a matrix $A = (\alpha_{kj})$ is said to be a Schur multiplier, to be denoted by $A \in \mathcal{M}(\ell^2)$, whenever $A * B \in \mathcal{B}(\ell^2)$ for any $B \in \mathcal{B}(\ell^2)$. For the study of Schur multipliers we refer the reader to [2, 10]. Recall that a Toeplitz matrix is a matrix $A = (\alpha_{kj})$ such that there exists a sequence of complex numbers $(\gamma_l)_{l \in \mathbb{Z}}$ with $\alpha_{kj} = \gamma_{j-k}$. The study of

Received December 21, 2017; Accepted November 18, 2018.

Communicated by Xiang Fang.

2010 Mathematics Subject Classification. Primary: 46E40; Secondary: 47A56, 15B05.

Key words and phrases. Schur product, Toeplitz matrix, Schur multiplier, vector-valued measures.

This work was partially supported by MTM2014-53009-P (MINECO Spain) and FPU14/01032 (MCIU Spain).

^{*}Corresponding author.

Toeplitz matrices which define bounded operators or Schur multipliers goes back to work of Toeplitz in [15]. The reader is referred to [1, 2, 10] for recent proofs of the following results concerning Toeplitz matrices.

Theorem 1.2. (Toeplitz, [15]) Let $A = (\alpha_{kj})$ be a Toeplitz matrix. Then $A \in \mathcal{B}(\ell^2)$ if and only if there exists $f \in L^{\infty}(\mathbb{T})$ such that $\alpha_{kj} = \widehat{f}(j-k)$ for all $k, j \in \mathbb{N}$. Moreover $||A|| = ||f||_{L^{\infty}(\mathbb{T})}$.

Theorem 1.3. (Bennet, [2]) Let $A = (\alpha_{kj})$ be a Toeplitz matrix. Then $A \in \mathcal{M}(\ell^2)$ if and only if there exists $\mu \in M(\mathbb{T})$ such that $\alpha_{kj} = \widehat{\mu}(j-k)$ for all $k, j \in \mathbb{N}$. Moreover $||A|| = ||\mu||_{M(\mathbb{T})}$.

It is known the recent interest for operator-valued functions (see [9]) and for the matricial analysis (see [10]) concerning their uses in different problems in Analysis. In this paper, we would like to formulate the analogues of the theorems above in the context of matrices $\mathbf{A} = (T_{kj})$ with entries $T_{kj} \in \mathcal{B}(H)$. For such a purpose, we are led to consider operator-valued measures. We shall make use of several notions and spaces from the theory of vector-valued measures and the reader is referred to classical books [6,7] or to [3] for some new results in connection with Fourier analysis.

In the sequel we write $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle$ for the scalar products in H and $\ell^2(H)$ respectively, where $\langle \langle \mathbf{x}, \mathbf{y} \rangle \rangle = \sum_{j=1}^{\infty} \langle x_j, y_j \rangle$ and we use the notation $x\mathbf{e}_j = (0, \dots, 0, x, 0, \dots)$ for the element in $\ell^2(H)$ in which $x \in H$ is placed in the j-coordinate for $j \in \mathbb{N}$. As usual, $c_{00}(H) = \operatorname{span}\{x\mathbf{e}_j : x \in H, j \in \mathbb{N}\}.$

Definition 1.4. Given a matrix $\mathbf{A} = (T_{kj})$ with entries $T_{kj} \in \mathcal{B}(H)$ and $\mathbf{x} \in c_{00}(H)$ we write $\mathbf{A}(\mathbf{x})$ for the sequence $\left(\sum_{j=1}^{\infty} T_{kj}(x_j)\right)_k$. We say that $\mathbf{A} \in \mathcal{B}(\ell^2(H))$ if the map $\mathbf{x} \to \mathbf{A}(\mathbf{x})$ extends to a bounded linear operator in $\ell^2(H)$, that is

$$\left(\sum_{k=1}^{\infty} \left\| \sum_{j=1}^{\infty} T_{kj}(x_j) \right\|^2 \right)^{1/2} \le C \left(\sum_{j=1}^{\infty} \|x_j\|^2 \right)^{1/2}.$$

We shall write

$$\|\mathbf{A}\|_{\mathcal{B}(\ell^2(H))} = \inf\{C \ge 0 : \|\mathbf{A}\mathbf{x}\|_{\ell^2(H)} \le C\|\mathbf{x}\|_{\ell^2(H)}\}.$$

Definition 1.5. Given two matrices $\mathbf{A} = (T_{kj})$ and $\mathbf{B} = (S_{kj})$ with entries $T_{kj}, S_{kj} \in \mathcal{B}(H)$ we define the Schur product $\mathbf{A} * \mathbf{B} = (T_{kj}S_{kj})$ where $T_{kj}S_{kj}$ stands for the composition of the operators T_{kj} and S_{kj} .

Contrary to the scalar-valued case this product is not commutative.

Definition 1.6. Given a matrix $\mathbf{A} = (T_{kj})$, we say that \mathbf{A} is a right Schur multiplier (respectively left Schur multiplier), to be denoted by $\mathbf{A} \in \mathcal{M}_r(\ell^2(H))$ (respectively $\mathbf{A} \in \mathcal{M}_l(\ell^2(H))$), whenever $\mathbf{B} * \mathbf{A} \in \mathcal{B}(\ell^2(H))$ (respectively $\mathbf{A} * \mathbf{B} \in \mathcal{B}(\ell^2(H))$) for any $\mathbf{B} \in \mathcal{B}(\ell^2(H))$). We shall write

$$\|\mathbf{A}\|_{\mathcal{M}_r(\ell^2(H))} = \inf\{C \ge 0 : \|\mathbf{B} * \mathbf{A}\|_{\mathcal{B}(\ell^2(H))} \le C \|\mathbf{B}\|_{\mathcal{B}(\ell^2(H))}\}$$

and

$$\|\mathbf{A}\|_{\mathcal{M}_l(\ell^2(H))} = \inf\{C \ge 0 : \|\mathbf{A} * \mathbf{B}\|_{\mathcal{B}(\ell^2(H))} \le C \|\mathbf{B}\|_{\mathcal{B}(\ell^2(H))}\}.$$

Denoting by \mathbf{A}^* the adjoint matrix given by $S_{kj} = T_{jk}^*$ for all $k, j \in \mathbb{N}$, one easily sees that $\mathbf{A} \in \mathcal{B}(\ell^2(H))$ if and only if $\mathbf{A}^* \in \mathcal{B}(\ell^2(H))$ with $\|\mathbf{A}\| = \|\mathbf{A}^*\|$ and also that $\mathbf{A} \in \mathcal{M}_l(\ell^2(H))$ if and only if $\mathbf{A}^* \in \mathcal{M}_r(\ell^2(H))$ and $\|\mathbf{A}\|_{\mathcal{M}_l(\ell^2(H))} = \|\mathbf{A}^*\|_{\mathcal{M}_r(\ell^2(H))}$.

If X and Y are Banach spaces we write $X \widehat{\otimes} Y$ for the projective tensor product. We refer the reader to [6, Chapter 8], [11, Chapter 2] or [4] for all possible results needed in the paper. We recall that $(X \widehat{\otimes} Y)^* = \mathcal{L}(X, Y^*)$ and to avoid misunderstandings, for each $T \in \mathcal{L}(X, Y^*)$, we write $\mathcal{J}T$ when T is seen as an element in $(X \widehat{\otimes} Y)^*$. In other words, we write $\mathcal{J}: \mathcal{L}(X, Y^*) \to (X \widehat{\otimes} Y)^*$ for the isometry given by $\mathcal{J}T(x \otimes y) = T(x)(y)$ for any $T \in \mathcal{L}(X, Y^*)$, $x \in X$ and $y \in Y$. Also, given $x^* \in X^*$ and $y^* \in Y^*$, we write $x^* \otimes y^*$ for the operator in $\mathcal{L}(X, Y^*)$ given by $x^* \otimes y^*(z) = x^*(z)y^*$ for each $z \in X$. In the paper we shall restrict ourselves to the case $\mathcal{L}(X, Y^*) = \mathcal{B}(H)$, that is $X = Y^* = H$. Using the Riesz theorem we identify $Y = Y^* = H$. Hence, for $T, S \in \mathcal{B}(H)$ and $x, y \in H$, we shall use the following formulae

$$\langle T(x), y \rangle = \mathcal{J}T(x \otimes y),$$

$$(x \otimes y)(z) = \langle z, x \rangle y, \quad z \in H,$$

$$T(x \otimes y) = (x \otimes (Ty)), \quad (x \otimes y)T = (T^*x) \otimes y,$$

$$\mathcal{J}(TS)(x \otimes y) = \mathcal{J}T(Sx \otimes y) = \mathcal{J}S(x \otimes T^*y).$$

The paper is divided into four sections. The first section is of a preliminary character and we recall the basic notions on vector-valued sequences and functions to be used in the sequel. Next section contains several results on regular operator-valued measures which are the main ingredients for the remaining proofs in the paper. In Section 4 we are concerned with several necessary and sufficient conditions for a matrix \mathbf{A} to belong to $\mathcal{B}(\ell^2(H))$ and we show that the Schur product endows $\mathcal{B}(\ell^2(H))$ with a Banach algebra structure also in this case. The final section deals with Toeplitz matrices \mathbf{A} with entries in $\mathcal{B}(H)$, that is those matrices for which there exists a sequence $(T_l)_{l\in\mathbb{Z}}\subset\mathcal{B}(H)$ so that $T_{kj}=T_{j-k}$. We shall write \mathcal{T} the family of such Toeplitz matrices and we characterize $\mathcal{T}\cap\mathcal{B}(\ell^2(H))$ as those matrices where $T_{kj}=\widehat{\mu}(j-k)$ for a certain regular operator-valued vector measure

 μ belonging to $V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ (see Definition 3.6 below). Concerning the analogue of Theorem 1.3 we shall show that $M(\mathbb{T}, \mathcal{B}(H)) \subseteq \mathcal{M}_r(\ell^2(H)) \subseteq M_{\mathrm{SOT}}(\mathbb{T}, \mathcal{B}(H))$ where $M(\mathbb{T}, \mathcal{B}(H))$ stands for the space of regular operator-valued measures and $M_{\mathrm{SOT}}(\mathbb{T}, \mathcal{B}(H))$ is defined, using the strong operator topology, as the space of vector measures μ such that $\mu_x \in M(\mathbb{T}, H)$ where $\mu_x(A) = \mu(A)(x)$ for any $x \in H$.

2. Preliminaries on operator-valued sequences and functions

Write $\ell^2_{\text{weak}}(\mathbb{N}, \mathcal{B}(H))$ and $\ell^2_{\text{weak}}(\mathbb{N}^2, \mathcal{B}(H))$ for the space of sequences $\mathbf{T} = (T_n) \subset \mathcal{B}(H)$ and matrices $\mathbf{A} = (T_{kj}) \subset \mathcal{B}(H)$ such that

$$\|\mathbf{T}\|_{\ell_{\text{weak}}^2(\mathbb{N},\mathcal{B}(H))} = \sup_{\|x\|=1,\|y\|=1} \left(\sum_{n=1}^{\infty} |\langle T_n(x), y \rangle|^2\right)^{1/2} < \infty$$

and

$$\|\mathbf{A}\|_{\ell^2_{\text{weak}}(\mathbb{N}^2, \mathcal{B}(H))} = \sup_{\|x\|=1, \|y\|=1} \left(\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} |\langle T_{kj}(x), y \rangle|^2 \right)^{1/2} < \infty.$$

The reader can see that these spaces actually coincide with the ones appearing using notation in [5]. Of course $\ell^2(E) \subseteq \ell^2_{\text{weak}}(E)$. In the case $\mathcal{B}(H)$ we can actually introduce certain spaces between $\ell^2(E)$ and $\ell^2_{\text{weak}}(E)$.

Definition 2.1. Given a sequence $\mathbf{T} = (T_n)$ and a matrix $\mathbf{A} = (T_{kj})$ of operators in $\mathcal{B}(H)$, we write

$$\|\mathbf{T}\|_{\ell_{SOT}^2(\mathbb{N},\mathcal{B}(H))} = \sup_{\|x\|=1} \left(\sum_{n=1}^{\infty} \|T_n(x)\|^2\right)^{1/2}$$

and

$$\|\mathbf{A}\|_{\ell_{\text{SOT}}^2(\mathbb{N}^2,\mathcal{B}(H))} = \sup_{\|x\|=1} \left(\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \|T_{kj}(x)\|^2 \right)^{1/2}.$$

We set $\ell^2_{SOT}(\mathbb{N}, \mathcal{B}(H))$ and $\ell^2_{SOT}(\mathbb{N}^2, \mathcal{B}(H))$ for the spaces of sequences and operators with $\|\mathbf{T}\|_{\ell^2_{SOT}(\mathbb{N}, \mathcal{B}(H))} < \infty$ and $\|\mathbf{A}\|_{\ell^2_{SOT}(\mathbb{N}^2, \mathcal{B}(H))} < \infty$ respectively.

Remark 2.2. It is easy to show that

$$\ell^2(\mathbb{N}^2,\mathcal{B}(H)) \subsetneq \ell^2(\mathbb{N},\ell^2_{\mathrm{SOT}}(\mathbb{N},\mathcal{B}(H)) \subsetneq \ell^2_{\mathrm{SOT}}(\mathbb{N}^2,\mathcal{B}(H)).$$

As usual, we denote $\varphi_k(t) = e^{ikt}$ for $k \in \mathbb{Z}$, and, given a complex Banach space E, we write $\mathcal{P}(\mathbb{T}, E) = \operatorname{span}\{e\varphi_j : j \in \mathbb{Z}, e \in E\}$ for the E-valued trigonometric polynomials, $\mathcal{P}_a(\mathbb{T}, E) = \operatorname{span}\{e\varphi_j : j \in \mathbb{N}, e \in E\}$ for the E-valued analytic polynomials. It is well-known that $\mathcal{P}(\mathbb{T}, E)$ is dense in $C(\mathbb{T}, E)$ and $L^p(\mathbb{T}, E)$ for $1 \leq p < \infty$. Also, we

shall use $H_0^2(\mathbb{T}, E) = \{ f \in L^2(\mathbb{T}, E) : \widehat{f}(k) = 0, k \leq 0 \}$, where $\widehat{f}(k) = \int_0^{2\pi} f(t) \overline{\varphi_k(t)} \frac{dt}{2\pi}$ for $k \in \mathbb{Z}$. Recall that $H_0^2(\mathbb{T}, E)$ coincides with the closure of $\mathcal{P}_a(\mathbb{T}, E)$ with the norm in $L^2(\mathbb{T}, E)$. Similarly $H_0^2(\mathbb{T}^2, E) = \{ f \in L^2(\mathbb{T}^2, E) : \widehat{f}(k, j) = 0, k, j \leq 0 \}$, where $\widehat{f}(k, j) = \int_0^{2\pi} \int_0^{2\pi} f(t, s) \overline{\varphi_k(t) \varphi_j(s)} \frac{dt}{2\pi} \frac{ds}{2\pi}$ for $k, j \in \mathbb{Z}$.

Let us now introduce some new spaces that we shall need later on.

Definition 2.3. Let $\mathbf{T} = (T_n) \subset \mathcal{B}(H)$ and $\mathbf{A} = (T_{kj}) \subset \mathcal{B}(H)$. We say that $\mathbf{T} \in \widetilde{H}^2(\mathbb{T}, \mathcal{B}(H))$ whenever

$$\|\mathbf{T}\|_{\widetilde{H}^{2}(\mathbb{T},\mathcal{B}(H))} = \sup_{N} \left(\int_{0}^{2\pi} \left\| \sum_{j=1}^{N} T_{j} \varphi_{j}(t) \right\|^{2} \frac{dt}{2\pi} \right)^{1/2} < \infty.$$

We say that $\mathbf{A} \in \widetilde{H}^2(\mathbb{T}^2, \mathcal{B}(H))$ whenever

$$\|\mathbf{A}\|_{\widetilde{H}^{2}(\mathbb{T}^{2},\mathcal{B}(H))} = \sup_{N,M} \left(\int_{0}^{2\pi} \int_{0}^{2\pi} \left\| \sum_{j=1}^{N} \sum_{k=1}^{M} T_{kj} \varphi_{j}(t) \varphi_{k}(s) \right\|^{2} \frac{dt}{2\pi} \frac{ds}{2\pi} \right)^{1/2} < \infty.$$

Remark 2.4. $\widetilde{H}^2(\mathbb{T}, \mathcal{B}(H)) \nsubseteq H_0^2(\mathbb{T}, \mathcal{B}(H))$.

Consider $T_j = e_j \otimes e_j$. Then for any $t \in [0, 2\pi)$ and $N \in \mathbb{N}$,

$$\left\| \sum_{j=1}^{N} (\widetilde{e_j \otimes e_j}) \varphi_j(t) \right\|_{\mathcal{B}(H)} = \sup_{\|x\|=1} \left\| \sum_{j=1}^{N} \langle x, e_j \rangle \varphi_j(t) e_j \right\|_{H} = 1.$$

Hence we have $\mathbf{T} = (e_j \otimes e_j)_j \in \widetilde{H}^2(\mathbb{T}, \mathcal{B}(H))$. On the other hand, since $||T_j|| = 1$ for all j, we have $\lim_{j\to\infty} ||T_j|| = 1 \neq 0$, which implies that $\mathbf{T} \notin L^1(\mathbb{T}, \mathcal{B}(H))$ and so $\mathbf{T} \notin H_0^2(\mathbb{T}, \mathcal{B}(H))$, as desired.

Proposition 2.5. (i) $\widetilde{H}^2(\mathbb{T},\mathcal{B}(H)) \subsetneq \ell^2_{SOT}(\mathbb{N},\mathcal{B}(H)) \ and \ \widetilde{H}^2(\mathbb{T}^2,\mathcal{B}(H)) \subsetneq \ell^2_{SOT}(\mathbb{N}^2,\mathcal{B}(H)).$

(ii)
$$\widetilde{H}^2(\mathbb{T}, \mathcal{B}(H)) \not\subseteq \ell^2(\mathbb{N}, \mathcal{B}(H))$$
 and $\ell^2(\mathbb{N}, \mathcal{B}(H)) \not\subseteq \widetilde{H}^2(\mathbb{T}, \mathcal{B}(H))$.

Proof. (i) Both inclusions are immediate from Plancherel's theorem (which holds for Hilbert-valued functions). It suffices to see that there exists $\mathbf{T} \in \ell^2_{\mathrm{SOT}}(\mathbb{N}, \mathcal{B}(H)) \setminus \widetilde{H}^2(\mathbb{T}, \mathcal{B}(H))$ because choosing matrices with a single row we obtain also a counterexample for the other inclusion. Now selecting $T_n = e_n \otimes x \in \mathcal{B}(H)$ for a given $x \in H$ we clearly have $\mathbf{T} = (e_n \otimes x)_n \in \ell^2_{\mathrm{SOT}}(\mathbb{N}, \mathcal{B}(H))$ with $\|\mathbf{T}\|_{\ell^2_{\mathrm{SOT}}(\mathbb{N}, \mathcal{B}(H))} = \|x\|$. However, for any $t \in [0, 2\pi)$ and $N \in \mathbb{N}$,

$$\left\| \sum_{n=1}^{N} (\widetilde{e_n \otimes x}) \varphi_n(t) \right\|_{B(H)} = \left\| \left(\sum_{n=1}^{N} \widetilde{e_n \varphi_n(t)} \right) \otimes x \right\|_{\mathcal{B}(H)} = \|x\| \sqrt{N},$$

showing that $\mathbf{T} \notin \widetilde{H}^2(\mathbb{T}, \mathcal{B}(H))$.

(ii) The example in Remark 2.4 shows that $\widetilde{H}^2(\mathbb{T}, \mathcal{B}(H)) \nsubseteq \ell^2(\mathbb{N}, \mathcal{B}(H))$. Let us now find $\mathbf{T} \in \ell^2(\mathbb{N}, \mathcal{B}(H)) \setminus \widetilde{H}^2(\mathbb{T}, \mathcal{B}(H))$. Consider $H = L^2(\mathbb{T})$ and $\mathbf{T} = (T_j)$ where $T_j \colon L^2(\mathbb{T}) \to L^2(\mathbb{T})$ is given by $T_j(f) = \frac{\varphi_j}{i} f$.

Clearly $\mathbf{T} \in \ell^2(\mathbb{N}, \mathcal{B}(H))$ since $||T_j|| = 1/j$ for all $j \in \mathbb{N}$. On the other hand, for each $t \in [0, 2\pi)$ and $N \in \mathbb{N}$ one has that $\left(\sum_{j=1}^N T_j \varphi_j(t)\right)(f) = \left(\sum_{j=1}^N \frac{\varphi_j(t)}{j} \varphi_j\right) f$ and therefore

$$\left\| \sum_{j=1}^{N} T_{j} \varphi_{j}(t) \right\|_{B(H)} = \left\| \sum_{j=1}^{N} \frac{\varphi_{j}(t)}{j} \varphi_{j} \right\|_{C(\mathbb{T})} = \sum_{j=1}^{N} \frac{1}{j}.$$

This shows that $\mathbf{T} \notin \widetilde{H}^2(\mathbb{T}, \mathcal{B}(H))$.

3. Preliminaries on regular vector measures

We recall some facts for vector measures that can be found in [6,7]. Let us consider the measure space $(\mathbb{T},\mathfrak{B}(\mathbb{T}),m)$ where $\mathfrak{B}(\mathbb{T})$ stands for the Borel sets over \mathbb{T} and m for the Lebesgue measure on \mathbb{T} . Given a vector measure $\mu \colon \mathfrak{B}(\mathbb{T}) \to E$ and $B \in \mathfrak{B}(\mathbb{T})$, we shall denote $|\mu|(B)$ and $|\mu|(B)$ the variation and semi-variation of μ of the set B given by

$$|\mu|(B) = \sup \left\{ \sum_{A \in \pi} \|\mu(A)\|, A \in \mathfrak{B}(\mathbb{T}), \pi \text{ is a finite partition of } B \right\}$$

and

$$\|\mu\|(B) = \sup\{|\langle e^*, \mu \rangle|(B) : e^* \in E^*, \|e^*\| = 1\},$$

where $\langle e^*, \mu \rangle(A) = e^*(\mu(A))$ for all $A \in \mathfrak{B}(\mathbb{T})$. Of course $|\mu|(\cdot)$ becomes a positive measure on $\mathfrak{B}(\mathbb{T})$, while $\|\mu\|(\cdot)$ is only sub-additive in general. We shall denote $|\mu| = |\mu|(\mathbb{T})$ and $\|\mu\| = \|\mu\|(\mathbb{T})$. For dual spaces $E = F^*$ it is easy to see that $\|\mu\| = \sup\{|\langle \mu, f \rangle| : f \in F, \|f\| = 1\}$ where $\langle \mu, f \rangle(A) = \mu(A)(f)$.

In what follows we shall consider regular vector measures, that is to say vector measures $\mu \colon \mathfrak{B}(\mathbb{T}) \to E$ such that for each $\varepsilon > 0$ and $B \in \mathfrak{B}(\mathbb{T})$ there exists a compact set K, an open set O such that $K \subset B \subset O$ with $\|\mu\|(O \setminus K) < \varepsilon$. Let us denote by $\mathfrak{M}(\mathbb{T}, E)$ and $M(\mathbb{T}, E)$ the spaces of regular Borel measures with values in E endowed with the norm given the semi-variation and variation respectively. Of course $M(\mathbb{T}, E) \subsetneq \mathfrak{M}(\mathbb{T}, E)$ when E is infinite dimensional.

It is well known that the space $\mathfrak{M}(\mathbb{T}, E)$ can be identified with the space of weakly compact linear operators $T_{\mu} \colon C(\mathbb{T}) \to E$ and that $||T_{\mu}|| = ||\mu||$ (see [6, Chapter 6]). Hence, for each $\mu \in \mathfrak{M}(\mathbb{T}, E)$ and $k \in \mathbb{Z}$ we can define (see [3]) the k-Fourier coefficient by

$$\widehat{\mu}(k) = T_{\mu}(\varphi_{-k}).$$

Also, the description of measures in $M(\mathbb{T}, E)$ can be done using absolutely summing operators (see [5]) and the variation can be described as the norm in such space (see [6]) but we shall not follow this approach. On the other hand, since we deal with either $E = \mathcal{B}(H)$ or E = H we have at our disposal Singer's theorem (see for instance [8,13,14]), which in the case of dual spaces $E = F^*$ asserts that $M(\mathbb{T}, E) = C(\mathbb{T}, F)^*$. In other words there exists a bounded linear map $\Psi_{\mu} \colon C(\mathbb{T}, F) \to \mathbb{C}$ with $\|\Psi_{\mu}\| = |\mu|$ such that

$$\Psi_{\mu}(y\phi) = T_{\mu}(\phi)(y), \quad \phi \in C(\mathbb{T}), \ y \in F.$$

In particular, for $k \in \mathbb{Z}$ one has $\widehat{\mu}(-k)(y) = \Psi_{\mu}(y\varphi_k)$ for each $y \in F$.

As mentioned above since $M(\mathbb{T}, \mathcal{L}(X, Y^*)) = C(\mathbb{T}, X \widehat{\otimes} Y)^*$, for each $\mu \in M(\mathbb{T}, \mathcal{L}(X, Y^*))$ we can associate two operators T_{μ} and Ψ_{μ} . Of course the connection between them is given by the formula

$$T_{\mu}(\phi)(x)(y) = \Psi_{\mu}((x \otimes y)\phi), \quad \phi \in C(\mathbb{T}), \ x \in X, \ y \in Y.$$

There is still one more possibility to be considered using the strong operator topology, namely $\Phi_{\mu} \colon C(\mathbb{T}, X) \to Y^*$ defined by

$$\Phi_{\mu}(f)(y) = \Psi_{\mu}(f \otimes y), \quad f \in C(\mathbb{T}, X), \ y \in Y,$$

where $f \otimes y(t) = f(t) \otimes y$.

Therefore, given $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{L}(X, Y^*))$, we have three different linear operators defined on the corresponding spaces of polynomials: $T_{\mu} \colon \mathcal{P}(\mathbb{T}) \to \mathcal{L}(X, Y^*)$, $\Psi_{\mu} \colon \mathcal{P}(\mathbb{T}, X \widehat{\otimes} Y) \to \mathbb{C}$ and $\Phi_{\mu} \colon \mathcal{P}(\mathbb{T}, X) \to Y^*$ defined by the formulae

$$T_{\mu}\left(\sum_{j=-M}^{N}\alpha_{j}\varphi_{j}\right) = \sum_{j=-M}^{N}\alpha_{j}\widehat{\mu}(-j), \quad N, M \in \mathbb{N}, \ \alpha_{j} \in \mathbb{C},$$

$$\Psi_{\mu}\left(\sum_{j=-M}^{N}\left(\sum_{n=1}^{n_{j}}x_{jn}\right) \otimes \left(\sum_{m=1}^{m_{j}}y_{jm}\right)\varphi_{j}\right) = \sum_{j=-M}^{N}\left(\sum_{n=1}^{n_{j}}\sum_{m=1}^{m_{j}}\widehat{\mu}(-j)(x_{jn})(y_{jm})\right),$$

$$\Phi_{\mu}\left(\sum_{j=-M}^{N}x_{j}\varphi_{j}\right) = \sum_{j=-M}^{N}\widehat{\mu}(-j)(x_{j}), \quad N, M \in \mathbb{N}, \ x_{j} \in X.$$

When restricting to the case $Y^* = H$ we obtain the following connection between them:

$$\mathcal{J}T_{\mu}(\psi)(x\otimes y) = \Psi_{\mu}((x\otimes y)\psi) = \langle \Phi_{\mu}(x\psi), y \rangle, \quad \psi \in \mathcal{P}(\mathbb{T}), \ x, y \in H.$$

Given $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{L}(X, Y^*))$ and $x \in X$, let us denote by μ_x the Y^* -valued measure given by

$$\mu_x(A) = \mu(A)(x), \quad A \in \mathfrak{B}(\mathbb{T}).$$

It is elementary to see that μ_x is a regular measure because one can associate the weakly compact operator $T_{\mu_x} = \delta_x \circ T_{\mu} \colon C(\mathbb{T}) \to Y^*$ where δ_x stands for the operator $\delta_x \colon \mathcal{L}(X, Y^*) \to Y^*$ given by $\delta_x(T) = T(x)$ for $T \in \mathcal{L}(X, Y^*)$.

If $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H)), k \in \mathbb{Z}$ and $x, y \in H$ then $\mu_x \in \mathfrak{M}(\mathbb{T}, H)$,

$$\langle \mu_x(A), y \rangle = \mathcal{J}\mu(A)(x \otimes y), \quad A \in \mathfrak{B}(\mathbb{T})$$

and

$$\langle \widehat{\mu}(k)(x), y \rangle = \langle \widehat{\mu}_x(k), y \rangle = \mathcal{J}\widehat{\mu}(k)(x \otimes y).$$

Let us introduce a new space of measures appearing in the case $E = \mathcal{B}(H)$.

Definition 3.1. Let $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$. We say that $\mu \in M_{SOT}(\mathbb{T}, \mathcal{B}(H))$ if $\mu_x \in M(\mathbb{T}, H)$ for any $x \in H$. We write

$$\|\mu\|_{SOT} = \sup\{|\mu_x| : x \in H, \|x\| = 1\}.$$

Proposition 3.2. $M(\mathbb{T}, \mathcal{B}(H)) \subseteq M_{SOT}(\mathbb{T}, \mathcal{B}(H)) \subseteq \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$.

Proof. The inclusions between the spaces follow from the inequalities

$$|\langle \mu(A)(x), y \rangle| \le \|\mu(A)(x)\| \|y\| \le \|\mu(A)\| \|x\| \|y\|$$

which leads to

$$|\langle \mu_x, y \rangle| \le |\mu_x| ||y|| \le |\mu| ||x|| ||y||$$

and the corresponding embeddings with norm 1 trivially follow.

Let $H = \ell^2$. We shall find measures $\mu_1 \in M_{\text{SOT}}(\mathbb{T}, \mathcal{B}(H)) \setminus M(\mathbb{T}, \mathcal{B}(H))$ and $\mu_2 \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H)) \setminus M_{\text{SOT}}(\mathbb{T}, \mathcal{B}(H))$. Both can be constructed relying on a similar argument. Let $y_0 \in H$ with $||y_0|| = 1$ and select a Hilbert-valued regular measure ν with $|\nu| = \infty$ (for instance take a Pettis integrable, but not Bochner integrable function $f \colon \mathbb{T} \to H$ given by $t \to (f_n(t))_n$ and $\nu(A) = \left(\int_A f_n(t) \frac{dt}{2\pi}\right)_n$ for $A \in \mathfrak{B}(\mathbb{T})$). Denote $T_{\nu} \colon C(\mathbb{T}) \to H$ the corresponding bounded (and hence weakly compact) operator associated to ν with $||T_{\nu}|| = ||\nu||$.

Define

$$\mu_1(A)(x) = \langle x, \nu(A) \rangle y_0, \quad A \in \mathfrak{B}(\mathbb{T})$$

and

$$\mu_2(A)(x) = \langle x, y_0 \rangle \nu(A), \quad A \in \mathfrak{B}(\mathbb{T}).$$

In other words, if $J_y: H \to \mathcal{B}(H)$ and $I_y: H \to \mathcal{B}(H)$ stand for the operators

$$J_y(x)(z) = \langle z, x \rangle y, \quad I_y(x)(z) = \langle x, y \rangle z, \quad x, y, z \in H,$$

then we have that $T_{\mu_1} = J_{y_0}T_{\nu}$ and $T_{\mu_2} = I_{y_0}T_{\nu}$ are weakly compact. Hence $\mu_1, \mu_2 \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$.

Note that $|(\mu_1)_x| = |\langle x, \nu \rangle|$ and $|(\mu_2)_x| = |\langle x, y_0 \rangle| |\nu|$, $x \in H$. Hence

$$\|\mu_1\|_{SOT} = \|\nu\|, \quad \|\mu_2\|_{SOT} = |\nu|.$$

Also notice that $\|\mu_1(A)\|_{\mathcal{B}(H)} = \|\nu(A)\|_H$, and therefore $|\mu_1| = |\nu|$, which gives the desired results.

Definition 3.3. Let $\mu \colon \mathfrak{B}(\mathbb{T}) \to \mathcal{L}(X, Y^*)$ be a vector measure. We define "the adjoint measure" $\mu^* \colon \mathfrak{B}(\mathbb{T}) \to \mathcal{L}(Y, X^*)$ by the formula

$$\mu^*(A)(y)(x) = \mu_x(A)(y), \quad A \in \mathfrak{B}(\mathbb{T}), \ x \in X, \ y \in Y.$$

In the case that $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$ with the identification $Y^* = H$, one clearly has that

$$\langle x, \mu^*(A)(y) \rangle = \langle \mu(A)(x), y \rangle, \quad A \in \mathfrak{B}(\mathbb{T}), \ x, y \in H.$$

Remark 3.4. μ^* belongs to $\mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$ (resp. $M(\mathbb{T}, \mathcal{B}(H))$) if and only if μ belongs to $\mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$ (resp. $M(\mathbb{T}, \mathcal{B}(H))$). Moreover $\|\mu\| = \|\mu^*\|$ (resp. $|\mu| = |\mu^*|$).

The results follow using that $T_{\mu^*}(\phi) = (T_{\mu}(\phi))^*$ for any $\phi \in C(\mathbb{T})$ and $\|\mu(A)\| = \|\mu^*(A)\|$ for any $A \in \mathfrak{B}(\mathbb{T})$.

Let us describe the norm in $M_{SOT}(\mathbb{T}, \mathcal{B}(H))$ using the adjoint measure.

Proposition 3.5. Let $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$. Then $\mu \in M_{SOT}(\mathbb{T}, \mathcal{B}(H))$ if and only if $\Phi_{\mu^*} \in \mathcal{L}(C(\mathbb{T}, H), H)$. Moreover $\|\mu\|_{SOT} = \|\Phi_{\mu^*}\|$.

Proof. By definition, $\mu \in M_{SOT}(\mathbb{T}, \mathcal{B}(H))$ if and only if the operator $S_{\mu}(x) = \mu_x$ is well defined and belongs to $\mathcal{L}(H, M(\mathbb{T}, H))$. Moreover, $\|\mu\|_{SOT} = \|S_{\mu}\|$. The result follows if we show that S_{μ} is the adjoint of Φ_{μ^*} . Recall that, identifying $H = H^*$, we have $\mu^* \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$. Hence $\Phi_{\mu^*} : \mathcal{P}(\mathbb{T}, H) \to H$ is generated by linearity using

$$\Phi_{\mu^*}(x\varphi_k) = \widehat{\mu^*}(-k)(x) = \widehat{\mu}(-k)^*(x), \quad x \in H, \ k \in \mathbb{Z}.$$

Therefore, if $k \in \mathbb{Z}$, $x, y \in H$, since $M(\mathbb{T}, H) = (C(\mathbb{T}, H))^*$, we have

$$S_{\mu}(y)(x\varphi_k) = \Psi_{\mu_y}(x\varphi_k) = \langle \widehat{\mu_y}(-k), x \rangle = \langle \widehat{\mu}(-k)(y), x \rangle = \langle y, \Phi_{\mu^*}(x\varphi_k) \rangle.$$

By linearity we extend to $\langle y, \Phi_{\mu^*}(x\phi) \rangle = S_{\mu}(y)(x\phi)$ for any polynomial ϕ and since $\mathcal{P}(\mathbb{T}, H)$ is dense in $C(\mathbb{T}, H)$ we obtain the result. This completes the proof.

Let us consider the following subspace of regular measures which plays an important role in what follows.

Definition 3.6. Let us write $V^{\infty}(\mathbb{T}, E)$ for the subspace of those measures $\mu \in \mathfrak{M}(\mathbb{T}, E)$ such that there exists C > 0 with

$$\|\mu(A)\| \le Cm(A), \quad A \in \mathfrak{B}(\mathbb{T}).$$

We define

$$\|\mu\|_{\infty} = \sup \left\{ \frac{\|\mu(A)\|}{m(A)} : m(A) > 0 \right\}.$$

It is clear that any $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ also belongs to $M(\mathbb{T}, \mathcal{B}(H))$ and it is absolutely continuous with respect to m.

Let us point out two more possible descriptions of $V^{\infty}(\mathbb{T}, E)$. One option is to look at $V^{\infty}(\mathbb{T}, E) = \mathcal{L}(L^1(\mathbb{T}), E)$ (see [7, page 261]), that is to say that T_{μ} has a bounded extension to $L^1(\mathbb{T})$. Hence a measure $\mu \in \mathfrak{M}(\mathbb{T}, E)$ belongs to $V^{\infty}(\mathbb{T}, E)$ if and only if

$$||T_{\mu}(\psi)|| \le C||\psi||_{L^{1}(\mathbb{T})}, \quad \psi \in C(\mathbb{T}).$$

Moreover $||T_{\mu}||_{L^1(\mathbb{T})\to E} = ||\mu||_{\infty}$.

In the case that $E = F^*$ also one has that $V^{\infty}(\mathbb{T}, E) = L^1(\mathbb{T}, F)^*$, that is the dual of the space of Bochner integrable functions. In this case a measure $\mu \in V^{\infty}(\mathbb{T}, E)$ if and only if Ψ_{μ} has a bounded extension to $L^1(\mathbb{T}, F)^*$, that is

$$\|\Psi_{\mu}(p)\| \le C\|p\|_{L^1(\mathbb{T},F)}, \quad p \in \mathcal{P}(\mathbb{T},F).$$

Moreover $\|\Psi_{\mu}\|_{L^{1}(\mathbb{T},F)^{*}} = \|\mu\|_{\infty}$.

Although measures in $V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ are absolutely continuous with respect to m, the reader should be aware that they might not have a Radon-Nikodym derivative in $L^1(\mathbb{T}, E)$ (see [6, Chapter 3]).

For the sake of completeness we give an example for $E = \mathcal{B}(H)$ of such a situation.

Proposition 3.7. Let $H = \ell^2$ and $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$ such that $T_{\mu} \in \mathcal{L}(C(\mathbb{T}), \mathcal{B}(H))$ is given by

$$T_{\mu}(\phi) = \sum_{n=1}^{\infty} \widehat{\phi}(n) \widehat{e_n \otimes e_n}.$$

Then $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ with $\|\mu\|_{\infty} = 1$,

$$\widehat{\mu}(k) = \begin{cases} \widetilde{e_k \otimes e_k} & \text{if } k \ge 1, \\ 0 & \text{if } k \le 0, \end{cases}$$

but it does not have a Radon-Nikodym derivative in $L^1(\mathbb{T}, \mathcal{B}(H))$.

Proof. Let us show that T_{μ} defines a continuous operator from $L^{1}(\mathbb{T})$ to $\mathcal{B}(H)$ with norm 1. In such a case, using that the inclusion $C(\mathbb{T}) \to L^{1}(\mathbb{T})$ is weakly compact, one automatically has that $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$. For $x = (\alpha_{n}) \in H$ and $y = (\beta_{n}) \in H$ one has

$$|\langle T_{\mu}(\phi)(x), y \rangle| = \left| \sum_{n=1}^{\infty} \widehat{\phi}(n) \alpha_n \beta_n \right| \le \sup_{n \ge 1} |\widehat{\phi}(n)| \|x\| \|y\| \le \|\phi\|_{L^1(\mathbb{T})} \|x\| \|y\|.$$

This gives that $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ and $\|\mu\|_{\infty} \leq 1$. Using that $T_{\mu}(\varphi_j) = e_j \otimes e_j$ and $\|e_j \otimes e_j\|_{\mathcal{B}(H)} = 1$ we get the equality of norms.

The result on Fourier coefficients is obvious. To show that μ does not have a Bochner integrable Radon-Nikodym derivative follows now using that otherwise $\widehat{\mu}(k) = \widehat{f}(k)$ for some $f \in L^1(\mathbb{T}, \mathcal{B}(H))$ which implies that $\|\widehat{f}(k)\| \to 0$ as $k \to \infty$ while $\|\widehat{\mu}(k)\| = 1$ for $k \ge 1$. This completes the proof.

We finish this section with a known characterization of measures in $M(\mathbb{T}, F^*)$ to be used later on, that we include for sake of completeness.

Lemma 3.8. Let $E = F^*$ be a dual Banach space and $\mu \in \mathfrak{M}(\mathbb{T}, E)$. For each 0 < r < 1 we define

(3.1)
$$P_r * \mu(t) = \sum_{k \in \mathbb{Z}} \widehat{\mu}(k) r^{|k|} \varphi_k(t), \quad t \in [0, 2\pi).$$

Then

- (i) $P_r * \mu \in C(\mathbb{T}, E)$ and $||P_r * \mu||_{C(\mathbb{T}, E)} \le ||\mu||_{1-r}^{1+r}$ for any 0 < r < 1.
- (ii) $\mu \in M(\mathbb{T}, E)$ if and only if $\sup_{0 < r < 1} \|P_r * \mu\|_{L^1(\mathbb{T}, E)} < \infty$. Moreover

$$|\mu| = \sup_{0 < r < 1} ||P_r * \mu||_{L^1(\mathbb{T}, E)}.$$

Proof. (i) Observe that

$$\sum_{k \in \mathbb{Z}} |\widehat{\mu}(k)| r^{|k|} \|\varphi_k\|_{C(\mathbb{T})} \le \|T_{\mu}\| \left(1 + 2\sum_{k=1}^{\infty} r^k\right) = \|\mu\| \frac{1+r}{1-r}.$$

This shows that the series in (3.1) is absolutely convergent in $C(\mathbb{T}, E)$ and we obtain (i).

(ii) Assume that $\mu \in M(\mathbb{T}, E)$. In particular $|\mu| \in M(\mathbb{T})$ and

$$\int_0^{2\pi} \|P_r * \mu(t)\| \, \frac{dt}{2\pi} \le \int_0^{2\pi} P_r * |\mu|(t) \, \frac{dt}{2\pi}.$$

Hence, using the scalar-valued result, we have

$$\sup_{0 < r < 1} \|P_r * \mu\|_{L^1(\mathbb{T}, E)} \le \sup_{0 < r < 1} \|P_r * |\mu|\|_{L^1(\mathbb{T})} \le \sup_{0 < r < 1} |\mu|\|P_r\|_{L^1(\mathbb{T})} = |\mu|.$$

Conversely, assume that $\sup_{0 < r < 1} \|P_r * \mu\|_{L^1(\mathbb{T}, E)} < \infty$. Since $L^1(\mathbb{T}, E) \subseteq M(\mathbb{T}, E) = C(\mathbb{T}, F)^*$, from the Banach-Alaoglu theorem one can find a sequence r_n converging to 1 and a measure $\nu \in M(\mathbb{T}, E)$ such that $P_{r_n} * \mu \to \nu$ in the w^* -topology. Selecting now functions in $C(\mathbb{T}, F)$ given by $y\varphi_{-k}$ for all $y \in F$ and $k \in \mathbb{Z}$ one shows that $\widehat{\nu}(k) = \widehat{\mu}(k)$. This gives that $\mu = \nu$ and therefore $\mu \in M(\mathbb{T}, E)$. Finally, notice that

$$|\mu| = \sup\{|\Psi_{\mu}(p)| : p \in \mathcal{P}(\mathbb{T}, F), \|p\|_{C(\mathbb{T}, F)} = 1\}.$$

Given now $p = \sum_{k=-M}^{N} y_k \varphi_k$, one has $P_r * p = \sum_{k=-M}^{N} y_k r^{|k|} \varphi_k$ and

$$\Psi_{\mu}(P_r * p) = \sum_{k=-M}^{N} \widehat{\mu}(k)(y_k)r^{|k|} = \int_{0}^{2\pi} P_r * \mu(t)(p(t)) \frac{dt}{2\pi}.$$

Finally, since $p = \lim_{r \to 1} P_r * p$ is in $C(\mathbb{T}, F)$, we have

$$\begin{split} |\Psi_{\mu}(p)| &= \lim_{r \to 1} |\Psi_{\mu}(P_r * p)| \\ &\leq \sup_{0 < r < 1} \left| \int_0^{2\pi} P_r * \mu(t)(p(t)) \, \frac{dt}{2\pi} \right| \\ &\leq \sup_{0 < r < 1} \|P_r * \mu\|_{L^1(\mathbb{T}, E)} \|p\|_{C(\mathbb{T}, F)}. \end{split}$$

This gives the inequality $|\mu| \leq \sup_{0 < r < 1} \|P_r * \mu\|_{L^1(\mathbb{T}, E)}$ and the proof is complete. \square

4. Some results on matrices of operators

Throughout the rest of the paper, we write $\mathbf{A} = (T_{kj}) \subset \mathcal{B}(H)$, \mathbf{R}_k and \mathbf{C}_j the k-row respectively, that is

$$\mathbf{R}_k = (T_{kj})_{j=1}^{\infty}, \quad \mathbf{C}_j = (T_{kj})_{k=1}^{\infty}$$

and

$$\mathbf{A}_{N,M}(s,t) = \sum_{k=1}^{M} \sum_{j=1}^{N} T_{kj} \overline{\varphi_j(s)} \varphi_k(t), \quad 0 \le t, s < 2\pi, \ N, M \in \mathbb{N}.$$

For each $\mathbf{x} = (x_j) \in \ell^2(H)$ we consider the function $h_{\mathbf{x}}$ given by

$$h_{\mathbf{x}}(t) = \sum_{j=1}^{\infty} x_j \varphi_j(t), \quad t \in [0, 2\pi).$$

Remark 4.1. Observe that $\mathbf{A} \in \widetilde{H}^2(\mathbb{T}^2, \mathcal{B}(H))$ if and only if

$$\sup_{N,M} \|\mathbf{A}_{N,M}\|_{L^2(\mathbb{T}^2,\mathcal{B}(H))} < \infty.$$

Note that $\mathbf{x} \in \ell^2(H)$ if and only if $h_{\mathbf{x}} \in H_0^2(\mathbb{T}, H)$. Moreover

$$\|\mathbf{x}\|_{\ell^2(H)} = \|h_{\mathbf{x}}\|_{H^2(\mathbb{T},H)}.$$

Proposition 4.2. Let $A = (T_{kj}) \subset \mathcal{B}(H)$.

- (i) If $\mathbf{A} \in \ell^2_{SOT}(\mathbb{N}^2, \mathcal{B}(H))$ then $\mathbf{R}_k, \mathbf{C}_j \in \ell^2_{SOT}(\mathbb{N}, \mathcal{B}(H))$ for all $k, j \in \mathbb{N}$.
- (ii) If $\mathbf{A} \in \widetilde{H}^2(\mathbb{T}^2, \mathcal{B}(H))$ then $\mathbf{C}_j, \mathbf{R}_k \in \widetilde{H}^2(\mathbb{T}, \mathcal{B}(H))$ for all $j, k \in \mathbb{N}$.

Proof. (i) follows trivially from the definitions.

(ii) Let $k' \in \mathbb{N}$, $M \in \mathbb{N}$ and $t \in [0, 2\pi)$. For $N \geq k'$ we have

$$\sum_{j=1}^{N} T_{k'j} \varphi_j(t) = \int_0^{2\pi} \left(\sum_{k=1}^{N} \sum_{j=1}^{M} T_{kj} \varphi_j(t) \varphi_k(s) \right) \overline{\varphi_{k'}(s)} \, \frac{ds}{2\pi}.$$

Therefore

$$\int_{0}^{2\pi} \left\| \sum_{j=1}^{N} T_{k'j} \varphi_{j}(t) \right\|^{2} \frac{dt}{2\pi} \leq \int_{0}^{2\pi} \int_{0}^{2\pi} \left\| \sum_{k=1}^{N} \sum_{j=1}^{M} T_{kj} \varphi_{j}(t) \varphi_{k}(s) \right\|^{2} \frac{ds}{2\pi} \frac{dt}{2\pi}.$$

Hence $\|\mathbf{R}_{k'}\|_{\widetilde{H}^2(\mathbb{T},\mathcal{B}(H))} \leq \|\mathbf{A}\|_{\widetilde{H}^2(\mathbb{T}^2,\mathcal{B}(H))}$. A similar argument shows that $\|\mathbf{C}_j\|_{\widetilde{H}^2(\mathbb{T},\mathcal{B}(H))} \leq \|\mathbf{A}\|_{\widetilde{H}^2(\mathbb{T}^2,\mathcal{B}(H))}$ and it is left to the reader.

Definition 4.3. Let $\mathbf{A} = (T_{kj}) \subset \mathcal{B}(H)$. Define $B_{\mathbf{A}} : \mathcal{P}_a(\mathbb{T}, H) \times \mathcal{P}_a(\mathbb{T}, H) \to \mathbb{C}$ by

$$(h_{\mathbf{x}}, h_{\mathbf{y}}) \to \int_0^{2\pi} \int_0^{2\pi} \mathcal{J} \mathbf{A}_{N,M}(s,t) (h_{\mathbf{x}}(s) \otimes h_{\mathbf{y}}(t)) \, \frac{ds}{2\pi} \frac{dt}{2\pi},$$

where $h_{\mathbf{x}} = \sum_{j=1}^{N} x_j \varphi_j$ and $h_{\mathbf{y}} = \sum_{k=1}^{M} y_k \varphi_k$ for $x_j, y_k \in H$.

We now give the characterization of bounded operators in $\mathcal{B}(\ell^2(H))$ in terms of bilinear maps.

Proposition 4.4. If $A = (T_{kj}) \subset \mathcal{B}(H)$ then

(4.1)
$$\langle\!\langle \mathbf{A}(\mathbf{x}), \mathbf{y} \rangle\!\rangle = B_{\mathbf{A}}(h_{\mathbf{x}}, h_{\mathbf{y}}), \quad \mathbf{x}, \mathbf{y} \in c_{00}(H).$$

In particular, $\mathbf{A} \in \mathcal{B}(\ell^2(H))$ if and only if $B_{\mathbf{A}}$ extends to a bounded bilinear map on $H_0^2(\mathbb{T}, H) \times H_0^2(\mathbb{T}, H)$. Moreover $\|\mathbf{A}\| = \|B_{\mathbf{A}}\|$.

Proof. To show (4.1) we observe that for $h_{\mathbf{x}} = \sum_{j=1}^{N} x_j \varphi_j$ and $h_{\mathbf{y}} = \sum_{k=1}^{M} y_k \varphi_k$ we have

$$y_{k} = \int_{0}^{2\pi} h_{\mathbf{y}}(t) \overline{\varphi_{k}(t)} \frac{dt}{2\pi} \text{ and } x_{j} = \int_{0}^{2\pi} h_{\mathbf{x}}(t) \overline{\varphi_{j}(s)} \frac{ds}{2\pi}. \text{ Hence}$$

$$\sum_{k=1}^{M} \left\langle \sum_{j=1}^{N} T_{kj} x_{j}, y_{k} \right\rangle = \int_{0}^{2\pi} \left\langle \sum_{k=1}^{M} \left(\sum_{j=1}^{N} T_{kj} x_{j} \right) \varphi_{k}(t), h_{\mathbf{y}}(t) \right\rangle \frac{dt}{2\pi}$$

$$= \int_{0}^{2\pi} \left\langle \sum_{k=1}^{M} \left(\sum_{j=1}^{N} T_{kj} \varphi_{k}(t) \right) (x_{j}), h_{\mathbf{y}}(t) \right\rangle \frac{dt}{2\pi}$$

$$= \int_{0}^{2\pi} \left\langle \int_{0}^{2\pi} \mathbf{A}_{N,M}(s,t) (h_{\mathbf{x}}(s)) \frac{ds}{2\pi}, h_{\mathbf{y}}(t) \right\rangle \frac{dt}{2\pi}$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} \mathcal{J} \mathbf{A}_{N,M}(s,t) (h_{\mathbf{x}}(s) \otimes h_{\mathbf{y}}(t)) \frac{ds}{2\pi} \frac{dt}{2\pi}.$$

The equality of norms follows trivially.

From Proposition 4.4 one can produce some sufficient conditions for **A** to belong to $\mathcal{B}(\ell^2(H))$.

Corollary 4.5. If $\mathbf{A} \in \widetilde{H}^2(\mathbb{T}^2, \mathcal{B}(H)) \cup \ell^2(\mathbb{N}^2, \mathcal{B}(H))$ then $\mathbf{A} \in \mathcal{B}(\ell^2(H))$ and $\|\mathbf{A}\| \leq \min\{\|\mathbf{A}\|_{\widetilde{H}^2(\mathbb{T}^2, \mathcal{B}(H))}, \|\mathbf{A}\|_{\ell^2(\mathbb{N}^2, \mathcal{B}(H))}\}.$

Proof. Assume first $\mathbf{A} \in \ell^2(\mathbb{N}^2, \mathcal{B}(H))$. Then

$$|\langle\langle \mathbf{A}(\mathbf{x}), \mathbf{y}\rangle\rangle| \le \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} ||T_{kj}|| ||x_j|| ||y_k||$$

and therefore, using Cauchy-Schwarz's inequality in $\ell^2(\mathbb{N}^2)$,

$$\begin{aligned} |\langle\langle \mathbf{A}(\mathbf{x}), \mathbf{y} \rangle\rangle| &\leq \|\mathbf{A}\|_{\ell^2(\mathbb{N}^2, \mathcal{B}(H))} \|(\|x_j\| \|y_k\|)\|_{\ell^2(\mathbb{N}^2)} \\ &= \|\mathbf{A}\|_{\ell^2(\mathbb{N}^2, \mathcal{B}(H))} \|\mathbf{x}\| \|\mathbf{y}\|. \end{aligned}$$

Assume now $\mathbf{A} \in \widetilde{H}^2(\mathbb{T}^2, \mathcal{B}(H))$ and apply Cauchy-Schwarz in $L^2(\mathbb{T}^2)$

$$\left| \int_{0}^{2\pi} \int_{0}^{2\pi} \mathcal{J} \mathbf{A}_{N,M}(s,t) (h_{\mathbf{x}}(s) \otimes h_{\mathbf{y}}(t)) \frac{ds}{2\pi} \frac{dt}{2\pi} \right|$$

$$\leq \|\mathbf{A}_{N,M}\|_{H_{0}^{2}(\mathbb{T}^{2},\mathcal{B}(H))} \|h_{\mathbf{x}}\|_{H_{0}^{2}(\mathbb{T},H)} \|h_{\mathbf{y}}\|_{H_{0}^{2}(\mathbb{T},H)}.$$

Now the result follows from Proposition 4.4.

Actually a sufficient condition better than $\mathbf{A} \in \ell^2(\mathbb{N}^2, \mathcal{B}(H))$ is given in the following result.

Proposition 4.6. Let $\mathbf{A} = (T_{kj}) \subset \mathcal{B}(H)$ such that \mathbf{C}_j for all $j \in \mathbb{N}$ or $\mathbf{R}_k^* \in \ell_{\mathrm{SOT}}^2(\mathbb{N}, \mathcal{B}(H))$ for all $k \in \mathbb{N}$ and satisfy

$$\min\{\|(\mathbf{C}_j)\|_{\ell^2(\mathbb{N},\ell^2_{SOT}(\mathbb{N},\mathcal{B}(H)))}, \|(\mathbf{R}_k^*)\|_{\ell^2(\mathbb{N},\ell^2_{SOT}(\mathbb{N},\mathcal{B}(H)))}\} = M < \infty.$$

Then $\mathbf{A} \in \mathcal{B}(\ell^2(H))$ and $\|\mathbf{A}\| \leq M$.

Proof. Let $\mathbf{x}, \mathbf{y} \in \ell^2(H)$, we have

$$\begin{aligned} |\langle\langle \mathbf{A}(\mathbf{x}), \mathbf{y} \rangle\rangle| &\leq \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \|y_k\| \left\| T_{kj} \left(\frac{x_j}{\|x_j\|} \right) \right\| \|x_j\| \\ &\leq \left(\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \left\| T_{kj} \left(\frac{x_j}{\|x_j\|} \right) \right\|^2 \right)^{1/2} \left(\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \|y_k\|^2 \|x_j\|^2 \right)^{1/2} \\ &\leq \|\mathbf{x}\|_{\ell^2(H)} \|\mathbf{y}\|_{\ell^2(H)} \left(\sum_{j=1}^{\infty} \|\mathbf{C}_j\|_{\ell^2_{SOT}(\mathbb{N}, \mathcal{B}(H))}^2 \right)^{1/2} .\end{aligned}$$

Similar argument works with \mathbf{R}_{k}^{*} , which completes the proof.

Let us now present some necessary conditions for $\mathbf{A} \in \mathcal{B}(\ell^2(H))$. Since $\langle (\mathbf{A}(x\mathbf{e}_j), y\mathbf{e}_k) \rangle = \langle T_{kj}(x), y \rangle$, we have that if $\mathbf{A} \in \mathcal{B}(\ell^2(H))$ then $\mathbf{A} \in \ell^{\infty}(\mathbb{N}^2, \mathcal{B}(H))$ and $\sup_{k,j} ||T_{kj}|| \leq ||\mathbf{A}||$.

Lemma 4.7. Let $\mathbf{A} = (T_{kj}) \in \mathcal{B}(\ell^2(H))$. Then $(\mathbf{C}_j)_j, (\mathbf{R}_k)_k, (\mathbf{C}_j^*)_j, (\mathbf{R}_k^*)_k \in \ell^{\infty}(\mathbb{N}, \ell_{SOT}^2(\mathbb{N}, \mathcal{B}(H)))$.

Proof. Since for each $\mathbf{y} \in \ell^2(H)$, $x, y \in H$ and $k, j \in \mathbb{N}$ we have

$$\langle \langle \mathbf{A}(x\mathbf{e}_k), \mathbf{y} \rangle \rangle = \langle \langle \mathbf{R}_k(x), \mathbf{y} \rangle \rangle$$

and

$$\langle\langle \mathbf{A}(\mathbf{x}), y\mathbf{e}_j\rangle\rangle = \langle\langle \mathbf{x}, \mathbf{C}_j(y)\rangle\rangle,$$

we clearly have

$$\|\mathbf{R}_k\|_{\ell^2_{\mathrm{SOT}}(\mathbb{N},\mathcal{B}(H))} = \sup_{\|x\|=1} \sup_{\|\mathbf{y}\|_{\ell^2(H)}=1} |\langle\langle \mathbf{A}(x\mathbf{e}_k), \mathbf{y} \rangle\rangle| \leq \|\mathbf{A}\|.$$

A similar argument allows to obtain $\|\mathbf{C}_j\|_{\ell^2_{SOT}(\mathbb{N},\mathcal{B}(H))} \leq \|\mathbf{A}\|$. Now, since $\|T_{kj}\| = \|T^*_{kj}\|$, applying the fact that rows in \mathbf{A}^* correspond with the adjoint operators in the columns in \mathbf{A} we obtain the other cases.

Let us give another necessary condition for boundedness to be used later on.

Proposition 4.8. Let $\mathbf{A} = (T_{kj}) \in \mathcal{B}(\ell^2(H))$. Then

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} ||T_{kj}x_j||^2 \le ||\mathbf{A}||^2 \sum_{j=1}^{\infty} ||x_j||^2.$$

Proof. Let $\mathbf{x} \in \ell^2(H)$ and assume that $\sum_{j=1}^{\infty} \|x_j\|^2 = 1$. Denote by $F_{\mathbf{x}} \colon [0, 2\pi] \to \ell^2(H)$ the continuous function given by $F_{\mathbf{x}}(s) = (x_j \varphi_j(s))$. Trivially, we have $\|\mathbf{x}\| = \|F_{\mathbf{x}}\|_{C(\mathbb{T},\ell^2(H))}$. Then

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \|T_{kj}x_j\|^2 = \sum_{k=1}^{\infty} \int_0^{2\pi} \left\| \sum_{j=1}^{\infty} T_{kj}x_j\varphi_j(s) \right\|^2 \frac{ds}{2\pi}$$

$$= \int_0^{2\pi} \sum_{k=1}^{\infty} \left\| \sum_{j=1}^{\infty} T_{kj}x_j\varphi_j(s) \right\|^2 \frac{ds}{2\pi}$$

$$= \int_0^{2\pi} \|\mathbf{A}(F_{\mathbf{x}}(s))\|^2 \frac{ds}{2\pi}$$

$$\leq \|\mathbf{A}\|^2 \int_0^{2\pi} \|F_{\mathbf{x}}(s)\|^2 \frac{ds}{2\pi} = \|\mathbf{A}\|^2.$$

This concludes the result.

From Proposition 4.8 we can get an extension of Schur theorem to matrices whose entries are operators in $\mathcal{B}(H)$.

Theorem 4.9. Let $\mathbf{A} = (T_{kj})$ and $\mathbf{B} = (S_{kj})$. If $\mathbf{A}, \mathbf{B} \in \mathcal{B}(\ell^2(H))$ then $\mathbf{A} * \mathbf{B} \in \mathcal{B}(\ell^2(H))$. Moreover

$$\|\mathbf{A} * \mathbf{B}\|_{\mathcal{B}(\ell^2(H))} \le \|\mathbf{A}\|_{\mathcal{B}(\ell^2(H))} \|\mathbf{B}\|_{\mathcal{B}(\ell^2(H))}.$$

Proof. It suffices to show that if $\mathbf{x}, \mathbf{y} \in c_{00}(H)$ then

$$(4.2) |\langle\langle \mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y} \rangle\rangle| \le ||\mathbf{A}|| ||\mathbf{B}|| ||\mathbf{x}|| ||\mathbf{y}||.$$

Notice that

$$\begin{aligned} |\langle\langle \mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y} \rangle\rangle| &= \left| \sum_{k=1}^{\infty} \left\langle \sum_{j=1}^{\infty} T_{kj} S_{kj}(x_j), y_k \right\rangle \right| \\ &= \left| \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \left\langle S_{kj}(x_j), T_{kj}^*(y_k) \right\rangle \right| \\ &\leq \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \|T_{kj}^*(y_k)\| \|S_{kj}(x_j)\| \\ &\leq \left(\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \|T_{kj}^*(y_k)\|^2 \right)^{1/2} \left(\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \|S_{kj}(x_j)\|^2 \right)^{1/2}. \end{aligned}$$

Using the estimate above and applying Proposition 4.8 to **B** and \mathbf{A}^* , we obtain (4.2) immediately since $\|\mathbf{A}\| = \|\mathbf{A}^*\|$. The proof is then complete.

Given $S \subset \mathbb{N} \times \mathbb{N}$ and $\mathbf{A} = (T_{kj})$, we write $P_S \mathbf{A} = (T_{kj}\chi_S)$, that is the matrix with entries T_{kj} if $(k,j) \in S$ and 0 otherwise. In particular, matrices with a single row, column or diagonal correspond to $S = \{k\} \times \mathbb{N}$, $S = \mathbb{N} \times \{j\}$ and $D_l = \{(k,k+l) : k \in \mathbb{N}\}$ for $l \in \mathbb{Z}$ respectively. Also, the case of finite or upper (or lower) triangular matrices coincides with $P_S \mathbf{A}$ for $S = [1, N] \times [1, M] = \{(k, j) : 1 \le k \le N, 1 \le j \le M\}$ or $S = \Delta = \{(k, j) : j \ge k\}$ (or $S = \{(k, j) : j \le k\}$) respectively.

It is well known that the mapping $\mathbf{A} \to P_S \mathbf{A}$ is not continuous in $\mathcal{B}(H)$ for all sets S (for instance, the reader is referred to [10, Chapter 2, Theorem 2.19] to see that $S = \Delta$ the triangle projection is unbounded) but there are cases where this holds true. Clearly we have that $\mathbf{A} \in \mathcal{B}(\ell^2(H))$ if and only if $\|\mathbf{A}\| = \sup_{N,M} \|P_{[1,N]\times[1,M]}\mathbf{A}\| < \infty$. This easily follows noticing that

$$\langle\langle P_{[1,N]\times[1,M]}\mathbf{A}(\mathbf{x}),\mathbf{y}\rangle\rangle = \langle\langle \mathbf{A}(P_N\mathbf{x}), P_M\mathbf{y}\rangle\rangle,$$

where $P_N \mathbf{x}$ stands for the projection on the N-first coordinates of \mathbf{x} .

In general it is rather difficult to compute the norm of the matrix **A**. Let us consider some trivial cases.

Corollary 4.10. Let $\mathbf{A} = (T_{kj}) \subset \mathcal{B}(H)$. Then

- (i) $||P_{\mathbb{N}\times\{j\}}\mathbf{A}|| = ||\mathbf{C}_j||_{\ell^2_{\mathrm{SOT}}(\mathbb{N},\mathcal{B}(H))}$ for each $j \in \mathbb{N}$.
- (ii) $||P_{\{k\}\times\mathbb{N}}\mathbf{A}|| = ||\mathbf{R}_k||_{\ell^2_{SOT}(\mathbb{N},\mathcal{B}(H))}$ for each $k \in \mathbb{N}$.
- (iii) $||P_{D_l}\mathbf{A}|| = \sup_k ||T_{k,k+l}||$ for each $l \in \mathbb{Z}$ (where $T_{k,k+l} = 0$ whenever $k + l \le 0$).

Proof. (i) and (ii) follow trivially from Lemma 4.7.

To see (iii), note that $(P_{D_l}\mathbf{A}(\mathbf{x}))_k = (T_{k,k+l}x_{k+l})_k$. Hence $||P_{D_l}\mathbf{A}(\mathbf{x})|| \le (\sup_k ||T_{k,k+l}||)||\mathbf{x}||$. Since the other inequality always holds, the proof is complete. \square

5. Toeplitz multipliers on operator-valued matrices

In this section we shall achieve the operator-valued analogues to the Toeplitz and Bennet theorems presented in the introduction.

Theorem 5.1. Let $\mathbf{A} = (T_{kj}) \in \mathcal{T}$. Then $A \in \mathcal{B}(\ell^2(H))$ if and only if there exists $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ such that $T_{kj} = \widehat{\mu}(j-k)$ for all $k, j \in \mathbb{N}$. Moreover, $\|\mathbf{A}\| = \|\mu\|_{\infty}$.

Proof. Assume that $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ and $T_{kj} = \widehat{\mu}(j-k)$ for all $k, j \in \mathbb{N}$. Then, for

 $\mathbf{x}, \mathbf{y} \in c_{00}(H)$, we have

$$\langle\!\langle \mathbf{A}(\mathbf{x}), \mathbf{y} \rangle\!\rangle = \sum_{k=1}^{M} \sum_{j=1}^{N} \langle T_{kj}(x_j), y_k \rangle = \sum_{k=1}^{M} \sum_{j=1}^{N} \langle T_{\mu}(\overline{\varphi_j}\varphi_k)(x_j), y_k \rangle$$
$$= \sum_{k=1}^{M} \sum_{j=1}^{N} \Psi_{\mu}(\overline{\varphi_j}x_j \otimes \overline{\varphi_k}y_k) = \Psi_{\mu} \left(\sum_{k=1}^{M} \sum_{j=1}^{N} \overline{\varphi_j}x_j \otimes \overline{\varphi_k}y_k \right)$$
$$= \Psi_{\mu} \left(\left(\sum_{j=1}^{N} \overline{\varphi_j}x_j \right) \otimes \left(\sum_{k=1}^{M} \overline{\varphi_k}y_k \right) \right).$$

Therefore

$$\begin{split} |\langle \langle \mathbf{A}(\mathbf{x}), \mathbf{y} \rangle \rangle| &\leq \|\Psi_{\mu}\|_{L^{1}(\mathbb{T}, H \widehat{\otimes} H)^{*}} \int_{0}^{2\pi} \|h_{\mathbf{x}}(-t) \otimes h_{\mathbf{y}}(-t))\|_{H \widehat{\otimes} H} \frac{dt}{2\pi} \\ &= \|\mu\|_{\infty} \int_{0}^{2\pi} \|h_{\mathbf{x}}(-t)\| \|h_{\mathbf{y}}(-t)\| \frac{dt}{2\pi} \\ &\leq \|\mu\|_{\infty} \left(\int_{0}^{2\pi} \|h_{\mathbf{x}}(-t)\|^{2} \frac{dt}{2\pi} \right)^{1/2} \left(\int_{0}^{2\pi} \|h_{\mathbf{y}}(-t))\|^{2} \frac{dt}{2\pi} \right)^{1/2} \\ &\leq \|\mu\|_{\infty} \|\mathbf{x}\|_{\ell^{2}(H)} \|\mathbf{y}\|_{\ell^{2}(H)}. \end{split}$$

Hence, $\mathbf{A} \in \mathcal{B}(\ell^2(H))$ and $\|\mathbf{A}\| \leq \|\mu\|_{\infty}$.

Conversely, let us assume that $\mathbf{A} \in \mathcal{B}(\ell^2(H))$ and $T_{kj} = T_{j-k}$ for a given sequence $\mathbf{T} = (T_n)_{n \in \mathbb{Z}}$ of operators in $\mathcal{B}(H)$. We define

$$T\left(\sum_{n=-M}^{N} \alpha_n \varphi_n\right) = \alpha_0 T_{1,1} + \sum_{n=1}^{M} \alpha_{-n} T_{n+1,1} + \sum_{n=1}^{N} \alpha_n T_{1,n+1}.$$

We are going to show that $T \in \mathcal{L}(L^1(\mathbb{T}), \mathcal{B}(H))$. Since $L^1(\mathbb{T}) = \overline{\operatorname{span}\{\varphi_k : k \in \mathbb{Z}\}}^{\|\cdot\|_1}$, it suffices to show that

(5.1)
$$\left\| T \left(\sum_{n=-M}^{N} \alpha_n \varphi_n \right) \right\| \leq \|\mathbf{A}\| \int_0^{2\pi} \left| \sum_{n=-M}^{N} \alpha_n \varphi_n(t) \right| \frac{dt}{2\pi}.$$

Let $x, y \in H$ and notice that

$$\left\langle T\left(\sum_{n=-M}^{N}\alpha_{n}\varphi_{n}\right)(x),y\right\rangle =\sum_{n=-M}^{N}\alpha_{n}\beta_{n}(x,y),$$

where $\beta_n(x,y) = \langle T_n(x), y \rangle$. Now taking into account that $A_{x,y} = (\langle T_{kj}(x), y \rangle)$ is a Toeplitz matrix and defines a bounded operator $A_{x,y} \in \mathcal{B}(\ell^2)$ with $||A_{x,y}|| \leq ||\mathbf{A}|| ||x|| ||y||$ we obtain, due to Theorem 1.2, that

$$\psi_{x,y} = \sum_{n \in \mathbb{Z}} \beta_n(x,y) \varphi_n \in L^{\infty}(\mathbb{T})$$

with $\|\psi_{x,y}\|_{L^{\infty}(\mathbb{T})} \leq \|\mathbf{A}\| \|x\| \|y\|$. Finally, we have

$$\left| \left\langle T \left(\sum_{n=-M}^{N} \alpha_n \varphi_n \right) (x), y \right\rangle \right| = \left| \int_0^{2\pi} \left(\sum_{n=-M}^{N} \alpha_n \varphi_n(t) \right) \overline{\psi_{x,y}(t)} \frac{dt}{2\pi} \right|$$

$$\leq \left\| \sum_{n=-M}^{N} \alpha_n \varphi_n(t) \right\|_{L^1(\mathbb{T})} \|\mathbf{A}\| \|x\| \|y\|.$$

This shows (5.1) which gives $||T||_{L^1(\mathbb{T})\to\mathcal{B}(H)} \leq ||\mathbf{A}||$. Finally, from the embedding $C(\mathbb{T})\to L^1(\mathbb{T})$ we have that there exists $\mu\in V^\infty(\mathbb{T},\mathcal{B}(H))$ such that $T_\mu=T$ and $||\mu||_\infty\leq ||A||$. The proof is then complete.

To prove the analogue of Bennet't theorem on Schur multipliers we shall need the following lemmas.

Lemma 5.2. Let $\mathbf{A} = (T_{kj}) \in \mathcal{M}_l(\ell^2(H)) \cup \mathcal{M}_r(\ell^2(H))$ and $x_0, y_0 \in H$ with $||x_0|| = ||y_0|| = 1$. Denote by $A_{x_0,y_0} = (\gamma_{kj})$ the matrix with entries

$$\gamma_{kj} = \langle T_{kj}(x_0), y_0 \rangle, \quad k, j \in \mathbb{N}.$$

Then $A_{x_0,y_0} \in \mathcal{M}(\ell^2)$ and $||A_{x_0,y_0}||_{\mathcal{M}(\ell^2)} \le \min\{||\mathbf{A}||_{\mathcal{M}_l(\ell^2(H))}, ||\mathbf{A}||_{\mathcal{M}_r(\ell^2(H))}\}.$

Proof. Let $z_0 \in H$ and $||z_0|| = 1$ and consider the bounded operators $\pi_{z_0} : \ell^2(H) \to \ell^2$ and $i_{z_0} : \ell^2 \to \ell^2(H)$ given by

$$\pi_{z_0}((x_j)) = (\langle x_j, z_0 \rangle)_j, \quad i_{z_0}((\alpha_k)) = (\alpha_k z_0)_k.$$

Now, given $B = (\beta_{kj}) \in \mathcal{B}(\ell^2)$ with ||B|| = 1, we define $\mathbf{B} = i_{z_0} B \pi_{z_0}$.

Hence $\mathbf{B} \in \mathcal{B}(\ell^2(H))$. Moreover $\|\mathbf{B}\| = \|B\|$ because $\|i_{z_0}\| = \|\pi_{z_0}\| = 1$ and $B((\alpha_j))z_0 = \mathbf{B}((\alpha_j z_0))$ for any $(\alpha_j) \in \ell^2$.

Let us write $\mathbf{B} = (S_{kj})$ and observe that $S_{kj} = \beta_{kj} \widetilde{z_0} \otimes \widetilde{z_0}$. Indeed,

$$\langle S_{kj}(x), y \rangle = \langle \langle \mathbf{B}(x\mathbf{e}_j), y\mathbf{e}_k \rangle \rangle = \langle \langle (\langle x, z_0 \rangle \beta_{kj} z_0)_k, y\mathbf{e}_k \rangle \rangle = \beta_{kj} \langle x, z_0 \rangle \langle z_0, y \rangle.$$

Recall that $T(\widetilde{x \otimes y}) = \widetilde{x \otimes T(y)}$ and $(\widetilde{x \otimes y})T = \widetilde{T^*x \otimes y}$ for any $T \in \mathcal{B}(H)$ and $x, y \in H$. In particular we obtain

$$\langle (T_{kj}S_{kj})(x_0), y_0 \rangle = \beta_{kj} \langle T_{kj}(z_0), y_0 \rangle \langle x_0, z_0 \rangle$$

and

$$\langle (S_{kj}T_{kj})(x_0), y_0 \rangle = \beta_{kj} \langle T_{kj}(x_0), z_0 \rangle \langle z_0, y_0 \rangle.$$

Therefore, choosing $z_0 = x_0$ and $\mathbf{C} = \mathbf{A} * \mathbf{B}$ one has $C_{x_0,y_0} = A_{x_0,y_0} * B$, and using that $\|C_{x_0,y_0}\| \leq \|\mathbf{C}\|$ we obtain

$$||A_{x_0,y_0} * B||_{\mathcal{B}(\ell^2)} \le ||\mathbf{A} * \mathbf{B}||_{\mathcal{B}(\ell^2(H))} \le ||\mathbf{A}||_{\mathcal{M}_l(\ell^2(H))}.$$

Similarly, choosing $z_0 = y_0$ and $\mathbf{C} = \mathbf{B} * \mathbf{A}$ one obtains

$$||B * A_{x_0,y_0}||_{\mathcal{B}(\ell^2)} \le ||\mathbf{A}||_{\mathcal{M}_r(\ell^2(H))}.$$

This completes the proof.

Lemma 5.3. Let $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$, $\mathbf{A} = (T_{kj}) \in \mathcal{T}$ with $T_{kj} = \widehat{\mu}(j-k)$ for $k, j \in \mathbb{N}$, $\mathbf{B} = (S_{kj}) \subset \mathcal{B}(H)$ and $\mathbf{x}, \mathbf{y} \in c_{00}(H)$. Then

$$\langle\!\langle \mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y} \rangle\!\rangle = \Psi_{\mu} \left(\int_{0}^{2\pi} \int_{0}^{2\pi} \mathbf{B}_{N,M}(s - \cdot, t - \cdot) (h_{\mathbf{x}}(s)) \otimes h_{\mathbf{y}}(t) \frac{ds}{2\pi} \frac{dt}{2\pi} \right).$$

Proof. Let $\mathbf{x}, \mathbf{y} \in c_{00}(H)$, say $h_{\mathbf{x}} = \sum_{j=1}^{N} x_j \varphi_j$ and $h_{\mathbf{y}} = \sum_{k=1}^{M} y_k \varphi_k$. Recall that $x_j = \int_0^{2\pi} h_{\mathbf{x}}(s) \overline{\varphi_j(s)} \, \frac{ds}{2\pi}$ and $y_k = \int_0^{2\pi} h_{\mathbf{y}}(t) \overline{\varphi_k(t)} \, \frac{dt}{2\pi}$. Then

$$\begin{split} &\langle\langle\mathbf{A}*\mathbf{B}(\mathbf{x}),\mathbf{y}\rangle\rangle \\ &= \sum_{k=1}^{M} \sum_{j=1}^{N} \langle\widehat{\mu}(j-k)S_{kj}(x_{j}),y_{k}\rangle \\ &= \int_{0}^{2\pi} \left\langle \sum_{k=1}^{M} \left(\sum_{j=1}^{N} \widehat{\mu}(j-k)S_{kj}(x_{j})\right) \varphi_{k}(t), h_{\mathbf{y}}(t) \right\rangle \frac{dt}{2\pi} \\ &= \int_{0}^{2\pi} \left\langle \sum_{l=-M}^{N} \widehat{\mu}(l) \left(\sum_{j-k=l} S_{kj}(x_{j})\varphi_{k}(t)\right), h_{\mathbf{y}}(t) \right\rangle \frac{dt}{2\pi} \\ &= \int_{0}^{2\pi} \int_{0}^{2\pi} \left\langle \sum_{l=-M}^{N} \widehat{\mu}(l) \left(\sum_{j-k=l} S_{kj}\overline{\varphi_{j}(s)}\varphi_{k}(t)(h_{\mathbf{x}}(s))\right), h_{\mathbf{y}}(t) \right\rangle \frac{ds}{2\pi} \frac{dt}{2\pi} \\ &= \int_{0}^{2\pi} \int_{0}^{2\pi} \sum_{l=-M}^{N} \mathcal{J}\mu(l) \left(\left(\sum_{j-k=l} S_{kj}\overline{\varphi_{j}(s)}\varphi_{k}(t)\right) (h_{\mathbf{x}}(s)) \otimes h_{\mathbf{y}}(t)\right) \frac{ds}{2\pi} \frac{dt}{2\pi} \\ &= \sum_{l=-M}^{N} \mathcal{J}\mu(l) \left(\int_{0}^{2\pi} \int_{0}^{2\pi} \left(\sum_{j-k=l} S_{kj}\overline{\varphi_{j}(s)}\varphi_{k}(t)\right) (h_{\mathbf{x}}(s)) \otimes h_{\mathbf{y}}(t) \frac{ds}{2\pi} \frac{dt}{2\pi} \right) \\ &= \Psi_{\mu} \left(\sum_{l=-M}^{N} \left(\int_{0}^{2\pi} \int_{0}^{2\pi} \left(\sum_{j-k=l} S_{kj}\overline{\varphi_{j}(s)}\varphi_{k}(t)\right) (h_{\mathbf{x}}(s)) \otimes h_{\mathbf{y}}(t) \frac{ds}{2\pi} \frac{dt}{2\pi} \right) \\ &= \Psi_{\mu} \left(\int_{0}^{2\pi} \int_{0}^{2\pi} \left(\sum_{k=1}^{M} \sum_{j=l}^{N} S_{kj}\overline{\varphi_{j}(s)}\varphi_{k}(t)\varphi_{j}\varphi_{-k}\right) (h_{\mathbf{x}}(s)) \otimes h_{\mathbf{y}}(t) \frac{ds}{2\pi} \frac{dt}{2\pi} \right) \\ &= \Psi_{\mu} \left(\int_{0}^{2\pi} \int_{0}^{2\pi} \mathbf{B}_{N,M}(s-\cdot,t-\cdot)(h_{\mathbf{x}}(s)) \otimes h_{\mathbf{y}}(t) \frac{dt}{2\pi} \frac{ds}{2\pi} \right). \end{split}$$

The proof is complete.

Theorem 5.4. If $\mu \in M(\mathbb{T}, \mathcal{B}(H))$ and $\mathbf{A} = (T_{kj}) \in \mathcal{T}$ with $T_{kj} = \widehat{\mu}(j-k)$ for $k, j \in \mathbb{N}$ then $\mathbf{A} \in \mathcal{M}_l(\ell^2(H)) \cap \mathcal{M}_r(\ell^2(H))$ and

$$\max\{\|\mathbf{A}\|_{\mathcal{M}_{l}(\ell^{2}(H))}, \|\mathbf{A}\|_{\mathcal{M}_{r}(\ell^{2}(H))}\} \le |\mu|.$$

Proof. Since $\|\mathbf{A}\|_{\mathcal{M}_l(\ell^2(H))} = \|\mathbf{A}^*\|_{\mathcal{M}_l(\ell^2(H))}$ and $|\mu| = |\mu^*|$ then it suffices to show the case of left Schur multipliers. Let $\mathbf{x}, \mathbf{y} \in c_{00}(H)$ and $\mathbf{B} = (S_{kj}) \subset \mathcal{B}(H)$ such that $\mathbf{B} \in \mathcal{B}(\ell^2(H))$. Define

$$G(u) = \int_0^{2\pi} \int_0^{2\pi} \mathbf{B}_{N,M}(s-u,t-u)(h_{\mathbf{x}}(s)) \otimes h_{\mathbf{y}}(t) \frac{dt}{2\pi} \frac{ds}{2\pi}.$$

Hence we can rewrite, since $(\lambda x) \otimes y = x \otimes \overline{\lambda} y$,

$$G(u) = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} S_{kj}(x_j \varphi_j(u)) \otimes y_k \varphi_k(u).$$

In particular,

$$||G(u)||_{H\widehat{\otimes}H} \leq \sum_{k=1}^{\infty} \left\| \sum_{j=1}^{\infty} S_{kj}(x_{j}\varphi_{j}(u)) \right\| ||y_{k}\varphi_{k}(u)|| \leq \left(\sum_{k=1}^{\infty} \left\| \sum_{j=1}^{\infty} S_{kj}(x_{j}\varphi_{j}(u)) \right\|^{2} \right)^{1/2} ||\mathbf{y}|| \leq ||\mathbf{B}|| ||\mathbf{x}|| ||\mathbf{y}||.$$

From Lemma 5.3, we have

$$|\langle \langle \mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y} \rangle \rangle| \le \|\Psi_{\mu}\|_{C(\mathbb{T}, H \widehat{\otimes} H)^*} \sup_{0 \le u \le 2\pi} \|G(u)\|_{H \widehat{\otimes} H} = |\mu| \|\mathbf{B}\| \|\mathbf{x}\| \|\mathbf{y}\|.$$

This finishes the proof.

Lemma 5.5. Let $\mu, \nu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$, $\mathbf{A} = (T_{kj}) \in \mathcal{T}$ with $T_{kj} = \widehat{\mu}(j-k)$, $\mathbf{B} = (S_{kj}) \in \mathcal{T}$ with $S_{kj} = \widehat{\nu}(j-k)$ for $k, j \in \mathbb{N}$ and $\mathbf{x}, \mathbf{y} \in c_{00}(H)$. Then

$$\langle\!\langle \mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y} \rangle\!\rangle = \Psi_{\mu} \left(\sum_{k=1}^{M} \left(\sum_{j=1}^{N} \widehat{\nu}(j-k)(x_{j}) \overline{\varphi_{j}} \right) \otimes y_{k} \varphi_{k} \right).$$

Proof. Denote $h_{\mathbf{x}} = \sum_{k=1}^{M} y_k \varphi_k$ and $h_{\mathbf{y}} = \sum_{j=1}^{N} x_j \varphi_j$. Then

$$\langle \langle \mathbf{A} * \mathbf{B}(\mathbf{x}), \mathbf{y} \rangle \rangle = \sum_{k=1}^{M} \sum_{j=1}^{N} \langle \widehat{\mu}(j-k)\widehat{\nu}(j-k)(x_j), y_k \rangle = \sum_{l=-M}^{N} \sum_{k=1}^{M} \langle \widehat{\mu}(l)\widehat{\nu}(l)(x_{k+l}), y_k \rangle$$
$$= \sum_{l=-M}^{N} \sum_{k=1}^{M} \mathcal{J}\widehat{\mu}(l)(\nu(l)(x_{k+l}) \otimes y_k) = \sum_{l=-M}^{N} \mathcal{J}\widehat{\mu}(l) \left(\sum_{k=1}^{M} \widehat{\nu}(l)(x_{k+l}) \otimes y_k\right)$$

$$= \Psi_{\mu} \left(\sum_{l=-M}^{N} \left(\sum_{k=1}^{M} \widehat{\nu}(l)(x_{k+l}) \otimes y_{k} \right) \varphi_{-l} \right)$$

$$= \Psi_{\mu} \left(\sum_{k=1}^{M} \left(\sum_{j=1}^{N} \widehat{\nu}(j-k)(x_{j}) \overline{\varphi_{j}} \right) \otimes y_{k} \overline{\varphi_{k}} \right).$$

The proof is complete.

Corollary 5.6. Let $\mathbf{A} = (S_{kj}) \in \mathcal{T}$ such that $S_{kj} = \widehat{\nu}(j-k)$ for some $\nu \in \mathfrak{M}(T, \mathcal{B}(H))$. For each $\mathbf{x}, \mathbf{y} \in c_{00}(H)$ we denote

$$F_{\mathbf{x},\mathbf{y},\mathbf{A}}(t) = \sum_{k=1}^{\infty} \left(\sum_{j=1}^{\infty} \widehat{\nu}(j-k)(x_j) \overline{\varphi_j}(t) \right) \otimes y_k \overline{\varphi_k}(t).$$

If $\mathbf{A} \in \mathcal{M}_r(\ell^2(H))$ then

$$\|F_{\mathbf{x},\mathbf{y},\mathbf{A}}\|_{L^1(\mathbb{T},H\widehat{\otimes}H)} \leq \|\mathbf{A}\|_{\mathcal{M}_r(\ell^2(H))} \|\mathbf{x}\|_{\ell^2(H)} \|\mathbf{y}\|_{\ell^2(H)}.$$

Proof. If $\mathbf{A} \in \mathcal{M}_r(\ell^2(H))$ then $\mathbf{B} * \mathbf{A} \in \mathcal{B}(\ell^2(H))$ for any $\mathbf{B} \in \mathcal{B}(\ell^2(H)) \cap \mathcal{T}$. In particular for any $\mathbf{B} = (T_{kj})$ with $T_{kj} = \widehat{\mu}(j-k)$ for some $\mu \in V^{\infty}(\mathbb{T}, \mathcal{B}(H))$ with $\|\mu\|_{\infty} = \|\mathbf{B}\|$. Since $L^1(\mathbb{T}, H \widehat{\otimes} H) \subseteq (V^{\infty}(\mathbb{T}, B(H)))^*$ isometrically, we can use Lemma 5.5 to obtain

$$||F_{\mathbf{x},\mathbf{y},\mathbf{A}}||_{L^{1}(\mathbb{T},H\widehat{\otimes}H)} = \sup\{|\Psi_{\mu}(F_{\mathbf{x},\mathbf{y},\mathbf{A}})| : ||\mu||_{\infty} = 1\}$$
$$= \sup\{|\langle\langle \mathbf{B} * \mathbf{A}(\mathbf{x}), \mathbf{y} \rangle\rangle| : ||\mathbf{B}|| = 1\}$$
$$\leq ||\mathbf{A}||_{\mathcal{M}_{r}(\ell^{2}(H))} ||\mathbf{x}||_{\ell^{2}(H)} ||\mathbf{y}||_{\ell^{2}(H)}.$$

This completes the proof.

Theorem 5.7. Let $\mathbf{A} = (T_{kj}) \in \mathcal{T} \cap \mathcal{M}_r(\ell^2(H))$. Then there exists $\mu \in M_{SOT}(\mathbb{T}, \mathcal{B}(H))$ such that $T_{kj} = \widehat{\mu}(j-k)$ for all $k, j \in \mathbb{N}$. Moreover, $\|\mu\|_{SOT} \leq \|\mathbf{A}\|_{\mathcal{M}_r(\ell^2(H))}$.

Proof. Let $\mathbf{A} \in \mathcal{M}_r(\ell^2(H))$. For each $x_0, y_0 \in H$, as above we consider the scalar-valued Toeplitz matrix $A_{x_0,y_0} = (\langle T_{kj}(x_0), y_0 \rangle)$. Using Lemma 5.2, we have that $A_{x_0,y_0} \in \mathcal{M}(\ell^2)$ and $||A_{x_0,y_0}||_{\mathcal{M}(\ell^2)} \leq ||\mathbf{A}||_{\mathcal{M}(\ell^2(H))}$. This guarantees, invoking Theorem 1.3, that there exists $\eta_{x_0,y_0} \in \mathcal{M}(\mathbb{T})$ such that $\langle T_{kj}(x_0), y_0 \rangle = \widehat{\eta_{x_0,y_0}}(j-k)$ for all $j,k \in \mathbb{N}$ and $|\eta_{x_0,y_0}| = ||A_{x_0,y_0}||_{\mathcal{M}_r(\ell^2)}$.

Now define $\mu(A) \in \mathcal{B}(H)$ given by

$$\langle \mu(A)(x), y \rangle = \eta_{x,y}(A), \quad x, y \in H.$$

Let us show that $\mu \in M_{SOT}(\mathbb{T}, \mathcal{B}(H))$ and $\|\mu\|_{SOT} \leq \|\mathbf{A}\|_{\mathcal{M}_r(\ell^2(H))}$.

First we need to show that $\mu(A) \in \mathcal{B}(H)$ for any $A \in \mathfrak{B}(\mathbb{T})$. This follows using that

$$\widehat{\eta_{\lambda x + \beta x', y}}(l) = \lambda \widehat{\eta_{x, y}}(l) + \beta \widehat{\eta_{x', y}}(l), \quad l \in \mathbb{Z}$$

for any $\lambda, \beta \in \mathbb{C}$ and $x, x', y \in H$. This guarantees that $\eta_{\lambda x + \beta x', y} = \lambda \eta_{x, y} + \beta \eta_{x', y}$ and hence $\mu(A) \colon H \to H$ is a linear map. The continuity follows from the estimate $|\eta_{x,y}| \leq \|\mathbf{A}\|_{\mathcal{M}_r(\ell^2(H))} \|x\| \|y\|$. To show that it is a regular measure, select $\{x_n : n \in \mathbb{N}\}$ dense in H. Hence, for any $S \in \mathcal{B}(H)$ we have

$$||S|| = \sup\{\langle S(x_n), x_m \rangle : n, m \in \mathbb{N}\}.$$

Denoting by $\eta_{n,m} = \eta_{x_n,x_m}$ we have that for each $B \in \mathfrak{B}(\mathbb{T})$, given $(n,m) \in \mathbb{N} \times \mathbb{N}$ and $\varepsilon > 0$, there exists $K_{n,m} \subset B \subset O_{n,m}$ which are compact and open respectively so that

$$|\eta_{n,m}|(O_{n,m}\setminus K_{n,m})<\varepsilon.$$

Now selecting $K = \overline{\bigcup_{n,m} K_{n,m}}$ and $O = (\bigcap_{n,m} O_{n,m})^{\circ}$ we conclude that

$$\|\mu\|(O\setminus K)<\varepsilon.$$

This shows that $\mu \in \mathfrak{M}(\mathbb{T}, \mathcal{B}(H))$.

Using now that

$$\langle T_{\mu}(\phi)(x), y \rangle = T_{\eta_{x,y}}(\phi)$$

for each $\phi \in C(\mathbb{T})$, where $T_{\eta_{x,y}} \in \mathcal{L}(C(\mathbb{T}),\mathbb{C})$ denotes the operator associated to $\eta_{x,y} \in M(\mathbb{T})$, we clearly have that $T_{kj} = \widehat{\mu}(j-k)$ for all $j,k \in \mathbb{N}$.

Select $y_k = y\beta_k$ for some $\beta_k \in \mathbb{C}$ and ||y|| = 1. From Corollary 5.6 we obtain that

$$\int_{0}^{2\pi} \left\| \left(\sum_{k=1}^{M} \sum_{j=1}^{N} \widehat{\mu}(j-k)(x_{j}) \beta_{k} \overline{\varphi}_{j}(t) \varphi_{k}(t) \right) \otimes y \right\|_{H \widehat{\otimes} H} \frac{dt}{2\pi}$$

$$= \int_{0}^{2\pi} \left\| \sum_{l=-M}^{N} \widehat{\mu}(l) \left(\sum_{k=1}^{M} x_{k+l} \beta_{k} \right) \varphi_{-l}(t) \right\| \frac{dt}{2\pi}$$

$$\leq \|\mathbf{A}\|_{\mathcal{M}_{r}(\ell^{2}(H))} \|\mathbf{x}\|_{\ell^{2}(H)} \left(\sum_{k=1}^{M} |\beta_{k}|^{2} \right)^{1/2}.$$

Taking $x_j = x\alpha_j$ such that ||x|| = 1, we get

$$\int_{0}^{2\pi} \left\| \sum_{l=-M}^{N} \widehat{\mu}(l)(x) \left(\sum_{j-k=l} \alpha_{j} \overline{\varphi}_{j}(t) \beta_{k} \varphi_{k}(t) \right) \right\| \frac{dt}{2\pi}$$

$$\leq \|\mathbf{A}\|_{\mathcal{M}_{r}(\ell^{2}(H))} \left(\sum_{j=1}^{N} |\alpha_{j}|^{2} \right)^{1/2} \left(\sum_{k=1}^{M} |\beta_{k}|^{2} \right)^{1/2}.$$

Using now

$$\gamma(s) = \sum_{l=-M}^{N} \left(\sum_{j-k=l} \beta_k \alpha_j \right) \varphi_l(s).$$

Now recall that $\widehat{\mu}(l)(x) = \widehat{\mu}_x(l)$ and

$$\sum_{l=-M}^{N} \widehat{\mu}_x(l) \left(\sum_{j-k=l} \alpha_j \overline{\varphi}_j(t) \beta_k \varphi_k(t) \right) = \int_0^{2\pi} \left(\sum_{l=-M}^{N} \widehat{\mu}_x(l) \varphi_l(s) \right) \gamma(-t-s) \frac{ds}{2\pi}.$$

Therefore, if $\alpha = \sum_{j=1}^{\infty} \alpha_j \varphi_j$ and $\beta = \sum_{k=1}^{\infty} \beta_k \varphi_k$ belong to $L^2(\mathbb{T})$, we have that $\gamma(t) = \alpha(t)\beta(-t)$ and

(5.2)
$$\int_0^{2\pi} \|\mu_x * \gamma(-t)\| \frac{dt}{2\pi} \le \|\mathbf{A}\|_{\mathcal{M}_r(\ell^2(H))} \|\alpha\|_{L^2(\mathbb{T})} \|\beta\|_{L^2(\mathbb{T})}.$$

To show that $\mu_x \in M(\mathbb{T}, H)$, due to Lemma 3.8, it suffices to prove that

(5.3)
$$\sup_{0 < r < 1} \|\mu_x * P_r\|_{L^1(\mathbb{T}, H)} < \infty.$$

Choosing $\beta(t) = \alpha(t) = \sqrt{1 - r^2}/|1 - re^{it}|$ we obtain that $\gamma(t) = P_r(t)$ and from (5.2) we get (5.3) and the estimate $\|\mu_x\|_{M(\mathbb{T},H)} \leq \|\mathbf{A}\|_{\mathcal{M}_r(\ell^2(H))}$. This finishes the proof. \square

References

- [1] A. B. Aleksandrov and V. V. Peller, *Hankel and Toeplitz-Schur multipliers*, Math. Ann. **324** (2002), no. 2, 277–327.
- [2] G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), no. 3, 603-639.
- [3] O. Blasco, Fourier analysis for vector-measures on compact abelian groups, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM **110** (2016), no. 2, 519–539.
- [4] J. Diestel, J. H. Fourie and J. Swart, The Metric Theory of Tensor Products, Grothendieck's Résumé Revisited, American Mathematical Society, Providence, RI, 2008.
- [5] J. Diestel, H. Jarchow and A. Tonge, *Absolutely Summing Operators*, Cambridge Studies in Advanced Mathematics **43**, Cambridge University Press, Cambridge, 1995.
- [6] J. Diestel and J. J. Uhl, Vector Measures, Mathematical Surveys 15, American Mathematical Society, Providence, RI, 1977.
- [7] N. Dinculeanu, Vector Measures, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966.

- [8] W. Hengsen, A simpler proof of Singer's representation theorem, Proc. Amer. Math. Soc. **124** (1996), no. 10, 3211–3212.
- [9] T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces I: Martingales and Littlewood-Paley Theory, A Series of Modern Surveys in Mathematics 63, Springer, Cham, 2016.
- [10] L.-E. Persson and N. Popa, Matrix Spaces and Schur Multipliers, Matriceal Harmonic Analysis, World Scientific, Hackensack, NJ, 2014.
- [11] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer-Verlag London, London, 2002.
- [12] J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28.
- [13] I. Singer, Linear functionals on the space of continuous mappings of a compact Hausdorf space into a Banach space (in Russian), Rev. Roum. Math. Pures Appl. 2 (1957), 301–315.
- [14] I. Singer, Sur les applications linéaires intégrales des espaces de fonctions continues I, Rev. Math. Pures Appl. 4 (1959), 391–401.
- [15] O. Toeplitz, Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen, Math. Ann. 70 (1911), no. 3, 351–376.

Oscar Blasco and Ismael García-Bayona

Departamento de Análisis Matemático, Universidad de Valencia, 46100 Burjassot, Valencia, Spain

E-mail address: oscar.blasco@uv.es, garbais@uv.es