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Characterization of Temperatures Associated to Schrödinger Operators with

Initial Data in Morrey Spaces

Qiang Huang and Chao Zhang*

Abstract. Let L be a Schrödinger operator of the form L = −∆ +V acting on L2(Rn)

where the nonnegative potential V belongs to the reverse Hölder class Bq for some

q ≥ n. Let Lp,λ(Rn), 0 ≤ λ < n denote the Morrey space on Rn. In this paper, we will

show that a function f ∈ L2,λ(Rn) is the trace of the solution of Lu := ut + Lu = 0,

u(x, 0) = f(x), where u satisfies a Carleson-type condition

sup
xB ,rB

r−λB

∫ r2B

0

∫
B(xB ,rB)

|∇u(x, t)|2 dxdt ≤ C <∞.

Conversely, this Carleson-type condition characterizes all the L-carolic functions whose

traces belong to the Morrey space L2,λ(Rn) for all 0 ≤ λ < n. This result extends

the analogous characterization found by Fabes and Neri in [8] for the classical BMO

space of John and Nirenberg.

1. Introduction and statement of the main result

In Harmonic Analysis, to study a (suitable) function f(x) on Rn is to consider a harmonic

function on Rn+1
+ which has the boundary value as f(x). A standard choice for such a

harmonic function is the Poisson integral e−t
√
−∆f(x) and one recovers f(x) when letting

t → 0+, where ∆ =
∑n

i=1 ∂
2
xi is the Laplace operator. In other words, one obtains

u(x, t) = e−t
√
−∆f(x) as the solution of the equation∂ttu+ ∆u = 0 if x ∈ Rn, t > 0,

u(x, 0) = f(x) if x ∈ Rn.

This approach is intimately related to the study of singular integrals. In [22], the authors

studied the classical case f ∈ Lp(Rn), 1 ≤ p ≤ ∞.

It is well known that the BMO space, i.e., the space of functions of bounded mean os-

cillation, is natural substitution to study singular integral at the end-point space L∞(Rn).
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A celebrated theorem of Fefferman and Stein [10] states that a BMO function is the trace

of the solution of ∂ttu+ ∆u = 0, u(x, 0) = f(x), whenever u satisfies

sup
xB ,rB

r−nB

∫ rB

0

∫
B(xB ,rB)

|t∇u(x, t)|2 dxdt
t
≤ C <∞,

where ∇ = (∇x, ∂t) = (∂1, . . . , ∂n, ∂t). Conversely, Fabes, Johnson and Neri [7] showed

that condition above characterizes all the harmonic functions whose traces are in BMO(Rn)

in 1976. The study of this topic has been widely extended to more general operators such

as elliptic operators and Schrödinger operators (instead of the Laplacian), for more general

initial data spaces and for domains other than Rn such as Lipschitz domains. For these

generalizations, see [1, 5, 8, 9, 14,17,20].

In [8], Fabes and Neri further generalized the above characterization to caloric functions

(temperature), that is the authors proved that a BMO function f is the trace of the solution

of

(1.1)

∂tu−∆u = 0 if x ∈ Rn, t > 0,

u(x, 0) = f(x) if x ∈ Rn,

whenever u satisfies

(1.2) sup
xB ,rB

r−nB

∫ r2B

0

∫
B(xB ,rB)

|∇xu(x, t)|2 dxdt ≤ C <∞,

and, conversely, the condition (1.2) characterizes all the carolic functions whose traces

are in BMO(Rn). The authors in [15] explored more information, related to harmonic

functions and carolic functions, about this subject.

In this paper, we consider a similar characterization in Moerry space Lp,λ(Rn). It is

known that Lp,0(Rn) = Lp(Rn) and Lp,λ(Rn) = Cp,λ(Rn)/C for 0 ≤ λ < n, where Cp,λ(Rn)

denote the Campanato space. When λ = n, Cp,n(Rn) = BMO(Rn). So, Morrey spaces

were proposed to be intermediate function spaces between Lp space and BMO space. For

more information about Morrey spaces, see [26]. The main aim of this article is to study

a similar characterization to (1.1) for the Schrödinger operator with some conditions on

its potentials and boundary values in Morrey spaces. To be precise, let us consider the

Schrödinger operator

(1.3) L = −∆ + V (x) on L2(Rn), n ≥ 3.

We assume that V is a nonnegative potential, not identically zero and that V ∈ Bq for

some q ≥ n/2, which by definition means that V ∈ Lqloc(R
n), V ≥ 0, and there exists a

constant C > 0 such that the reverse Hölder inequality

(1.4)

(
1

|B|

∫
B
V (y)q dy

)1/q

≤ C

|B|

∫
B
V (y) dy
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holds for all balls B in Rn.

The operator L is a self-adjoint operator on L2(Rn). Hence L generates the L-heat

semigroup

Ttf(x) = e−tLf(x) =

∫
Rn
Ht(x, y)f(y) dy, f ∈ L2(Rn), t > 0.

From the Feynman-Kac formula, it is well-known that the semigroup kernels Ht(x, y) of

the operators e−tL satisfies

0 ≤ Ht(x, y) ≤ ht(x− y)

for all x, y ∈ Rn and t > 0, where

ht(x) = (4πt)−n/2e−|x|
2/(4t)

is the kernel of the classical heat semigroup {Tt}t>0 = {et∆}t>0 on Rn. For the classi-

cal heat semigroup associated with Laplacian, see [21]. In this article, we consider the

parabolic Schrödinger differential operators

L = ∂t + L, t > 0, x ∈ Rn,

see, for instance, [11,23,25] and references therein. For f ∈ Lp(Rn), 1 ≤ p <∞, it is well

known that u(x, t) = e−tLf(x), t > 0, x ∈ Rn, is a solution to the heat equation

Lu = ∂tu+ Lu = 0 in Rn+1
+

with the boundary data f ∈ Lp(Rn), 1 ≤ p < ∞. The equation Lu = 0 is interpreted

in the weak sense via a sesquilinear form, that is, u ∈ W 1,2
loc (Rn+1

+ ) is a weak solution of

Lu = 0 if it satisfies∫
Rn+1
+

∇xu(x, t) · ∇xψ(x, t) dxdt−
∫
Rn+1
+

u(x, t)∂tψ(x, t) dxdt

+

∫
Rn+1
+

V uψ dxdt = 0, ∀ψ ∈ C1
0 (Rn+1

+ ).

In the sequel, we call such a function u an L-carolic function associated to the operator

L.

In [25], the authors proved that the conclusion gotten by E. Fabes and U. Neri in [8]

can be proved in the Schrödinger case. In [20], the authors considered the results in [7] in

the case of Poisson integrals of Schrödinger operators with Morrey traces. As mentioned

above, we are interested in deriving the characterization of the solution to the heat equation

Lu = 0 in Rn+1
+ with boundary values in Morrey spaces. Recall that Morrey spaces were
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introduced in 1938 by C. Morrey [18] to consider the regularity problems of solutions to

PDEs. For every 1 ≤ p <∞ and λ ∈ [0, n), the Morrey spaces Lp,λ(Rn) are defined as

Lp,λ(Rn) =

{
f ∈ Lploc(R

n) : sup
x∈Rn,r>0

r−λ
∫
B(x,r)

|f(y)|p dy <∞

}
.

This is a Banach space with respect to the norm

‖f‖Lp,λ(Rn) =

(
sup

x∈Rn,r>0
r−λ

∫
B(x,r)

|f(y)|p dy

)1/p

<∞.

Moreover, for every 1 ≤ p <∞ and λ > 0, the Campanato spaces CP,λ(Rn) are defined as

Cp,λ(Rn) =
{
f ∈ Lploc(R

n) : ‖f‖Cp,λ(Rn) <∞
}

with the Campanato seminorm being given by

‖f‖Cp,λ(Rn) =

(
sup

x∈Rn,r>0
r−λ

∫
B(x,t)

|f(y)− fB(x,r)|p dy

)1/p

<∞,

where fB(x,r) denotes the average value of f on the ball B(x, r). And when λ ∈ [0, n),

Cp,λ(Rn)/C = Lp,λ(Rn). Specially, when λ = 0, Cp,0(Rn)/C = Lp,0(Rn) = Lp(Rn).

Next, we introduce a new function class on the upper half plane Rn+1
+ .

Definition 1.1. Suppose V ∈ Bq for some q ≥ n and 0 ≤ λ < n. We say that, a C1-

functions u(x, t) defined on Rn+1
+ belongs to the class TLλL(Rn+1

+ ), if u(x, t) is the solution

of Lu = 0 in Rn+1
+ such that

‖u‖2
TLλL(Rn+1

+ )
= sup

xB ,rB

r−λB

∫ r2B

0

∫
B(xB ,rB)

|∇u(x, t)|2 dxdt <∞,

where ∇ = (∇x, ∂t).

The following theorem is the main result of this article.

Theorem 1.2. Suppose V ∈ Bq for some q ≥ n and 0 ≤ λ < n, then we have

(1) if f ∈ L2,λ(Rn), then the function u = e−tLf ∈ TLλL(Rn+1
+ ) and

‖u‖TLλL(Rn+1
+ ) ≤ C‖f‖L2,λ(Rn);

(2) if u ∈ TLλL(Rn+1
+ ), then there exists some f ∈ L2,λ(Rn) such that u = e−tLf , and

‖f‖L2,λ(Rn) ≤ C‖u‖TLλL(Rn+1
+ )

with some constant C > 0 independent of u and f .



Temperature of Schrödinger Operators with Initial Data in Morrey Spaces 1137

We should mention that for the Schrödinger operator L in (1.3), an important property

of the Bq class, proved in [12, Lemma 3], assures that the condition V ∈ Bq also implies

V ∈ Bq+ε for some ε > 0 and that the Bq+ε constant of V is controlled in terms of the

one of Bq membership. This in particular implies V ∈ Lqloc(R
n) for some q strictly greater

than n/2. However, in general the potential V can be unbounded and does not belong to

Lp(Rn) for any 1 ≤ p ≤ ∞. As a model example, we could take V (x) = |x|2. Moreover, as

noted in [19], if V is any nonnegative polynomial, then V satisfies the stronger condition

max
x∈B

V (x) ≤ C

|B|

∫
B
V (y) dy,

which implies V ∈ Bq for every q ∈ (1,∞) with a uniform constant.

This article is organized as follows. In Section 2, we recall some preliminary results

including the kernel estimates of the heat semigroup related with L, and prove some

lemmas and certain properties of L-carolic functions. In Section 3, we will prove our main

result, Theorem 1.2.

Throughout the article, the letters “c” and “C” will denote (possibly different) con-

stants which are independent of the essential variables.

2. Basic properties of the heat semigroups of Schrödinger operators

In this section, we begin by recalling some basic properties of the nonnegative potential

V under the assumption (1.4) and the kernel estimates of the heat semigroup related with

L.

It follows from Lemmas 1.2 and 1.8 in [19] that there is a constant C0 such that for a

nonnegative Schwartz class function ϕ there exists a constant C such that∫
Rn
ϕt(x− y)V (y) dy ≤

Ct−1(
√
t/ρ(x))δ for t ≤ ρ(x)2,

C(
√
t/ρ(x))C0+2−n for t > ρ(x)2,

where ϕt(x) = t−n/2ϕ(x/
√
t), δ = 2−n/q > 0, and the critical radii function ρ(x;V ) = ρ(x)

above are determined by the function

ρ(x) = sup

{
r > 0 :

1

rn−2

∫
B(x,r)

V (y) dy ≤ 1

}
.

For the heat kernel Ht(x, y) of the semigroup e−tL, we have the following estimates.

Lemma 2.1. (see [6]) Suppose V ∈ Bq for some q > n/2. For every N > 0, there exists

a constant CN such that for every x, y ∈ Rn, t > 0,

(i) 0 ≤ Ht(x, y) ≤ CN t−n/2e−|x−y|
2/(ct)

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N
, and



1138 Qiang Huang and Chao Zhang

(ii) |∂tHt(x, y)| ≤ CN t−(n+2)/2e−|x−y|
2/(ct)

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N
.

In fact, with the same computation as in the proof of [6, Proposition 4], we have

(2.1) |tm∂mt Ht(x, y)| ≤ CN t−n/2e−|x−y|
2/(ct)

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N
.

Lemma 2.2. [5, Lemma 3.8] Suppose V ∈ Bq for some q > n. Let β = 1 − n/q. For

every N > 0, there exist constants C = CN > 0 and c > 0 such that for all x, y ∈ Rn

and t > 0, the L-Heat semigroup kernels Ht(x, y), associated to e−tL, satisfy the following

estimates:

(i) |∇xHt(x, y)|+ |t∇x∂tHt(x, y)| ≤ Ct−(n+1)/2e−|x−y|
2/(ct)

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N
;

(ii) for |h| < |x− y|/4,

|∇xHt(x+ h, y)−∇xHt(x, y)| ≤ C
(
|h|√
t

)β
t−(n+1)/2e−|x−y|

2/(ct);

(iii) there is some δ > 1 such that

|
√
t∇xe−tL(1)(x)| ≤ C min

{( √
t

ρ(x)

)δ
,

( √
t

ρ(x)

)−N}
.

We now recall a local behavior of solutions to ∂tu+ Lu = 0, which was proved in [24,

Lemma 3.3], see it also in [11, Lemma 3.2]. We define parabolic cubes of center (x, t) and

radius r by Br(x, t) := {(y, s) ∈ Rn×R+ : |y−x| < r, t−r2 < s ≤ t} = B(x, r)×(t−r2, t].

And for every (x, t), (y, s) ∈ Rn× (0,∞), we define the parabolic metric: |(x, t)− (y, s)| =
max{|x− y|, |s− t|1/2}.

Lemma 2.3. [24, Lemma 3.3] Suppose 0 ≤ V ∈ Lqloc(R
n) for some q > n/2. Let u be

a weak solution of Lu = 0 in the parabolic cube Br0(x0, t0). Then there exists a constant

C = Cn > 0 such that

sup
Br0/4(x0,t0)

|u(x, t)| ≤ C

(
1

rn+2
0

∫
Br0/2(x0,t0)

|u(x, t)|2 dxdt

)1/2

.

3. Proof of the main theorem

In this section, we will give the proof of Theorem 1.2. First, we need make some prepara-

tions.
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Lemma 3.1. For every u ∈ TLλL(Rn+1
+ ) and for every k ∈ N, there exists a constant

Ck,n > 0 such that ∫
Rn

|u(x, 1/k)|2

(1 + |x|)2n
dx ≤ Ck,n‖u‖2TLλL(Rn+1

+ )
<∞,

hence u(x, 1/k) ∈ L2((1 + |x|)−2ndx). Therefore for all k ∈ N, e−tL(u( · , 1/k))(x) exists

everywhere in Rn+1
+ .

Proof. Since u ∈ C1(Rn+1
+ ), it reduces to show that for every k ∈ N,

(3.1)

∫
|x|≥1

|u(x, 1/k)− u(x/|x|, 1/k)|2

(1 + |x|)2n
dx ≤ Ck,n‖u‖2TLλL(Rn+1

+ )
<∞.

To do this, we write

u(x, 1/k)− u(x/|x|, 1/k) = [u(x, 1/k)− u(x, |x|)] + [u(x, |x|)− u(x/|x|, |x|)]

+ [u(x/|x|, |x|)− u(x/|x|, 1/k)].

Let

I =

∫
|x|≥1

|u(x, 1/k)− u(x, |x|)|2

(1 + |x|)2n
dx, II =

∫
|x|≥1

|u(x, |x|)− u(x/|x|, |x|)|2

(1 + |x|)2n
dx

and

III =

∫
|x|≥1

|u(x/|x|, |x|)− u(x/|x|, 1/k)|2

(1 + |x|)2n
dx.

For |x| ≥ 1 and t > 0, let r2 = t/4. We use Lemma 2.3 for ∂tu and Schwarz’s inequality

to obtain

|∂tu(x, t)| ≤ C

(
1

rn+2

∫ t

t−r2

∫
B(x,r)

|∂su(y, s)|2 dyds

)1/2

≤ C

(
1

t(n+2)/2

∫ t

t−r2

∫
B(x,

√
t/2)
|∂su(y, s)|2 dyds

)1/2

≤ Ct−
1
2
−n−λ

4

(
1

|B(x,
√
t)|λ/n

∫ t

0

∫
B(x,

√
t)
|∂su(y, s)|2 dyds

)1/2

≤ Ct−
1
2
−n−λ

4 ‖u‖TLλL(Rn+1
+ ),

(3.2)

which gives

|u(x, 1/k)− u(x, |x|)| =

∣∣∣∣∣
∫ |x|

1/k
∂tu(x, t) dt

∣∣∣∣∣ ≤ C (|x| 12−n−λ4 − k− 1
2

+n−λ
4

)
‖u‖TLλL(Rn+1

+ ).
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It follows that

I + III ≤ C‖u‖2
TLλL(Rn+1

+ )

∫
|x|≥1

1

(1 + |x|)2n

(
|x|

1
2
−n−λ

4 − k
n−λ
4
− 1

2

)
dx

≤ C(k, n)‖u‖2
TLλL(Rn+1

+ )
.

For the term II, we have that for any x ∈ Rn,

u(x, |x|)− u(x/|x|, |x|) =

∫ |x|
1

Dru(rω, |x|) dr, x = |x|ω.

Let B = B(0, 1) and 2mB = B(0, 2m). Note that for every m ∈ N, we have

∫
2mB\2m−1B

∣∣∣∣∣
∫ |x|

1
|Dru(rω, |x|)| dr

∣∣∣∣∣
2

dx =

∫ 2m

2m−1

∫
|ω|=1

∣∣∣∣∫ ρ

1
Dru(rω, ρ) dr

∣∣∣∣2 ρn−1 dωdρ

≤ 2mn−m
∫ 2m

2m−1

∫
|ω|=1

∫ 2m

1
|Dru(rω, ρ)|2 drdωdρ

≤ 2mn−m
∫ 2m

2m−1

∫
2mB\B

|∇yu(y, t)|2|y|1−n dydt

≤ 2mn−m
∫ 2m

2m−1

∫
2mB
|∇yu(y, t)|2 dydt,

which gives ∫
2mB\2m−1B

|u(x, |x|)− u(x/|x|, |x|)|2 dx

≤ C2mn−m+mλ

(
1

|2mB|λ/n

∫ 22m

0

∫
2mB
|∇yu(y, t)|2 dydt

)
≤ C2(n+λ)m−m‖u‖2

TLλL(Rn+1
+ )

.

Therefore,

II ≤ C
∞∑
m=1

1

22nm

∫
2mB\2m−1B

|u(x, |x|)− u(x/|x|, |x|)|2 dx ≤ C‖u‖2
TLλL(Rn+1

+ )
.

Combining estimates of I, II and III, we have obtained (3.1).

Note that by Lemma 2.1, if V ∈ Bq for some q ≥ n/2, then the semigroup kernels

Ht(x, y), associated to e−tL, decay faster than any power of 1/|x−y|. Hence, for all k ∈ N,

e−tL(u( · , 1/k))(x) exists everywhere in Rn+1
+ . This completes the proof.

Lemma 3.2. For every u ∈ TLλL(Rn+1
+ ), we have that for every k ∈ N,

u(x, t+ 1/k) = e−tL(u( · , 1/k))(x), x ∈ Rn, t > 0.
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Proof. The lemma can be proved by the same discussion as the proof of Lemma 3.2 in [5]

and the proof of Lemma 3.3 in [25].

We recall that the classical Carleson measure is closely related to the space BMO(Rn).

In [25], the authors considered another similar Carleson measure which was called 2-

Carleson measure. Here, we need to consider a similar Carleson measure. We say that a

measure µ defined on Rn+1
+ is a (2, λ)-Carleson measure if there is a positive constant c

such that for each ball B, with radius rB, in Rn,

(3.3) µ(B̂) ≤ c|B|λ/n,

where B̂ = {(x, t) : x ∈ B, 0 ≤ t ≤ r2
B} is the 2-tent over B. The smallest bound c in

(3.3) is defined to be the norm of µ, and is denoted by |||µ|||(2,λ) car. When λ = n, it is

coincided with the 2-Carleson measure in [25]. By using this measure, we will estimate

the term ∂te
−tLf(x) in Morrey space. Precisely, for any k ∈ N, we set

uk(x, t) = u(x, t+ 1/k).

Following a similar argument as in [7, Lemma 1.4], we have the following lemma.

Lemma 3.3. For every u ∈ TLλL(Rn+1
+ ), there exists a constant C > 0 (depending only

on n) such that for all k ∈ N,

(3.4) sup
xB ,rB

r−λB

∫ r2B

0

∫
B(xB ,rB)

|∂tuk(x, t)|2 dxdt ≤ C‖u‖2TLλL(Rn+1
+ )

<∞.

Proof. Let B = B(xB, rB). If r2
B ≥ 1/k, then letting s = t+ 1/k, it follows that

|B|−λ/n
∫ r2B

0

∫
B
|∂tu(x, t+ 1/k)|2 dxdt ≤ C|B|−λ/n

∫ (2rB)2

0

∫
2B
|∂su(x, s)|2 dxds

≤ C‖u‖2
TLλL(Rn+1

+ )
<∞.

If r2
B < 1/k, then it follows from Lemma 2.3 for ∂tu(x, t+ 1/k) and a similar argument as

in (3.2) that

|∂tu(x, t+ 1/k)| ≤ C(t+ k−1)−
1
2

+n−λ
4 ‖u‖TLλL(Rn+1

+ ).

Therefore,

|B|−λ/n
∫ r2B

0

∫
B
|∂tu(x, t+ 1/k)|2 dxdt

≤ C|B|−λ/n‖u‖2
TLλL(Rn+1

+ )

∫ r2B

0

∫
B

(t+ k−1)−(1+(n−λ)/2) dxdt

≤ C‖u‖2
TLλL(Rn+1

+ )

(
k1+(n−λ)/2rn−λB

∫ r2B

0
1 dt

)
≤ C‖u‖2

TLλL(Rn+1
+ )

<∞
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since r2
B < 1/k.

By taking the supremum over all balls B ⊂ Rn, we complete the proof of (3.4).

Letting fk(x) = u(x, 1/k), k ∈ N, it follows from Lemma 3.2 that

uk(x, t) = e−tLfk(x), x ∈ Rn, t > 0.

And it follows from Lemma 3.3 that

sup
xB ,rB

r−λB

∫ r2B

0

∫
B(xB ,rB)

|∂te−tLfk(x)|2 dxdt ≤ C‖u‖2
TLλL(Rn+1

+ )
.

Lemma 3.4. For every u ∈ TLλL(Rn+1
+ ), there exists a constant C > 0 independent of k

such that

‖fk‖L2,λ(Rn) ≤ C‖u‖TLλL(Rn+1
+ ) <∞ for any k ∈ N.

Hence for all k ∈ N, fk is uniformly bounded in L2,λ(Rn).

To prove Lemma 3.4, we need to establish the following Lemmas 3.5 and 3.6.

Given a function f ∈ L2((1 + |x|)−2ndx) and an L2 ⊂ L2n/(n+2) function g supported

on a ball B = B(xB, rB), for any (x, t) ∈ Rn+1
+ , set

(3.5) F (x, t) = t∂te
−tLf(x) and G(x, t) = t∂te

−tL(I − e−r2BL)g(x).

Lemma 3.5. Suppose f , g, F , G are as in (3.5). If f satisfies

|||µ∇t,f |||2(2,λ) car = sup
xB ,rB

r−λB

∫ r2B

0

∫
B(xB ,rB)

|∂te−tLf(x)|2 dxdt <∞,

then there exists a constant C > 0 such that

(3.6)

∫
Rn+1
+

|F (x, t)G(x, t)| dxdt
t
≤ C|B|λ/(2n)|||µ∇t,f |||(2,λ) car‖g‖L2n/(n+2)(B).

Proof. To prove (3.6), let us consider the square functions S(f) and G(f) given by

S(f)(x) =

(∫ ∞
0
|t∂te−tLf(x)|2 dt

)1/2

, G(f)(x) =

(∫ ∞
0
|∂te−tLf(x)|2 dt

)1/2

.

By the standard spectral theory as in [6], we have the following identities:

(3.7) ‖S(f)‖2 =
1

2
‖L−1/2f‖2

and

(3.8) ‖G(f)‖2 =

√
2

2
‖L1/2f‖2.
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In fact, let us denote by dE(λ) the spectral resolution of the operator L. Since e−tL =∫∞
0 e−tλ dE(λ), we have

t∂te
−tL =

∫ ∞
0

tλe−tλ dE(λ).

Then, for all f ∈ L2(Rn), we have

‖t∂te−tLf(x)‖2L2(Rn+1
+ ,dxdt) =

∫ ∞
0

∫
Rn
|t∂te−tLf(x)|2 dxdt =

∫ ∞
0

〈
(t∂te

−tL)2f, f
〉
L2(Rn)

dt

=

∫ ∞
0

∫ ∞
0

t2λ2e−2tλ dtdEf,f (λ) =
1

4
‖L−1/2f‖2L2(Rn),

which gives the proof of (3.7). And the proof of (3.8) is similar.

Given a ball B = B(xB, rB) ⊂ Rn with radius rB, we put

T (B) = {(x, t) ∈ Rn+1
+ : x ∈ B, 0 < t < r2

B}.

We then write∫
Rn+1
+

|F (x, t)G(x, t)| dxdt
t

=

∫
T (2B)

|F (x, t)G(x, t)| dxdt
t

+

∞∑
k=2

∫
T (2kB)\T (2k−1B)

|F (x, t)G(x, t)| dxdt
t

= A1 +
∞∑
k=2

Ak.

Using the Hölder inequality, (3.7) and the L2−Ln/(n+2) boundedness of fractional integral

operator L−1/2, we obtain

A1 ≤

∥∥∥∥∥∥
{∫ (2rB)2

0
|∂te−tLf(x)|2 dt

}1/2
∥∥∥∥∥∥
L2(2B)

‖S(I − e−r2BL)g‖L2(Rn)

≤ Crλ/2B |||µ∇t,f |||(2,λ) car‖L−1/2(I − e−r2BL)g‖L2(Rn)

≤ Crλ/2B |||µ∇t,f |||(2,λ) car‖g‖L2n/(n+2)(B).

Let us estimate Ak for k = 2, 3, . . .. Observe that

Ak ≤

∥∥∥∥∥∥
{∫ (2krB)2

0
|∂te−tLf(x)|2 dt

}1/2
∥∥∥∥∥∥
L2(2kB)

×

∥∥∥∥∥∥
{∫ (2krB)2

0
|t∂te−tL(I − e−r2BL)g(x)χT (2kB)\T (2k−1B)(x, t)|2 dt

}1/2
∥∥∥∥∥∥
L2(2kB)

≤ C(2krB)λ/2|||µ∇t,f |||(2,λ) car × Bk,
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where

Bk =

∥∥∥∥∥∥
{∫ (2krB)2

0
|t∂te−tL(I − e−r2BL)g(x)χT (2kB)\T (2k−1B)(x, t)|2 dt

}1/2
∥∥∥∥∥∥
L2(2kB)

.

To estimate Bk, we set

Ψt,s(L)h(y) = (t+ s)2

(
d2e−rL

dr2

∣∣∣∣
r=t+s

h

)
(y).

Note that

(I − e−r2BL)g =

∫ r2B

0
Le−sLg ds.

By (2.1), we have

Bk ≤ C

∥∥∥∥∥∥∥

∫ (2krB)2

0

∣∣∣∣∣t
∫ r2B

0

1

(t+ s)2
Ψt,s(L)g(x)χT (2kB)\T (2k−1B)(x, t) ds

∣∣∣∣∣
2

dt


1/2
∥∥∥∥∥∥∥
L2(2kB)

≤ C
∥∥∥∥{∫ (2krB)2

0

∣∣∣∣t∫ r2B

0

∫
B(xB ,rB)

1

(t+ s)n/2+2
e−c|x−y|

2/(t+s)

× |g(y)|χT (2kB)\T (2k−1B)(x, t) dyds

∣∣∣∣2 dt}1/2∥∥∥∥
L2(2kB)

.

Note that for (x, t) ∈ T (2kB) \ T (2k−1B) and y ∈ B, we have that |x− y| ≥ 2krB. So

Bk ≤ C

∥∥∥∥∥∥∥

∫ (2krB)2

0

∣∣∣∣∣t
∫ r2B

0

∫
B(xB ,rB)

1

|x− y|n+4
|g(y)|χT (2kB)\T (2k−1B)(x, t) dyds

∣∣∣∣∣
2

dt


1/2
∥∥∥∥∥∥∥
L2(2kB)

≤ C‖g‖L1(B)

∥∥∥∥∥∥∥

∫ (2krB)2

0

∣∣∣∣∣t
∫ r2B

0

1

(2krB)n+4
χT (2kB)\T (2k−1B)(x, t) ds

∣∣∣∣∣
2

dt


1/2
∥∥∥∥∥∥∥
L2(2kB)

≤ C‖g‖L1(B)
r2B

(2krB)n+4

∥∥∥∥∥
∫ (2krB)2

0

χT (2kB)\T (2k−1B)(x, t)t
2 dt

∥∥∥∥∥
1/2

L1(2kB)

≤ C2(−2−n/2)kr
−n/2−2
B ‖g‖L1(B) ≤ C2(−n/2−2)k‖g‖L2n/(n+2)(B).

Consequently,

Ak ≤ C2−2kr
λ/2
B |||µ∇t,f |||(2,λ) car‖g‖L2n/(n+2)(B),

which implies∫
Rn+1
+

|F (x, t)G(x, t)| dxdt
t
≤ Crλ/2B |||µ∇t,f |||(2,λ) car‖g‖L2n/(n+2)(B)

+ C

∞∑
k=2

2−2kr
λ/2
B |||µf |||(2,λ) car‖g‖L2n/(n+2)(B)

≤ Crλ/2B |||µ∇t,f |||(2,λ) car‖g‖L2n/(n+2)(B)
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as desired.

Lemma 3.6. Suppose B, f , g, F , G are defined as in Lemma 3.5. If |||µ∇t,f |||(2,λ) car <

∞, then we have the equality∫
Rn
f(x)(I − e−r2BL)g(x) dx =

1

4

∫
Rn+1
+

F (x, t)G(x, t)
dxdt

t
.

Proof. The technique of this lemma’s proof has been used in lots of papers, for example

[2, 4, 6, 16], but it is notable to state it here for completeness.

By Lemma 3.5, we know that
∫
Rn+1
+
|F (x, t)G(x, t)| dxdtt < ∞. By dominated conver-

gence theorem, the following integral converges absolutely and satisfies

I =

∫
Rn+1
+

F (x, t)G(x, t)
dxdt

t
= lim

ε→0+

∫ 1/ε

ε

∫
Rn
F (x, t)G(x, t)

dxdt

t
.

By Fubini’s theorem, together with the commutative property of the semigroup {e−tL}t>0,

we have ∫
Rn
F (x, t)G(x, t) dx =

∫
Rn
f(y)(t∂te

−tL)2(I − e−r2BL)g(y) dy.

Whence,

I = lim
ε→0+

∫ 1/ε

ε

∫
Rn
f(x)(t∂te

−tL)2(I − e−r2BL)g(x)
dxdt

t

= lim
ε→0+

∫
Rn
f(x)

∫ 1/ε

ε
(t∂te

−tL)2(I − e−r2BL)g(x)
dtdx

t
.

By [6, Lemma 7], we can pass the limit inside the integral above. And, by a similar

computation of [16, Lemma 3.7] with β = 1, we have

I =

∫
Rn
f(x)

∫ ∞
0

(t∂te
−tL)2(I − e−r2BL)g(x)

dtdx

t
=

1

4

∫
Rn
f(x)(I − e−r2BL)g(x) dx.

This completes the proof.

Now, we are in a position to prove Lemma 3.4.

Proof of Lemma 3.4. First, we note an equivalent characterization of L2,λ(Rn) that f ∈
L2,λ(Rn) if and only if f ∈ L2((1 + |x|)−(n+ε)dx) and

sup
B

(
|B|−λ/n

∫
B
|f(x)− e−r2BLf(x)|2 dx

)1/2

≤ C <∞.

This has been proved in [4, Proposition 6.11] (see also [3, 13,20]).
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Now if ‖u‖TLλL(Rn+1
+ ) <∞, then it follows from Lemma 3.1 that

∫
Rn

|fk(x)|2

1 + |x|2n
dx ≤ Ck <∞.

Given an L2 function g supported on a ball B = B(xB, rB), it follows from Lemma 3.6

that we have∫
Rn
fk(x)(I − e−r2BL)g(x) dx =

1

4

∫
Rn+1
+

t∂te
−tLfk(x)t∂te

−tL(I − e−r2BL)g(x)
dxdt

t
.

By Lemmas 3.3 and 3.5,∣∣∣∣∫
Rn
fk(x)(I − e−r2BL)g(x) dx

∣∣∣∣ ≤ C|B|λ/(2n)|||µ∇t,fk |||(2,λ) car‖g‖L2n/(n+2)(B)

≤ C|B|λ/(2n)‖u‖TLλL(Rn+1
+ )‖g‖L2n/(n+2)(B).

Then the duality argument for L2 shows that(
|B|−λ/n

∫
B
|fk(x)− e−r2BLfk(x)|2 dx

)1/2

= |B|−λ/(2n) sup
‖g‖L2(B)≤1

∣∣∣∣∫
Rn

(I − e−r2BL)fk(x)g(x) dx

∣∣∣∣
≤ |B|−λ/(2n) sup

‖g‖
L2n/(n+2)(B)

≤1

∣∣∣∣∫
Rn
fk(x)(I − e−r2BL)g(x) dx

∣∣∣∣
≤ C‖u‖TLλL(Rn+1

+ )

for some C > 0 independent of k.

It then follows that for all k ∈ N, {fk} is uniformly bounded in TLλL(Rn+1
+ ).

Proof of Theorem 1.2(1). Recall that the condition V ∈ Bn implies V ∈ Bq0 for some

q0 > n/2. From Lemmas 2.1 and 2.2, we see that u(x, t) = e−tLf(x) ∈ C1(Rn+1
+ ). It will

be enough to finish the proof if we have proved

(3.9) ‖u‖TLλL(Rn+1
+ ) ≤ C‖f‖L2,λ(Rn).

To prove (3.9), by a similar argument in [6], we can easily prove that for every f ∈ L2,λ(Rn),

the term |∂te−tL(f)(x)|2 has the following estimate (see [6, Theorem 2]):

sup
xB ,rB

r−λB

∫ r2B

0

∫
B(xB ,rB)

|∂te−tLf(x)|2 dxdt ≤ ‖f‖L2,λ(Rn).
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So, we only need to estimate the term |∇xe−tL(f)(x)|2. In fact(
1

rλB

∫ r2B

0

∫
B
|∇xe−tLf(x)|2 dxdt

)1/2

≤
∞∑
k=0

1

r
λ/2
B

(∫ r2B

0

∫
B
|∇xe−tLfk(x)|2 dxdt

)1/2

=:

∞∑
k=0

Jk,

where f0 = fχ2B and fk = fχ2k+1B\2kB for k ∈ N+. For J0, since the Riesz transform

∇L−1/2 is bounded on L2(Rn), by (3.8) and the commutative property of e−L and L−1/2,

we have

J2
0 =

1

rλB

∫ r2B

0

∫
B
|∇xe−tLf0(x)|2 dxdt

≤ 1

rλB

∫ r2B

0

∫
Rn
|∇xL−1/2L1/2e−tLf0(x)|2 dxdt

≤ C 1

rλB

∫ ∞
0

∫
Rn
|∂te−tL(L−1/2f0)(x)|2 dxdt

≤ C 1

rλB
‖L1/2L−1/2f0‖2L2(Rn) = C

1

rλB

∫
2B
|f(x)|2 dx

≤ C‖f‖2L2,λ(Rn).

When k ≥ 1, for any x ∈ B and k ∈ N+, we apply Lemma 2.2(i) to obtain

|∇xe−tLfk(x)| ≤ C
∫

2k+1B/2kB
t−(n+1)/2e−|x−y|

2/(ct)|f(y)| dy

≤ C
∫

2k+1B/2kB
|x− y|−(n+1)|f(y)| dy

≤ C 1

(2krB)n+1

∫
2k+1B

|f(y)| dy

≤ C 1

(2krB)1+(n−λ)/2
‖f‖L2,λ(Rn),

which yields

|Jk| ≤ C2−k(1+(n−λ)/2)‖f‖L2,λ(Rn).

Hence
∑∞

k=0 |Jk| ≤ C‖f‖L2,λ(Rn), and then ‖u‖TLλL(Rn+1) ≤ C‖f‖L2,λ(Rn).

Proof of Theorem 1.2(2). To prove it, we will use the argument as in [5, 7, 15] and apply

the key Lemma 3.4. Suppose u ∈ TLλL(Rn+1
+ ), our aim is to find a function f ∈ L2,λ(Rn)

such that

u(x, t) = e−tLf(x) for each (x, t) ∈ Rn+1
+ .
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To do this, for every k ∈ N+, we write fk = u(x, 1/k). By Lemma 3.4, we obtain∫
B(0,2j)

|fk(x)|2 dx ≤ C2jλ‖u‖2
TLλL(Rn+1

+ )
.

This means that the sequence {fk}∞k=1 is bounded in L2(B(0, 2j)). So by passing to a

subsequence, the sequence {fk} converges weakly to a function gj ∈ L2(B(0, 2j)). Then,

for i > j, we can get gi(x) = gj(x), for almost everywhere x ∈ B(0, 2j). Next, we define a

function f(x) by

f(x) = gj(x) if x ∈ B(0, 2j), j = 1, 2, 3, . . ..

It is easy to see that f is well defined on Rn =
⋃∞
j=1B(0, 2j) and (after passing to a

subsequence) fk → f in L2 on every ball of Rn. It is also easy to check that for any open

ball B ⊂ Rn, we have ∫
B
|f(x)|2 dx ≤ CrλB‖u‖2TLλL(Rn+1

+ )
,

which implies

‖f‖L2,λ(Rn) ≤ C‖u‖TLλL(Rn+1
+ ).

Finally, we will show that u(x, t) = e−tLf(x). Since u(x, · ) is continuous on R+, we have

u(x, t) = limk→+∞ u(x, t + 1/k). Then we have u(x, t) = limk→+∞ e
−tL(u( · , 1/k))(x). It

reduces to show

lim
k→+∞

e−tL(u( · , 1/k))(x) = e−tLf(x).

Indeed, we recall that Ht(x, t) is the kernel of e−tL. Then for any l ∈ N, we write

e−tL(u( · , 1/k))(x) =

∫
B(x,2lt)

Ht(x, y)fk(y) dy +

∫
B(x,2lt)c

Ht(x, y)fk(y) dy.

By Lemma 2.1 and the Hölder inequality, we have∣∣∣∣∣
∫

(B(x,2lt))c
Ht(x, y)fk(y) dy

∣∣∣∣∣ ≤ C
∞∑
i=l

∫
B(x,2i+1t)/B(x,2it)

t−n/2e−|x−y|
2/(ct)|fk(y)| dy

≤ C
∞∑
i=l

(2it)−n
∫
B(x,2i+1t)

|fk(y)| dy

≤ C
∞∑
i=l

(2it)(λ−n)/2‖fk‖L2,λ(Rn)

≤ C2−l(n−λ)/2t(λ−n)/2‖fk‖L2,λ(Rn).

By Lemma 3.4, we have that ‖fk‖L2,λ(Rn) ≤ C‖u‖TLλL(Rn+1
+ ) for some constant C > 0

independent of k. Since λ ∈ (0, n), we have

lim sup
l→+∞

lim sup
k→+∞

∣∣∣∣∣
∫
B(x,2lt)c

Ht(x, y)fk(y) dy

∣∣∣∣∣
≤ lim

l→+∞

(
C2−l((n−λ)/2)t(λ−n)/2‖u‖TLλL(Rn+1

+ )

)
= 0.
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Therefore,

lim
k→+∞

e−tL(u( · , k−1))(x) = lim
k→+∞

lim
l→+∞

∫
B(x,2lt)

Ht(x, y)fk(y) dy = e−tLf(x).

We have showed that u(x, t) = e−tLf(x). The proof of Theorem 1.2 is completed.
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