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Decay Solutions and Decay Rate for a Class of Retarded Abtract Semilinear

Fractional Evolution Inclusions

Do Lan

Abstract. In this paper, we prove the existence of decay integral solutions to a class

of fractional differential inclusions with finite delays and estimate their decay rate.

For these purposes, we have to construct a suitable regular measure of noncompact-

ness on the space of solutions and then deploy the fixed point theory for condensing

multivalued maps. An application to a class of fractional PDE with almost sectorial

operator is also given.

1. Introduction

We are concerned with the following problem in a Banach space X

CDα
0 u(t)−Au(t) ∈ F (t, u(t), ut), t 6= tk, tk ∈ (0,+∞), k ∈ Λ,(1.1)

∆u(tk) = Ik(u(tk)),(1.2)

u(s) + g(u)(s) = ϕ(s), s ∈ [−h, 0],(1.3)

where CDα
0 (α ∈ (0, 1)) is the fractional derivative in the Caputo sense, A is a closed

linear operator in X which generates a strongly continuous semigroup W (·), F : R+×X×
C([−h, 0];X)→ P(X) is a multivalued map, ∆u(tk) = u(t+k )− u(t−k ), k ∈ Λ ⊂ N, Ik and

g are the functions which will be specified in Section 3. Here ut stands for the history of

the state function up to the time t, i.e., ut(s) = u(t+ s), s ∈ [−h, 0].

The system (1.1)–(1.3) is a generalized Cauchy problem which involves impulsive effect

and nonlocal condition expressed by (1.2) and (1.3), respectively. Recently, several specific

situations of the system (1.1)–(1.3) have been widely research. However, these researches

only focused on the existence and the structure of the solution set, (see e.g., [4,16,17,20])

or control problem, (see e.g., [10–14, 18, 19, 23]). Also, the stability for the generalized

above problem has not studied yet.

In [7], we proved a stability result for (1.1)–(1.3) in the case when F is single-valued

and Lipschitzian. And in [8], we study the weakly asymptotic stability for system (1.1)–

(1.3) in the cases without nonlocal condition. Nevertheless, the technique used in [7]
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and [8] does not work to study the decay rate. In this paper, by constructing the suitable

regular MNC and functions space, the existence of decay integral solutions in general cases

is proved and in special cases, without impulsive effect, the polynomial decay rate of the

solutions is certainly achieved.

The rest of our work is as follows. In the next section, we recall some notions and

facts related to fractional calculus, including some properties of fractional resolvent oper-

ators. We also recall concept of measure of noncompactness and the fixed point theory

for condensing multivalued maps. The focus of Section 3 is the process of proving the

global solvability for (1.1)–(1.3) on interval [−h, T ] for each T > 0, under some regular

conditions imposed on the nonlinearities F , I and g. In Section 4, we construct a regular

MNC on PC0 (the space of piecewise-continuous which tend to zero functions) and give a

sufficient condition to existence of decay solutions for (1.1)–(1.3). And then, in Section 5,

the problem without impulsive condition is studied, in this cases, we prove the existence

of decay integral solutions with a polynomial decay rate. In the last section, we apply

the abstract results to a class of fractional functional partial differential equations with

almost sectorial operator.

2. Preliminaries

2.1. Fractional calculus

Let Lp(0, T ;X) (p ∈ (1,+∞)) be the space of X-valued functions u defined on [0, T ] such

that the function t 7→ ‖u(t)‖p is integrable. The integrals appeared in this work will be

understood in the Bochner sense. The notation Lp(0, T ) stands for Lp(0, T ;R). Now we

recall some notions in fractional calculus (see e.g., [9, 21]).

Definition 2.1. The fractional integral of order α > 0 of a function f ∈ L1(0, T ;X) is

defined by

Iα0 f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds,

where Γ is the Gamma function, provided the integral converges.

Definition 2.2. For a function f ∈ CN ([0, T ];X), the Caputo fractional derivative of

order α ∈ (N − 1, N) is defined by

CDα
0 f(t) =

1

Γ(N − α)

∫ t

0
(t− s)N−α−1f (N)(s) ds.
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Consider the following problem

Dα
0 u(t) = Au(t) + f(t), t > 0, t 6= tk ∈ (0,+∞), k ∈ Λ,

∆u(tk) = Ik(u(tk)),

u(s) = ϕ(s)− g(u)(s), s ∈ [−h, 0],

where f ∈ Lp(0, T ;X). In this note we assume that the C0-semigroup W (·) generated by

A is globally bounded, i.e.,

‖W (t)x‖ ≤MA‖x‖, ∀ t ≥ 0, x ∈ X

for some MA ≥ 1. By the arguments in [7, 22], we have the following presentation

u(t) = Sα(t)[ϕ(0)− g(u)(0)] +
∑

0<tk<t

Sα(t− tk)Ik(u(tk))

+

∫ t

0
(t− s)α−1Pα(t− s)f(s) ds, t > 0,

where

Sα(t)x =

∫ ∞
0

φα(θ)W (tαθ)x dθ,

Pα(t)x = α

∫ ∞
0

θφα(θ)W (tαθ)x dθ, x ∈ X,

φα(θ) =
1

π

∞∑
n=1

(−θ)n−1

(n− 1)!
Γ(nα) sin(nπα).

Following [22], we have the following estimates

‖Sα(t)x‖ ≤MA‖x‖ and ‖Pα(t)x‖ ≤ MA

Γ(α)
‖x‖, ∀x ∈ X.

Lemma 2.3. We have the following properties

(1) If the semigroup {W (·)} is norm continuous, that is, t 7→ W (t) is continuous for

t > 0, then Sα(t) and Pα(t) are norm continuous as well;

(2) If {W (·)} is a compact semigroup then Sα(t) and Pα(t) are compact for t > 0.

Proof. The proof is similar to that in [15].

Let p > 1/α, we define the operator Qα : Lp(0, T ;X)→ C([0, T ];X) as follows:

(2.1) Qα(f)(t) =

∫ t

0
(t− s)α−1Pα(t− s)f(s) ds.

It follows from [7] that Qα has this following important property.

Proposition 2.4. [7] Let {W (t)}t≥0 be the C0-semigroup generated by A. Then for each

bounded set Ω ⊂ Lp(0, T ;X), Qα(Ω) is an equicontinuous set in C([0, T ];X) provided that

W (t) is norm continuous for t > 0.
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2.2. Fixed point theory for condensing operators

Let E be a Banach space. Denote

P(E) = {B ⊂ E : B 6= ∅},

B(E) = {B ∈ P(E) : B is bounded},

Pc(E) = {B ∈ P(E) : B is closed},

Kv(E) = {B ∈ P(E) : B is convex and compact}.

We will use the following definition of measure of noncompactness given in [6].

Definition 2.5. A function β : B(E)→ R+ is called a measure of noncompactness (MNC)

in E if

β(coΩ) = β(Ω) for every Ω ∈ B(E),

where coΩ is the closure of the convex hull of Ω. An MNC β is called

(i) monotone if Ω0,Ω1 ∈ B(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1);

(ii) nonsingular if β({a} ∪ Ω) = β(Ω) for any a ∈ E , Ω ∈ B(E);

(iii) invariant with respect to union with compact set if β(K ∪ Ω) = β(Ω) for every

relatively compact set K ⊂ E and Ω ∈ B(E);

(iv) algebraically semi-additive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for any Ω0,Ω1 ∈ B(E);

(v) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of MNC is the Hausdorff MNC χ(·), which is defined as follows

χ(Ω) = inf{ε : Ω has a finite ε-net}.

This MNC satisfies all properties given in Definition 2.5.

We now give some basic estimates based on MNCs. We first recall the sequential MNC

χ0 defined by

χ0(Ω) = sup{χ(D) : D ∈ ∆(Ω)},

where ∆(Ω) is the collection of all at-most-countable subsets of Ω (see [1]). We know that

1

2
χ(Ω) ≤ χ0(Ω) ≤ χ(Ω)

for all bounded set Ω ⊂ E . Then we have the following estimate.

Proposition 2.6. Let χ be the Hausdorff MNC in E.
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(1) If Ω ⊂ E be a bounded set, then for every ε > 0, there exists a sequence {xn} ⊂ Ω

such that

χ(Ω) ≤ 2χ({xn}) + ε.

(2) If {wn} ⊂ L1(0, T ; E) such that ‖wn(t)‖ ≤ ν(t), for a.e. t ∈ [0, T ], for some ν ∈
L1(0, T ), then we have

χ

({∫ t

0
wn(s) ds

})
≤ 2

∫ t

0
χ({wn(s)}) ds for t ∈ [0, T ].

(3) If D ⊂ L1(0, T ; E) such that

(a) ‖ξ(t)‖ ≤ ν(t) for all ξ ∈ D and for a.e. t ∈ [0, T ],

(b) χ(D(t)) ≤ q(t) for a.e. t ∈ [0, T ],

where ν, q ∈ L1(0, T ;R). Then

χ

(∫ t

0
D(s) ds

)
≤ 4

∫ t

0
q(s) ds,

here
∫ t

0 D(s) ds = {
∫ t

0 ξ(s) ds : ξ ∈ D}.

Now, we recall the concept of χ-norm of a bounded linear operator T (T ∈ L(X)) as

follows

‖T ‖χ = inf{β > 0 : χ(T (B)) ≤ βχ(B) for all bounded set B ⊂ X}.

It is noted that the χ-norm of T can be formulated by

‖T ‖χ = χ(T (B1)) = χ(T (S1)),

where B1 and S1 are a unit ball and a unit sphere in X, respectively. It is know that

‖T ‖χ ≤ ‖T ‖L(X),

where the last norm is understood as the operator norm in L(X). Obviously, T is a

compact operator if and only if ‖T ‖χ = 0.

We make use of some notions and facts of set-valued analysis. Let Y be a metric space.

Definition 2.7. A multivalued map (multimap) F : Y → P(E) is said to be:

(i) upper semicontinous (u.s.c.) if F−1(V ) = {y ∈ Y : F(y) ∩ V 6= ∅} is a closed subset

of Y for every closed set V ⊂ E ;

(ii) weakly upper semicontinous (weakly u.s.c.) if F−1(V ) is a closed subset of Y for all

weakly closed set V ⊂ E ;
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(iii) closed if its graph ΓF = {(y, z) : z ∈ F(y)} is a closed subset of Y × E ;

(iv) compact if F(Y ) is relatively compact in E ;

(v) quasicompact if its restriction to any compact subset A ⊂ Y is compact.

The following lemmas give criteria for checking a given multimap to be (weakly) u.s.c.

Lemma 2.8. [6, Theorem 1.1.12] Let G : Y → P(E) be a closed quasicompact multimap

with compact values. Then G is u.s.c.

Lemma 2.9. [3, Proposition 2] Let E be a Banach space and Ω a nonempty subset of

another Banach space. Assume that G : Ω → P(E) is a multimap with weakly compact,

convex values. Then G is weakly u.s.c. if {xn} ⊂ Ω with xn → x0 and yn ∈ G(xn) implies

yn ⇀ y0 ∈ G(x0), up to a subsequence.

We now introduce the concept of condensing multimaps.

Definition 2.10. Let E be a Banach space. A continuous map F : Z ⊆ E → P(E) is said

to be condensing with respect to a MNC β (β-condensing) if for any bounded set Ω ⊂ Z,

the relation

β(Ω) ≤ β(F(Ω))

implies the relative compactness of Ω.

Let β be a monotone nonsingular MNC in E . The application of the topological degree

theory for condensing maps (see, e.g., [1]) yields the following fixed point principle.

Theorem 2.11. [6, Corollary 3.3.1] If M is a bounded closed convex subset of a Banach

space E, and G : M → Kv(M) is a closed and β-condensing multimap, where β is a

nonsingular MNC in E, then the fixed points set FixG = {x : x ∈ G(x)} is nonempty and

compact.

3. Existence result

Given T > 0, we denote by PC([−h, T ];X) the space of functions u : [−h, T ] → X such

that u is continuous on [−h, T ] \ {tk : k ∈ Λ} and for each tk ∈ [0, T ], k ∈ Λ, there exist

u(t−k ) = lim
t→t−k

u(t), u(t+k ) = lim
t→t+k

u(t)

and u(tk) = u(t−k ). Then PC([−h, T ];X) is a Banach space endowed with the norm

‖u‖PC := sup
t∈[−h,T ]

‖u(t)‖.
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Let χ be the Hausdorff MNC in X, χT the Hausdorff MNC in PC([−h, T ];X).

We recall the following facts (see [5]), which will be used later: for each bounded set

D ⊂ PC([−h, T ];X), one has

• χ(D(t)) ≤ χT (D) for all t ∈ [−h, T ], where D(t) := {x(t) : x ∈ D}.

• If D is an equicontinuous set on each interval (tk, tk+1] ⊂ [−h, T ], then

χT (D) = sup
t∈[−h,T ]

χ(D(t)).

Let Ch = C([−h, 0];X) and χh be the Hausdorff MNC in Ch. Ch will be considered as a

normed space of piecewise continuous functions with the norm ‖v‖Ch = 1
h

∫ 0
−h ‖v(θ)‖ dθ.

Concerning problem (1.1)–(1.3), we give the following assumptions:

(A) The C0-semigroup {W (t)}t≥0 generated by A is norm continuous for t > 0.

(F) The multivalued nonlinearity function F : R+ ×X × Ch → Kv(X) satisfies:

(F1) F ( · , v, w) admits a strongly measurable selection for each u ∈ X and v ∈ Ch;

(F2) F (t, · , · ) is u.s.c. for each t ∈ J ;

(F3) ‖F (t, v, w)‖ = sup{‖ξ‖ : ξ ∈ F(t, v, w)} ≤ m(t)(‖v‖ + ‖w‖Ch) for all v ∈ X,

w ∈ Ch, where m ∈ Lploc(R
+), p > 1/α;

(F4) if W (t) is noncompact, there exists a function k ∈ Lp(J) such that

χ(F (t, B,C)) ≤ k(t)

[
χ(B) + sup

s∈[−h,0]
χ(C(s))

]

for a.e. t, s ∈ [0, T ], t ≥ s.

(G) The nonlocal function g : PC([−h, T ];X)→ Ch obeys the following conditions:

(G1) g is continuous and

‖g(u)‖Ch ≤ Ψg(‖u‖PC)

for all u ∈ PC([−h, T ];X), where Ψg is a continuous and nondecreasing function

on R+;

(G2) There exists η ≥ 0 such that

χh(g(D)) ≤ ηχT (D)

for all bounded set D ⊂ PC([−h, T ];X).

(I) The operator Ik : X → X (k ∈ Λ) is continuous and satisfies:



632 Do Lan

(I1) there exists a real-valued, continuous, nondecreasing function ΨI and a non-

negative sequence {lk}k∈Λ such that

‖Ik(x)‖ ≤ lkΨI(‖x‖) for all x ∈ X, k ∈ Λ;

(I2) there exists a nonnegative sequence {µk}k∈Λ such that

χ(Ik(B)) ≤ µkχ(B)

for all bounded subset B ⊂ X;

(I3) the sequence {tk : k ∈ Λ} satisfies infk∈Λ(tk+1 − tk) > 0.

For v ∈ PC([−h, T ];X), putting

PpF (v) = {f ∈ Lp([0;T ];X) : f(t) ∈ F (t, v(t), vt) for a.e. t ∈ [0, T ]},

we have the following property.

Proposition 3.1. Assume that (A) and (F1)–(F3) hold. Then PpF (u) 6= ∅ for each

u ∈ PC([−h, T ];X). In addition, PpF : C(J ;X)→ P(L1[J ;X]) is weakly u.s.c. with weakly

compact and convex values.

Proof. The proof is similar to that in [3, Theorem 1].

Definition 3.2. A function u ∈ PC([−h, T ];X) is said to be an integral solution of

problem (1.1)–(1.3) on the interval [−h, T ] if and only if u(t)+g(u)(t) = ϕ(t) for t ∈ [−h, 0],

and

u(t) = Sα(t)[ϕ(0)− g(u)(0)] +
∑

0<tk<t

Sα(t− tk)Ik(u(tk))

+

∫ t

0
(t− s)α−1Pα(t− s)f(s) ds

for any t ∈ [0, T ], where f ∈ PpF (u).

We defined the solution operator F : PC([−h, T ];X)→ P(PC([−h, T ];X)) as follows

F(u)(t)

=

ϕ(t)− g(u)(t) t ∈ [−h, 0],

Sα(t)[ϕ(0)− g(u)(0)] +
∑

0<tk<t
Sα(t− tk)Ik(u(tk)) +Qα ◦ PpF (u)(t) t ∈ [0, T ],

where Qα is defined by (2.1). It is obvious that u is a fixed point of F if and only if u is

an integral solution of (1.1)–(1.3) on [−h, T ].

We are ready to give the condensing property of the solution map.
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Lemma 3.3. Let the hypotheses (A), (F), (G) and (I) hold. Then the solution operator

F satisfies

χT (F(D)) ≤

η +
∑

tk∈[0,T ]

µk

STα + 8 sup
t∈[0,T ]

∫ t

0
(t− s)α−1‖Pα(t− s)‖χk(t) ds

χT (D)

for all bounded set D ⊂ PC([−h, T ];X), where STα = supt∈[0,T ] ‖Sα(t)‖.

Proof. Let D ⊂ PC([−h, T ];X) be a bounded set. Then we have

F(D) = F1(D) + F2(D) + F3(D),

where

F1(u)(t) =

Sα(t)[ϕ(0)− g(u)(0)] t ∈ [0, T ],

ϕ(t)− g(u)(t) t ∈ [−h, 0],

F2(u)(t) =


∑

0<tk<t
Sα(t− tk)Ik(u(tk)) t ∈ [0, T ],

0 t ∈ [−h, 0],

F3(u)(t) =

Qα ◦ P
p
F (u)(t) t ∈ [0, T ],

0 t ∈ [−h, 0].

From the algebraically semi-additive property of χT , we have

χT (F(D)) ≤ χT (F1(D)) + χT (F2(D)) + χT (F3(D)).

For z1, z2 ∈ F1(D), there exist u1, u2 ∈ D such that

z1(t) =

Sα(t)[ϕ(0)− g(u1)(0)] t ∈ [0, T ],

ϕ(t)− g(u1)(t) t ∈ [−h, 0],

z2(t) =

Sα(t)[ϕ(0)− g(u2)(0)] t ∈ [0, T ],

ϕ(t)− g(u2)(t) t ∈ [−h, 0].

Then

‖z1(t)− z2(t)‖ ≤

‖Sα(t)‖‖g(u1)− g(u2)‖Ch t ∈ [0, T ],

‖g(u1)− g(u2)‖Ch t ∈ [−h, 0].

Therefore

‖z1 − z2‖PC ≤ STα ‖g(u1)− g(u2)‖Ch ,

thanks to the fact that STα ≥ 1. This implies

χT (F1(D)) ≤ STαχh(g(D)).
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Employing (G2), we have

(3.1) χT (F1(D)) ≤ ηSTαχT (D).

Now let z1, z2 ∈ F2(D), one can find u1, u2 ∈ D such that

‖z1(t)− z2(t)‖ =
∑

0<tk<t

Sα(t− tk)[Ik(u1(tk))− Ik(u2(tk))].

Hence

‖z1 − z2‖PC ≤ STα
∑

tk∈[0,T ]

‖Ik(u1(tk))− Ik(u2(tk))‖.

This inequality deduces that

χT (F2(D)) ≤ STα
∑

tk∈[0,T ]

χ(Ik(D(tk)))

≤ STα
∑

tk∈[0,T ]

µkχ(D(tk))

≤

STα ∑
tk∈[0,T ]

µk

χT (D),

(3.2)

thanks to (I2).

Regarding F3(D), if W (t) is compact, so is Pα(t) and then

χT (F3(D)) = χT

(∫ t

0
(t− s)α−1Pα(t− s)PpF (D(s)) ds

)
≤ 4

∫ t

0
(t− s)α−1χT (Pα(t− s)PpF (D(s))) ds

= 0.

In the opposite case, from Proposition 2.4, we have F3(D) is an equicontinuous set in

C([0, T ];X). This leads to

χT (F3(D)) = sup
t∈[0,T ]

χ(F3(D)(t))

≤ 4 sup
t∈[0,T ]

∫ t

0
(t− s)α−1‖Pα(t− s)‖k(s)

[
χ(D(s)) + sup

τ∈[−h,0]
χ(D(s+ τ))

]
ds

≤ 8χT (D) sup
t∈[0,T ]

∫ t

0
(t− s)α−1‖Pα(t− s)‖k(s) ds,

(3.3)

here we have used Proposition 2.6 and hypothesis (F4). Combining (3.1), (3.2) and (3.3),

we arrive at

χT (F(D)) ≤

η +
∑

tk∈[0,T ]

µk

STα + 8 sup
t∈[0,T ]

∫ t

0
(t− s)α−1‖Pα(t− s)‖χk(s) ds

χT (D).
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The proof is complete.

Now, we prove the main result of this section.

Theorem 3.4. Assume that the hypotheses of Lemma 3.3 hold. Then the problem (1.1)–

(1.3) has at least one integral solution in PC([−h, T ];X), provided that

(3.4)

η +
∑

tk∈[0,T ]

µk

STα + 8 sup
t∈[0,T ]

∫ t

0
(t− s)α−1‖Pα(t− s)‖χk(s) ds

 < 1

and

lim inf
r→∞

[
1

r

Ψg(r) + ΨI(r)
∑

tk∈[0,T ]

lk

STα

+ 2 sup
t∈[0,T ]

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s) ds

]
< 1,

where STα is given in Lemma 3.3.

Proof. By (3.4), we obtain the χT -condensing property for F thanks to Lemma 3.3. Now,

we prove the closedness of F . Let {xk} ⊂ PC([−h, T ];X) such that xk → x∗ and yk ∈
F(xk), yk → y∗. We will verify that y∗ ∈ F(x∗). Taking fk ∈ PpF (xk) such that

yk(t) = ϕ(t)− g(xk)(t), t ∈ [−h, 0],

yk(t) = Sα(t)[ϕ(0)− g(xk)(0)]

+
∑

0<ti<t

Sα(t− tk)Ii(xk(ti)) +Qα(fk)(t), t ∈ [0, T ].
(3.5)

By Proposition 3.1, we get that fn ⇀ f∗ ∈ Lp(0, T ;X) and f∗ ∈ F(x∗). In addition,

C(t) = {fn(t) : n ≥ 1} is relatively compact and then

χ({Qα(fn)(t)}) ≤
({∫ t

0
(t− s)α−1Pα(t− s)fn(s) ds

})
≤ 2

∫ t

0
(t− s)α−1‖Pα(t− s)‖χ({fn(s)}) ds

= 0.

Due to Proposition 2.3, {Qα(fn)} is equicontinuous. Then by the Arzelà-Ascoli theorem,

we have the relatively compactness of {Qα(fn)}. Since fn(t) → f∗(t) for a.e. t ∈ (0, T ),

one has Qα(fn)→ Qα(f∗). Therefore, it follows from (3.5) that

y∗(t) = Sα(t)[ϕ(0)− g(x∗)(0)] +
∑

0<ti<t

Sα(t− tk)Ik(x∗(ti)) +Qα(fk)(t), ∀ t ∈ [0, T ],
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where f∗ ∈ PpF (x∗). Thus y∗ ∈ F(x∗) and we have the closedness of F .

In order to apply Theorem 2.11, it remains to show that F(BR) ⊂ BR for some R > 0,

where BR is the closed ball in PC([−h, T ];X) centered at 0 with radius R.

Assume to the contrary that there exists a sequence {vn} ⊂ PC([−h, T ];X) such that

‖vn‖PC ≤ n but ∃ z ∈ F(vn), ‖z‖PC > n. For z ∈ F(vn), z(t) = Sα(t)[ϕ(0) − g(vn)(0)] +∑
0<tk<t

Sα(t− tk)Ik(vn(tk)) +Qα(f)(t), t ∈ [0, T ], f ∈ PpF (vn), we have

‖z(t)‖ ≤ sup
t∈[0,T ]

‖Sα(t)‖

‖ϕ‖Ch + Ψg(‖vn‖PC) +
∑

0<tk<t

‖Ik(vn(tk))‖


+

∫ t

0
(t− s)α−1‖Pα(t− s)‖‖f(s)‖ ds

≤ STα

‖ϕ‖Ch + Ψg(n) +
∑

tk∈[0,T ]

lkΨI(‖vn(tk)‖)


+

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s)(‖vn(s)‖+ ‖(vn)s‖Ch) ds

≤ STα

‖ϕ‖Ch + Ψg(n) + ΨI(n)
∑

tk∈[0,T ]

lk

+ 2n

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s) ds.

Therefore,

n < ‖F(vn)‖PC ≤ STα

‖ϕ‖Ch + Ψg(n) + ΨI(n)
∑

tk∈[0,T ]

lk


+ 2n sup

t∈[0,T ]

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s) ds.

Then

1 <
1

n
‖F(vn)‖PC ≤

1

n
STα

‖ϕ‖Ch + Ψg(n) + ΨI(n)
∑

tk∈[0,T ]

lk


+ 2 sup

t∈[0,T ]

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s) ds.

Passing the last inequality into limits, one gets a contradiction. The proof is complete.

4. Existence of decay integral solutions

In order to study the stability results for problem (1.1)–(1.3), we consider the function

space

PC0 =
{
u ∈ PC([−h,+∞);X) : lim

t→∞
u(t) = 0

}
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with the norm

‖u‖∞ = sup
t≥−h

‖u(t)‖,

where PC([−h,∞);X) is defined similarly to PC([−h, T ];X) as T = +∞. Then PC0 is a

Banach space.

Let πT (T > 0) be the truncate function on PC0, i.e., for D ⊂ PC0, πT (D) is the

restriction of D on interval [−h, T ]. Then one can see that the MNC χ∞ in PC0 defined

by

χ∞(D) = sup
T>0

χT (πT (D))

satisfies all properties given in Definition 2.5, but regularity. To build a regular MNC on

PC0, we define

dT (D) = sup
t≥T

sup
x∈D
‖x(t)‖, d∞(D) = lim

T→∞
dT (D) and χ∗(D) = χ∞(D) + d∞(D).

It is easily seen that χ∞(·) and d∞(·) are monotone and nonsingular MNCs, so is χ∗(·).
We will prove an important property of χ∗(·) in the next lemma.

Lemma 4.1. Let Ω ⊂ PC0 be a bounded set such that χ∗(Ω) = 0. Then Ω is relatively

compact.

Proof. The proof is similar to that in [2].

We now prove that F keeps PC0 invariant, i.e., F(PC0) ⊂ PC0, and F is χ∗-condensing

on PC0. To this end, we assume that (F), (G) and (I) satisfy for all T > 0 and replace

(A) by stronger one.

(Aa) The operator A satisfies (A) such that {Sα(t);Pα(t)}t≥0 are stable, that is,

lim
t→∞
‖Sα(t)‖ = 0 and lim

t→∞
‖Pα(t)‖ = 0.

Lemma 4.2. Let (Aa) hold and (F), (G), (I) hold for all T > 0. Then F(PC0) ⊂ PC0

provided that q = 2 supt≥0

∫ t
0 (t− s)α−1‖Pα(t− s)‖m(s) ds <∞ and

∑
k∈Λ lk <∞.

Proof. Here we recall that

F(u)(t) = Sα(t)[ϕ(0)− g(u)(0)] +
∑

0<tk<t

Sα(t− tk)Ik(u(tk)) +Qα ◦ PpF (u)(t), t > 0.

Let u ∈ PC0 such that R = ‖u‖∞ > 0. We prove that F(u) ⊂ PC0, i.e., F(u)(t) → 0 as

t→ +∞.
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Let ε > 0 be given. Then there exists T1 > 0 such that

‖u(t)‖ ≤ ε, ∀ t > T1,(4.1)

‖ut‖Ch ≤ sup
τ∈[−h,0]

‖u(t+ τ)‖ ≤ ε, ∀ t > T1 + h.(4.2)

On the other hand, from the assumption that
∑

k∈Λ lk < +∞, there exists N0 ∈ N such

that ∑
k>N0

lk ≤ ε.

Let z ∈ F(u), then for t > 0,

‖z(t)‖ ≤ ‖Sα(t)‖(‖ϕ‖Ch + ‖g(u)‖Ch)

+
∑
k≤N0

‖Sα(t− tk)‖‖Ik(u(tk))‖+
∑
k>N0

‖Sα(t− tk)‖‖Ik(u(tk))‖

+

∫ t

0
(t− s)α−1‖Pα(t− s)‖‖f(s)‖ ds

≤ ‖Sα(t)‖(‖ϕ‖Ch + Ψg(R)) +
∑
k≤N0

‖Sα(t− tk)‖lkΨI(R) + S∞α
∑
k>N0

lkΨI(R)

+

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s)(‖u(s)‖+ ‖us‖Ch) ds,

where S∞α = supt≥0 ‖Sα(t)‖. Thus we have

‖F(u)(t)‖ ≤ E1(t) + E2(t) + E3(t),

where

E1(t) = ‖Sα(t)‖(‖ϕ‖Ch + Ψg(R)),

E2(t) = ΨI(R)

∑
k≤N0

‖Sα(t− tk)‖lk + S∞α
∑
k>N0

lk

 ,
E3(t) =

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s)(‖u(s)‖+ ‖us‖Ch) ds.

Observing from (Aa), that there is T2 > 0 such that

‖Sα(t)‖ ≤ ε, ‖Pα(t)‖ ≤ ε, ∀ t > T2,

so

(4.3) E1(t) ≤ (‖ϕ‖Ch + Ψg(R))ε, ∀ t > T2.
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In addition,

(4.4) E2(t) ≤ ΨI(R)

∑
k≤N0

lk + S∞α

 ε, ∀ t > T2 + tN0 .

Concerning E3(t), for t > T1 + h one has

E3(t) =

(∫ T1+h

0
+

∫ t

T1+h

)
(t− s)α−1‖Pα(t− s)‖m(s)(‖u(s)‖+ ‖us‖Ch) ds

≤ 2R

∫ T1+h

0
(t− s)α−1‖Pα(t− s)‖m(s) ds+ 2ε

∫ t

T1+h
(t− s)α−1‖Pα(t− s)‖m(s) ds,

thanks to (4.1) and (4.2). Therefore,

E3(t) ≤ 2Rε

∫ T1+h

0
(t− s)α−1m(s) ds+ 2ε

∫ t

T1+h
(t− s)α−1‖Pα(t− s)‖m(s) ds

for all t > T2 + T1 + h. Then by the Hölder inequality we get

E3(t) ≤ 2Rε

(∫ T1+h

0
(t− s)(α−1)p′ ds

)1/p′ (∫ T1+h

0
(m(s))p ds

)1/p

+ 2ε

∫ t

T1+h
(t− s)α−1‖Pα(t− s)‖m(s) ds

≤
(
2RCα(t)‖m‖Lp(R+) + q

)
ε

(4.5)

for all t > T2 + T1 + h, where p′ = p/(p− 1) and

Cα(t) =

{
1

(α− 1)p′ + 1

[
t(α−1)p′+1 − (t− T1 − h)(α−1)p′+1

]}1/p′

.

Combining (4.3), (4.4) and (4.5) gives

‖F(u)(t)‖ ≤ Cε

for all t > max{T2 + T1 + h, T2 + tN0}, where

C = ‖ϕ‖+ Ψg(R) + ΨI(R)

∑
k≤N0

µk + S∞α

+ 2RCα(t)‖m‖Lp(R+) + q

≤ ‖ϕ‖+ Ψg(R) + ΨI(R)

(∑
k∈Λ

µk + S∞α

)
+ 2RCα(t)‖m‖Lp(R+) + q.

Taking Cα(t) into account, since p > 1/α, p′ < 1/(1−α), we see that 0 < (α−1)p′+1 < 1.

Hence

t(α−1)p′+1 − (t− T1 − h)(α−1)p′+1 = t(α−1)p′+1

[
1−

(
1− T1 + h

t

)(α−1)p′+1
]

∼ [(α− 1)p′ + 1](T1 + h)t(α−1)p′ as t→∞.

Thus Cα(t) is bounded, and so is C. This derives the claim that F(PC0) ⊂ PC0.
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Now, we prove χ∗-condensing property for F .

Lemma 4.3. Assume that the hypotheses of Lemma 4.2 hold. F is χ∗-condensing provided

that q < 1 and

` =

(
η +

∑
k∈Λ

µk

)
S∞α + 8 sup

t≥0

∫ t

0
(t− s)α−1‖Pα(t− s)‖χk(s) ds < 1.

Proof. Let D ⊂ PC0 be a bounded set. Taking r > 0 such that ‖u‖∞ ≤ r, ∀u ∈ D. By

the same argument as in the proof of Lemma 3.3, we have

χ∞(F(D)) ≤ `χ∞(D).

It remains to estimate d∞. For each z ∈ F(D), there exist u ∈ D and f ∈ PpF (u) such

that

z(t) = Sα(t)[ϕ(0)− g(u)(0)] +
∑

0<tk<t

Sα(t− tk)Ik(u(tk)) +

∫ t

0
(t− s)α−1Pα(t− s)f(s) ds

for all t ≥ 0. Put p′ = p/(p − 1), since α < 1, p > 1/α, p′ < 1/(1 − α), we see that

(α−1)p′+1 > 0 and (α−1)p′ < 0. Then there exists δ ∈ (0, 1) such that (α−1)p′+δ < 0.

We have

‖z(t)‖ ≤ ‖Sα(t)‖(‖ϕ‖Ch + Ψg(‖u‖∞)) +
∑

0<tk<t

‖Sα(t− tk)‖‖Ik(u(tk))‖

+

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s)(‖u(s)‖+ ‖us‖Ch) ds.

Thus

‖F(D)(t)‖ ≤ ‖Sα(t)‖(‖ϕ‖Ch + Ψg(r)) +
∑

0<tk<t

‖Sα(t− tk)‖lkΨI(r)

+ 2

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s)‖Ds‖Ch ds

≤ ‖Sα(t)‖(‖ϕ‖Ch + Ψg(r)) + ΨI(r)
∑
k∈Λ

lk‖Sα(t− tk)‖

+ 2

(∫ tδ

0
+

∫ t

tδ

)
(t− s)α−1‖Pα(t− s)‖m(s)‖Ds‖Ch ds

= F1(t) + F2(t) + F3(t) + F4(t),

where

F1(t) = ‖Sα(t)‖(‖ϕ‖Ch + Ψg(r)),
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F2(t) = ΨI(r)
∑
k∈Λ

lk‖Sα(t− tk)‖,

F3(t) = 2

∫ tδ

0
(t− s)α−1‖Pα(t− s)‖m(s)‖Ds‖Ch ds,

F4(t) = 2

∫ t

tδ
(t− s)α−1‖Pα(t− s)‖m(s)‖Ds‖Ch ds.

Let ε > 0 be given, there exists N0 ∈ N such that
∑

k≥N0
lk ≤ ε. Moreover, from (Aa),

there exists T2 > 0 such that

‖Sα(t)‖ ≤ ε, ‖Pα(t)‖ ≤ ε, ∀ t ≥ T2.

By the same argument as in the proof of Lemma 4.2, we have

F1(t) ≤ (‖ϕ‖Ch + Ψg(r))ε, ∀ t > T2,

F2(t) ≤ ΨI(r)

∑
k≤N0

lk + S∞α

 ε, ∀ t > T2 + tN0 ,

F3(t) ≤ 2rC∗α(t)‖m‖Lp(R+) ε, ∀ t > T2 + tδ,

where

C∗α(t) =

{
1

(α− 1)p′ + 1

[
t(α−1)p′+1 − (t− tδ)(α−1)p′+1

]}1/p′

∼
[
t(α−1)p′+δ

]1/p′

as t→∞

is bounded. Therefore

(4.6) lim
T→∞

sup
t≥T

F1(t) = 0, lim
T→∞

sup
t≥T

F2(t) = 0, lim
T→∞

sup
t≥T

F3(t) = 0.

On the other hand, for T + h < th < t, one has

sup
t≥T

F4(t) ≤ 2 sup
t≥T

∫ t

th
(t− s)α−1‖Pα(t− s)‖m(s)‖Ds‖Ch ds

≤ 2 sup
t≥T
‖D(t)‖

∫ t

th
(t− s)α−1‖Pα(t− s)‖m(s) ds.

Hence

(4.7) lim
T→∞

sup
t≥T

F4(t) ≤ 2 lim
T→∞

sup
t≥T
‖D(t)‖

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s) ds.

Combining (4.6) and (4.7), we have

lim
T→∞

sup
t≥T
‖F(D)(t)‖ ≤ lim

T→∞
sup
t≥T
‖D(t)‖2 sup

t≥0

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s) ds.
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That is,

d∞(F(D)) ≤ qd∞(D).

Now, it follows that

χ∗(F(D)) = χ∞(F(D)) + d∞(F(D))

≤ `χ∞(D) + qd∞(D)

≤ max{`, q}(χ∞(D) + d∞(D))

≤ max{`, q}χ∗(D) < χ∗(D).

The proof is complete.

The following theorem is our main result in this section.

Theorem 4.4. Assume that the hypotheses of Lemma 4.3 hold. Then problem (1.1)–(1.3)

has at least one integral solution u ∈ PC0 provided that

lim inf
r→∞

[
1

r

(
Ψg(r) + ΨI(r)

∑
k∈Λ

lk

)
S∞α

+ 2 sup
t>0

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s) ds

]
< 1.

(4.8)

Proof. By Lemma 4.3, F is χ∗-condensing on PC0. By the same argument as in the proof

of Theorem 3.4, we have F is closed and condition (4.8) ensures the existence of a number

R > 0 such that F(BR) ⊂ BR, where BR is the closed ball in PC0 centered at 0 with

radius R.

Now we are able to state that F : BR → Kv(BR) has a nonempty compact fixed point

set according to Theorem 2.11. The proof complete.

5. Special case

In this section, we consider the problem without impulsive condition, as a special case of

(1.1)–(1.3).

CDα
0 u(t)−Au(t) ∈ F (t, u(t), ut), t > 0,(5.1)

u(s) + g(u)(s) = ϕ(s), s ∈ [−h, 0].(5.2)

Definition 5.1. A function u ∈ C([−h,+∞];X) is said to be an integral solution of

problem (5.1)–(5.2) if and only if u(t) + g(u)(t) = ϕ(t) for t ∈ [−h, 0], and

u(t) = Sα(t)[ϕ(0)− g(u)(0)] +

∫ t

0
(t− s)α−1Pα(t− s)f(s) ds

for any t > 0, where f ∈ PpF (u).
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We will prove the existence of decay integral solutions with polynomial decay rate for

problem (5.1)–(5.2). To this end, we will consider the solution operator F on the following

space

BCγ = {u ∈ C([−h,+∞);X) : tγ‖u(t)‖ = O(1) as 0 < t→∞},

where γ is a positive number chosen later. This space is endowed with the supremum

norm

‖u‖BC = sup
t≥−h

‖u(t)‖,

and it becomes a closed subspace of the Banach space

BC = {u ∈ C([−h,+∞);X) : ‖u(t)‖BC <∞}.

On BCγ we use the following MNCs

dT (D) = sup
t≥T

sup
x∈D
‖x(t)‖, d∞(D) = lim

T→∞
dT (D),

χ∞(D) = sup
T>0

χT (πT (D)), χ∗BC(D) = χ∞(D) + d∞(D).

By the same proof as in Lemma 4.1, we have χ∗BC is a regular MNC on BCγ .

Now we prove the existence of decay integral solutions of problem (5.1)–(5.2) with a

polynomial decay rate. As in Section 4, we will show that F keeps BCγ invariant and F
is χ∗BC-condensing on BCγ . For problem (5.1)–(5.2), we assume that (F), (G) is satisfied

for all T > 0 and

(A*) The operator A satisfies (A) such that

‖Sα(t)‖ ≤ CSt−δ and ‖Pα(t)‖ ≤ CP t−δ,

where 0 < δ < α.

The following proposition gives a sufficient condition for (A*).

Proposition 5.2. [7] If the semigroup W (·) is exponentially stable, i.e.,

‖W (t)‖ ≤Me−at for some a,M > 0,

then there exist two positive numbers CS and CP such that

‖Sα(t)‖ ≤ CSt−α, ‖Pα(t)‖ ≤ CP t−α, ∀ t > 0.

Lemma 5.3. Let (A*) hold and (F) and (G) hold for all T > 0. Then F(BCγ) ⊂ BCγ

for all γ ≤ δ.
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Proof. Now, let u ∈ BCγ and z ∈ F(u). Then one can find f ∈ PpF (u) such that

z(t) = Sα(t)[ϕ(0)− g(u)(0)] +

∫ t

0
(t− s)α−1Pα(t− s)f(s) ds, ∀ t > 0.

We have

‖z(t)‖ ≤ ‖Sα(t)‖(‖ϕ‖Ch + ‖g(u)‖Ch) +

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s)(‖u(s)‖+ ‖us‖Ch) ds

= I1(t) + I2(t) + I3(t) + I4(t),

where

I1(t) = ‖Sα(t)‖(‖ϕ‖Ch + ‖g(u)‖Ch),

I2(t) =

∫ t/2

0
(t− s)α−1‖Pα(t− s)‖m(s)(‖u(s)‖+ ‖us‖Ch) ds,

I3(t) =

∫ t−1

t/2
(t− s)α−1‖Pα(t− s)‖m(s)(‖u(s)‖+ ‖us‖Ch) ds,

I4(t) =

∫ t

t−1
(t− s)α−1‖Pα(t− s)‖m(s)(‖u(s)‖+ ‖us‖Ch) ds.

Since ‖Sα(t)‖ = O(t−δ) as t→∞ and γ < δ, we have tγI1(t) = o(1) as t→∞.

In what follows, we denote by C a generic constant, which may be change from line to

line. Considering I2, one has

I2(t) =

∫ t/2

0
(t− s)α−1‖Pα(t− s)‖m(s)(‖u(s)‖+ ‖us‖Ch) ds

≤ C
∫ t/2

0
(t− s)−1m(s) ds,

thanks to the fact that ‖Pα(t)‖ ≤ Ct−δ for t > 0 and the boundedness of (‖u(s)‖+‖us‖Ch).

Using the Hölder inequality we have

I2(t) ≤ C

[∫ t/2

0
(t− s)−p/(p−1) ds

](p−1)/p

‖m‖Lp(R+)

= C(p− 1)−(p−1)/p(21/(p−1) − 1)‖m‖Lp(R+)t
−1/p.

Therefore, tγI2(t) = O(1) as t → ∞. Now, we observes that tγ‖u(t)‖ = O(1) as t → ∞.

Then for all t > h we get

tγ‖ut‖Ch ≤ t
γ sup
ρ∈[−h,0]

‖u(t+ ρ)‖

= tγ sup
ρ∈[−h,0]

(t+ ρ)−γ(t+ ρ)γ‖u(t+ ρ)‖

≤ tγ(t− h)−γ sup
ρ∈[−h,0]

(t+ ρ)γ‖u(t+ ρ)‖

= O(1) as t→∞.
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Regarding I3, for t > max{2h, 2} we have

tγI3(t) = tγ
∫ t−1

t/2
s−γ(t− s)α−1‖Pα(t− s)‖m(s)(sγ‖u(s)‖+ sγ‖us‖Ch) ds

≤ Ctγ
∫ t−1

t/2

(
t

2

)−γ
(t− s)−1m(s) ds

≤ C2γ
∫ t−1

t/2
(t− s)−1m(s) ds,

thanks to the fact that sγ‖u(s)‖ + sγ‖us‖Ch is bounded for s ≥ t/2 > h. Applying the

Hölder inequality again, we obtain

tγI3(t) ≤ C

[∫ t−1

t/2
(t− s)−p/(p−1) ds

](p−1)/p

‖m‖Lp(R+)

≤ C(p− 1)(p−1)/p

[
1−

(
t

2

)−1/(p−1)
](p−1)/p

‖m‖Lp(R+)

= O(1) as t→∞.

Similar to I4, we have

tγI4(t) = tγ
∫ t

t−1
s−γ(t− s)α−1‖Pα(t− s)‖m(s)(sγ‖u(s)‖+ sγ‖us‖Ch) ds

≤ C
(

t

t− 1

)γ ∫ t

t−1
(t− s)α−1m(s) ds,

here we use the boundedness of ‖Pα(t− s)‖ and (sγ‖u(s)‖+ sγ‖us‖Ch) for s ≥ t−1. Then

tγI4(t) ≤ C
(

t

t− 1

)γ (∫ t

t−1
(t− s)p(α−1)/(p−1) ds

)(p−1)/p

‖m‖Lp(R+)

= C

(
t

t− 1

)γ ( p− 1

pα− 1

)(p−1)/p

‖m‖Lp(R+)

= O(1) as t→∞.

Summing up, we get tγ‖z(t)‖ = O(1) as t → ∞. Equivalently, z ∈ BCγ . The proof is

complete.

The χ∗-condensing property of F will be proved in the following lemma.

Lemma 5.4. Let (A*) hold and (F), (G) hold for all T > 0. Then F is χ∗BC-condensing

on BCγ with 0 < γ < δ provided that

(5.3) `∗ = ηS∞α + 8 sup
t≥0

∫ t

0
(t− s)α−1‖Pα(t− s)‖χk(s) ds < 1.
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Proof. Let D ⊂ BCγ be a bounded set. We first show that d∞(F(D)) = 0. Indeed, taking

r > 0 such that ‖x‖BC ≤ r for all x ∈ D, we have

tγ‖F(x)(t)‖ = O(1) as t→∞

according to the proof of Lemma 5.3. This means that

‖F(x)(t)‖ ≤ Ct−γ , ∀x ∈ D

for all t large enough. Equivalently, for a large T , one has dT (F(D)) ≤ CT−γ . Then

(5.4) d∞(F(D)) = lim
T→∞

dT (F(D)) = 0.

On the other hand, by the same argument as in the proof of Lemma 3.3, we have

(5.5) χ∞(F(D)) ≤ `∗χ∞(D).

Now, it follows from (5.4) and (5.5) that

χ∗BC(F(D)) ≤ `∗χ∗BC(D),

and condition (5.3) give us the condensing property of F on BCγ . The proof is complete.

And we have the stability result for problem (5.1)–(5.2) stated in the following theorem.

Theorem 5.5. Assume that the hypotheses of Lemma 5.4 hold. Then problem (5.1)–(5.2)

has at least one integral solution on [−h,+∞) satisfying ‖u(t)‖ = O(t−γ) provided that

(5.6) lim inf
r→∞

[
1

r
S∞α Ψg(r) + 2 sup

t>0

∫ t

0
(t− s)α−1‖Pα(t− s)‖m(s) ds

]
< 1.

Proof. By Lemma 5.4, F is χ∗BC-condensing on BCγ . By the same argument as in the

proof of Theorem 3.4, we have F is closed and condition (5.6) ensures the existence of a

stable closed ball BR in BCγ .

Now we are able to state that F : BR → Kv(BR) has a nonempty compact fixed point

set according to Theorem 2.11. The proof complete.
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6. Application

We consider the following fractional partial differential system:

∂γt u(x, t) = (−i∆ + σ)1/2u(x, t) + f(t, x, u(t, x)) +
m∑
i=1

bi(x)vi(t), x ∈ R2, t > 0,(6.1)

vi(t) ∈
[∫
O
k1,i(y)u(t− h, y) dy,

∫
O
k2,i(y)u(t− h, y) dy

]
,

1 ≤ i ≤ m, x ∈ R2, t ∈ R+ \ {tk : k ∈ N},
(6.2)

u(x, s) +
M∑
i=1

ciu(x, τi + s) = ϕ(x, s), s ∈ [−h, 0],(6.3)

where ∂γt stands for the Caputo derivative of order γ ∈ (0, 1) with respect to t, O is a

bounded domain in R2.

Let X = L3(R2) with the norm ‖ · ‖, σ > 0 is a suitable constant, −i∆ is Schrödinger

operator. Let

Â = (−i∆ + σ)1/2, D(Â) = W 1,3(R2).

Definition 6.1. Let −1 < γ < 0 and 0 < ω < π/2. By Θγ
ω(X) we denote the family of

all linear closed operator A : D(A) ⊂ X → X which satisfy

(1) σ(A) ⊂ Sω = {z ∈ C \ {0} : | arg z| ≤ ω} ∪ {0} and

(2) for every ω < µ < π there exists a constant Cµ such that

‖R(z;A)‖ ≤ Cµ|z|γ for all z ∈ C \ Sµ.

A linear operator A will be called an almost sectorial operator on X if A ∈ Θγ
ω(X).

Theorem 6.2. For each fixed t ∈ S0
π/2, Sα(t) and Pα(t) are linear and bounded operators

on X. Moreover, there exist constant CS = C(α, γ) > 0, CP = C(α, γ) > 0 such that for

all t > 0,

‖Sα(t)‖ ≤ CSt−α(1+γ), ‖Pα(t)‖ ≤ CP t−α(1+γ).

It follows from [15] that Â is an almost sectorial operator, Â ∈ Θ
− 1

6
α

ω for some 0 <

ω < π/2. Thus, we have

(6.4) ‖Sα(t)‖ ≤ CSt−
5
6
α, ‖Pα(t)‖ ≤ CP t−

5
6
α.

Then (A*) is satisfied.

Now let g(u)(s)(x) =
∑M

i=1 ciu(x, τi + s), then

‖g(u1)− g(u2)‖Ch ≤M
2/3 max{ci}mi=1‖u1 − u2‖PC .

Therefore, (G) satisfies with η = M2/3 max{ci}mi=1 and Ψg = η Id.

For the multivalued part, we assume that
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(1) bi ∈ L3(R2), kj,i ∈ L3/2(O), j = 1, 2, 1 ≤ i ≤ m,

(2) f : R+ × R2 × R → R such that f( · , x, z) is measurable, f(t, · , z) is measurable,

f(t, x, 0) = 0 and there exists κ ∈ Lploc(R
+;L∞(R2)) verifying

(6.5) |f(t, x, z1)− f(t, x, z2)| ≤ κ(t, x)|z1 − z2|, ∀ t > 0, x ∈ R2, z1, z2 ∈ R.

Now let F1 : R+ ×X → X, F2 : C([−h, 0];X)→ P(X) be such that

F1(t, v)(x) = f(t, x, v(x)),

F2(w)(x) =

m∑
i=1

bi(x)

[∫
O
k1,i(y)w(−h, y) dy,

∫
O
k2,i(y)w(−h, y) dy

]
.

Then problem (6.1)–(6.2) is exactly a prototype of system (1.1)–(1.3) with F (t, v, w) =

F1(t, v) + F2(w).

It follows from (6.5) that

(6.6) ‖F1(t, v1)− F1(t, v2)‖ ≤ ‖κ(t, · )‖L∞(R2)‖v1 − v2‖.

It is easily seen that F1 is a continuous (single-valued) map. In addition, F2 is a multimap

with closed convex values and the range lying in a finite dimensional space span{b1, . . . , bn}
⊂ X. Then one sees that F2 maps any bounded set into a relatively compact set. The

facts that F2 has a closed graph can be testified by a simple argument. Thus, F2 is

u.s.c. multimap (thanks to 2.8) with convex closed and compact values, and so is F .

The inequality (6.6) ensures that

χ(F1(t, B)) ≤ ‖κ(t, · )‖L∞(R2)χ(B).

On the other hand, for a bounded set C ⊂ C([−h, 0];X), we see that F2(t, C) is bounded

subset of the finite dimensional space formed by {bi}mi=1. So

χ(F2(t, C)) = 0.

Let F (t, v, w) = F1(t, v) + F2(w). Then

χ(F (t, B,C)) ≤ χ(F1(t, B)) + χ(F2(C)) ≤ ‖κ(t, · )‖L∞(R2)χ(B)

for all B ∈ B(X), C ∈ B(C([−h, 0];X)). Thus F satisfies (F4) for k(t) = ‖κ(t, · )‖L∞(R2).

Now, we check (F3). It is easy to see that

‖F1(t, v)‖ ≤ ‖κ(t, · )‖L∞(R2)‖v‖,

‖F2(w)‖ ≤
m∑
i=1

‖bi‖max{‖k1,i‖L2(O), ‖k2,i‖L2(O)} · ‖w‖C([−h,0];X).
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Then, (F3) takes place with

m(t) = max

{
‖κ(t, · )‖L∞(R2),

m∑
i=1

‖bi‖max{‖k1,i‖L2(O), ‖k2,i‖L2(O)}

}
.

By the above description for (6.1)–(6.3), we can apply Theorem 4.4 to get the existence

of decay integral solutions. Moreover, inequality (6.4) ensures that, system (6.1)–(6.3)

has a integral solutions with decay rate described by tγ‖u(t, · )‖ = O(1) as t → ∞, for

0 < γ < −5
6α.
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